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Abstract

This paper reports on the results of a three-year research effort aimed at investigat-
ing and exploiting the role of physically motivated asymptotic analysis in the design
of numerical methods for singular limit problems in fluid mechanics. Such problems
naturally arise, among others, in combustion, magneto-hydrodynamics and geophysical
fluid mechanics. Typically, they are characterized by multiple space and/or time scales
and by the disturbing fact that standard computational techniques fail entirely, are
unacceptably expensive, or both. The challenge here is to construct numerical meth-
ods which are robust, uniformly accurate, and efficient through different asymptotic
regimes and over a wide range of relevant applications.

Summaries of multiple scales asymptotic analyses for low Mach number flows, magneto-
hydrodynamics at small Mach and Alfvén numbers, and of multiple scales atmospheric
flows are provided. These reveal singular balances between selected terms in the re-
spective governing equations within the considered flow regimes. These singularities
give rise to problems of severe stiffness, stability, or to dynamic range issues in straight-
forward numerical discretizations.

A formal mathematical framework for the multiple scales asymptotics is then summa-
rized using the example of multiple length scale – single time scale asymptotics for low
Mach number flows.

The remainder of the paper focuses on the construction of numerical discretizations
for the respective full governing equation systems. These discretizations avoid the
pitfalls of singular balances by exploiting the asymptotic results. Importantly, the
asymptotics are not used here to derive simplified equation systems, which are then
solved numerically. Rather, we aim at numerically integrating the full equation sets
and at using the asymptotics only to construct discretizations that do not deteriorate
as a singular limit is approached.

One important ingredient of this strategy is the numerical identification of a singu-
lar limit regime given a set of discrete numerical state variables. This problem is
addressed in an exemplary fashion for multiple length – single time scale low Mach
number flows in one space dimension. The strategy allows a dynamic determination
of an instantaneous relevant Mach number, and it can thus be used to drive the ap-
propriate adjustment of the numerical discretizations when the singular limit regime
is approached.

Keywords: asymptotic analysis, fluid mechanics, singular limit regimes, asymptotics-
based numerical methods
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1 Introduction

Here we report on the results of a three-year research effort aimed at investigating and exploit-
ing the role of physically motivated asymptotic analysis in the design of numerical methods
for singular limit problems in fluid mechanics. Such problems naturally arise, among others,
in combustion, magneto-hydrodynamics and geophysical fluid mechanics. Typically, they are
characterized by multiple space and/or time scales and by the disturbing fact that standard
computational techniques fail entirely, are unacceptably expensive, or both. The challenge here
is to construct numerical methods which are robust, uniformly accurate, and efficient through
different asymptotic regimes and over a wide range of relevant applications.

1.1 Key ideas

In order to successfully address the goal stated above one must first accept a shift of paradigm
as compared to standard applications of asymptotics: The goal of most of these applications is
to derive a simplified asymptotic set of equations, which can be solved analytically or with less
numerical effort than the original full equation system. The target in this situation is to obtain
approximate solutions to a restricted class of problems, which can then be used instead of the
unavailable or expensive solutions to the full problem. This utilization of asymptotics could be
labeled “solution oriented”.

We contrast this with a “structure oriented” exploitation of asymptotics: The ultimate goal here
is the numerical solution of the full equation systems. The key questions in this context are:
“What are the reasons for the failure of standard numerical schemes in singular limit regimes?”
and “How are these reasons related to the asymptotic behavior of the full equation system?”.
To answer these questions, one must focus on the process of deriving simplified asymptotic
limit equations rather than on these equations themselves. In course of an asymptotic analysis
one gains improved insight into the mathematical structure of the singular limit and obtains
systematic hints at the origins of the failure of standard numerical methods. It is hoped, and
has been verified in a number of examples by now, that this insight can be used in order to
develop improved numerical techniques that avoid the pitfalls of standard schemes and allow
one to numerically treat singular and non-singular cases in a unified fashion.

As an example, let us consider the case of low Mach number flow, which has been pursued
extensively within this project. Asymptotic analysis is most comprehensive, and often considered
most elegant, when carried out in terms of a suitably chosen system of coordinates and dependent
variables. The probably most efficient choice of dependent variables for low Mach number flow
are the so-called “primitive variables”, namely density, velocity and pressure. Suppose, however,
that we intend to extend a standard compressible flow solver to the low and zero Mach number
regime. One quickly finds that modern compressible flow solvers are in conservation form for
mass, momentum and energy and that the key quantities of these numerical methods are grid
cell averages of the mass, momentum, and energy densities and their respective flux densities.

The challenge then is to derive and incorporate the singular limit behavior of these fluxes in an
extended numerical scheme. Obviously, the most appropriate choice of variables for a related
asymptotic analysis are now the conserved quantities regardless of the efficiency or elegance of
the procedure. The results - to be described in more detail below - are somewhat surprising
in that the familiar divergence constraint for the velocity field in this formulation has nothing
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to do with mass continuity, but is rather a consequence of energy conservation. This in turn
implies that a numerical scheme in conservation form should automatically incorporate suitable
elliptic constraints as part of solving the energy conservation equation, rather than by imposing
velocity divergence conditions externally.

Technically, the following program needs to be pursued in order to realize the desired merging
of numerical and asymptotic methods:

1. Identify an equation system and one of its singular limit regimes in which standard nu-
merical methods deteriorate,

2. Reformulate existing asymptotic analyses to match the numerical framework or, if neces-
sary, invent an appropriate new asymptotic approach such that conclusions can be drawn
regarding the failure of the standard numerical method,

3. Develop modifications of the numerical technique to overcome its limitations in the singular
regime on the basis of the asymptotic analysis.

The implementation of this program requires the close collaboration of scientists from a wide-
spread range of backgrounds: The first step should be driven by applications from natural
sciences and engineering. It is hardly possible to cover all conceivable singular limit regimes
for any given equation system, so that an educated judgment regarding the importance of any
particular regime in applications should guide the selection of the target problem. The second
step requires the input of both a skilled “asymptotician” and a numerical analyst, familiar
with the mathematical structure of the considered numerical methods. The third step should
be pursued by the same combination of experts, this time with the major work load on the
specialist in numerical methods. Ultimately, the applied scientist or engineer is required again
in defining suitable tests and applications for the new method that would serve the validation
of the method and be sufficiently close to applications to be meaningful in the first place.

An important additional branch of work is concerned with a mathematically precise formulation
of both the asymptotic analysis and its translation into extended numerical techniques. The
incorporation in a numerical method of asymptotic results, which are generally derived under
specific simplifying assumptions regarding the considered physical problems, requires discrete
numerical operations that properly match the asymptotic limit processes. Therefore, particular
emphasis is given to the derivation of rigorous guidelines and rules which determine under which
conditions it is possible to use the asymptotics and under which it is not.

The joint project summarized in this paper has brought together scientists with partly overlap-
ping and partly complementary competences in order to cover the required range of scientific
expertise. The authors acknowledge the generous support by the Deutsche Forschungsgemein-
schaft under grants KL 611/6-i, MU 1319/2-i and SO 363/2-i (i ∈ {1, 2}).

1.2 Overview

There are three main sections to this paper. Section 2 summarizes asymptotic analyses for a
number of fluid mechanical problems. These analyses have been developed as guidelines in the
construction of improved numerical methods. Thus, even though some of the considered regimes
have been discussed in the literature before, both the presentation and the conclusions drawn
here should be new. Specifically we address the following issues:
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• Low Mach number weakly compressible flows in a single time - multiple space scale regime,

• Magneto-hydrodynamics for small Mach and Alfvén numbers,

• Atmospheric flows under a particular distinguished limit for the Mach and Froude numbers,
namely Fr = M as M → 0, and

Section 3 provides a general mathematical framework for the asymptotics and prepares for its
later “translation” into numerical procedures for the multiple scales analysis given in section 2.1.
We state in unambiguous terms what assumptions and conditions have to be satisfied by solutions
of the systems considered in order to allow an asymptotic (multiple scales) approximation. Note
that the analyses do not prove that such solutions actually do satisfy those constraints. Such
proofs are formidable tasks for each application. They are hardly generalizable and beyond
the scope of the present paper. Even though the discussion is motivated by the low Mach
number limit, its results are more generally applicable. These developments are important in the
context of transferring asymptotic results into numerical algorithms: Asymptotic multiple scales
procedures typically involve averaging procedures and the extraction of small scale fluctuations,
which are easily defined formally and in the limit of vanishing scale separation parameters.
However, in a numerical application one is typically faced with small but finite values of these
parameters and the exact definitions of averaging operators and their discrete analogues become
crucial. This section as well as section 4.1 should be considered as exemplary in the sense that
such a rigorous, detailed analyses should ideally be pursued for any asymptotics / numerics
merger.

