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Abstract

Asymptotic analyses of the three dimensional compressible flow equations
coupled with transport equations for the mixing ratios of water vapour,
cloud water and rain water are described. We obtain reduced systems of
equations for two particular regimes of length and time scales: Models for
the long time evolution of deep convective columns and for the short time
evolution of shallow convective layers.

The asymptotic deep convective column model is anelastic, yet the
vertical motion is “pressure free”, i.e., it evolves freely in interaction
with buoyancy while the horizontal divergence adjusts to fullfil the
anelastic constraint. The perturbation pressure guaranteeing compli-
ance with the horizontal divergence constraint obeys a Poisson-type
equation. Surprisingly, the vertical velocity plays an important role
in the horizontal dynamics through the Coriolis term. The vertical
acceleration in a saturated column is directly determined by the buoyancy
induced by potential temperature differences relative to the background
stratification. This potential temperature deviation is a conserved quantity.

Evaporation is the only important microphysical process in the un-
dersaturated regime. The evaporation rate depends on the saturation
deficit and the amount of rain water present and determines the (down-
ward) vertical velocity and the distribution of water vapour.

To connect the deep convective column solutions to top and bottom
boundary conditions, a different flow regime needs to be accounted for.
Within shallow layers whose depth is comparable to the column diameters,
adjustment to physical boundary conditions can take place. This is the
second regime considered in this report. The shallow convective layer
regime is shown to be asymptotically described by Boussinesq-type
equations. These equations are closed by evolution equations which show
that, in the saturated regime, the distributions of potential temperature
and cloud water are determined by a condensation rate that is directly
proportional to the vertical velocity. In the undersaturated regime, the
potential temperature distribution is determined by the amount of rain
present, since the water vapour in this case is shown to be a conserved
quantity. In both regimes the distribution of rain water depends on the
rain water flux.
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iv NOTATION

Notation

Latin Symbols
a radius of the Earth
Acr constant of O(1) resulting from asymptotic analysis
Avs constant of O(1) resulting from asymptotic analysis;

in the appendix abbreviated as A
B constant of O(1) resulting from asymptotic analysis
cp specific heat capacity at constant pressure for dry air
Ccr constant of O(1) resulting from asymptotic analysis
D dimensionless number resulting from dimensional analysis
F constant exponent in dimensional analysis
e∞ triple-point vapour pressure
g acceleration of gravity
h height
k vertical unit vector
Kvc constant of O(1) resulting from asymptotic analysis
l length
L constant of O(1) resulting from asymptotic analysis
Lcond specific latent heat of condensation
p pressure
Pvs constant of O(1) resulting from asymptotic analysis
r mixing ratio
R specific gas constant
Rvs constant of O(1) resulting from asymptotic analysis;

in the appendix abbreviated as R
S source term
Sθ source term due to latent heat release
t time coordinate
v velocity vector
vt terminal falling velocity of rain drops
Vr constant of O(1) resulting from asymptotic analysis
w vertical velocity
x horizontal coordinates with respect to hsc

x̃ horizontal coordinates in dimensional form
z vertical coordinate

Greek Symbols
α constant of O(1) resulting from asymptotic analysis
β constant of O(1) resulting from asymptotic analysis
γ isentropic exponent
Γ constant of O(1) resulting from asymptotic analysis
ε asymptotic scaling parameter
θ potential temperature
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λ constant of O(1) resulting from asymptotic analysis
µ constant of O(1) resulting from asymptotic analysis
ξ horizontal coordinates with respect to εhsc

% density
Ω diurnal rotation frequency
Ω Earth rotation vector

Ω̂ normalised Earth rotation vector

Dimensionless Numbers
Fr Froude-Number
M Mach-Number
Ro Rossby-Number
Sr Strouhal-Number

Mathematical Expressions and Operators
D
Dt substantial derivative

exp[·] exponential function
ln[·] natural logarithm function (to the basis e)
max[·] maximum function
O(·) Landau-Symbol
(·)(i) i: order of the asymptotic expansion
(·)t differentiation with respect to t
(·)z differentiation with respect to z
∇ Nabla-Operator
∇x Nabla-Operator regarding x

∇ξ Nabla-Operator regarding ξ

∇2 = ∆ Laplace-Operator

Indices
c cloud water
d dry air
out outside the deep convective column
r rain water
ref reference
sat saturated
sc scale
SI SI-unit of that quantity
un undersaturated
v water vapour
vs saturated water vapour
(·)

q
horizontal part of a vector

(·)
⊥

vertical part of a vector
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1 Introduction

Atmospheric moist convection plays an important role in many atmospheric
systems. Moist convection may be divided into at least two coarse-grained types:
deep convection and shallow convection. Deep convection is a thermodynamically
driven process that transports momentum, heat, and moisture and usually results
in strong precipitation which interacts with the atmosphere through evaporation.
Emanuel, [2], explains that by the net release of latent heat integrated through
the depth of the troposphere deep convection has strong effects on the dynamics
and thermodynamics of the atmospheric circulation systems in which it is
embedded. Shallow convection helps propagate moisture, heat and momentum
from the boundary layer to the free atmosphere. The role of convective motions
in the boundary layer in initiating and organizing deep convection has been
studied among others by Crook, [1], who found that deep convection is sensitive
to a number of thermodynamic parameters such as vertical decrease of moisture
within the boundary layer.

Convection occurs on a range of temporal and spatial scales. Deep convection
spans the whole depth of the troposphere whereas shallow convection has a
vertical scale of 1 km. Vertical velocities in deep convective events can reach
values of 10 m/s, and the width of the convective elements seem to be of the
order of 1 km. Observations have revealed that the mean diameter does not vary
much with height and the lifetime of individual cells typically is about 30 min.
An excellent short review on deep precipitating convection may be found in [9].

This report is motivated by the need to elucidate the character of deep
convection, in particular convective elements of O(1 km) in the horizontal.
While the integral effects of these elements are very interesting, here we
address the dynamics of the individual elements themselves with the aim
of gaining physical insight into the mechanisms involved. Such a detailed
analysis will not only add to our knowledge on how convection works but also
generate new ideas for the parameterization of convection in atmospheric models.

The main objective of this work is to carry out a scale analysis of a set
of flow equations for the moist atmosphere involving the compressible flow
equations in conjunction with a bulk microphysics closure scheme for the
transport of water vapour, clouds, and rain water. A distinguished limit between
the scaling parameters of the atmospheric motion and those of the phase
change and coagulation processes is established, and the coupling and interaction
of gas dynamics and humidity transport is analyzed through asymptotic analysis.

The method of deriving the asymptotic models is structured in three steps.
The first step is to write the equations in nondimensional form by referring
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the dependent variables to characteristic reference values. Thus combinations
of reference values build typical dimensionless numbers, e.g. Sr, M, Fr, Ro.
These dimensionless numbers are then expressed in terms of a small parameter
ε � 1. According to [7], the expansion parameter ε is identified as the cubic
root of the universal acceleration ratio, aΩ2/g, where a is the Earth’s radius,
Ω the diurnal rotation frequency and g the acceleration of gravity. In practice,
ε ∼ 1/7. In Section 2 we derive the governing equations for both the gas
dynamics and the humidity transport constituting the starting point of the
asymptotic scale analysis. As second step, length and time coordinates are scaled
with ε depending on the phenomena that are to be described by the model.
In the third step asymptotic series expansions for all the dependent variables
are introduced: Let U = (p, %, w, v

q
, θ, . . . ), then U = U(x, z, t, ; ε) =

∑
i

εiU (i)

with, e.g., U (i) = U (i)(ε−1x, x, z, t) = U (i)(ξ, x, z, t). As each equation has to be
fulfilled in every order of ε, one single equation can be written as a series of
equations arranged according to powers of ε. Each of the original equations has
to be considered up to the order of ε that is necessary to obtain a closed system
of equations for the desired quantity in leading order.

This work is related to that of Klein and Majda, [6], in which two deep convective
multiple-scales regimes (vertical scale of 10 km) were investigated. These were
the bulk micro / convective regimes with horizontal scales of 1 km and 10 km
on a timescale of 2 min, and the convective / mesoscale regime with horizontal
scales of 10 km and 100 km on a timescale of 20 min. In this report we deal with
one deep convective and one shallow convective regime (vertical scale of 1 km),
restriciting to a single scale in each spacial direction, and to a single time scale
in both regimes. In Section 3 we consider the long time evolution (20 min) of
deep convective columns with characteristic horizontal dimensions of 1 km. The
model describing the life cycle of deep convective columns may be used to extend
the multiscale model from Klein and Majda, [6], considering the horizontal bulk
micro and convective scales on both the short initiation time scale of 2 min and
the deep convective time scale of 20 min, resulting in a model with multiple
length and time scales. In Section 4 the short time evolution (2 min) of shallow
convective layers is addressed with isotropic bulk micro scalings of 1 km in the
horizontal and vertical directions. The shallow convective case may contribute
to the formulation of physically consistent boundary conditions for the deep
convective system derived in Section 3. Finally, Section 5 summarizes the main
results of the asymptotic analyses accomplished in this work.

