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Abstract

We consider the problem of automatically extracting simplified models out of com-
plex high–dimensional and time–dependent data. The simplified model is given by
a linear Langevin equation with time–varying coefficients. The reduced model may
still be high–dimensional, but it is physically intuitive and much easier to interpret
than the original data. In particular we can distinguish whether dynamical effects
are influenced by friction, noise, or deterministic motion. The parameters for the
reduced model are obtained by a robust and efficient numerical predictor–corrector
scheme which relies on analytical solutions to a maximum-likelihood problem pro-
vided the time steps between successive observations are not too large. If the data
set is very heterogeneous the time series is better described not by a single model,
but by a collection of reduced models. This scenario is accounted for by embedding
the parameter estimation procedure into the framework of hidden Markov models,
i.e., we decompose the data into several subsets, each of which gives rise to an ap-
propriate linear Langevin model. The switching between the local model is done
by a Markov jump process. The optimal decomposition into submodels can then
be regarded as one global Langevin model with piecewise constant coefficients. We
illustrate the performance of the algorithm by means of several examples. Especially
we focus on the numerical error as a function of the time step of the observation
sequence.
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1 Introduction

Increasing amount of measurement data and growing complexity of processes
in all fields of applied sciences during the last few years has led to a persis-
tent demand for methods that allow for automatized extraction of the phys-
ically interpretable information out of raw data. Such data–based modelling
approaches should be able to flexibly incorporate multidimensional statistical
models for the observed data, yet they should be simple enough to enable
physical understanding of the process under consideration.

Therefore the genuine aim of data–based modelling is to reduce the complexity
of processes and data; this should be carefully distinguished from analytical
approaches like, e.g., spatial decomposition methods such as proper orthogonal
decomposition, the Karhunen-Loève expansion, or also averaging techniques.
These approaches make the point of reducing the dimension of a given model,
although the problem of finding a good decomposition may be data–driven as
well. See the textbook [1], or the excellent review article [2] for an overview.
Compare also [3] for a related approach.

We can distinguish three classes of related approaches for data–based model
reduction: (i) Box-Jenkins Model identification strategy, (ii) Bayesian models
or neural networks, (iii) and approaches which are based on fitting of the data
with a system of differential equations.

The first group of methods (i) is originated in econometrics in the beginning
of 1970 and is known under the name Box-Jenkins technique or ARIMA (au-
toregressive integrable models with moving average) [4,5,6]. The main idea of
these methods relies on fitting the observed data with a discrete time stochas-
tic difference scheme. The Box-Jenkins approach is restricted to the analysis
of stochastic processes that can be made stationary, i.e., cast into stochastic
processes Xt of bounded variation, constant first moment, and second mo-
ment E(XtXs) that depends only on (t − s); this can be achieved, e.g., by
differencing the time series. Moreover, the resulting autoregressive difference
scheme is discrete in time, which implies constant time intervals between single
realizations of the process.

The second group (ii) is based on dynamical Bayesian networks, such as hidden
Markov models (HMM) [7,8], or neural networks [9,10]. These are set-oriented
approaches, as they decompose the configuration space into several sets, where
the dynamics of the system in each of the domains is described by an inde-
pendent data model (see Figure 1). The overall dynamics of the process is
then governed by a hidden process switching between those sets. Most of the
approaches that we are aware of are designed in the context of the discrete
stochastic systems, which means that they are not based on a reasonable
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Figure 1. Dynamical Bayesian Networks. Here the arrows denote the casual de-
pendencies, Mi labels the hidden variable or model, Yi is the observation. In the
standard HMM approach the observation is triggered by the sequence of hidden
states for a prescribed probability distribution of the output (Figure (a)), whereas
in the HmmSde scheme the observation sequence is connected through a physical
model, that depends on the hidden states (Figure (b)).

physical model. Moreover the efficient implementation for high–dimensional
physical systems is lacking. See Figure 1 for illustration.

The third group of methods (iii) attempts to fit a global physical model, e.g., a
Langevin equation, to observed data [11]. Unfortunately the available methods
can deal with high–dimensional data only under very specific assumptions
(e.g., thermodynamical equilibrium, all matrices are diagonal etc.).

The approach that we develop here is a multi–dimensional extension of the
recently proposed HmmSde method (Hidden Markov Models with Stochastic
Differential Equations) for the case of Langevin dynamics [12,13]. The method
links dynamical Bayesian approaches with local Langevin models that are
fitted to observed data. The approach allows for the construction of global
physical models for high–dimensional data.

The rest of the article is organized as follows: In Section 2 we introduce the
general model, explain the basic method and derive the evolution equations for
the time–dependent parameters. The algorithmic strategy for identifying the
local Langevin models and to estimate the respective parameters is described
in Section 3. Finally we demonstrate the proposed technique by application
to some generic examples in Section 4.

2 Reduced model system

We shall restrict the class of models that are to be parameterized to Langevin
equations on Euclidean configuration space Q ⊆ Rn, which are of the following
type:
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Mq̈(t)=−grad U(q(t)) − γq̇(t) + σẆ (t) q ∈ Q . (2.1)

Here U : Q → R denotes the interaction potential, and Ẇ (t) is the stan-
dard Brownian motion. This model can be thought of steming from a sep-
arable Hamiltonian including viscous friction and noise; the more general
non–separable case will be treated in a forthcoming paper. Here both fric-
tion coefficient γ ∈ Rn×n, and noise amplitude σ ∈ Rn×n are symmetric,
positive-definite matrices, and M ∈ Rn×n is the constant, positive-definite
mass matrix; we do not assume that M is diagonal. Exploiting that the in-
volved matrices are symmetric, reduces the number of undetermined parame-
ters from n2 to n(n + 1)/2 for each matrix.