Section 4 describes the announced translation of asymptotic results into improved numerical
procedures. Subsection 4.1 addresses an issue that is a cornerstone of any attempt at using
asymptotics in the construction of numerical methods. Asymptotic analysis may be described
as a systematic procedure for the construction of particular approximate solutions to a given
equation system. Such solutions are proper approximations only in the particular limit regime
they are designed for. As an example consider low Mach number flows: The disparity between
flow velocities and the speed of sound can, under suitable initial and boundary conditions,
induce a time scale separation. In this case one finds high frequency acoustics superimposed
over a much slower, quasi-incompressible flow field (see e.g. [1, 2, 3, 4, 5]). If, on the other hand,
acoustic perturbations are of sufficiently long wave length, then the material flow and the sound
waves evolve on the same time, but on disparate spatial scales (see [6]). These physically very
different regimes amount to equally different asymptotic solutions. Thus, if one is interested in
exploring asymptotic results to improve numerical methods, it is necessary to employ testing
procedures that determine which particular asymptotic regime is valid for the application at
hand. The identification of multiple space scales asymptotic limit regimes by means of discrete
filtering operators is the topic of subsection 4.1.

Subsection 4.2 describes the necessary steps needed to allow the computation of weakly compress-
ible flows using the principal machinery of standard incompressible flow solvers. The asymptotic
analysis developed earlier in Section 2 shows that in weakly compressible flows the pressure plays
a multiple role as a thermodynamic variable, as an acoustic mode amplitude, and as a an agent
(sometimes called a “Lagrangian multiplier”) guaranteeing that in the limit of zero Mach num-
ber the velocity field satisfies an elliptic divergence constraint. These three roles are attributed
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to the leading, first and second order solutions in a power series expansion of the pressure in
terms of the Mach number. Only the second order pressure survives in the limit of zero Mach
number, and this is the only pressure variable known to a standard incompressible flow solver.
An extension of such a method to weakly compressible flows requires the introduction of addi-
tional pressure variables, which account for global thermodynamic pressure changes and acoustic
waves. Thus, this subsection describes the development of a Multiple Pressure Variable (MPV)
scheme for low Mach number flows from the basis of a standard incompressible flow solver. Ap-
plications include examples showing baroclinic vorticity generation through long wave acoustic
pulses and a thermally driven cavity flow.

Subsection 4.3 describes the extension of conservative finite volume methods for compressible
flows to zero Mach number from [7]. The key ingredients of this extension are (i) again the intro-
duction of multiple pressure variables and (ii) a semi-implicit determination of numerical fluxes
of mass, momentum, and energy. This procedure involves explicit estimates for the convective
flux contributions based on the original upwind machinery of the underlying compressible flow
solver and elliptic corrections that are derived directly from low Mach number asymptotics.
Applications include “falling droplets” (motion of high-density blobs of fluid under gravitational
forces) and a model for thermo-acoustic devices.

Subsection 4.4 reconsiders the extension of a standard numerical method designed for the com-
pressible Euler equations. Emphasis is now on small but finite Mach numbers. In particular,
the techniques described in section 4.1 for the identification of an asymptotic regime through
discrete filters is used here to automatically adjust the (small) numerical reference parameter
that represents the low Mach number effects. A scheme is developed that allows a smooth
transition from very weakly compressible to fully compressible flows with shock waves. This
transition is associated with a change of the Mach number reference parameter from very small
values, where numerical flux corrections similar to those described in section 4.3 are applied, to
unity, in which case the scheme automatically reduces to the original underlying compressible
flow solver. Examples include the passage of a long wave acoustic pulse over a gas layer with
high frequency, large amplitude density variations and the nonlinear steepening of an acoustic
wave into a weak shock.

The aim in subsection 4.5 is to use results of section 2.2 in distinguishing between terms related
to pure convection and terms related to the fast wave speeds in magneto-hydrodynamics. As
in the case of the Euler equations the idea behind the approach is to obtain a splitting of the
system that enables one to treat the convection terms, which remain hyperbolic in the limit, and
the fast wave speed terms, which become elliptic, with different numerical methods optimized
for the respective task. In MHD there are additional hyperbolic waves besides the acoustic ones.
As a consequence, there are two characteristic numbers, the Mach and Alfvén numbers, which
characterize the ratio of a typical flow velocity vs. the respective hyperbolic wave speeds. New
split systems are proposed that are used in our current work for the construction of efficient and
accurate numerical methods.

We finish in Section 5 with conclusions and an outlook on current and future work.
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2 Asymptotic analyses

2.1 Low Mach number asymptotics for compressible fluid flows

In this section we discuss low Mach number asymptotics in a sufficiently general fashion to
include low speed reacting flows. Much of the discussion will in fact be motivated by applica-
tions from combustion, although, by applying suitable simplifications, all the analytical steps
carry over to non-reacting flows as well. We begin by introducing the governing equations and
some general considerations regarding scaling and non-dimensionalization. This subsection will
also define the non-dimensional scalar parameters that will allow us to identify the relevant
asymptotic limit regimes.

2.1.1 Governing equations

Unscaled formulation The full governing equations of gas phase combustion with as little ap-
proximation as probably doable can be found in comprehensive textbooks on combustion theory,
such as [8]. Here we shall consider a simplified system only, so that the essential lines of thought
can be worked out straight-forwardly.

The simplified system to be discussed here consists of the conservation equations for mass,
momentum and energy

(ρ)t + ∇ · (ρv) = 0

(ρv)t + ∇ · (ρv ◦ v + 1 p) + ∇ · τ = 0

(ρe)t + ∇ · (v [ρe+ p]) + ∇ ·
(
jT + τ · v +

nspec∑
i=1

(∆H)i ji

)
= 0.

(2.1.1)

Here ρ,v, p, e are the mass density, fluid flow velocity, pressure, and total energy per unit mass,
respectively, and τ , jT , ji denote the molecular transport of momentum, heat, and of the mass
of the ith species. These transport terms and the pressure are related to the mass, momentum,
energy and species densities ρ, ρv, ρe, ρYi through the caloric equation of state

ρe =
p

γ − 1
+

1
2
ρv2 +

nspec∑
i=1

(∆H)i ρYi (2.1.2)

and the transport models

τ = −µ
(
∇v + (∇v)T

)
− η (∇·v) 1

jT = −κ∇T
ji = −Di∇Yi.

(2.1.3)

The temperature T is related to pressure and density via the thermal equation of state

T =
p

ρR
. (2.1.4)

The quantities γ,R, µ, η, κ,Di, (∆H)i are the isentropic exponent, the ideal gas constant, the
shear and bulk viscosities, the heat conductivity, the species diffusivities and the species’ forma-
tion enthalpies, respectively. All of them are assumed constant throughout this text.
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The species mass fractions Yi satisfy the inhomogeneous balance laws

(ρYi)t + ∇·(ρYiv) + ∇·ji = ρωi (i = 1 . . . nspec) (2.1.5)

where ωi = ωi(p, ρ, Yi) is the net production rate of species i per unit mass of the gas mixture.

When nspec actually denotes the total number of chemical species in the system, then the sum
of all equations in (2.1.5) leads back to the mass conservation equation in (2.1.1)1 and yields a
constraint for the rate expressions

nspec∑
i=1

ρωi = 0 . (2.1.6)

In this case, the mass conservation equation or one of the species balances are redundant.

In order to uniquely specify a single solution to these equations one must provide suitable initial
and boundary conditions determining the solution behavior at some start-up time and close to
the physical boundaries of the system. Since these conditions define the distinctions between all
systems that follow the same set of governing equations, we cannot exhaustively discuss them
here.

Non-dimensionalization, similarity and scaling Within the above governing equations one can
identify four fundamental physical dimensions {Xi}4

i=1: Length L, Time T , Mass M and Tem-
perature Θ. Each physical quantity φj that appears in the governing equations has a physical
dimension that is a product of these fundamental ones, so that

Dim(φj) =
4∏

i=1

(Xi)
bij . (2.1.7)

To name a few examples,

quantity φ physical dimension Dim(φ)
ρ M/L3

v L/T
e L2/T 2

p M/(LT 2)
R L2/(ΘT 2)

(2.1.8)

Once a system of units is chosen based on which these fundamental dimensions shall be measured,
each of the physical quantities and coefficients in the governing equations can be quantified by a
sole number. The familiar SI-system is one example, where (L, T ,M,Θ) are measured in terms
of (Meter m, Second s, Kilogram kg, Kelvin K). Knowing a quantity’s physical dimension and
the underlying system of units one can always transform these non-dimensional numbers back
into measurable physical values. Obviously, there is a one-to-one map between any two different
systems of units, so that the exact solutions of the governing equations will not depend on which
system is chosen.