Before we embark on the analysis, here we show in advance the asymptotic
deep column model equations from Section 3.4 for saturated and undersaturated
conditions.



3

In the saturated air regime the final system of equations contains the unknown
variables p(6), θ(4), v

(1)
q

and w(0). With these quantities the coupled mixing ratios
of cloud and rain water can be determined. The equations read as follows:

Saturated Air

Mass Balance

%(0)∇ξ · v(1)
q

+ (%(0)w(0))z = 0,

Horizontal Momentum Balance

v
q

(1)
t + (v

(1)
q

· ∇ξ)v
(1)
q

+ w(0)v
q

(1)
z + (w(0)Ω̂

q
× k) +

1

%(0)
∇ξp

(6) = 0,

Vertical Momentum Balance

w
(0)
t + v

(1)
q

· ∇ξw
(0) + w(0)w(0)

z = θ(4) − θ
(4)
out,

Transport Equation for the Potential Temperature

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z = w(0)(θ(4)
z )out,

Transport Equation for the Cloud Water Mixing Ratio

Kvcw
(0)rvs

(0)
z + Ccr,1r(0)

c r(0)
r = 0,

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − Vr

1

%(0)
(%(0)

1
2 r(0)

r )z − Ccr,2r(0)
c r(0)

r = 0.

The reduced system for the undersaturated air regime consists of the following
equations with p(6), r

(0)
v , r

(0)
r , v

(1)
q

and w(0) as unknown variables:

Under-Saturated Air

Mass Balance

%(0)∇ξ · v(1)
q

+ (%(0)w(0))z = 0,
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Horizontal Momentum Balance

v
q

(1)
t + (v

(1)
q

· ∇ξ)v
(1)
q

+ w(0)v
q

(1)
z + (w(0)Ω̂

q
× k) +

1

%(0)
∇ξp

(6) = 0,

Transport Equation for the Potential Temperature

w(0)θ(2)
z = −ΓLE(0)

r ,

Transport Equation for the Water Vapour Mixing Ratio

rv
(0)
t + v

(1)
q

· ∇ξr
(0)
v + w(0)rv

(0)
z = E(0)

r ,

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − V

1

%(0)

(
(%(0))

1
2 r(0)

r

)
z

= −E(0)
r .
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2 Governing Equations

This section provides the basic set of equations to be used in this work. These are
the three dimensional compressible flow equations including gravity and rotation
of the earth and a bulk microphysics parameterization consisting of transport
equations for the mixing ratios of water vapour, cloud water and rain water.

2.1 Equations of Mass, Momentum, Potential Tempera-

ture and Equation of State

The dimensionless equations for mass, momentum and potential temperature
and the appropriate equation of state have been derived in [6] and are:

Mass Balance

%t + ∇x · (%v
q
) + (%w)z = 0, (1)

Momentum Balance (horizontal and vertical)

(%v
q
)t + ∇x · (%v

q
◦ v

q
) + (%v

q
w)z + ε(Ω̂× %v)

q
+ ε−4∇xp = 0, (2)

(%w)t + ∇x · (%v
q
w) + (%ww)z + ε(Ω̂× %v)

⊥
+ ε−4pz = −ε−4%, (3)

Transport Equation for the Potential Temperature

θt + v
q
· ∇xθ + wθz = Sθ, (4)

Equation of State

θ% = p1−Γε. (5)

Here the equations have been made dimensionless by typical values of the at-
mospheric dynamics. The horizontal velocity component v

q
is scaled with the

characteristic flow velocity speed in the atmosphere uref = 10 m s−1; w is the ver-
tical velocity component also scaled with uref . The independent variables length
x and time t are made dimensionless with `ref = 104 m and tref = `ref

uref
= 103 s. The

characteristic length `ref is equivalent to the pressure scale height, i.e., vertical dis-
tance with significant pressure drop. The density % and the pressure p have been
made dimensionless with %ref = 1.25 kg m−3 and the typical value for the surface
atmospheric pressure pref = 105 kg m−1s−2, respectively. The characteristic value
for the potential temperature θ scaling is chosen from the equation of state rela-
tion, i.e., θref = pref

Rd%ref
= 273.16 K, where Rd = 287 J kg−1 K−1 is the specific gas

constant of dry air. The small parameter ε results from a distinguished limit relat-
ing the dimensionless parameters resulting from nondimensionalization, namely
the Froude number Fr, Mach number M and Rossby number Ro`, as follows:
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Fr =
uref√
g`ref

∼ ε2, M =
uref

cref

∼ ε2 and Rol =
Ωlref
uref

∼ ε−1. (6)

Here cref =
√

pref/%ref =
√

g`ref is of the order of the speed of sound and is related
to the speed of the gravity wave in a barotropic atmosphere, and Ω = 10−4 s−1 is
the earth’s rotation frequency. It is worth noting that from dimensional analysis
consideration, one can consider ε in terms of properties of the rotating earth
through the dimensionless parameter

ε =

(
aΩ2

g

) 1
3

∼ 1

7
, (7)

where a = 6 × 106 m is the earth’s radius, g = 10 m s−2 acceleration due to grav-
ity and rotation frequency Ω. The product aΩ can be considered as the absolute
acceleration of points on the earth surface induced by its rotation. Thus ε can
physically be interpreted as a ratio of two accelerations.
Equation (5) is obtained from the perfect gas equation of state, which when nondi-
mensionalized leads to p = (%θ)γ . The ratio γ of the thermodynamic specific heats

cp and cv, at constant pressure and constant volume, respectively,
(
γ = cp

cv
= 1.4

)

for air, is useful in compressible flow studies. A Newtonian limit is introduced by
setting

γ − 1

γ
∼ Γε, (8)

with Γ = O(1) as ε → 0. See [6] for further discussion.

Finally, the source and sink term, Sθ, appearing in (4) includes latent heat release
effects, moisture effects, and also addition and removal of heat by radiative effects.
In this report we will neither take into account diffusive and turbulent transport
mechanisms nor radiation effects.

2.2 Cloud Microphysics Equations

The cloud microphysics is introduced by considering the transport equations
for mixing ratios of water vapour rv, cloud water rc, and rain water rr. Here
we consider the bulk paramaterization equations as given by Grabowski and
Smolarkiewicz, [4], and neglect diffusive and turbulent transport mechanisms.
The equations can be written compactly as follows:
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Drv

Dt
= −Cd + Er, (9)

Drc

Dt
= Cd − Ar − Cr, (10)

Drr

Dt
=

1

%

∂

∂z
(%vtrr) + Ar + Cr − Er, (11)

where D
Dt

= ∂t + v
q
· ∇x + w∂z is the material derivative. The term 1

%
∂
∂z

(%vtrr)
represents the redistribution of rain water as it falls with the terminal velocity vt.
We have assumed that the cloud water and water vapour have negligible termi-
nal velocities. The microphysical interactions among water vapour, cloud water
and rain water are represented through the rate of condensation of water vapour
into cloud water (Cd), rate of evaporation of rain in the undersaturated envi-
ronment (Er) and coagulation processes; autoconversion of cloud water into rain
(Ar) and accretion– collection of cloud water by rain (Cr). Thus, the model also
assumes that rain only develops through autoconversion and accretion. Further,
the model does not include evaporation of cloud water since we have assumed
that the cloud water evaporates instantaneously if the air is undersaturated. The
parameterizations of these interactions in their general (dimensionless) form are:

Ar = D1 max [0, (rc − 1)] , (12)

Cr = D2 rc rF1
r , (13)

Er =
p

%

(rvs − rv) (% rr)
F2 [D3 + D4 (% rr)

F3 ]

D5p rvs + D6

, (14)

vt = D7 %F4 rF5
r . (15)

Here D1 to D7 are dimensionless numbers composed by combinations of reference
values and constants, F1 to F5 are constant exponents. These numbers and
exponents are given in appendix A. The saturation mixing ratio of water vapour
rvs is described in 2.3.
The parameterizations for Ar and Cr do not depend on how autoconversion and
accretion are achieved, these processes simply take place at a rate proportional to
the mixing ratio of cloud water. The parameterization for evaporation indicates
that evaporation cannot take place if the environment is saturated i.e. the rate
of evaporation is proportional to (rvs − rv), the saturation deficit. There is no
explicit parameterization for the rate of condensation, however, it is assumed
that condensation takes place when air is saturated and that the amount of
condensed water vapour forms cloud water only.