Introducing standard conjugate variables (q, p) ∈ T ∗Q � Rn×Rn for positions
and momenta on the cotangent space to Q, we can rewrite the Langevin
equation as the following first order system

q̇(t) =M−1p(t)

ṗ(t) =−grad U(q(t)) − ζp(t) + σẆ (t)

with the abbreviation ζ = γM−1. It can be seen that the equations of mo-
tion above have some scaling invariance: changing variables according to q �→
M1/2q, p �→ M−1/2p, which clearly is a symplectic transform, we arrive at the
scaled Langevin equation on tangent space TQ

q̇(t) = v(t) (2.2)

v̇(t) =−grad U(q(t)) − γv(t) + σẆ (t) . (2.3)

Hence we can reasonably identify TQ with T ∗Q, just by applying the scaling
transform γ �→ M−1/2γM−1/2, σ �→ M−1/2σ. This identification amounts to
setting M = 1 in the original Langevin equation (2.1). Notice that we do not
assume that the time series corresponds to an equilibrium process. Hence we
do not assume that the fluctuation–dissipation relation is met. Nevertheless it
is important to note that the mass scaling respects the fluctuation–dissipation
relation, for it is easy to see that

βσσT = γ ⇔ βM−1/2σσT M−1/2 = M−1/2γM−1/2 ,

whenever the inverse temperature β = 1/T is well–defined, i.e., in case the
system is in thermodynamical equilibrium. Consequently the fluctuation–dissi-
pation relation does not provide an additional condition, by means of which
the mass matrix in the model could be determined.

Remark 1 Apparently we have some freedom in setting up the parameters
in the model. However the undeterminacy of the mass matrix M lies deeper,
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for the mass scaling represents a symmetry group of scaling transforms that
is present in the Langevin equation (2.1). As we have seen, not even does the
fluctuation–dissipation relation provide further information; only in case the
given observations contain information about the momenta and the velocities
some knowledge about the mass matrix can be obtained employing the canonical
relation p = Mq̇. However for many applications the conjugate momenta will
not be available.

The optimal set of parameters for noise, friction, and the potential function
is uniquely determined by a maximum–likelihood principle. At a later stage
we shall consider parameters which will be only piecewise constant, in the
sense that each parameter tuple is optimal only for a specific subsequence of
the full time series. As we will show later on we can use the HMM algorithm
to switch between these distinct parameter sets; the underlying idea is to
decompose a complex time series by means of the Viterbi algorithm into several
subsequences each of which can be treated again by the maximum–likelihood
estimation. Such complex time series may occur in case there is metastability
in the system. For examples see [12] and the references therein.

Remark 2 The reader may argue that the considered Langevin model with
linear friction does not capture memory effects, which may be important, e.g.,
for the dynamics of biomolecules. This objection is typically formulated in
terms of slowly decaying velocity autocorrelations in the data. However it is
often ignored that these ”global” autocorrelation functions, i.e., autocorrela-
tion functions that are estimated over the full time series, are meaningful only
for stationary time series; for non–equilibrium processes the autocorrelation
function may be totally misleading. 1 Furthermore the autocorrelation is no
reliable measure for the memory in the system as it known from the theory
of time series analysis [4], even for stationary time series. Instead the partial
autocorrelation, which can be computed from the ordinary autocorrelation func-
tion, is an exact statistical measure for the depth of the Markovian memory
(provided the data is generated by a generalized time–discrete Markov process
[14]. In many interesting cases the (velocity) autocorrelation function decays
rather slowly, whereas the corresponding partial autocorrelation decays several
orders of magnitude faster. See the Cyclophane example in the numerics sec-
tion. Hence the decay time of the partial autocorrelation indicates on which
time scales the linear friction model makes sense at all.

1 For example, consider the autocorrelation function of a discretization of the one–
dimensional harmonic oscillator, which is clearly periodic. But as the system is
deterministic, this is a Markov process without memory.
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2.1 Evolution of probability densities

Given a time series, the aim of the current work is to find optimal parameters
for the model equations (2.2)–(2.3) by means of some maximum–likelihood
principle. To this end we define the Kolmogorov forward equation

∂u(q, v, t) = Au(q, v, t) , u(q, v, 0) = u0(q, v, t0)

that is associated with our model system, where A : L1(ν) → L1(ν) is the
forward generator of the time evolution considered to act on functions on the
function space space L1(ν), where ν = dq dv denotes the ordinary Liouville
measure. Letting ∂/∂v denote the (directional) derivative with respect to the
vector v = q̇(t), the forward operator is defined as

A =
∑
i,j

σ2
ij

2

∂2

∂vi∂vj

+
∑

i

(γv + gradU)i

∂

∂vi

−∑
k

vk
∂

∂qk
+ tr (γ) .