As they stand, the governing equations given above do not reveal anything besides what was
built into them from the start: Conservation of mass, momentum and energy (2.1.1), conversion
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of one set of chemical species into another (2.1.5), transformations between various forms of
energy (2.1.2) and some thermodynamic relations between the state quantities (2.1.4). To obtain
a somewhat improved intuition about possible solutions one may study classes of solutions
distinguished by some particular global mathematical characterization.

For any given solution of the equations one can identify “characteristic values” [φj,ref ]
N
j=1 of the

total of N physical quantities in the system which roughly describe their orders of magnitude
throughout the solution or at least during a certain time interval and within a selected region
in space. These dimensional characteristic quantities can be combined into non-dimensional
characteristic numbers

Πk =
N∏
j=1

(φj,ref)
ajk , (2.1.9)

with the exponents ajk chosen so as to guarantee that the Πk do not have a physical dimension
as will be explained shortly.

These numbers are extremely useful as they provide a comparison between various quantities
that may have the same physical dimension but very different physical origin. An example is
the Mach number

M :=
|vref |
cref

, (2.1.10)

which compares a typical flow velocity with a characteristic speed of sound or, equivalently, the
momentum flux due to convection with the momentum flux due to pressure forces (note that
the speed of sound is c2 = γp/ρ. Here we simply take c2ref := pref/ρref i.e. M2 = ρrefu

2
ref/pref).

For the non-dimensional Π’s to be actually non-dimensional all the physical dimensions have to
cancel exactly in the product. Using (2.1.7), we may rephrase this statement as

Dim(Πk) =
N∏
j=1

[
4∏

i=1

(Xi)
bij

]ajk

=
4∏

i=1

 N∏
j=1

(Xi)
bij a

j
k

 =
4∏

i=1

(Xi)

[
N∏
j=1

bij a
j
k

]
≡ 1 . (2.1.11)

For this equation to hold the respective powers of each of the fundamental dimensions Xi must
vanish independently, so that

N∑
j=1

bij a
j
k ≡ 0 (i = 1 . . . 4, k arbitrary) . (2.1.12)

These are 4 linear constraints on the N -tuples ak = (a1
k, . . . , a

N
k ), which therefore span a total

space of dimensionN−4. This, in turn, is equivalent to the existence of a set ofN−4 independent
characteristic numbers {Πk}N−4

k=1 , and we arrive at the famous Buckingham’s π-theorem.

The existence of these non-dimensional numbers has very deep and important consequences for
the set of all possible solutions of the governing equations. To be more specific we introduce
the reference quantities (ρref , pref , vref) for density, pressure and velocity, (tref , �ref) for the time
and space coordinates, (ωref) for chemical reaction rates and (µref , κref , Dref , Rref , (∆H)ref) for the
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various parameters in the constitutive equations. Next we define new dependent and independent
variables,

ρ′ =
ρ

ρref

, p′ =
p

pref

, v′ =
v

vref

, T ′ =
T

pref/(ρrefRref)
, e′ =

e

pref/ρref

(2.1.13)

and

x′ =
x

�ref
, t′ =

t

tref
. (2.1.14)

The governing equations are now transformed into their scaled analogues (with the prime su-
perscript dropped for convenience of notation):

Conservation Laws:

Sr (ρ)t + ∇·(ρv) = 0

Sr (ρv)t + ∇·(ρv ◦ v +
1

M2
∇p) +

1
Re

∇·τ = 0

Sr (ρe)t + ∇·(v[ρe+ p]) + ∇·
(

1
Pe
jT +

M2

Re
τ · v +

Q
Sc

nspec∑
i=1

δhi ji

)
= 0.

(2.1.15)

Species Balances:

Sr (ρYi)t + ∇·(ρYiv) = − 1
Sc

∇·ji + Da ρωi (i = 1 . . . nspec) (2.1.16)

Caloric Equation of State:

ρe =
p

γ − 1
+ M2 1

2
ρv2 + Q

nspec∑
i=1

δhi ρYi (2.1.17)

Thermal Equation of State:

T =
p

ρ
. (2.1.18)

Transport Models:

τ = −µ′
(
∇v + (∇v)T

)
− η′ (∇·v) 1

jT = −κ′∇T

ji = −D′i∇Yi.

(2.1.19)

Notice that in (2.1.15), (2.1.17) we have introduced the scaled reaction enthalpies

δhi =
(∆H)i
(∆H)ref

, (2.1.20)
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and that µ′ = µ/µref , κ
′ = κ/κref etc. in (2.1.19) could all be set to unity in case of constant

molecular transport coefficients.

The procedure of scaling the equations has led to a set of seven characteristic numbers:

Abbreviation Definition Name

Sr �ref/(trefvref) Strouhal-no.
M vref/

√
pref/ρref Mach-no.

Re ρrefvref�ref/µref Reynolds-no.
Pe ρrefvref�ref/(κref/Rref) Peclet-no.
Sc ρrefvref�ref/Dref Schmidt-no.
Da ωref�ref/vref Damköhler-no.
Q (∆H)ref/(pref/ρref) Heat Release Parameter

(2.1.21)

Notice that this number was to be expected following the earlier discussion in conjunction with
(2.1.11), (2.1.12). We have introducedN = 11 reference quantities to characterize the magnitude
of all terms and physical variables in the unscaled equations and ended up withN−4 = 11−4 = 7
non-dimensional numbers.

Here are the key observations regarding the structure of solutions of the full governing equations
to be derived from the exercise of non-dimensionalization and scaling:

1. Given:

• Initial and boundary conditions in terms of the scaled variables

• A set of non-dimensional parameters (Sr,M,Re,Pe,Sc,Da,Q)

• The solution to the scaled governing equations (2.1.15) – (2.1.19)

Then:

• For any set of reference quantities (ρref , pref , vref , tref , �ref) and fluid specific parame-
ters (µref , κref , Dref , Rref , (∆H)ref , ωref) that are compatible with the given values for
(Sr,M,Re,Pe,Sc,Da,Q), the fields obtained by reversing the scaling from (2.1.13),
(2.1.14) represent a valid solution to the original unscaled equations!

Thus:

• Each set (Sr,M,Re,Pe,Sc,Da,Q) defines a class of equivalent solutions, which differ
from each other merely by a scale transformation.

2. Close inspection of the scaled governing equations reveals that singularities arise when one
or more of the non-dimensional characteristic numbers approach zero or infinity. Numerical
flow simulation is a particular challenge in these regimes as will be elucidated by a number
of examples throughout this text.

Remark: The set of non-dimensional characteristic numbers chosen above is not unique. In
the combustion and heat transfer literature the Peclet and Schmidt numbers Pe and Sc are often
replaced with the Prandtl and Lewis numbers Pr = Pe/Re and Le = Sc/Pe, respectively.
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Remark: The Strouhal number Sr is often set to unity when a set of scaled governing equations
is formulated. Considering its definition in (2.1.21), this choice implies the characteristic time
scale of flow field evolution to be the convection time scale �ref/vref . Even though we will also
adopt this choice below, this is neither necessary nor is it meaningful in all cases. Taking, e.g.,
the limit Sr → ∞ allows one to formulate the governing equations for stationary flows.

2.1.2 Single length, single time scale asymptotics

In most real-life applications, such as atmosphere-ocean flows, fluid flows in engineering devices,
etc., velocities are small compared with the speed of sound. This fact has profound consequences
for both the mathematical behavior of solutions to the governing equations from section 2.1.1
and their numerical approximate solutions. Physically, in the limit of arbitrarily slow flow
(or infinitely fast sound propagation) the elasticity of the gas w.r.t. bulk compression becomes
negligible and sound-wave propagation becomes unnoticeable. Mathematically, as the Mach
number M from (2.1.10) tends to zero, the pressure gradient contribution in the momentum
equations (2.1.15)2 becomes singular. In order to explore the consequences of this singularity
we consider a formal asymptotic analysis, closely following [9, 6].

A systematic derivation of the governing equations for zero Mach number combustion has been
given by Majda & Sethian [9]. The formulation adopted below, which explicitly focuses on
the conservation equations for mass, momentum and energy, has been introduced in [6] in
conjunction with a multiple length scale, single time scale analysis. In [6, 7] the authors exploit
the asymptotics to derive fully conservative numerical methods for low and zero Mach number
flows. In section 3 below, one of the authors describes a rigorous framework for the formal
asymptotics presented here with an emphasis on the physical background (see also [10]).