We consider two distinct regimes in this report:
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• Regime I: The water vapour is saturated in the presence of cloud water,
i.e., rc > 0 ⇒ rv = rvs . In this regime, the presence of cloud water creates
the condition necessary for condensation, autoconversion and accretion.
Evaporation cannot take place as the environment is saturated. Thus
Cd, Ar, Cr ≥ 0; Er = 0.

• Regime II: The cloud water evaporates instantaneously in undersaturated
conditions, i.e., rv < rvs ⇒ rc = 0. In this regime, the environment is
undersaturated hence evaporation takes place, but since there is no cloud
water, condensation, autoconversion and accretion cannot take place. Thus
Er ≥ 0; Cd, Ar, Cr = 0.

Finally, the nondimensionalization of the moisture transport equations requires
reference values for the mixing ratios of the moist variables. According to [3] the
water vapour mixing ratio in the atmosphere is usually smaller than 40

g
kg

. A mass

of 10 g water vapour per kg dry air can be chosen as typical value for the mixing
ratios of water vapour and saturated water vapour, the mixing ratio of rain water

is assumed to be of the same order of magnitude: rv,ref = rvs,ref = rr,ref = 10−2kg
kg

.

Further, according to [4], the autoconversion threshold is typically between 10−4

and 10−3kg
kg

. The arithmetic mean is chosen as reference value for the mixing

ratio of cloud water: rc,ref = 55 x 10−5kg
kg

.

After nondimensionalization with these reference values together with the substi-
tution of (12) to (15), the parameterizations for autoconversion, accretion, evap-
oration and the terminal falling velocity of rain drops, the evolution equations,
(9) – (11), can be written as

rvt + v
q
· ∇xrv + wrvz + δsCd

− p

%

(rvs − rv) (% rr)
( 1
2
+λε2) [B1 + B2 (% rr)

µε]

B3p rvs + B4

= 0, (16)

rct + v
q
· ∇xrc + wrcz + δsAcr,1 max [0, (rc − 1)]

+
1

ε

(
δsCcr,1rcr

(1−αε)
r − KvcδsCd

)
= 0, (17)

rrt + v
q
· ∇xrr + wrrz − Vr

1

%

∂

∂z
(%( 1

2
+βε) r(1+βε)

r ) − εδsAcr,2 max [0, (rc − 1)]

− δsCcr,2rcr
(1−αε)
r +

p

%

(rvs − rv) (% rr)
( 1
2
+λε2) [B1 + B2 (% rr)

µε]

B3p rvs + B4

= 0.

(18)
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Here we have introduced δs to distinguish between saturated and undersaturated
regimes i.e. δs = 1 for saturated regime and δs = 0 in undersaturated conditions.
As

rvs,ref

tref
is chosen to be the reference value for Cd, the factor (Kvcε

−1) multiplying

Cd in (17) is the ratio
rvs,ref

rc,ref
. Also as a result of different reference values for rc

and rr, we have different order one terms Acr,1, Acr,2, Ccr,1 and Ccr,2 in equations
(17) and (18).

2.3 Saturation Mixing Ratio

The saturation mixing ratio characterises the maximum amount of water vapour
an air parcel can hold. The saturation mixing ratio rvs is given in terms of the
the saturated vapour pressure es by

rvs =
εes

p − es

, (19)

where ε = Rd

Rv
= 287.04

461.50
= 0.622 is the ratio of the gas constants of dry air and

water vapour. Experimental results show that es depends only on temperature T
and here we use the Clausius Clapeyron formula

des

dT
=

Lcond

RvT 2
es, (20)

where Lcond is the latent heat of condensation which we will assume to be constant.
By integrating this relation with respect to T we get

es = e∞ exp

(
Lcond

RvT0

(T − T0)

T

)
, (21)

where T0 = Tref = 273.16K and e∞ = 611.2kgm−1s−2, saturated vapour pressure
at T0.
Making the saturated pressure dimensionless with pref leads to e∞

pref
= ε2Pvs and

ε e∞
pref

= ε3Rvs. By defining A = Lcond

RvT0
= 19.83 = ε−1Avs and using the reference

value for rvs from section 2.2 and the relation (T−T0)
T

= 1 − T−1 = 1 − θ−1pΓε =
1 − %

p
, the water vapour saturation mixing ratio can be written as

rvs =




Rvs exp
[
1
εAvs

(
1 − %

p

)]

p − ε3Pvs exp
[
1
εAvs

(
1 − %

p

)]


 . (22)



10 3 DEEP CONVECTIVE COLUMNS

3 Deep Convective Columns

This section investigates the evolution of deep convective columns with char-
acteristic horizontal dimensions of 1 km on deep convective time scales or ∼
20 min. To this end, with respect to the horizontal coordinates, a new length
scale which is a factor of ε smaller than the scale height (ε`ref ≈ 1 km), and the
associated horizontal stretched coordinate ξ = ε−1x are introduced. Thus mass
and momentum balances and the transport equation for potential temperature
– (1) to (4) – as well as the moisture transport equations – (16) to (18) – are
rewritten as:

Mass Balance

%t +
1

ε
∇ξ · (%v

q
) + (%w)z = 0, (23)

Momentum Balance (horizontal and vertical)

(%v
q
)t +

1

ε
∇ξ · (%v

q
◦ v

q
) + (%v

q
w)z + ε(Ω̂× %v)

q
+

1

ε5
∇ξp = 0, (24)

(%w)t +
1

ε
∇ξ · (%v

q
w) + (%ww)z + ε(Ω̂× %v)

⊥
+

1

ε4
pz = − 1

ε4
%, (25)

Transport Equation for the Potential Temperature

θt +
1

ε
v

q
· ∇ξθ + wθz = Sθ, (26)

Water Vapour Transport Equation

rvt +
1

ε
v

q
· ∇ξrv + wrvz + δsCd

− p

%

(rvs − rv) (% rr)
( 1
2
+λε2) [B1 + B2 (% rr)

µε]

B3prvs + B4

= 0, (27)

Cloud Water Transport Equation

rct +
1

ε
v

q
· ∇ξrc + wrcz + δsAcr,1 max [0, (rc − 1)]

+
1

ε

(
δsCcr,1rcr

(1−αε)
r − KvcδsCd

)
= 0, (28)

Rain Water Transport Equation

rrt +
1

ε
v

q
· ∇ξrr + wrrz − Vr

1

%

∂

∂z
(%( 1

2
+βε) r(1+βε)

r ) − εδsAcr,2 max [0, (rc − 1)]

− δsCcr,2rcr
(1−αε)
r +

p

%

(rvs − rv) (% rr)
( 1
2
+λε2) [B1 + B2 (% rr)

µε]

B3prvs + B4

= 0.

(29)
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Subsequently for all the dependent variables, asymptotic series expansions are
introduced. If these variables are contained in U = (p, %, w, v

q
, θ, . . . ), then the

expansion

U(ξ, z, t, ; ε) =
∑

i

εiU (i)(ξ, z, t) (30)

is assumed.
The system constituted by the flow and moisture equations described in the
previous section is obtained under the assumptions θ(0) = 1, θ(1) = 0 (see [6] for

further discussion) and p
(i)
t = 0 for i = 0, . . . , 3 with the aim of deriving a closed

system of equations for the vertical velocity in leading order w(0).

3.1 Analysis of the Mass and Momentum Balance Equa-

tions

We shall begin by analysing the mass and momentum balance equations since
they are independent of the regime under consideration. Substitute the expansion
(30) into (23) - (25) and collect all terms multiplied by powers of ε and equate
these to zero to get:

Mass Balance
In the mass balance equation terms of order ε−1 appear and thus we obtain as
first condition

∇ξ · v(0)
q

= 0. (31)

We shall show later in (3.3) that %(0) = %(0)(z). Trivial solutions to this equation

include v
(0)
q

= 0 or v
(0)
q

= v
(0)
q

(z). The solution v
(0)
q

= v
(0)
q

(z) is appropriate when
one wants to include influence of the vertical wind shear on deep convection. The
importance of the vertical shear in maintaining the convection has been studied
by [8]. However in the subsequent analysis in the present paper we will assume

that v
(0)
q

= 0 in a first step.
Next, we consider the mass equation at leading order and again make use of
%(0) = %(0)(z) to obtain the equation

%(0)∇ξ · v(1)
q

+ (%(0)w(0))z = 0. (32)

This form of continuity equation constitutes the anelastic approximation. It re-
tains leading order density variation with height and provides a non-homogeneous
divergence constraint for the horizontal flow. Note that in this equation the
first order horizontal, but the leading order vertical velocities appear. This is in
accordance with the anisotropic spatial scales in this regime.
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Horizontal Momentum Balance

∇ξp
(i) = 0; i = 0, . . . , 5. (33)

v
q

(1)
t + v

(1)
q

· ∇ξv
(1)
q

+ w(0)v
q

(1)
z + (w(0)Ω̂

q
× k) +

1

%(0)
∇ξp

(6) = 0. (34)

The pressure p(6) in (34) is the Lagrangian multiplier corresponding to equation
(32), i.e., it has to adjust in such a way that the divergence constraint from the
continuity equation is fulfilled. The setting here is a bit different than in classical
incompressible or anelastic flows, because here the vertical velocity is developing
freely independent of the pressure, while only the horizontal divergence is
controlled by a pressure field.
A notable feature of the horizontal momentum balance (34) is the Coriolis term

due to vertical motion (w(0)Ω̂
q
× k). It is the product of the vertical velocity in

leading order and the horizontal Coriolis parameter, the horizontal component of
Earth’s rotation vector. This horizontal Coriolis parameter is usually neglected
in meteorological applications. However, this part of the Coriolis force could
account for the onset of large scale rotation within an otherwise uncorrelated
agglomeration of unstable updrafts. The value of this term is the product of
the leading order vertical velocity and the cosine of the degree of latitude. This
means that it is zero at the poles, while being maximal near the equator.