In order to determine the parameters of our model we approximate the solu-
tion of the Kolmogorov forward equation by localized Gaussians. This is for
two reasons: Assuming that the initial observation is sharp, the density will
have a Gaussian shape after a short time, provided the coefficients in the evo-
lution equation are sufficiently smooth [15,16]. Hence we study (i) the local
evolution of a Dirac–like density between two successive observations which
are close in time. Then (ii), we can compute the solution of the forward equa-
tion analytically which has proven useful for an efficient maximum–likelihood
estimation of the parameters [12]. We introduce the Gaussian probability den-
sity of the random variable x = (q, v) ∈ Rn × Rn centered at x̄(t) at time
t

ρ(x, t) = ρ0(t) exp
(
−1

2
〈Σ(t)(x − x̄(t)), x − x̄(t)〉

)
, x = (q, v) ,

where 〈·, ·〉 stands for the inner product in either Rn or in R2n, and Σ ∈ R2n×2n

denotes the symmetric, positive-definite shape matrix

Σ(t) =

⎛
⎜⎝A(t) B(t)

B(t) C(t)

⎞
⎟⎠ .

Here the block matrices A, B, C correspond to the variables q and v in the ob-
vious way. Plugging the Gaussian ansatz functions into the forward equation,
and equating powers of (q − q̄(t))(v − v̄(t)) we end up with a system of (sym-
metrized) ordinary differential equations for the time–dependent parameters
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¨̄q(t) =−grad U(q̄(t)) − γ ˙̄q(t) (2.4)

ρ̇0(t) =
(
tr (γ) − 1

2
tr (σ2C(t))

)
ρ0(t) (2.5)

Ȧ(t) =B(t)H(q̄(t)) + H(q̄(t))B(t) − B(t)σ2B(t) (2.6)

Ḃ(t) =
1

2

(
B(t)γ + γB(t) − B(t)σ2C(t) − C(t)σ2B(t)

)
(2.7)

+
1

2
(C(t)H(q̄(t)) + H(q̄(t))C(t)) − A(t)

Ċ(t) =C(t)γ + γC(t) − 2B(t) − C(t)σ2C(t) , (2.8)

where H(q̄) = D2U(q̄) ∈ Rn×n denotes the Hessian matrix of the potential
function U(q) evaluated at q = q̄ (see the Remark below).

Note that the equation for the center q̄(t) is decoupled from the remaining
equations and vice versa; thus, in order to solve the equations, we can choose
convenient discretization schemes for each of the equations. Clearly, depend-
ing on which equation is how disretized we will obtain different convergence
properties in the numerics for the respective parameters. We will come back
to this issue later on in the examples section. We stress once again that the
derivation here does not require that the observation series is in thermody-
namic equilibrium, i.e., that the parameters γ and σ obey the fluctuation–
dissipation relation. Rather we consider the data to describe some inherent
non–equilibrium process.

2.2 Short–time asymptotics

On condition that the initial density at time t0 = t is sharply peaked around
the observed value (q, v) = (Q(t), V (t)) we may derive an asymptotic expres-
sion for the density at a small time step t �→ t+h with h = O(ε), where ε 	 1
is a small parameter. To put this differently, the probability distribution can
be regarded as an infinitely narrow Gaussian density, and we shall try to solve
parameter equations of motion for these specific initial conditions. After time
t + h we expect the shape matrix to be of the form

Σ(t + h) =

⎛
⎜⎝O(ε−1) O(ε)

O(ε) O(ε−1)

⎞
⎟⎠ .

For sufficiently small ε we can use some formal arguments from singular per-
turbation theory: First of all we expand the shape matrices in powers of ε:
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Aε(s)= ε−1A−1(s) + A0(s) + εA1(s) + . . .

Bε(s)= ε−1B−1(s) + B0(s) + εB1(s) + . . .

Cε(s)= ε−1C−1(s) + C0(s) + εC1(s) + . . . .

We assume that all coefficients Ak, Bk, Ck are uniformly bounded and suffi-
ciently smooth, which we also require for the only remaining time–dependent
coefficient H(s) = H(q̄(s)). Defining the microscopic time scale by s = εt, we
can rescale the equations of motion (2.6)–(2.8), which then become

ε−1Ȧε(s)= Bε(s)H(s) + H(s)Bε(s) − Bε(s)σ2Bε(s)

ε−1Ḃε(s)=
1

2

(
Bε(s)γ + γBε(s) − Bε(s)σ2Cε(s) − Cε(s)σ2Bε(s)

)

+
1

2
(Cε(s)H(s) + H(s)Cε(s)) − Aε(s)

ε−1Ċε(s)= Cε(s)γ + γCε(s) − 2Bε(s) − Cε(s)σ2Cε(s) .

We can plug in the expansions of Aε, Bε, Cε, and equate powers of ε. From
this we obtain a hierarchy of equations, the lowest order of which is

Ȧ−1(s)=−B−1(s)σ
2B−1(s) (2.9)

Ḃ−1(s)=−1

2

(
B−1(s)σ

2C−1(s) + C−1(s)σ
2B−1(s)

)
(2.10)

Ċ−1(s)=−C−1(s)σ
2C−1(s) . (2.11)

So far we have not said too much about initial conditions. Clearly the expan-
sion is supposed to still hold at s = 0. As we have stated the initial density is
sharply peaked around (q, v); this means that the shape matrix is diagonal–
dominant with A(0), C(0) 
 1, and B(0) = 0. Hence we can infer from the
smoothness properties of the coefficients that B−1 identically vanishes in a
neighbourhood of the origin. In particular this can be seen by first solving the
equation for C−1(s), which is independent of all the other shape matrices, and
then plugging the expression into the equation for B−1(s); since we do not
want the solution to blow up at s = 0, we demand Ḃ−1 = B−1 = 0.