In recounting these earlier results we restrict ourselves to the case of an ideal gas mixture with
a simple one step reaction F → P , where the fuel F is turned into the product species P . The
chemical energy conversion rate then is Q ρωF where Q quantifies the specific reaction enthalpy
of the fuel species and ρωF its production density. Under these conditions we need to describe
the time evolution of only the fuel mass fraction YF using a single transport equation of the
type described in (2.1.16).

The asymptotic solution Ansatz

p = p(0)(x, t) + Mp(1)(x, t) + M2p(2)(x, t) + o(M2),

v = v(0)(x, t) + Mv(1)(x, t) + o(M),

ρ = ρ(0)(x, t) + Mρ(1)(x, t) + o(M),

YF = Y
(0)
F (x, t) + MY

(1)
F (x, t) + o(M)

(2.1.22)

is introduced into the dimensionless governing equations (2.1.15)–(2.1.16). Following standard
procedures of asymptotic analysis one obtains a hierarchy of equations for the various expan-
sion functions p(i),v(i), ρ(i), Y

(i)
F by collecting all terms multiplied by equal powers of the Mach

number M and separately equating these to zero. The momentum equations to orders M−2 and
M−1 become

∇p(0)(x, t) = 0 , ∇p(1)(x, t) = 0 . (2.1.23)
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One concludes that p(0) and p(1) depend on time only in this regime of length and time scales,
so that

p(0) ≡ P (0)(t) and p(1) ≡ P (1)(t) . (2.1.24)

The continuity and energy equations at leading order are then(
ρ(0)

)
t
+ ∇·

(
ρ(0)v(0)

)
= 0 (2.1.25)

1
γ − 1

dP (0)

dt
+ ∇·

(
H(0)v(0)

)
=

( 1
Pe

∇·
(
λ∇T (0)

)
+ Da Q (ρωF )(0)

)
. (2.1.26)

where

H(0)(t) =
γ

γ − 1
P (0)(t) . (2.1.27)

To arrive at (2.1.26), insert the expansion (2.1.22) into the energy conservation law (2.1.15)3
and take into account that, according to (2.1.17), the kinetic energy is by a factor of M2 smaller
than the thermal energy for M � 1. The contribution of the viscous forces to the energy budget,
represented by the term ∇· (M2

Re τ · v), will appear for the first time in the energy equation at
order O(M2).

The momentum equation at order M0 reads(
ρ(0)v(0)

)
t
+ ∇·

(
ρ(0)v(0) ◦ v(0)

)
+ ∇p(2) = − 1

Re
∇·τ (0) . (2.1.28)

Notice the change in structure of these equations: The pressure evolution equation does not
determine the pressure variable p(2) appearing in the momentum equation! The appropriate
interpretation, corresponding directly to the theory of incompressible flows, is that the equation
for P (0) from (2.1.26) is a divergence constraint for the leading order energy flux, i.e.,

∇·
(
H(0)(t)v(0)

)
= −

[
1

γ − 1
dP (0)

dt
−

( 1
Pe

∇·
(
λ∇T (0)

)
+ Da Q(ρωF )(0)

)]
(2.1.29)

and that the second order pressure p(2) is responsible for guaranteeing that constraint to be
fulfilled. A useful and more familiar interpretation of this equation results from using explicitly
that H(0)(t) = γP (0)(t)/(γ − 1) is a function of time only for the present equation of state and
deriving a

velocity divergence constraint

∇·v(0) = − 1
γP (0)

[
dP (0)

dt
− (γ − 1)

( 1
Pe

∇·
(
λ∇T (0)

)
+ Da QρωF

)]
.

(2.1.30)

We observe that the velocity divergence is driven by chemical energy conversion and energy
transport effects: Chemical heat release, heat conduction and global pressure changes conspire
to induce a divergence field for the velocity. As a direct consequence we derive from the mass
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continuity equation (2.1.25) an equation that describes the temporal evolution of the density
along particle paths

Dρ
Dt

:=
∂ρ

∂t
+ v · ∇ρ = −ρ∇·v . (2.1.31)

To summarize, the energy conversion and transport processes drive the divergence of the energy
flux, which is related to the velocity divergence. The latter, in turn, leads to compression or
expansion of individual mass elements and thus to density variations of individual particles. The
original interpretation of (2.1.29) as an energy flux divergence constraint proves to be useful in
the construction of energy conserving finite volume methods, (see [7, 11]).

Equations (2.1.25)–(2.1.28) form a closed system, provided the temporal evolution of the leading
order pressure P (0) is known and the state dependence of the reaction rate ρωF is given. For
combustion under atmospheric conditions P (0) equals the atmospheric ambient pressure and
is constant in time. For combustion in a closed chamber we explore the fact that P (0) is
homogeneous in space, integrate (2.1.30) over the total flow domain, use Gauß’ theorem to
replace the divergence integrals with boundary integrals and obtain a global pressure evolution
equation:

dP (0)

dt
=

1
Ω

[
−

∮
∂V

(
γP (0)v − γ − 1

Pe
λ∇T (0)

)
· ndσ + Da

∫
V

(γ − 1)Q(ρωF )(0) dV
]
, (2.1.32)

where n is the outward pointing unit normal at the boundary and Ω =
∫
V dV is the total volume

of the domain of integration V . Given appropriate velocity and thermal boundary conditions all
changes of the background pressure are thus related to the overall chemical energy conversion
within the domain.

The structure of the above equations is similar to that of incompressible, non-reactive flow
in that there is convection, diffusion, and an explicit velocity divergence constraint. Thus,
appropriate extensions of incompressible flow solvers should, in principle, be able to handle zero
Mach number reactive flows as well. See [12, 13, 14, 15] for reviews of typical developments
based on this Ansatz.

2.1.3 Multiple length, single time scale analysis

A number of interesting engineering applications are characterized by the presence of low fre-
quency flow-acoustic interactions. A prominent example is the “rumbling noise” generated in
the exhaust systems of large burners. These oscillations can become quite severe when eigenfre-
quencies of the exhaust system are excited. The origin of these resonances are interactions of a
small scale, quasi-incompressible (turbulent) inflow with low frequency sound waves that have
the same time scale as the influx, but much longer wave lengths. A formal asymptotic analysis
of this situation using multiple scales techniques has been presented in [6] and shall be reviewed
briefly in this section. For simplicity of exposition we restrict ourselves here to the non-reactive
Euler equations for an ideal gas with constant specific heat capacities.

We consider acoustic oscillations having the same time scale as the underlying small scale, quasi-
incompressible flow. Due to the fast propagation of sound waves, their characteristic wavelength
must then be larger by a factor of order 1/M, which is the ratio of a typical sound speed over a
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characteristic flow velocity. A suitable asymptotic solution Ansatz reads

p = p(0)(x,Mx, t) + Mp(1)(x,Mx, t) + M2p(2)(x,Mx, t) + o(M2),

v= v(0)(x,Mx, t) + Mv(1)(x,Mx, t) + o(M),

ρ = ρ(0)(x,Mx, t) + Mρ(1)(x,Mx, t) + o(M).

(2.1.33)

The Ansatz is introduced into the dimensionless governing equations (2.1.15)–(2.1.16). In doing
so, the following generalized differentiation rule must be used in order to account for the multiple
scale expansion in the spatial coordinate

∇ = ∇x + M∇ξ , ξ := Mx . (2.1.34)

Here ∇x,∇ξ denote gradients including the partial derivatives w.r.t. x, ξ at fixed (t, ξ) and (t,x),
respectively.

Following standard procedures of multiple scales asymptotics we require that the sums of all
terms in the expanded governing equations that multiply the same powers of the Mach number
add up to zero. (Notice that this is not a trivial step as these terms themselves depend implicitly
on the Mach number through their argument ξ = Mx. Consult section 3 for a detailed discussion
and mathematical justification of this subtle but important point.) The result for the momentum
balances at orders M−2 and M−1 is

∇xp(0)(x, ξ, t) = 0 , ∇xp(1)(x, ξ, t) = −∇ξp
(0)(x, ξ, t) . (2.1.35)

One first concludes that p(0) ≡ P̃ (0)(ξ, t). Next one integrates the second equation in x and,
following standard sub-linear growth arguments (see section 3), concludes that

p(0) ≡ P (0)(t) and p(1) ≡ P (1)(ξ, t) . (2.1.36)

The continuity and energy equations at leading order are unchanged from (2.1.25) and (2.1.26),
except that the ∇-operator is to be replaced with ∇x and that all terms in (2.1.26) due to
chemistry and heat conduction may be dropped here for simplicity.