Vertical Momentum Balance

p(i)
z = −%(i); i = 0, . . . , 3. (35)

%(0)w
(0)
t + %(0)v

(1)
q

· ∇ξw
(0) + %(0)w(0)w(0)

z + p(4)
z + %(4) = 0. (36)

Equation (36) is non-hydrostatic and shows that w(0) may change locally by
advection, by background pressure p(4) and buoyancy. The pressure in the vertical
and horizontal momentum equations appears in different orders, p(4) and p(6)

respectively.
Since ∇ξp

(4) = 0, the pressure p(4) is imposed on the air column by the background
flow as in boundary layer like models. This means that p(4) at any point is equal

to hydrostatic environment pressure at the same level i.e. ∂p(4)

∂z
= −%

(4)
out. Thus by

making use of the expansion of the equation of state (43), we can write (36) as

w
(0)
t + v

(1)
q

· ∇ξw
(0) + w(0)w(0)

z = θ(4) − θ
(4)
out. (37)

This equation implies that the vertical motion production is mostly affected by
the buoyancy term θ(4) − θ

(4)
out. Convection is enhanced if θ(4) remains higher than

θ
(4)
out at all heights.

The pressure p(5) in the pressure expansion has the same behaviour as p(4) and
does not play any role in the dynamics described here.
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Combining (34) and (37), one gets an expression for the perturbation pressure
p(6) which obeys a Poisson type equation

∇2
ξ
p(6) = −∇ · (%(0)v(1) · ∇v(1))−%(0)∇ξ · (w(0)Ω̂

q
× k)− ∂

∂z
(θ

(4)
out−θ(4))%(0), (38)

where

v(1) ≡ v
(1)
q

+ w(0)k.

On the left hand side there is the horizontal Laplacian of p(6). The first term on
the right hand side is related to the gradient of velocity rotation and shear terms.
The second term acts to redistribute Coriolis force induced by the motion, and the
third term is due to the vertical gradient of temperature deviation attributable
to the difference in temperature within and outside the column. It is important
to note that the vertical velocity plays a significant role in the horizontal pressure
redistribution through the Coriolis term.
Equations of state and the saturation mixing ratio expansions are also valid for
both regimes under consideration, and the expansions are:

Equations of State

%(0) − p(0) = 0, (39)

%(1) + Γ%(0) ln %(0) − p(1) = 0, (40)

%(2) + θ(2)%(0) − 1

2
Γ2%(0)

(
ln %(0)

)2
+ Γp(1) ln %(0) + Γp(1) − p(2) = 0, (41)

%(3) + θ(2)%(1) + θ(3)%(0) +
1

6
Γ3%(0)

(
ln %(0)

)3 − 1

2
Γ2p(1)

(
ln %(0)

)2

−Γ2p(1) ln %(0) + Γp(2) ln %(0) + Γp(2) − p(3) +
1

2
Γ

p(1)2

%(0)
= 0, (42)

%(4) + θ(2)%(2) + θ(3)%(1) + θ(4)%(0)

− 1

24
Γ4%(0)

(
ln %(0)

)4
+

1

6
Γ3p(1)

(
ln %(0)

)3
+

1

2
Γ3p(1)

(
ln %(0)

)2

−1

2
Γ2p(2)

(
ln %(0)

)2 − Γ2p(2) ln %(0) + Γp(3) ln %(0) + Γp(3) − p(4)

−1

2
Γ2p(1)2

%(0)
ln %(0) − 1

2
Γ2 p(1)2

%(0)
+ Γ

p(1)p(2)

%(0)
− 1

6
Γ

p(1)3

%(0)2
= 0. (43)
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Water Vapour Saturation Mixing Ratio

r(0)
vs = Rvsp

(0)AΓ−1
, (44)

r(1)
vs = Rvsp

(0)AΓ−1
[
Aθ(2) − 1

2
AΓ2

(
ln p(0)

)2
]

+Rvsp
(0)AΓ−2

[
p(1)

(
AΓ − 1

)]
, (45)

r(2)
vs = Rvsp

(0)AΓ−1
[
Aθ(3) +

1

2
A2θ(2)2 − AΓθ(2) ln p(0)

−1

2
A2Γ2θ(2)

(
ln p(0)

)2
+

1

6
AΓ3

(
ln p(0)

)3

+
1

8
A2Γ4

(
ln p(0)

)4
]

+Rvsp
(0)AΓ−2

[
p(1)

(
A2Γθ(2) − Aθ(2) − AΓ2 ln p(0)

+
1

2
AΓ2

(
ln p(0)

)2 − 1

2
A2Γ3

(
ln p(0)

)2
)

+p(2)

(
AΓ − 1

)]

+Rvsp
(0)AΓ−3

[
p(1)2

(
1 − 3

2
AΓ +

1

2
A2Γ2

)]
. (46)

All the terms appearing in equations (39) to (46) are pure functions of z except
the two terms in equation of state (43) involving %(4) and θ(4) which are functions
of ξ and t in addition to z.

3.2 Analysis of the Moist Thermodynamics Equations

From the assumption p
(i)
t = 0 for i = 0, 1, 2, 3 and the hydrostatic equations (35)

it follows that %
(i)
t = 0 for i = 0, 1, 2, 3. This implies from the equations of state

(41), (42) and from the saturation mixing ratio equations (44) - (46) that

θ
(i)
t = 0, and r(i)

vs t = 0 for i = 0, 1, 2, 3. (47)

Also taking the horizontal gradient of (35) and making use of (33) results in
∇ξ%

(i) = 0 for i = 0, 1, 2, 3 which again implies from the equations of state (41),
(42) and from the saturation mixing ratio equations (44) - (46) that

∇ξθ
(i) = 0 and ∇ξr

(i)
vs = 0 for i = 0, 1, 2, 3. (48)
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Transport Equation for the Potential Temperature
By making use of (47) and (48), the expansions of the potential temperature are:

w(0)θ(2)
z = S

(2)
θ , (49)

w(0)θ(3)
z + w(1)θ(2)

z = S
(3)
θ , (50)

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z + w(1)θ(3)
z + w(2)θ(2)

z = S
(4)
θ . (51)

Source Term
The crucial mechanism for the development of a deep convective system is the
release of latent heat by an ascending air parcel. The source term Sθ in equa-
tion (26) represents this mechanism in the following way:

Sθ = ε2Γ
θ

p
%L(Cd − Er).

In the saturated air regime rv = rvs, then (27) implies that Cd = − D
Dt

rvs. In the
undersaturated air regime (Cd−Er) = −Er. Thus the source term can be written
as

Sθ = −ε2Γ
θ

p
%L

(
δs

D

Dt
rvs +

p

%

(rvs − rv) (% rr)
( 1
2
+λε2) [B1 + B2 (% rr)

µε]

B3prvs + B4

)
, (52)

where D
Dt

rvs = rvst + 1
ε
v

q
· ∇ξrvs + wrvsz, and Er has been replaced by the corre-

sponding parameterization.

3.2.1 Saturated Air Regime

The perturbation expansion of (52) for the saturated regime and making use of
(47) and (48) lead to

S
(2)
θ = −ΓLw(0)rvs

(0)
z , (53)

S
(3)
θ = −ΓL

[
w(0)

(
rvs

(1)
z − Γ ln %(0)rvs

(0)
z

)
+ w(1)rvs

(0)
z

]
, (54)

S
(4)
θ = −ΓL

[
w(0)rvs

(2)
z − w(0)Γ ln %(0)rvs

(1)
z + w(0)

(
1

2
Γ2
(
ln %(0)

)2 −

Γ
p(1)

p(0)

)
rvs

(0)
z − w(1)Γ ln %(0)rvs

(0)
z + w(1)rvs

(1)
z + w(2)rvs

(0)
z

]
.