Hence the system of equations (2.9)(2.11) can be solved by analytic means,
provided that B−1 = 0 . Scaling back to the original time scale t = s/ε we
obtain the first–order result at time t + h

Σ(t + h) =

⎛
⎜⎝A(t) 0

0 C(t)(hσ2)−1

⎞
⎟⎠ , (2.12)

where the initial values satisfy A(t), C(t) 
 1 and B(t) = 0. By performing a
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second-order accurate, symmetric, and explicit discretization of the equations
for q̄, and v̄ we arrive at [17]

q̄(t + h) =Q(t) +
h

2
V (t) (2.13)

v̄(t + h) =V (t) − h (grad U(q̄(t + h)) + γV (t)) (2.14)

Clearly the time evolution of the amplitude ρ0(t + h) is determined by the
condition that the probability density ρ(·, t) stays normalized:

ρ0(t + h) =
1

hπn

√
det K

det σ2
. (2.15)

We can check the shape matrix result for consistency by taking the interme-
diate result to the next order in the small parameter; in doing so we find that
A0 = const., B0 ∝ h and C0 ∝ log h. Clearly the asymptotic derivation of the
shape matrix’ time evolution is purely formal; nevertheless it can be supported
by numerically solving the equations of motion, where it turns out that the
asymptotic result is valid over relatively long times; in the last section we will
quantify the validity of the asymptotic expansion for increasing step size h.

Remark 3 It is necessary to make an arrangement for the generic case that
the potential U(q) in the Langevin equation is unknown. Then we assume that
the Hessian matrix H(q̄) = D2U(q̄) is constant, which leads to a quadratic
potential function of the form

U(q) =
1

2
〈H(q − µ), q − µ〉 .

Thus H, µ are the unknown parameters, where µ denotes the center of the har-
monic potential, which should not be confused with the time-dependent center
q̄(t) of the Gaussian density. In praxi the harmonic approximation leads to
computationally tractable problems at all, but moreover it follows by consis-
tency with the choice of the Gaussian ansatz functions that led to evolution
equations for the shape matrices, where no higher–order derivatives of U(q̄)
appeared; determination of higher–order terms would require higher-order mo-
ments in the ansatz density ρ(x, t), in case of which the emerging parameter
equations cannot be solved for high–dimensional problems.
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3 Optimal model parameters

3.1 Maximum–likelihood principle

For the moment we assume that we are dealing with only one, possibly high–
dimensional, Langevin model without hidden states, that has to be parame-
terized.

The procedure then works as follows: Suppose we are given a discrete time
series X = {X1, . . . , XM+1}, where Xk = (Q(tk), V (tk)) denotes a position
and velocity observation, and h = tk+1 − tk is the constant time difference
between two successive observations. We are aiming at maximizing the prob-
ability density of the output Xk+1 that is evolved according to the Langevin
model, starting from the observed datum Xk. The corresponding conditional
probability density is given by the expression

ρλ(Xk+1|Xk) = ρ0 exp
(
−1

2
〈Σ(Xk+1 − x̄k+1), Xk+1 − x̄k+1〉

)
. (3.1)

with the time–dependent parameters ρ0, Σ, x̄ evaluated at t + h as deter-
mined by the equations (2.12)–(2.15). Of course the time–dependent param-
eters are functions of the observations and the time–independent parameters
λ = (γ, σ2, H, µ), that ought to be determined. In particular x̄k+1 is a function
of the former observation Xk. We define the log–likelihood function of the
observation sequence as

L(λ|X) = log p(X|λ) (3.2)

where p(X|λ) denotes the joint probability distribution of the observation
sequence

p(X|λ) =
M∏

k=1

ρλ(Xk+1|Xk) , (3.3)

that satisfies the Markov property ρ(Xk+1|X1, . . . , Xk) = ρ(Xk+1|Xk). The
optimal parameters λ are those which maximize the log–likehood function,
which reads upon inserting the equations (3.1) and (3.3) into (3.2)
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L(λ|X)=
M∑

k=1

log ρλ(Xk+1|Xk)

=M log ρ0 − 1

2

M∑
k=1

〈Σ(Xk+1 − x̄k+1), Xk+1 − x̄k+1〉

=C − M

2
log det σ2

− 1

2h

M∑
k=1

〈
σ−2(Vk+1 − v̄k+1), Vk+1 − v̄k+1

〉
.

Here C < 0 denotes a constant that collects all terms that do not depend on
the undetermined parameters λ = (γ, σ2, H, µ), and v̄k+1 is defined according
to (2.13)–(2.14)

v̄k+1 = Vk − h

(
H(Qk +

h

2
Vk − µ) + γVk

)
.