The first major change appears in the momentum equation at order M0, which now reads(
ρ(0)v(0)

)
t
+ ∇x·

(
ρ(0)v(0) ◦ v(0)

)
+ ∇xp(2) = −∇ξP

(1) . (2.1.37)

The second order pressure p(2) still is responsible for guaranteeing compliance with an x-scale
divergence constraint from the leading order energy equation (2.1.26), (2.1.30), but there is now
a large scale driving force due to P (1). We will see below that this term represents the effects
on the momentum balance of long wavelength acoustics.

As before we explore next the fact that P (0) is homogeneous in order to derive an equation for
its time dependence. First we integrate (2.1.30) over a finite sub-domain in x at fixed time
and fixed ξ, use Gauß’ theorem to replace the divergence integrals with boundary integrals and
obtain

dP (0)

dt
= − 1

Ω

∮
∂V

γP (0)v · ndσ (2.1.38)
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where, as before, n is the outward pointing unit normal at the boundary and Ω =
∫
V dV is

the total volume of the domain of integration V . The argument now differs from the previous
one for the single scale case as follows: Since the total flow domain is large enough to cover
long wavelength acoustics represented by order O(1) values of ξ, for every fixed ξ the relevant
domain of definition in x is infinite (i.e., of order O(1/M) as M −→ 0). Thus, we may let the
boundary ∂V of V tend to infinity. Requiring that the flow velocities on the boundary remain
bounded or, at least, grow sub-linearly with |x| as |x| → ∞, we conclude that

lim
Ω→∞

[
1
Ω

∮
∂V

γP (0)v · ndσ
]

= 0 , (2.1.39)

due to the vanishing surface-to-volume ratio of the domain V . (A precise formulation would
have to specify in more detail how the domain boundary is spread to infinity, so that a vanishing
surface-to-volume ratio is actually guaranteed. We skip these details here as they are part of the
standard procedures of multiple scales asymptotics. See, however, also section 3.) Obviously,
(2.1.39) implies that

P (0) = P∞ ≡ const. (2.1.40)

on the time scales considered here. To close the obtained equations it is necessary to derive
additional equations that determine the time evolution of the first order long wavelength pressure
contribution P (1)(ξ, t). To this end we integrate the momentum equation from (2.1.37) in x over
a domain V as done before for the energy equation and again use the sub-linear growth condition.
Similarly we proceed for the first order energy equation, [6], and find(

ρ(0)v(0)
)
t

+ ∇ξP
(1) = 0 ,(

P (1)
)
t

+ ∇ξ·
(
γP∞v(0)

)
= 0 ,

(2.1.41)

where ρ(0)v(0)(ξ, t),v(0)(ξ, t) denote the small-scale averaged momentum and velocity fields,
respectively.

The most striking conclusion from this analysis is that there is a mutual and non-trivial feed-back
between the large and small scale flow features in the presence of small scale, large amplitude
density fluctuations, i.e., in the general case of ρ(0) = ρ(0)(x, ξ, t),∇xρ(0) �= 0. In this case, the
change of momentum induced by ∇ξP

(1) in (2.1.37) will lead to large velocity changes for low
density mass elements and small velocity changes for heavy ones. The result is the so-called
baroclinic vorticity generation. This is a manifestation of the generation of small scale structures
by long wave acoustic pressure gradients in the presence of small scale density fluctuations.

We consider, on the other hand, (2.1.41) and notice that the momentum equation involves the
time derivative of the small-scale average momentum, while the energy flux term in the second
equation contains the ξ-divergence of the small-scale averaged velocity field. As a consequence,
in presence of non-trivial small-scale fluctuations of the density ρ(0), these equations are not
closed, as they involve the unknowns P (1), ρ(0)v(0) and v(0). The consequences can be revealed
by decomposing the velocity and density fields into mean and fluctuation according to

v(0) = v(0) + ṽ(0) ρ(0) = ρ(0) + ρ̃(0) (2.1.42)
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and rewriting the averaged momentum as

ρ(0)v(0) = ρ(0) v(0) + ρ̃(0)ṽ(0) . (2.1.43)

This leads to the revised formulation of the long wave dynamics(
v(0)

)
t

+
1

ρ(0)
∇ξP

(1) = − 1

ρ(0)

(
ρ̃(0)ṽ(0)

)
t

,(
P (1)

)
t

+ γP∞∇ξ·v(0) = 0 .
(2.1.44)

In the derivation we have anticipated that (ρ(0))t = 0, which is an immediate consequence of
the small-scale averaged leading order continuity equation (2.1.25). We observe that the left
hand side of this system represents long wavelength linear acoustics with variable sound speed,
the latter being due to the ξ-dependence of ρ(0)(ξ). The right hand side of the first equation
in (2.1.44) is present only if there are long wave correlations of the small-scale fluctuations
of velocity and density. In this case there is a non-negligible effect of the small scales onto
the long wave acoustics. Together with the previous observations regarding baroclinic vorticity
generation this is part of a mutual interaction of small and large scales.

For a more detailed description of the mathematical framework of the multiple scales techniques
used here see section 3. For developments of new numerical techniques on the basis of this
analysis, see sections 4.2, 4.3.

2.2 The Magneto-hydrodynamic-equations (MHD-equations)

The equations of ideal MHD are

∂

∂t


ρ

ρv

B

ρe

 + ∇·


ρv

ρv◦v + (p+ 1
2B ·B)I −B◦B

v◦B −B◦v
(ρe+ p+ 1

2B ·B)v − (v ·B)B

 = 0 (2.2.1)

with the additional constraint ∇ ·B = 0. As in the equations governing compressible gas dy-
namics, ρ, v, e and p are the density, the velocity, the total energy and the pressure, respectively.
B is the magnetic field. If the plasma behaves like an ideal gas, pressure and total energy are
related via a state equation

ρe =
p

γ − 1
+

1
2
ρv ·v +

1
2
B ·B.

Like the equations of gas dynamics, the MHD equations can be written as evolution equations
for the primitive variables ρ,v,B, p. Let us consider, for simplicity, one-dimensional solutions
in a three-dimensional space. In a Cartesian frame of reference with x = (x, y, z), u = (u, v, w),
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B = (B1, B2, B3) and ∂/∂y = ∂/∂z = 0 the primitive equations read

ρt + uρx + ρux = 0 ,

ut + uux +
1

M2

px
ρ

+
1

2Av2ρ
(B ·B)x = 0 ,

vt + uvx −
B1

Av2ρ
B2x = 0 ,

wt + uwx −
B1

Av2ρ
B3x = 0 ,

B2t + uB2x +B2ux −B1vx = 0 ,

B3t + uB3x +B3ux −B1wx = 0 ,

pt + upx + γpux = 0 .

(2.2.2)

Here we have introduced the scaling described in section 2.1 and an additional reference value
Bref for the magnetic field. Since there is an additional equation for the magnetic field, a new
characteristic number appears. This is the Alfvén number Av, the ratio between flow velocity
and speed of the magneto-sonic waves, cA,ref :

Av :=
|vref |
cA,ref

=
|vref |√
B2

ref
ρref

.

2.2.1 The case of small Mach number

For the case of small Mach number but finite Av, the asymptotic expansion described in sec-
tion 2.1 can be extended to the MHD equations. The asymptotic multi-scale ansatz (2.1.33),
completed by

B(x, t; M) = B(0)(x,Mx, t) + MB(1)(x,Mx, t) + o(M) , (2.2.3)

leads to the following zero Mach number limit equations:

ρt + ρux + ρxu = 0 ,

ut + uux +
1
ρ
p(2)
x +

1
2Av2ρ

(B ·B)x = −1
ρ
p
(1)
ξ ,

vt + uvx −
1

Av2ρ
B1B2x = 0 ,

wt + uwx −
1

Av2ρ
B1B3x = 0 ,

B2t +B2ux −B1vx + uB2x = 0 ,

B3t +B3ux −B1wx + uB3x = 0 ,

p
(0)
t + γp(0)ux = 0 .

(2.2.4)
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As in section 2.1, it turns out that the first three terms of the pressure expansion

p = p(0) + Mp(1) + M2p(2) + o(M2) (2.2.5)

carry different physical meanings. p(0) and p(1) represent the thermodynamic pressure and the
amplitude of acoustic perturbations, respectively. Their evolution equations are analogous to
(2.1.36) and (2.1.38)-(2.1.41). The second order pressure p(2) is implicitly defined by (2.2.4).
The main difference w.r.t. the case of pure gas dynamics is that, here, magnetic field and
velocity field are coupled. Therefore the magnetic field appears in the elliptic equation for p(2).
The one-dimensional analysis can be extended to the multidimensional case in a straightforward
way.