(55)

By substituting these in (49)– (51) together with the analytical solutions for p(0),
%(0) and p(1), %(1) given by (67)–(70) and assuming that w(0) 6= 0, the expansions
for the potential temperature reduce to
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θ(2)
z = −ΓLrvs

(0)
z , (56)

θ(3)
z = −ΓL

(
rvs

(1)
z − Γ ln %(0)rvs

(0)
z

)
, (57)

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z = −ΓLw(0)

(
rvs

(2)
z − Γ ln %(0)rvs

(1)
z

+

(
1

2
Γ2
(
ln %(0)

)2 − Γ
p(1)

p(0)

)
rvs

(0)
z

)
. (58)

Let us assume a weak temperature gradient approximation outside the column.
For a derivation see [5]. In the weak temperature gradient approximation, the hor-
izontal temperature fluctuations are weak making the dominant balance between
vertical advection of potential temperature and the total heating [7], then

w(0)(θ(4)
z )out = −ΓLw(0)

(
rvs

(2)
z − Γ ln %(0)rvs

(1)
z +

(
1

2
Γ2
(
ln %(0)

)2 − Γ
p(1)

p(0)

)
rvs

(0)
z

)

(59)

since ∇ξrvs
(i) = 0 for i = 0, 1, 2 and thus

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z = w(0)(θ(4)
z )out. (60)

This equation implies that the deviation of the potential temperature from the
background, θ(4) − θ

(4)
out, is a conserved quantity.

Finally, the description of the Saturated Air Regime is completed by the
leading order transport equations of the cloud water and rain water mixing
ratios:

Transport Equation for the Cloud Water Mixing Ratio

Kvcw
(0)rvs

(0)
z + Ccr,1r

(0)
c r(0)

r = 0, (61)

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − Vr

1

%(0)
(%(0)

1
2 r(0)

r )z − Ccr,2r
(0)
c r(0)

r = 0. (62)

3.2.2 Undersaturated Air Regime

Transport Equation for the Potential Temperature
The expansion of the source term (52) (due to evaporation) in the undersaturated
regime (δs = 0) leads to

S
(2)
θ =

ΓL(r
(0)
v − r

(0)
vs )(%(0)r

(0)
r )

1
2 (B1 + B2 )

B3p(0)r
(0)
vs + B4

, (63)
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and the following potential temperature relation from (51) will hold

w(0)θ(2)
z =

ΓL(r
(0)
v − r

(0)
vs )(%(0)r

(0)
r )

1
2 (B1 + B2 )

B3p(0)r
(0)
vs + B4

. (64)

Thus the vertical velocity can be diagnosed from this weak temperature gradient
equation. It depends on the leading order evaporation rate which in turn
directly depends on the leading order saturation deficit and the amount of rain
water. The evaporation rate determines the consumption of latent heat in the
undersaturated environment.

The leading order transport equations of the water vapour and rain water
mixing ratios round off the picture of the Undersaturated Air Regime:

Transport Equation for the Water Vapour Mixing Ratio

rv
(0)
t + v

(1)
q

· ∇ξr
(0)
v + w(0)rv

(0)
z =

(r
(0)
vs − r

(0)
v )(%(0)r

(0)
r )

1
2 (B1 + B2 )

(B3p(0)r
(0)
vs + B4 )

, (65)

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z =

(r
(0)
v − r

(0)
vs )(%(0)r

(0)
r )

1
2 (B1 + B2 )

(B3p(0)r
(0)
vs + B4 )

(66)

+V
1

%(0)

(
(%(0))

1
2 r(0)

r

)
z
.

In the undersaturated Air Regime the potential temperature is only expanded up
to θ(2) (see Section 3.4.2 for the explanation).

3.3 Analytical Solutions and Closures

As far as possible, analytical solutions for the variables in lower orders are de-
rived to end up with a system with as many equations as (higher order) unknowns.

We can determine the leading order p(0), %(0) and first order p(1), %(1) from the
leading and first order momentum equations as follows. Combining equations (33,
i = 0), (35, i = 0) and (39) yields an ordinary differential equation and thus the
following explicit formulas for p(0) and %(0):

p(0)(z) = exp (−z), (67)

%(0)(z) = exp (−z). (68)
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Also solving the ordinary differential equation formed by equations (33, i = 1),
(35, i = 1) and (40) provides explicit expressions for p(1) and %(1):

p(1)(z) = Γ

(
−1

2
z2

)
exp (−z), (69)

%(1)(z) = Γ

(
z − 1

2
z2

)
exp (−z). (70)

Equations (35, i = 2), (41) and (56) provide p(2), %(2) and θ(2):

θ(2)(z) = θ(2)(0)︸ ︷︷ ︸
C1

−ΓLR
[

exp
(
− (AΓ − 1)z

)
− 1
]
, (71)

%(2)(z) = Γ2

((
−C1

Γ2
− ALR

AΓ − 1

)
+

(
C1

Γ2
+

LR

Γ

)
z + z2 − 5

6
z3 +

1

8
z4

)
exp (−z)

+Γ2 ALR

AΓ − 1
exp (−AΓz), (72)

p(2)(z) = Γ2

((
− ALR

AΓ − 1
+

LR

Γ

)
+

(
C1

Γ2
+

LR

Γ

)
z − 1

3
z3 +

1

8
z4

)
exp (−z)

+Γ2

(
ALR

AΓ − 1
− LR

Γ

)
exp (−AΓz). (73)

Equations (35, i = 3), (42) and (57) yield p(3), %(3) and θ(3):

θ(3)(z) = θ(3)(0)︸ ︷︷ ︸
C2

+
[
a0 + a1z + a2z

2
]
exp

(
− (AΓ − 1)z

)
(74)

+b0 exp
(
− 2(AΓ − 1)z

)
+ c0,

%(3)(z) =
[
d0 + d1z + d2z

2 + d3z
3 + d4z

4 + d5z
5 + d6z

6
]
exp (−z) (75)

+
[
e0 + e1z + e2z

2
]
exp (−AΓz) + f0 exp

(
− (2AΓ − 1)z

)
,

p(3)(z) =
[
g0 + g1z + g2z

2 + g3z
3 + g4z

4 + g5z
5 + g6z

6
]
exp (−z) (76)

+
[
h0 + h1z + h2z

2
]
exp (−AΓz) + i0 exp

(
− (2AΓ − 1)z

)
.

The coefficients a0 to i0 of the polynomials in z are listed in appendix B.
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3.4 Summary of the Asymptotic Deep Column Model

Equations

3.4.1 Closed System of Equations of the Saturated Air Regime

The final system is constituted by equations (32), (34), (37) and (60) containing

the variables p(6), θ(4), v
(1)
q

and w(0).

To complete the picture of the Saturated Air Regime, the leading order
transport equations of the cloud water and rain water mixing ratios are needed
which are given by equations (61) and (62). These are ‘stand-alone-equations’
that can be solved by using the results of the closed system of equations
mentioned right above.

Below all the equations describing the Saturated Air Regime are shown
once again:

Mass Balance

%(0)∇ξ · v(1)
q

+ (%(0)w(0))z = 0,

Horizontal Momentum Balance

v
q

(1)
t + (v

(1)
q

· ∇ξ)v
(1)
q

+ w(0)v
q

(1)
z + (w(0)Ω̂

q
× k) +

1

%(0)
∇ξp

(6) = 0,

Vertical Momentum Balance

w
(0)
t + v

(1)
q

· ∇ξw
(0) + w(0)w(0)

z = θ(4) − θ
(4)
out,

Transport Equation for the Potential Temperature

θ
(4)
t + v

(1)
q

· ∇ξθ
(4) + w(0)θ(4)

z = w(0)(θ(4)
z )out,

where (θ
(4)
z )out is given by (59),

Transport Equation for the Cloud Water Mixing Ratio

Kvcw
(0)rvs

(0)
z + Ccr,1r(0)

c r(0)
r = 0,

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − Vr

1

%(0)
(%(0)

1
2 r(0)

r )z − Ccr,2r(0)
c r(0)

r = 0.
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From the potential temperature equation, the vertical stability of the deep con-
vective column can be influenced by the vertical gradient of the fourth order
potential temperature θ

(4)
z outside the column. We define f(z) as

f(z) = (θ(4)
z )out. (77)

We make use of the analytical expressions for p, % and θ and the constants of
O(1) appearing in f(z) known from the dimensional analysis: A = 2.83, R = 0.38,
L = 1.75, Γ = 2; with C1 = θ(2)(z = 0) and C2 = θ(3)(z = 0) left as parameters,
f(z) can be written as

f(z) = 395.12 exp (−13.98z) (78)

+
[
(−334.73 − 264.07C1) − 486.58z + 962.98z2

]
exp (−9.32z)

+
[
(27.42 + 118.31C1 + 24.82C1

2 + 17.54C2) + (235.05 + 176.73C1)z

+(−76.04 − 181.01C1)z
2 − 543.27z3 + 330.04z4)

]
exp(−4.66z).