In order to compute the critical point of the log–likelihood function, we eval-
uate the necessary condition dL = 0. To this end we compute the individual
partial derivatives of the log–likelihood: for the friction coefficients

∂L
∂γ

= −σ−2
M∑

k=1

Vk ⊗ ∆v
k+1 , (3.4)

the noise covariance matrix

∂L
∂σ2

=
1

2h
σ−4

M∑
k=1

∆v
k+1 ⊗ ∆v

k+1 −
M

2
σ−2 , (3.5)

the Hessian of the potential function

∂L
∂H

= −σ−2 1

2

M∑
k=1

(Qk − µ) ⊗ ∆v
k+1 , (3.6)

and last but not least we compute the derivative with respect to the centre of
the potential

∂L
∂µ

=
1

2
Hσ−2

M∑
k=1

∆v
k+1 (3.7)

using the abbreviation ∆v
k+1 = Vk+1 − v̄k+1, and exploiting some basic prop-

erties of the tensor product, that is defined as (X ⊗ Y )ij = XiYj, where X, Y
are any two vectors from Rn.
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The unknown parameters λ = (γ, σ2, H, µ) are determined by solving the
nonlinear system of equations (3.4)–(3.7) for a given observation sequence
X = {X1, . . . , XM}. If either the configuration space is one–dimensional or all
degrees of freedom are decoupled from each other we can solve this system
analytically. This explicit solution may then serve as a predictor in solving
the fully coupled high–dimensional system numerically. The numerical scheme
therefore can be considered as predictor–corrector method, where the corrector
step is performed using a standard Newton iteration [18].

3.2 Hidden Markov model and expectation-maximization algorithm

Up to now we have considered a single, possibly high–dimensional global
model, which approximates the whole time series in the maximum–likelihood
sense. Alternatively we could imagine that different segments of the time series
correspond to different local Langevin models, each of which is characterized
by a particular set of constant parameters λi = (γi, σ

2
i , Hi, µi). Switching back

and forth between these local parameter sets can then be understood as one
global model with parameters that are piecewise constant in time.

We shall consider the problem of estimating optimal parameters within the
framework of hidden Markov models (HMM): For a prescribed number L of
local parameter sets λi, i = 1, . . . L, we use the expectation–maximization
algorithm [7,19,20]. Hence we assume that the switching between the different
parameter sets is governed by a Markov jump process. For example, one may
think that the configuration space has a metastable decomposition; then every
instance t in the time series is assigned to a metastable set i(t). Thus the model
consists of two related stochastic processes X(t) and i(t), where the latter
is not directly observed (hidden) and fullfils the Markov property. On the
other hand the observation sequence is a stochastic process X(t) = (X|i)(t)
conditional on the hidden state i(t) at time t.

Overall a HMM is fully specified by an initial distribution π of hidden states,
a transition matrix T of the hidden Markov chain i(t), and by the parameters
of the output process λi for each state i. If the rate matrix of the jump process
is denoted by R ∈ RL×L, then the transition probability to jump from state
i(tk) = m to state i(tk+1) = n within time h is given by the respective entry
of the transition matrix

T (m, n) = (exp(hR))mn .

In the standard version of HMM the observables X(t) are identical and inde-
pendent random variables [21,22]. Here instead we consider random variables
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that are the output of the Langevin equation (2.1) for the current hidden state
i = i(t), that is,

q̇(t) = v(t)

v̇(t) =−Hi(q(t) − µi) − γiv(t) + σiẆ (t) (3.8)

i : R → {1, 2, ..., L} .

Now embedding the problem of estimating optimal parameters for the model
(3.8) into the context of HMM, the joint probability distribution (3.3) of the
observation sequence reads

r(X|λ) =
M∏

k=1

T (ik, ik+1)�λ(Xk+1|ik+1, Xk) , (3.9)

where the conditional probability �λ(·|·) is defined as ρλ(·|·) before except that
the parameters now depend on the hidden state ik+1 = i(tk+1). The algorithm
for the identification of parameters conditional on the hidden (metastable)
states comprises the following three steps:

(1) Determine the optimal parameters θ = (π, A, λi) for all states i = 1, . . . , L
by maximizing the likelihood L(θ|X, i); in general this is a nonlinear
global optimization problem.

(2) Determine the optimal sequence of hidden metastable states {ik} :=
{i(tk)} for given optimal parameters.

(3) Determine the number of important metastable states (up to now we have
simply assumed that the number L of hidden states is given a priori).

The first two problems can be addressed by standard HMM algorithms. The
parameter estimation on the partially observed data is carried out using the
expectation–maximization (EM) algorithm. The optimal parameters θ are
identified by iteratively maximizing the entropy

S(X) = max
θ

∑
i

L(θ|X, i) logL(θ|X, i) .

For the identification of the optimal sequence of hidden metastable states
the Viterbi algorithm [23] is used, which exploits dynamic programming tech-
niques to resolve the optimization problem

max
i

L(θ|X, i)

in a recursive manner. For the details see [24] and the references therein.

Addressing the first two problems (1) and (2) requires the specification of a
number L of hidden states, which is unknown a priori. A practical way to
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handle this problem is to assume a sufficiently large number of hidden states
and then aggregate the resulting transition matrix, which gives the minimum
number of hidden states which are necessary to resolve the metastable sets
[25,26]. The aggregation is performed by the Perron cluster cluster analysis
(PCCA), exploiting the spectral properties of the transition matrix T to trans-
form it to a matrix with quasi–block structure [12,27,28]. These blocks then
correspond to the existing metastable states.

4 Numerical examples

In this section we present different types of numerical examples for the pro-
posed method. We start with a one–dimensional HMM–Langevin model of the
type (3.8) with two hidden states, producing an ensemble of the realizations.
From the realizations we then estimate the model parameters and show that
the sequence of the hidden states can be completely recovered. Subsequently,
we apply the procedure to a one–dimensional Langevin equation whose hid-
den states are implicitly defined by the metastability arising from a perturbed
three–well potential, demonstrating the data–based decomposition of the dy-
namics into locally harmonic Langevin models that are connected by a Markov
jump process.