The main result of the analysis is that the presence of the magnetic field does not break the
structure of the zero Mach number limit equations. Therefore, numerical methods for low
Mach number - finite Alfvén number inviscid MHD can be developed on the same basis as
numerical methods for the low Mach numbers Euler equations. One such methods is discussed
in section 4.5.

2.2.2 The case of small Alfvén number

We consider now the distinguished limit in which the magneto-sonic waves are much faster than
the flow, Av → 0, but the Mach number is finite. The asymptotic ansatz now reads

U(x, t; Av) = U (0)(x,Avx, t) + AvU (1)(x,Avx, t) + Av2U (2)(x,Avx, t) + o(Av2) (2.2.6)

with U = {ρ,v, p,B}. Introducing this ansatz into the one-dimensional MHD equations (2.2.2)
and collecting the terms which multiply the same powers of the Alfvén number leads to the basic
equations of MHD for zero Alfvén number and to a set of perturbation equations. Using the
same techniques described in the analysis of the hydrodynamic equations, small scales averaging
and standard sub-linear growth constraints, one obtains the following results:

Due to the singular terms in the Alfvén number appearing in the MHD equations, the leading
order magnetic field becomes spatially homogeneous. The first order magnetic field is homoge-
neous in x but supports non-trivial structures on the large scale ξ:

B
(0)
2 = B

(0)
2 (t) B

(1)
2 = B

(1)
2 (ξ, t) , (2.2.7)

B
(0)
3 = B

(0)
3 (t) B

(1)
3 = B

(1)
3 (ξ, t) . (2.2.8)

The MHD equations for zero Alfvén number limit read

ρt + ρux + ρxu = 0 ,

ut + uux +
1

M2

1
ρ
px +

1
ρ
(B(0)

2 B
(2)
2,x +B

(0)
3 B

(2)
3,x) = −1

ρ
(B(0)

2 B
(1)
2,ξ −B

(0)
3 B

(1)
3,ξ ) ,

vt + uvx −
1
ρ
B1B

(2)
2,x =

1
ρ
B1B

(1)
2,ξ ,

wt + uwx −
1
ρ
B1B

(2)
3,x =

1
ρ
B1B

(1)
3,ξ ,

pt + γpux + pxu = 0 .
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and one finds the following additional coupling constraints between velocity and magnetic field

B
(0)
2,t +B

(0)
2 ux −B1vx = 0 ,

B
(0)
3,t +B

(0)
3 ux −B1wx = 0 ,

(2.2.9)

We remark that, according to (2.2.7) and (2.2.8), B(i)
2 , B

(i)
3 i = 0, 1 are constant in x. Hence (2.2.9)

may be interpreted as constraints for the velocity components. The structure here is much more
complicated than in the zero Mach number limit. It becomes even more complicated in the mul-
tidimensional case. Evolution equations for long wavelength magneto-acoustics are obtained by
averaging the velocity and magnetic field perturbation equations. A further interesting regime
would be described by the limit M = cAv with c = O(1) as M −→ 0. As we will see in the next
section, such a distinguished limit leads to new interactions between the fast waves that are not
captured by any sequential limit or by any two-parameter expansion !

2.3 Slow atmospheric motion

Understanding and computing motions in the atmosphere is particularly challenging because of
the multitude of physical processes and of the different space and time scales involved. In spite
of its physical complexity and variety, however, atmospheric motion is confined to a very special
regime. The Mach number M varies from zero at rest to about 0.3 in fast jet streams, hurricanes
and tornadoes.

As seen in section 2.1, in the M → 0 limit the governing equations for compressible (air)
flow become singular. Due to this singularity pressure differences as small as M2 can generate
O(1) accelerations of the horizontal winds, while the pressure forces are in an almost exact
balance (see equation (2.1.28)). In fact, the problem of extracting the “correct” net effect that
modifies an almost perfect balance is a very common one in weather forecasting, see, e.g., [16]
page 187, and both theoretical and numerical investigations of atmospheric motion make use of
related approximate models. These models achieve a simplification of the governing equations
by assuming some kind of balance, e.g., hydrostatic, geostrophic, Boussinesq, anelastic, pseudo-
incompressible. For comprehensive accounts of the matter the reader may want to consult
the classical textbooks by Gill [17] and Pedlosky [18], or the monographs by Zeytounian [19,
20]. Note that Zeytounian uses techniques of asymptotic analysis that are very close to those
employed in the present work, albeit with the aim of asymptotic modelling (deriving simplified
asymptotic equations), instead of guiding the construction of new numerical techniques.

In spite of the outstanding role of approximate models, modern computational approaches in
numerical weather forecasting turn back to the full governing equations, see [21]. The reasons
are:

1. The full equations are believed to allow a better description of real motions than approx-
imate models do.

2. In contrast to approximate models, the full equations are valid on a wide range of scales.
Therefore, numerical methods based on the full equations can be naturally coupled with
local mesh refinement techniques for, e.g., regional weather forecasting.

21



3. Both numerical weather forecasting and climate research need fast algorithms. If one knows
how to avoid time step restrictions due to fast modes, the computational cost of integrating
the full equations can be significantly lower than the cost of solving the equation of, e.g.
an anelastic model.

When attempting to compute numerical solutions of the full compressible equations at different
resolutions one has to face two major problems. 1) Standard methods exhibit a breakdown of
both accuracy and efficiency in the low Mach number regime, see [22], [23], [6], [24], [25]. 2)
As the grid size changes one has to adjust the parameterizations of the sub-cell processes. Such
parameterizations have been designed (and are considered to be valid) for a given scaling or a
well defined grid size. Tautologically, there is very little knowledge on how parameterizations
depend on the grid size. It has been observed in climate research and weather forecasting that,
for a given model, a simple grid refinement by a factor of two may have drastic impacts on
the computed solution and may thus require a complete new adjustment of parameters in the
sub-grid scale models.

We propose multiple scale low Mach number / low Froude number asymptotic analysis as a gen-
eral framework for understanding the motion in the atmosphere on space scales ranging from a
few meters to thousands of kilometers. The theory, detailed in [26], provides a consistent picture
of slow atmospheric flows and turns out to be the natural framework in which approximations,
traditionally obtained on the basis of simplifying assumptions or ad hoc scaling arguments, can
be derived. The analysis yields interesting implications for discrete methods aiming at the nu-
merical computation of atmospheric motions as, e.g., in numerical weather prediction or climate
modeling. There are two kinds of implications. On one hand one finds side constraints on
parameterizations of unresolved physical processes such as turbulent heat transport or velocity
boundary conditions. On the other hand the asymptotic analysis provides guidelines for con-
sistently “filtering” the equations and suggests that “singular dynamic range problems”, such
as the multiple pressure problem for low Mach number flows from section 2.1, can be overcome
by introducing suitable multiple variables that mimic the asymptotic decomposition of the field
quantities.

The analyses presented below are designed to support the construction of numerical integration
techniques. Thus we use asymptotics in order to reveal singular behaviour on the numerically
resolved length and time scales. Importantly, these scales do not necessarily match the with
length and time scales that a meteorologist or oceanographer would ultimately be interested in.
For example, in the near future one may expect horizontal numerical grid resolutions of 5 km
or less and numerical time steps on the order of minutes or less. In contrast, the synoptic scales
of weather dynamics in the mid-latitudes involve hundreds to thousands of kilometres and time
scales up to several hours or days. Our primary interest here is in the much shorter, numerically
resolved scales, and this is why some of our results may appear not to be in line with classical
results of theoretical meteorology [17, 18] or asymptotic modelling [19, 20] at a first glance. We
emphasize, however, that those results can be recovered by systematically employing multiple
scales asymptotics. With the present multiple space scale analyses we do already recover some
of the classical results, while we hope to provide a completely consistent picture based on both
multiple time and multiple space scale analyses elsewhere in the near future.
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2.3.1 Scaling, equations of motion

An atmosphere is said to be in hydrostatic balance when the vertical pressure gradient balances
the force of gravity: ∂p/∂z = −ρg. Let pref be a reference pressure (e.g. some mean sea level
pressure). The scale height hscale := pref/(ρrefg) represents the height over which pressure changes
of magnitude pref would occur in a constant density atmosphere in hydrostatic balance. It is a
rough measure of the thickness of the atmosphere: hscale = O(10) km. We consider hscale as our
basic scale and use two-scale asymptotics to resolve much smaller horizontal “micro scales” in
one ansatz and to cover the much larger synoptic scales in another. The first ansatz is designed
to assess deep convective motions that may occur in cumulus clouds, while the second analyses
short time dynamics on the large scales of weather patterns.