To get an idea of this function’s shape Figure 1 shows the variation of (θ
(4)
z )out

with height where θ(3)(z = 0) is set to be 0, θ(2)(z = 0) is left as free parameter
in equation (78) and is varied between −2.0 and 2.0.

3.4.2 Closed System of Equations for the Undersaturated Air Regime

As p and % are independent of the horizontal scale in the orders appearing in
equation (41), it follows that θ(2) does not change in horizontal layers either,
and it is imposed by the background state. Assuming the background state to
be moist adiabatic according to equation (71) of the saturated case means that
equations (35, i = 2) and (41) again give the analytical solutions for p(2) and %(2)

(equations (72) and (73)).

In the Undersaturated Air Regime it is not necessary to expand the po-
tential temperature up to θ(4) because already with the transport equation for
θ(2) a closed system of equations to determine w(0) is given.

Thus the final system in the Undersaturated Air Regime is constituted by
equations (32), (34), (64), (65) and (66) containing the variables p(6), r

(0)
v , r

(0)
r ,

v
(1)
q

and w(0). This means that unlike in the Saturated Air Regime in this case
the moisture transport equations are necessary to actually close the system of
equations. Below all the equations characterising the Undersaturated Air Regime
are shown once again:
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Figure 1: Variation of (θ
(4)
z )out with height for θ(3)(z = 0) = 0 and θ(2)(z = 0) as

parameter varying between −2.0 and 2.0.
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Mass Balance

%(0)∇ξ · v(1)
q

+ (%(0)w(0))z = 0,

Horizontal Momentum Balance

v
q

(1)
t + (v

(1)
q

· ∇ξ)v
(1)
q

+ w(0)v
q

(1)
z + (w(0)Ω̂

q
× k) +

1

%(0)
∇ξp

(6) = 0,

Transport Equation for the Potential Temperature

w(0)θ(2)
z = −ΓLE(0)

r ,

Transport Equation for the Water Vapour Mixing Ratio

rv
(0)
t + v

(1)
q

· ∇ξr
(0)
v + w(0)rv

(0)
z = E(0)

r ,

Transport Equation for the Rain Water Mixing Ratio

rr
(0)
t + v

(1)
q

· ∇ξr
(0)
r + w(0)rr

(0)
z − V

1

%(0)

(
(%(0))

1
2 r(0)

r

)

z
= −E(0)

r .

The evaporation term in the above equations reads as follows:

E(0)
r =

(r
(0)
vs − r

(0)
v )(%(0)r

(0)
r )

1
2 (B1 + B2 )

(B3p(0)r
(0)
vs + B4 )

.
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4 Shallow Convective Layers

From the analysis in the previous section, there is a great deal of interest in
determining vertical fluxes of energy and momentum in the lower troposphere.
This can be done by considering the temperature, moisture and vertical velocity
at the boundary layer. Thus we consider a shallow layer of fluid near the surface
of depth of 1 km (i.e εhsc) and a horizontal length scale of the same order
of magnitude. Hence our new co-ordinate system is built by ξ = ε−1X

q
and

η = ε−1z. We consider the time scale associated with the horizontal advection
i.e. τ = ε−1t. Substituting these scalings into the governing equations (1)–(4),
(16)–(18) yields

Mass Balance

%τ + ∇ξ · (%v
q
) + (%w)η = 0, (79)

Horizontal Momentum Balance

ε4(%v
q
)τ + ε4∇ξ · (%v

q
◦ v

q
) + ε4(%v

q
w)η + ε6(Ω̂ × %v)

q
+ ∇ξp = 0, (80)

Vertical Momentum Balance

ε4(%w)τ + ε4∇ξ · (%v
q
w) + ε4(%ww)η + ε6(Ω̂ × %v)

⊥
+ pη = −ε%, (81)

Potential Temperature Equation

θτ + v
q
.∇ξθ + wθη = εSθ, (82)

Water Vapour Equation

rvτ + v
q
· ∇ξrv + wrvη + ε

(
δsCd

− p

%

(rvs − rv) (% rr)
( 1
2
+λε2) [B1 + B2 (% rr)

µε]

B3prvs + B4

)
= 0, (83)

Cloud Water Equation

rcτ + v
q
· ∇ξrc + wrcη − KvcδsCd + εδsAcr,1 max [0, (rc − 1)]

+ δsCcr,1rcr
(1−αε)
r = 0, (84)

Rain Water Equation

rrτ + v
q
· ∇ξrr + wrrη − Vr

1

%

∂

∂η
(%( 1

2
+βε) r(1+βε)

r ) − ε2δsAcr,2 max [0, (rc − 1)]

− εδsCcr,2rcr
(1−αε)
r + ε

p

%

(rvs − rv) (% rr)
( 1
2
+λε2) [B1 + B2 (% rr)

µε]

B3prvs + B4

= 0,

(85)
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with δs = 1 for saturated regime and δs = 0 for undersaturated conditions.

Here again, the parameter ε provides the basis of the expansion for any
dependent variable U ∈ {v

q
, w, %, p, θ, rv, rr, rc, rvs}. We assume that the solution

can be represented asymptotically by the expression

U(ξ, η, τ, ; ε) =
∑

i

εiU (i)(ξ, η, τ). (86)

4.1 Momentum Equations

The leading order momentum equations of these expansions

∇ξp
(0) = 0, and p(0)

η = 0. (87)

These implies that p(0) = p(0)(τ) and without loss of generality let us assume that
p(0) is independent of time τ and equal to the surface pressure, i.e.

p(0) = 1, (88)

and therefore, from equation of state (39), we have

%(0) = p(0) = 1. (89)

To simplify the equations of state we anticipate the result θ(2) = 0 and take the
potential temperature distribution within the layer as

θ = 1 + ε3θ(3)(ξ, η, τ) + O
(
ε4
)
. (90)

Thus the equations of state (40)–(42) reduce to

%(1) = p(1), (91)

%(2) = p(2) − Γp(1), (92)

%(3) = p(3) − θ(3) − Γp(2) +
1

2
Γp(1)2. (93)

We can further determine the solution for the next orders of pressure p(i) for
i = 1, 2, 3 from order O(εi) momentum equations, namely

∇ξp
(i) = 0 and p(i)

η = −%(i−1), (94)

and hence density %(i) for i = 1, 2 from (91) and (92). Based on the same reasoning
as above and assuming that p(i)’s vanish at the surface, we find that

p(1) = %(1) = −η, p(2) =
η2

2
, %(2) =

η2

2
+ Γη, p(3) =

η3

6
− Γ

η2

2
+ η. (95)
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The O(ε4) momentum equations provides us with the evolution equations for

velocity components v
(0)
q

and w(0)

v
q

(0)
τ + v

q

(0) · ∇ξv
(0)
q

+ w(0)v
q

(0)
η + ∇ξp

(4) = 0, (96)

w(0)
τ + v

q

(0) · ∇ξw
(0) + w(0)w(0)

η + p(4)
η + %(3) = 0. (97)

This result contains the basic physical processes associated with the development
of downdrafts and updrafts in a shallow convective layer. The term p

(4)
η represents

the effect of the pressure gradient perturbation on the vertical motion and the
term %(3) represents the effect of buoyancy on vertical motion. This term is given
by (93).
The perturbation pressure p(4) is due to the advection nonlinearity and the moist
processes, and it redistributes momentum so that the divergence condition for
velocity is satisfied. Please note that the coriolis acceleration is not significant at
this leading order. One can write the equation describing p(4) as

∇2p(4) = −∇ · (v.∇v) +
∂θ(3)

∂η
+ %(2). (98)

4.2 Continuity Equation

With %(0) = 1, the leading order mass balance equation is

∇ξ · v(0)
q

+ w(0)
η = 0. (99)

The leading order velocity field has zero divergence.