As a slightly more challenging task, we apply the reduction algorithm to a
multidimensional problem with known parameters. In the parameter estima-
tion we especially focus on the quantitatively correct reconstruction of the
flipping dynamics between metastable sets by coupling several local Langevin
models; moreover we can reproduce the interaction between the different spa-
tial dimensions of the original model and assign them to different dynamical
properties, such as deterministic motion, friction or noise. We show that the
approach, in contrast to simple correlation analysis of a time series, maintains
the physical structure of the underlying dynamics; it is therefore possible to
reconstruct physical processes by means of incomplete observations.

In the last example we apply the method to a molecular dynamics simulation
of Cyclophane, demonstrating the ability of also estimating parameters of
inherent non–equilibrium processes, only from short fragments of the MD
simulation. We also perform a numerical investigation of the time step length
influence on the quality of the parameter estimation.
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Figure 2. Typical realization (q(t), q̇(t)) of the Langevin equation (4.1). The time
series has a length M = 200.000.

0 2 4 6 8 10
1.24

1.245

1.25

1.255

1.26
x 10

5

Number of EM iterations

Lo
g−

Li
ke

ly
ho

od

Figure 3. Log–likelihood maximization with EM algorithm. The separation into
linearized models and the estimation of the optimal parameters converges after
approximately five iterations.

4.1 One–dimensional examples

Case 1: HMM–Langevin model with two states. In the first example
we produce the output sequence by realizations of the following Langevin
equation

q̈(t) =−H i(t)(q(t) − µi(t)) − γi(t)q̇(t) + σi(t)Ẇ (t) . (4.1)

The parameters are given in Table 1 below. Figure 2 shows one realization of
this process with initial values (q(0), q̇(0)) = (1, 0).

We start the EM algorithm for two hidden states; alternatively one can start
with more states and cluster the obtained transition matrices, e.g., with PCCA
resulting in two metastable hidden states. On average, the EM algorithm
converges after approximately five iterations, where the average is taken over
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Table 1
Parameters of the two local Langevin models (4.1) used for generating the test
sequences. The corresponding Viterbi path is shown in the left panel of the Figure
4.

state i µi H i γi (σi)2

i = 1 1.00 600 6 3.69

i = 2 1.05 300 6 5.76

Table 2
Estimated parameters for the Langevin models averaged over 100 different real-
izations of the given HMM-Langevin process. Each realization has a length of
M = 200.000 with h = 5 · 10−4.

state i µi H i γi (σi)2

i = 1 1.00 ± 2.4 · 10−7 599.9 ± 40 6.06 ± 1 · 10−1 3.69 ± 7.1 · 10−5

i = 2 1.05 ± 1.3 · 10−6 301.4 ± 26 6.05 ± 1 · 10−1 5.76 ± 1.4 · 10−4

100 different realizations (see Figure 3). If we compare the original model
parameters with their estimates from the ensemble of 100 realizations we can
see, that the algorithm more or less exactly recovers the original values. See
Table 2 and Figure 5 below. Figure 4 shows a comparison of the ”true” Viterbi
path i(t) with the estimated one.

The numerical error of the parameter estimation as a function of the time
step h and the length M of the time series is plotted in the Figures 6 and
7, respectively. In accordance with the law of the large numbers the relative
error of the method scales with the inverse square root of the total length M
of the (equilibrium) trajectory. On the other hand we observe a rather unequal
behaviour of the numerical error as a function of the step size h: the errors of
the Hessian and the friction coefficient scale quadratically, whereas the error
of the noise intensity scales linearly. This behavior can clearly be explained
by the different discretization schemes (2.12)–(2.15) that were used for the
various parameters.

Case 2: Diffusive motion in a perturbed three-well potential. As a
second example we consider realizations of the Langevin equation

q̈(t) =−grad U(q(t)) − γq̇(t) + ηẆ (t) (4.2)

with the potential defined by

U(q) = p(q) + α sin(βq) , p(q) =
6∑

k=0

akq
k ,
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Figure 4. Jumps between the two local Langevin models i = 1 and i = 2 versus
time t. Left: Original sequence used to generate the time series. Right: Computed
Viterbi path for L = 2.
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Figure 5. Colouring of the time series according to the optimal decomposition into
linearized models. Right panel: two local Langevin potential wells (solid), and har-
monic potentials calculated for one realization by means of the EM algorithm with
L = 2 hidden states (circles). Left panel: original time series coloured according to
the HMM states from Figure 4.
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of 100 different realizations.
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Figure 7. Mean relative error (left) and its variance (right) as functions of the
observation time M for fixed time step h = 5 · 10−4. The values were averaged over
100 different realizations.

where the parameters are

a =(1.3515, 0.2104,−2.3786,−0.1462, 1.0123,−0.0168,−0.0438)

(α, β)= (0.005, 50.000) .
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Table 3
Parameters of the Langevin models (4.2).

1st Langevin model 2nd Langevin model 3rd Langevin model

µ −0.97 0.05 0.88

H 7.77 0.44 6.38

γ 1.02 1.00 1.09

η2 0.109 0.104 0.11
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Figure 8. Lower panel: Multi–well potential U = U(q) as defined in the text. Upper
panel: Typical realization of the dynamics given by the Langevin equation (4.2)
with noise intensity η2 = 0.1. The time series has total length of 60.000.