Taking pref , ρref , vref and lref := hscale as reference variables the conservation laws for mass,
momentum and energy in a dry rotating atmosphere ([16], [17], [27]) read

ρt + ∇|| · (ρu) + (ρw)z = 0 ,

(ρu)t + ∇|| · (ρu◦u) + (ρuw)z +
1

M2
∇||p+

1
Ro

ρ
(
u⊥S + iwC

)
= Dρu ,

(ρw)t + ∇|| · (ρuw) + (ρw2)z +
1

M2
pz +

1
Fr2

ρg − 1
Ro

ρuC = Dρw ,

(ρe)t + ∇|| · ((ρe+ p)u) + ((ρe+ p)w)z = Dρe ,

(2.3.1)

with the equation of state

p = (γ − 1)(ρe− 1
2
M2ρv ·v − M2

Fr2
ρgz) . (2.3.2)

We are considering a simplified geometrical setup in which the acceleration of gravity acts in
the vertical direction k of a Cartesian frame of reference of coordinates x, y, z, unit vectors
i, j and k and velocity components u, v and w. u := iu + jv is called the horizontal wind
and u⊥ := −iv + ju. This frame of reference rotates with constant angular velocity Ω around
the axis defined by the unit vector Ω := jC + kS. C and S are the sinus and the cosine
of the latitude. They depend on the space coordinate but not on time. The operator ∇||
indicates differentiation in the horizontal directions and fz := ∂f/∂z. M := vref/

√
pref/ρref ,

Fr := vref/
√
gref lref and Ro := vref/(2Ωlref) are the Mach number, the Froude number and the

Rossby number, respectively. The terms Dρu, Dρw on the right hand side represent the effects
of microscopical (molecular and/or turbulent) transport of momentum. Dρe accounts for both
microscopical transport of energy and for diabatic heating (latent heat and radiation). These
processes are usually parameterized by means of empirical relationships or models. The above
system of conservation laws implies the following evolution equation for the entropy s = p/ργ :

st + u·∇||s+ wsz =
γ − 1
ργ

(
Dρe − M2(u·Dρu + wDρw)

)
. (2.3.3)

2.3.2 Asymptotic ansatz

Let U be a shortcut for a solution component or a function of a solution of the governing
equations (2.3.1), such as the pressure p, density ρ or the velocity field v = u+ wk. In general
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U depends on the horizontal coordinate x := ix+ jy, the vertical coordinate z, the time t, the
singular perturbation parameter M and on other dimensionless parameters like the Rossby and
Reynolds numbers, Ro,Re, etc. We focus the attention on the behavior of U as M → 0, noticing
that our choice of a reference length implies

Fr ≡ M for lref := hscale. (2.3.4)

Assuming that all dimensionless parameters other than the Froude and Mach numbers are fixed
as M → 0 we write U = U(x, z, t; M) and consider an asymptotic expansion of the solution in
terms of the Mach / Froude number:

U(x, z, t; M) :=
∑
i=0

Mi U (i)(η,x, ξ, z, τ, t) . (2.3.5)

Here

η =
1
M
x, τ =

1
M
t (2.3.6)

are new small scale horizontal and time coordinates, while

ξ = Mx (2.3.7)

represents a new large scale horizontal coordinate in analogy with the multiple scales ansatz
pursued in section 2.1.3.

In particular we will consider U (i) = U (i)(η, z, τ) for the analysis of deep convection on very
small horizontal scales and U (i) = U (i)(x, z, t), U (i) = U (i)(x, ξ, z, t) for the analysis on the meso
and synoptic scales. We will not consider any multi-scale ansatz in the vertical direction in this
paper.

2.3.3 Results

Leading order pressure and density Leading order pressure and density are found to be in
hydrostatic balance both at micro scale and at meso and synoptic scales:

p(0) = p(0)(z) , ρ(0) = ρ(0)(z) . (2.3.8)

This result is not surprising. Indeed, it is common practice in numerical methods for atmospheric
flows to solve for p − p(0), ρ − ρ(0) where the hydrostatic basic state p(0), ρ(0) is more or less
arbitrarily assigned, see [21] pages 39–41.

Meso and synoptic scales: Vertical velocity constraint A less trivial result is obtained by aver-
aging the continuity equation and the entropy equation (2.3.3) on the meso scales and taking
into account (2.3.8). One gets

∂z(ρ(0)w(0)
x

) = ρ(0) 1
|Dx|

∫
∂Dx

u(0) ·ndL ,

w(0)
x

∂zs
(0) = ρ(0)−γ(γ − 1)D(0)

ρe

x

.

(2.3.9)
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In the above system w(0)
x

represents the average of w(0) on the x-scales. The system shows that
if ∂zs(0) �= 0 then the leading order mass flux through ∂Dx and the vertical rate of change of the

leading order average heating D(0)
ρe

x

are coupled by a simple relationship. In the special case of
zero mass flux the first equation requires ∂z(ρ(0)w(0)

x

) to be zero. Since ρ(0) → 0 for z → ∞ and
wx is bounded, w(0)

x

must be zero. In this case the source term of the energy equation, D(0)
ρe ,

must have a zero small scale average. Thus we have found a constraint that parameterizations of
turbulent and radiative heating must fulfill in the limit of vanishing Mach and Froude numbers.

For a stable stratification, ∂zs(0) �= 0, the entropy evolution equation yields the leading order
(non-averaged) vertical velocity w(0) as a function of the heating term D(0)

ρe :

w(0) =
ρ(0)−γ(γ − 1)D(0)

ρe

∂zs(0)
. (2.3.10)

Note that this is not a form or consequence of the continuity equation. In fact, inserting (2.3.10)
in the continuity equation yields a sequence of two-dimensional Poisson problems for the second
order pressure p(2), one for each constant z level. This pressure, in turn, is needed to determine
the leading order horizontal wind.

Thus, the leading order analysis yields the following picture of slow atmospheric motion on meso
and synoptic scales: Pressure and density are in hydrostatic balance to leading order; the vertical
wind has zero small scale average or has an average that is coupled to the boundary conditions
for the horizontal wind; for stable stratifications the vertical wind is a function of the source term
of the energy equation and of the stability parameter represented by ∂s(0)/∂z. This functional
dependence defines a divergence constraint for the horizontal wind and allows its computation
by layer-wise numerical integration of a set of quasi-two-dimensional Navier-Stokes equations.
This picture and, in particular, equation (2.3.10) are consistent with the results obtained on
the micro scales where the interest is focused on deep convection. On such scales the dynamics
of vertical velocity and density perturbation are described by the following system of partial
differential equations, see [26]:

c(0)
2

ρ(0)γ
Dρ̃(1)

η

Dτ
− ∂zs

(0)w̃(0)
η

= −γ − 1
ρ(0)γ

D̃
(0)
ρe

η

,

Dw̃(0)
η

Dτ
+
ρ̃(1)

η

ρ(0)
g =

1
ρ(0)

˜
D

(−1)
ρw

η

.

(2.3.11)

In this system w̃(0)
η

represents the difference between the leading order vertical velocity and its
small-scale average (i.e. the average over scales of order O(Mhscale)). These equations describe
the well known oscillations of density perturbations in a stably stratified atmosphere that are
associated with the Brunt-Väisälä frequency and the additional driving of vertical motions due
to net heat sources. Notice that stationary solutions of this system on the (very short) τ -time
scale, with D/Dτ ≡ 0, reproduce the diagnostic vertical velocity equation from (2.3.10) which
was obtained in the single space, single time scale regime.

Anelastic and Boussinesq approximation A popular approximation to the full continuity equa-
tion (2.3.1)1 is the anelastic approximation ([28], [29]): ∇·(ρv) = 0. Citing [27], ρ is “a steady
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reference-state density that varies only along the coordinate axis parallel to the gravitational
restoring force” i.e. ρ is equal to ρ(0). In this case

∇·(ρv) = ∇·(ρ(0)v) = ∇x·(ρ(0)u(0)) + ∂z(ρ(0)w(0)) +O(M) = O(M) . (2.3.12)

The last equality follows from (2.3.8) and shows that the anelastic equation approximates the
full continuity equation up to terms of order O(M) as M → 0. Notice also that the Boussinesq
approximation, ∇·v = 0, will generally introduce unacceptable leading order errors, unless the
vertical velocity w is very small everywhere.