4.3 Moist Thermodynamics Equations

In absence of radiation, diffusive and turbulent mechanisms, we assume that the
only heat source is the release of latent heat due to condensation / evaporation.
Recall that from (52) the source term Sθ in the potential temperature equation
can be written in terms of the latent heat as

Sθ = −ε2Γ
θ

p
%L

(
δs

Drvs

Dτ
+

p

%

(rvs − rv) (% rr)
( 1
2
+λε2) [B1 + B2 (% rr)

µε]

B3prvs + B4

)
, (100)

where

Drvs

Dτ
=

1

ε

(
∂rvs

∂τ
+ v

q
.∇ξrvs + w

∂rvs

∂η

)
. (101)

Since p(0) = 1, the leading order and the next order of the water vapour saturation
mixing ratio rvs are:

r(0)
vs = Rvs, (102)

r(1)
vs = Rvs(ΓAvs − 1)p(1). (103)
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Thus

S
(0)
θ = S

(1)
θ = 0, S

(2)
θ = −ΓL

(
δsw

(0) ∂

∂η
r(1)
vs +

(r
(0)
vs − r

(0)
v )(r

(0)
r )1/2[B1 + B2]

(r
(0)
vs B3 + B4)

)
.

(104)

But we know that

∇ξθ
(2) = 0 and θ

(2)
t = 0 (105)

from (94), thus

w(0)θ(2)
η = S

(1)
θ = 0. (106)

Therefore θ
(2)
η = 0, and without loss of generality let θ(2) = 0 as anticipated in

equation (90).

The O(ε3) leading order potential temperature equation is

θ(3)
τ + v

(0)
q

.∇ξθ
(3) + w(0)θ(3)

η = S
(2)
θ . (107)

4.3.1 Moist Variables Equations: Saturated Regime

From (104) we find that (107) becomes

∂θ(3)

∂τ
+ v

(0)
q

.∇ξθ
(3) + w(0) ∂θ(3)

∂η
= ΓL(ΓAvs − 1)w(0). (108)

Here we see that the latent heat release due to condensation is proportional to
the vertical velocity w(0). We see that w(0) > 0 creates a positive θ(3) and w(0)< 0
creates a negative θ(3). The physical process captured is latent heat release due to
condensation in upward moving air parcels and evaporative cooling in downward
moving ones.

The evolution equations for cloud water and rain water are given by

∂r
(0)
c

∂τ
+ v

(0)
q

.∇ξrc
(0) + w(0) ∂rc

(0)

∂η
= −Kvc(ΓAvs − 1)w(0) − Ccr,1r

(0)
c r(0)

r (109)

and

∂r
(0)
r

∂τ
+ v

(0)
q

.∇ξrr
(0) + w(0) ∂rr

(0)

∂η
= Vr

∂r
(0)
r

∂η
, (110)

respectively.
At this order, the microphysical processes that are important in a saturated air
regime are condensation and accretion.
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4.3.2 Moist Variables Equations: Undersaturated Regime

The thermodynamic equation for undersaturated regime is given by

∂θ(3)

∂τ
+ v

(0)
q

.∇ξθ
(3) + w(0)∂θ(3)

∂η
= −ΓL

(r
(0)
vs − r

(0)
v )(r

(0)
r )1/2[B1 + B2]

(r
(0)
vs B3 + B4)

(111)

from (104) and (107). The equation for water vapour is

∂r
(0)
v

∂τ
+ v

(0)
q

.∇ξrv
(0) + w(0)∂rv

(0)

∂η
= 0 (112)

and for rain water is

∂r
(0)
r

∂τ
+ v

(0)
q

.∇ξrr
(0) + w(0) ∂rr

(0)

∂η
= Vr

∂r
(0)
r

∂η
. (113)

At leading order, evaporation of precipitation into undersaturated layer is a heat
sink and not a source of water vapour, thus reducing the tendency of the shallow
layer to saturate. If rv is initially constant then (112) implies that it will remain
constant at all time and thus constant rvs − rv. This implies that the distribution
of θ(3) depends mainly on the amount of rain water present. (Of course, these
statements pertain to the short 2 min time scale analyzed in this section only,
and not to the deep convective time scales of about 20 min considered earlier.)

4.4 Summary of the Shallow Convective Equations

Below is a summary of the set of simplifed asymptotic equations describing the
1 km by 1 km shallow convective elements described above.

∇ξ · v(0)
q

+ w(0)
η = 0,

v
q

(0)
τ + v

q

(0) · ∇ξv
(0)
q

+ w(0)v
q

(0)
η + ∇ξp

(4) = 0,

w(0)
τ + v

q

(0) · ∇ξw
(0) + w(0)w(0)

η + p(4)
η + %(3) = 0,

%(3) = p(3) − θ(3) − Γp(2) +
1

2
Γp(1)2,

with

p(1) = %(1) = η, p(2) =
η2

2
and p(3) =

η3

6
− Γ

η2

2
+ η.
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Saturated Regime

∂θ(3)

∂τ
+ v

(0)
q

.∇ξθ
(3) + w(0) ∂θ(3)

∂η
= ΓL(ΓAvs − 1)w(0)

∂r
(0)
c

∂τ
+ v

(0)
q

.∇ξrc
(0) + w(0) ∂rc

(0)

∂η
= −KvcΓL(ΓAvs − 1)w(0) − Ccr,1r

(0)
c r(0)

r ,

∂r
(0)
r

∂τ
+ v

(0)
q

.∇ξrr
(0) + w(0) ∂rr

(0)

∂η
= Vr

∂r
(0)
r

∂η
.

Undersaturated Regime

∂θ(3)

∂τ
+ v

(0)
q

.∇ξθ
(3) + w(0) ∂θ(3)

∂η
= −ΓL

(r
(0)
vs − r

(0)
v )(r

(0)
r )1/2[B1 + B2]

(r
(0)
vs B3 + B4)

,

∂r
(0)
v

∂τ
+ v

(0)
q

.∇ξrv
(0) + w(0) ∂rv

(0)

∂η
= 0,

∂r
(0)
r

∂τ
+ v

(0)
q

.∇ξrr
(0) + w(0) ∂rr

(0)

∂η
= Vr

∂r
(0)
r

∂η
.

A steady state solution of the shallow layer system can be used to provide
the lower boundary conditions for the deep convective column system, derived
in Section 3, using the ideas of matched asymptotics.
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5 Conclusions

Asymptotic analyses of two convective systems on the horizontal bulk micro scale
of 1 km for the moist atmosphere are presented: The first one is characterized
by the deep convective vertical scale of 10 km and the corresponding convective
time scale of 20 min, the second one consists of the shallow convective vertical
scale of 1 km and the corresponding short time scale of 2 min. The shallow
convective system may serve as physically consistent boundary condition for the
deep convective system. The models derived in this report show some special
features, namely:

Deep Convective Columns

• The continuity equation provides an anelastic divergence constraint for the
horizontal flow. The perturbation pressure representing the corresponding
Lagrange multiplicator obeys a two dimensional Poisson equation.

• The horizontal momentum balance contains the product of the vertical ve-
locity in leading order and the horizontal Coriolis parameter which is usually
neglected in meteorological applications.

• In the saturated column the vertical velocity is directly determined by the
potential temperature deviation between inside the column and outside
which is a conserved quantity. In the undersaturated regime the vertical
velocity depends on the leading order evaporation rate which in turn is
constituted by the saturation deficit and the amount of rain water present.

Shallow Convective Layer

• The flow is described by Boussinesq-type equations.

• At leading order, the important microphysical processes are condensation
and evaporation, but there are no coagulation processes.

• The latent heat release due to condensation is proportional to the vertical
velocity.

• Downdrafts that penetrate the surface do not occur unless precipitation is
occurring.

• The temperature distribution depends mainly on the amount of rain water
present in the understaurated regime.
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A Parameters in the Microphysics Parameteri-

zations

D1 = 10−3 tref

tSI
rc,ref

D2 = 2.2
tref

tSI

rc,refr
F1
r,ref

D3 = 4.26 x 10−4

(
%ref

%SI

)(F2−1)

rF2
r,ref

tref

tSI

D4 = 8.08 x 10−3

(
%ref

%SI

)(F2+F3−1)

r
(F2+F3)
r,ref

tref

tSI

D5 = 5.4

D6 = 2.55 x 103 pSI

prefrvs,ref

D7 = 14.34
tref lSI

tSIlref

(
%ref

%SI

)(F4+0.5)

rF5

r,ref

D10 =
e∞
pref

F1 = 0.875

F2 = 0.525

F3 = 0.2046

F4 = −0.3654

F5 = 0.1346

The symbols of the above equations have the following meaning:

• A variable with the index SI stands for the SI-unit of that quantity.