0 5 10 15 20
7.91

7.92

7.93

7.94

7.95

7.96

7.97
x 10

4

Number of EM Iterations

Lo
g−

Li
ke

ly
ho

od

Figure 9. Log–likelihood maximization with the EM algorithm. The separation into
linearized models and the estimation of the optimal parameters converges after
approximately ten iterations.

This system exhibits metastable transitions between its three wells, if the
noise amplitude η is reasonably small; the potential is shown in Figure 8.
We set η2 = 0.1, γ = 1 which leads to metastability, as we can see from
the realization shown in Figure 8. The observation sequence is generated by
numerical integration of (4.2) using the Euler-Maruyama [29] scheme with
time step τ = 0.02. Only every second step enters the observation sequence,
thus the observation time step is h = 0.04.
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Figure 10. Jumps between the three dominant metastable states i ∈ {1, 2, 3} versus
time t. Left: As computed from the original time series with the perturbed three–well
potential (state 1 = {x < −0.5}, state 2 ={−0.5 ≥ x ≥ 0.5}, state 3 = {x > 0.5}).
Right: Viterbi path computed for L = 3.

The HMM–Langevin model (3.8) is trained on this time series employing the
expectation–maximization algorithm for L = 6 hidden states (more than we
actually expect), the subsequent clustering of the transition matrix results
in L = 3 hidden states for the jump process. As can be seen from Figure 9
the algorithm quickly converges towards a local maximum of the log–likelihood
function. The estimated optimal parameters of three linearized Langevin mod-
els are given in the Table 3.

In order to evaluate the quality of the assignment of states to three locally
linearized Langevin models, we compare the jump sequence between the three
metastable states produced by the original dynamics with that identified by
the Viterbi algorithm for L = 3. Figure 10 shows that the two pathways
are in good agreement. Small deviations between the two paths may result
from rare recrossings of the barrier (cf. the time series Figure 8, in particular
around t = 1400). The shape of the corresponding harmonic potentials in the
estimated model is illustrated in Figure 11. Notice that the algorithm resolves
the internal structure of the metastable states; both the centers µi and the
stiffnesses H i of the harmonic potentials approximate the mean Hessians of
the metastable sets quite well.

20



−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0   

1000

2000

T
im

e
Figure 11. Upper panel: Colouring of the time series according to the optimal de-
composition into linearized models. Lower panel: Multi-well potential (solid), and
harmonic approximations with L = 3 hidden states (dashed).

Table 4
Parameters of the three–hole potential. The corresponding Viterbi path is shown in
Figure 13

.

l al µl δ0 k

l = 1 3.00 (0, 1/3) 0.05 3.00

l = 2 −3.00 (0, 5/3) – –

l = 3 −5.00 (1, 0) – –

l = 4 −5.00 (−1, 0) – –

4.2 High–dimensional examples

Nonlinear potential coupled to a harmonic bath. We consider realiza-
tions of the Langevin equation

q̈(t) =−grad U(q(t)) − γq̇(t) + σẆ (t) (4.3)

with q = (x, y) ∈ R2 × R10 and the three–hole potential defined by

U(x, y) =
4∑

l=1

al exp(−〈x − µl, x − µl〉 +
1

2
〈Hy, y〉

+δ0 (cos(2πk(x1 + x2)) + cos(2πk(x1 − x2))) ,

where δ0 	 1 is a perturbation parameter, and x labels those degrees of
freedom which are attached to the three–hole potential; the harmonic bath
variables are denoted by y. The parameters of the three–hole potential are
given in Table 4 below.
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Figure 13. Viterbi path for the three–hole problem.

As a test we generate a realization of the Langevin model 4.3 with 60.000 ob-
servations and a time step h = 0.01. As the potential energy function in this
example has three local wells, the model reduction produces three locally har-
monic 12–dimensional models with a Markov chain switching between them.
The corresponding Viterbi path produced by the EM algorithm is shown in
Figure 13, which should be compared to the projection of the time series onto
first two degrees of freedom (see Figure 14). The colouring is due to the com-
puted Viterbi path, and it can be seen that the states of the hidden Markov
chain coincide with the respective local minima of the potential energy func-
tion.

Additionally we test the quality of estimated parameters by comparing them
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Figure 14. Left: Projection of the 12–dimensional time series onto the 2–dimen-
sional subspace of the three–hole potential. The projected time series is coloured
according to the Viterbi path in Figure 13. Right: Comparison of the contour lines
of the three–hole potential (solid lines) with the contour plots of three locally har-
monic models as obtained from the EM algorithm. The arrows graphically represent
transitions and the corresponding rates between the hidden states.

to the exact model parameters that have been used generating the time series
(cf. Figure 15). Apparently the estimated parameters are in good agreement
with the exact ones, and it is even possible to resolve the fine off–diagonal
structure of the parameter matrices, that is responsible for the coupling be-
tween different degrees of freedom.

4.3 Dethreading of Cyclophane

In previous examples the performance of the numerical scheme was tested
on artificial models with known parameters. In this section we shall apply the
technique to a real molecular system whose underlying physical model is a pri-
ori unknown. To this end we consider a time series of a Cyclophane dethreading
process that has been provided by Alessandro Laio and Michele Parinello at
ETHZ [30]. The system represents a complex of tetracationic Cyclophane and
a 1,5-Dihydroxynaphtalene solvated in Acetonitrile as illustrated in Figure 17.

One of the basic insights in the work [30] is that the essential dynamics of
the system is well represented by two internal coordinates: q1 is the distance
between the centroids of the Cyclophane and the Naphtalene molecules, and
q2 labels the coordination number of the Naphtalene with the molecules of the
solvent. The two–dimensional time series comes as a 7ns observation sequence
with a time stepping of h = 2fs.

In order to estimate if fitting of the linear friction model to the given data is
reasonable, we compute the partial autocorrelation function for the velocities
v1 and v2 out of the differenced time series for q1 and q2. We assume that
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column) with the parameters estimated by the EM algorithm (right column). The
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Figure 16. Autocorrelation and partial autocorrelation functions for the velocities
v1, v2. Note the different time scales on the time–axes of autocorrelation (left) and
partial autocorrelation (right).
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v1, v2 can be considered as a realization of a generalized time–discrete Markov
process. Then, as it can be seen from the comparison of autocorrelation and
partial autocorrelation functions in Figure 16, the partial autocorrelation of
v1, v2 decays after about 20fs, and so does the memory of the process. The
ordinary velocity autocorrelation function however tells a different story: here
the autocorrelations decay on time scales which are far beyond picoseconds,
hence it is misleading regarding memory effects in the system. In Figure 19 it
can be seen that the parameters hardly change, while the time step is changed
from 2fs to 24fs. Therefore we are confident that linear viscous friction is an
appropriate description for the friction in the system.

The free energy landscape computed with respect to the two essential coordi-
nates is anharmonic (see Figure 18). Application of the estimation procedure
with one hidden state however produces a meaningful harmonic approxima-
tion of the free landscape around the minimum. Incorporating further hidden
states in the model clearly gives a better approximation of the free energy
landscape and results in a global Langevin model which consists of several
locally harmonic Langevin models that are connected by a rapidly mixing
Markov chain; note that no severe metastability is observable in the essential
subspace.

The convergence of the model parameters as a function of observation se-
quence length is shown in Figure 19. As it can be clearly seen, even relatively
short trajectories (split nanosecond) give reliable estimates of the Langevin
parameters, which is in accordance with the lack of metastability. Figure 19
shows the estimated parameters as functions of the observation time step for
a fixed–length observation sequence (500.000 points). Finally, Figure 20 illus-
trates that the numerical effort of the parameter estimation scales linearly
with the length of the analyzed time series.

5 Conclusions

The algorithm introduced here allows for the parametrization of reduced mod-
els for high–dimensional time series. The proposed Langevin models are simple
enough to provide physical insight into complicated data, yet flexible enough,
so as to capture a variety of dynamical phenomena. The algorithm does nei-
ther require stationarity of the time series, nor thermodynamical equilibrium
(fluctuation–dissipation relation). The numerical effort of the method scales
linearly with the total length of the time series, quadratic in the dimension-
ality and the number of hidden states, i.e., in the number of local models (cf.
[12]); nevertheless the method works quite well even for high–dimensional data,
although estimating the parameters for the Langevin equation is a global non-
linear optimization problem. Moreover the method reveals information about
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Figure 17. Chemical structure of Cyclophane (left) and the 1,5-Dihydroxynaphtalene
(right)
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Figure 18. Comparison of the free energy surface (solid) of the reduced time series
with the locally harmonic potentials of the Langevin models (dashed) with one
hidden state (left) or two hidden states (right).

the interaction and coupling of certain degrees of freedom, that is, it allows to
decide whether certain dynamical effects are induced by friction, deterministic
motion or noise.

The parameter estimation for the reduced model is based on a predictor–
corrector scheme exploiting an analytical solution to the corresponding maxi-
mum–likelihood problem. We have shown in the examples section by means
of several model problems that the numerics successfully recovers the original
parameters of the used model, whenever the time stepping between succes-
sive observations is not too large. The time stepping issue reveals the main
difficulty for the algorithm: what does a small step size mean? Unfortunately
there is no a priori criterion at hand in order to decide whether a given time
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Figure 19. Convergence of the 2–dimensional parameter estimation for different time
steps h (left column), and with increasing length of the observation time M for a
single hidden state (right column).

series is fine enough or not. However the parameter estimation can be per-
formed, checking a posteriori whether the truncated terms in the short–time
asymptotics are negligible indeed. Alternatively we could also solve the exact
equations of motion for the parameters numerically, i.e., without any approx-
imations, and then use this result maximizing the log-likelihood by means of
Newtons method with an appropriate damping scheme. However we have de-
cided to stick to the analytical expressions that are available from the lowest–
order perturbative expansion, since this has proven quite efficient, and it lets
the parameter estimation be remarkably robust.

A second restriction concerns the linearity of the Langevin equation: neither
do we consider memory effects, nor do we treat Langevin equations that orig-
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Figure 20. Numerical performance (CPU time in seconds) of the algorithm as a
function of the time series’ length (in nanoseconds).

inate from non–separable Hamiltonians. Memory effects play a crucial role on
time scales, where partial correlations in the system have not been decayed
yet. Although the correlation times of the ”global” autocorrelation functions
are far beyond the short time intervals between the individual observations
[31], partial autocorrelations, which are a measure for the memory in the sys-
tem, often decay much faster. In this case it seems reasonable to parameterize
the linear Langevin model, as was shown in the last example. The limitation
further pertains data that arise, e.g., in rigid body motion or in coarse–grained
modelling of DNA [32], for such systems usually have non–separable Hamilto-
nians. An extension of the present method to non–separable systems is work
in progress.
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