• Rd: specific gas constant of dry air

• Rv: specific gas constant of water vapour

• e∞: triple-point vapour pressure

• Lcond: specific latent heat of condensation

• cp: specific heat capacity at constant pressure for dry air
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B Coefficients of the Analytical Solutions

a0 =
1

(1 − AΓ)3

(
− AC1ΓLR − AΓ2L2R2 + 3A2C1Γ

2LR + 3A2Γ3L2R2

−3A3C1Γ
3LR − 3A3Γ4L2R2 + A4C1Γ

4LR + A4Γ5L2R2

+Γ2LR − 2AΓ3LR + A2Γ4LR

)

a1 =
1

(1 − AΓ)3

(
A3Γ5LR + 3AΓ3LR − 3A2Γ4LR − Γ2LR

)

a2 =
1

(1 − AΓ)3

(
− A4Γ6LR +

7

2
A3Γ5LR +

5

2
AΓ3LR − 9

2
A2Γ4LR − 1

2
Γ2LR

)

b0 =
1

(1 − AΓ)

(
− A2Γ3L2R2 + AΓ2L2R2

)

c0 =
1

(1 − AΓ)3

(
AC1ΓLR − 3A2C1Γ

2LR + 3A3C1Γ
3LR − A4C1Γ

4LR

−Γ2LR + 2AΓ3LR − A2Γ4LR

)

d0 = −C2

+
1

(1 − AΓ)

(
− A2Γ3L2R2 + AΓ2L2R2

)

+
1

(1 − AΓ)2

(
1

2
A2Γ3L2R2 − 1

2
AΓ2L2R2

)

+
1

(1 − AΓ)3

(
3A2C1Γ

2LR + 3A2Γ3L2R2 − AC1ΓLR − AΓ2L2R2

+A4C1Γ
4LR + A4Γ5L2R2 − 3A3C1Γ

3LR − 3A3Γ4L2R2

−2A2Γ4LR + AΓ3LR

)

+
1

(1 − AΓ)4

(
− 2A3Γ5LR − AΓ3LR + 3A2Γ4LR

)

+
1

(1 − AΓ)6

(
AC1ΓLR + AΓ2L2R2 − 5A2C1Γ

2LR − 5A2Γ3L2R2

+10A3C1Γ
3LR + 10A3Γ4L2R2 − 10A4C1Γ

4LR

−10A4Γ5L2R2 − A6C1Γ
6LR − A6Γ7L2R2 + 5A5C1Γ

5LR

+5A5Γ6L2R2 − Γ2LR + A3Γ5LR + 3AΓ3LR − 3A2Γ4LR

)
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d1 = C2 − 2C1Γ

+
1

(1 − AΓ)

(
2AΓ3LR

)

+
1

(1 − AΓ)3

(
AC1ΓLR − 3A2C1Γ

2LR − A4C1Γ
4LR + 3A3C1Γ

3LR

+2AΓ3LR − A2Γ4LR − Γ2LR

)

d2 =
5

2
C1Γ + 2Γ2LR +

1

(1 − AΓ)

(
− 1

2
AΓ3LR

)

d3 = −1

2
C1Γ − 1

2
Γ2LR + Γ3

d4 = −13

12
Γ3

d5 =
7

24
Γ3

d6 = − 1

48
Γ3

e0 =
1

(1 − AΓ)3

(
− 3A2C1Γ

2LR − 3A2Γ3L2R2 + AC1ΓLR + AΓ2L2R2

−A4C1Γ
4LR − A4Γ5L2R2 + 3A3C1Γ

3LR + 3A3Γ4L2R2

+2A2Γ4LR − AΓ3LR

)

+
1

(1 − AΓ)4

(
2A3Γ5LR + AΓ3LR − 3A2Γ4LR

)

+
1

(1 − AΓ)6

(
− AC1ΓLR − AΓ2L2R2 + 5A2C1Γ

2LR + 5A2Γ3L2R2

−10A3C1Γ
3LR − 10A3Γ4L2R2 + 10A4C1Γ

4LR

+10A4Γ5L2R2 + A6C1Γ
6LR + A6Γ7L2R2 − 5A5C1Γ

5LR

−5A5Γ6L2R2 + Γ2LR − A3Γ5LR − 3AΓ3LR + 3A2Γ4LR

)
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e1 =
1

(1 − AΓ)3

(
− 3A2Γ4LR + 2A3Γ5LR + AΓ3LR

)

+
1

(1 − AΓ)4

(
− 3AΓ3LR + 10A2Γ4LR − 11A3Γ5LR + 4A4Γ6LR

)

+
1

(1 − AΓ)6

(
− AΓ3LR + 4A2Γ4LR − A5Γ7LR − 6A3Γ5LR

+4A4Γ6LR

)

e2 =
1

(1 − AΓ)3

(
1

2
Γ2LR − 2AΓ3LR + A4Γ6LR +

7

2
A2Γ4LR − 3A3Γ5LR

)

+
1

(1 − AΓ)6

(
− 1

2
Γ2LR +

7

2
AΓ3LR − 10A2Γ4LR + 15A3Γ5LR

−A6Γ8LR − 25

2
A4Γ6LR +

11

2
A5Γ7LR

)

f0 =
1

(1 − AΓ)

(
A2Γ3L2R2 − AΓ2L2R2

)

+
1

(1 − AΓ)2

(
− 1

2
A2Γ3L2R2 +

1

2
AΓ2L2R2

)

g0 = Γ2LR

+
1

(1 − AΓ)

(
AΓ3LR − A2Γ3L2R2 + AΓ2L2R2

)

+
1

(1 − AΓ)2

(
1

2
A2Γ3L2R2 − 1

2
AΓ2L2R2

)

+
1

(1 − AΓ)3

(
3A2Γ3L2R2 − AΓ2L2R2 + A4Γ5L2R2 − 3A3Γ4L2R2

−3A2Γ4LR + 3AΓ3LR − Γ2LR

)

+
1

(1 − AΓ)4

(
− 2A3Γ5LR − AΓ3LR + 3A2Γ4LR

)

+
1

(1 − AΓ)6

(
AC1ΓLR + AΓ2L2R2 − 5A2C1Γ

2LR − 5A2Γ3L2R2

+10A3C1Γ
3LR + 10A3Γ4L2R2 − 10A4C1Γ

4LR

−10A4Γ5L2R2 − A6C1Γ
6LR − A6Γ7L2R2 + 5A5C1Γ

5LR

+5A5Γ6L2R2 − Γ2LR + A3Γ5LR + 3AΓ3LR − 3A2Γ4LR

)



36 B COEFFICIENTS OF THE ANALYTICAL SOLUTIONS

g1 = C2 + Γ2LR

+
1

(1 − AΓ)

(
AΓ3LR

)

+
1

(1 − AΓ)3

(
AC1ΓLR − 3A2C1Γ

2LR − A4C1Γ
4LR + 3A3C1Γ

3LR

+2AΓ3LR − A2Γ4LR − Γ2LR

)

g2 = C1Γ +
1

2
Γ2LR +

1

(1 − AΓ)

(
− 1

2
AΓ3LR

)

g3 = −1

2
C1Γ − 1

2
Γ2LR

g4 = −1

4
Γ3

g5 =
1

6
Γ3

g6 = − 1

48
Γ3

h0 = −Γ2LR

+
1

(1 − AΓ)

(
− AΓ3LR

)

+
1

(1 − AΓ)3

(
3A2Γ4LR − 3AΓ3LR + Γ2LR

)

+
1

(1 − AΓ)4

(
2A3Γ5LR + AΓ3LR − 3A2Γ4LR

)

+
1

(1 − AΓ)6

(
− AC1ΓLR − AΓ2L2R2 + 5A2C1Γ

2LR + 5A2Γ3L2R2

−10A3C1Γ
3LR − 10A3Γ4L2R2 + 10A4C1Γ

4LR

+10A4Γ5L2R2 + A6C1Γ
6LR + A6Γ7L2R2 − 5A5C1Γ

5LR

−5A5Γ6L2R2 + Γ2LR − A3Γ5LR − 3AΓ3LR + 3A2Γ4LR

)
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h1 =
1

(1 − AΓ)

(
AΓ3LR

)

+
1

(1 − AΓ)3

(
− 6A2Γ4LR + 3A3Γ5LR + 4AΓ3LR − Γ2LR

)

+
1

(1 − AΓ)4

(
− 11A3Γ5LR − 3AΓ3LR + 10A2Γ4LR + 4A4Γ6LR

)

+
1

(1 − AΓ)6

(
− 6A3Γ5LR − AΓ3LR + 4A2Γ4LR − A5Γ7LR

+4A4Γ6LR

)

h2 =
1

2
Γ2LR

+
1

(1 − AΓ)3

(
− A2Γ4LR +

1

2
A3Γ5LR +

1

2
AΓ3LR

)

+
1

(1 − AΓ)6

(
− 1

2
Γ2LR + 15A3Γ5LR +

7

2
AΓ3LR − 10A2Γ4LR

+
11

2
A5Γ7LR − A6Γ8LR − 25

2
A4Γ6LR

)

i0 =
1

(1 − AΓ)2

(
− 1

2
A2Γ3L2R2 +

1

2
AΓ2L2R2

)