Meso and synoptic scales: first order perturbation Let ζ(0) be the synoptic density weighted
vorticity of the average leading order horizontal velocity

ζ(0) := ρ(0)k·∇ξ × u(0)
x

= −ρ(0)∇ξ · u(0)⊥x . (2.3.13)

Remember that ξ := Mx. As pointed out in the previous paragraphs, pressure and density are
in hydrostatic balance as M → 0. They only depend on the vertical coordinate z. Thus, pressure
tendencies ∂p/∂t are small of order O(M). These tendencies do not vary on the meso scales:
they are functions of t, ξ and of the vertical coordinate but not of x. They are coupled with
ζ(0) through the following system

∂ttp
(1) − c(0)

2
∆ξp(1) = − c(0)

2
f
x
ζ(0) + P ,

∂tζ
(0) =

f
x

c(0)
2∂tp

(1) +Q .
(2.3.14)

This system describes the interaction between long wave acoustics and large scale vorticity. The
terms P and Q on the right hand side depend on the x-average of the first order perturbation
vertical velocity w(1)

x

, on variations of the Coriolis parameters S and C on the large scales, on
correlations between fluctuations of the leading order velocity, on large scale turbulent stresses
and on the heating. In the special case P = Q = 0 the system (2.3.14) supports traveling waves
of the form

(p(1), ζ(0)) = (p(1)
0 , ζ

(0)
0 )ei(kx+ly−ωt) (2.3.15)

provided that κ2 := k2 + l2 satisfies the dispersion relation

ω2 = c(0)
2
κ2 + f

x2
. (2.3.16)

This is the dispersion relation for perturbations of the shallow water approximation linearized
about a geostrophic basic state, see [27] page 15.

The closure of system (2.3.14) for the first order perturbation pressure p(1) and for the large
scale vorticity ζ(0) requires an equation for the vertical velocity w(1)

x

. For a stable stratification,
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∂zs
(0) �= 0, one obtains:

∂ttp
(1) − c(0)

2
∆ξp(1) = −c(0)2fxζ(0) + ρ(0)∂t

(
gw(1)

x − c(0)
2
∂zw(1)

x
)

+
1

Ro
c(0)

2
ρ(0)∇ξ ·

(
ũ(0)⊥

x

S̃x
x

+ iw̃(0)
x

C̃x
x
)

+c(0)
2
∂z(ρ(0)ũ(0)

x

w̃(0)
xx

)

+(γ − 1)∂tD
(1)
ρe

x

− c(0)
2∇ξ ·D(0)

ρu

x

,

∂tζ
(0) = +

f
x

c(0)2
∂tp

(1) + f
x
∂z(ρ(0)w(1)

x

)

− 1
Ro

ρ(0)k·∇ξ ×
(
ũ(0)⊥

x

S̃x
x

+ iw̃(0)
x

C̃x
x
)

−k·∇ξ × ∂z

(
ρ(0)ũ(0)

x

w̃(0)
xx

)
− f

x

c(0)2
(γ − 1)D(1)

ρe

x

+ k·∇ξ ×D(0)
ρu

x

,

N (0)2c(0)
2
w(1)

x

= − 1
ρ(0)

∂t

(
gp(1) + c(0)

2
∂zp

(1)
)

+
g

ρ(0)
(γ − 1)D(1)

ρe

x

.

(2.3.17)

where N (0) is the buoyancy frequency

N (0)2 := −g
(
∂zρ

(0)

ρ(0)
+ g

ρ(0)

γp(0)

)
. (2.3.18)

System (2.3.17) supports internal gravity waves, acoustic waves and the Lamb wave and repre-
sents the link between our asymptotic framework and the classical theory of small perturbations
of the state of rest for compressible stratified fluids, see [17] page 171. There are two major
differences between the classical theory and the present case. The first one is in the equation
for the vertical velocity w(1)

x

. In the classical theory such equation is obtained through com-
bination of vertical momentum and continuity and contains a second order term ∂ttw(1)

x

on
the left hand side. The second difference lies in the right hand side of (2.3.17) where x-scale
correlations of fluctuations of the leading order solution, microscopical transport and radiative
heating appear as forcing terms in the equations. In the classical theory these terms are absent
due to linearization and the particular choice of the basic state (of rest).

The results outlined above have interesting implications for the issues of modeling and computing
slow atmospheric flows. So far, we can draw the following conclusions:

1. Pressure perturbations of order O(M2) affect the velocity field at leading order. Therefore,
single variable representations of the pressure field do not allow a meaningful computation
of pressure gradients.
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2. For stable or moderately stable stratifications, the vertical velocity w must satisfy a diag-
nostic constraint. This constraint takes the form of a simple relationship between vertical
velocity, stratification and heating and is not a form of the continuity equation. This result
has three implications:

(a) Parameterizations of sub-scale physical processes involved in the energy budget (e.g.
turbulent heat transfer) are not completely free and must satisfy an integral con-
straint.

(b) The second order perturbation pressure can be computed by solving, at each z =
const. level, a two dimensional elliptic problem. The numerical solution of this prob-
lem involves a plain Laplace operator and can be efficiently computed with standard
methods.

(c) There is no truly three-dimensional motion at meso and synoptic scales. Whether
numerical methods based on the unconstrained-constraint integration of the full three-
dimensional equation of motion can predict vertical winds which are consistent with
the asymptotic behavior of the true solution is an open question.

3. The analysis of deep convection on the micro scales reveals a vertical velocity-density
perturbation dynamics which is perfectly consistent with the above mentioned diagnostic
constraint for w: in the quasi-steady limit equation (2.3.11) simply reduces to equation
(2.3.10).

4. On meso and synoptic scales pressure tendencies can be computed by integrating a sys-
tem of second order partial differential equations which supports internal and barotropic
gravity waves, acoustic waves and Lamb wave. This system is a generalization of the set
of equations obtained in the classical theory of perturbations from the state of rest for
compressible stratified flows.

3 Mathematical issues

In this section we review a rigorous mathematical framework for deriving the relationships
commonly used in multi-scale asymptotics. For a detailed analysis we refer to [10]. For con-
creteness, attention is focused on the low Mach number limit of the Euler equations. The results,
e.g. Lemma 3.1 and Lemma 3.2, however, are generally valid.

Motivated by observations of many systems of practical relevance, we require that each quantity,
say U(x, t), is bounded in the sense that for all x ∈ G ⊂ Rd and for each t ∈ R+

0 there exists a
time dependent upper bound cU (t) such that

|U(x, t)| ≤ cU (t). (3.0.1)

3.1 Asymptotic expansions

The success of an asymptotic analysis depends crucially on the choice of an asymptotic sequence
– the functions M0,M1,M2 . . . in, e.g., equation (2.1.22) – as well as on the choice of suitable
time and space scales. These choices depend on both the governing equations and on the regime

28



being considered. Throughout this paper, the following asymptotic sequence has been used in
the analysis of low Mach number flows (ε = M):

φn(ε) = εn, n ∈ N0. (3.1.1)

The sequence satisfies

φn(ε) = o (φn−1(ε)) , ε→ 0 . (3.1.2)

The choice of this asymptotic sequence is not obvious! In the governing equation, e.g. in (2.1.15)
- (2.1.20), the perturbation parameter is the square of the Mach number ε2. In fact, one can
find in the literature many asymptotic analyses which are based on the sequence φn(ε) = ε2n.

Using the decay property (3.1.2) one can prove the following Lemma:

Lemma 3.1 Let {φn(ε)}n∈N0
be an asymptotic sequence and Ln, n = 0, . . . , N arbitrary terms

which are independent of ε. Then

N∑
n=0

φn(ε)Ln = o (φN (ε)) , ε→ 0 (3.1.3)

holds if and only if Ln = 0, n = 0, . . . , N .

Proof: Let us assume the existence of terms L0, . . . , LN with max
n=0,... ,N

|Ln| > 0 for which

equation (3.1.3) holds and let m = min
n=0,... ,N,Ln �=0

n. Using (3.1.2), which is supposed to hold, we

obtain, for m ≤ N :

m∑
n=0

φn(ε)Ln = o (φN (ε)) −
N∑

n=m+1

φn(ε)Ln = o (φm(ε)) .

The last equality is a consequence of (3.1.3). Dividing by φm(ε) and taking the limit ε→ 0 one
gets

lim
ε→0

∑m
n=0 φn(ε)Ln

φm(ε)
≡ Lm = lim

ε→0

o (φm(ε))
φm(ε)

in contradiction to the definition of m. The opposite direction is trivial.

For further detailed discussions of asymptotic sequences, asymptotic series, order symbols, etc.,
confer the classical textbooks by van Dyke [30], Schneider [1], or Kevorkian and Cole [31, 32].

Simple examples show that in general an asymptotic single scale expansion can not be success-
fully employed in the context of problems that contain phenomena on different scales [32, 33].
The following sections provide results for single as well as multiple scales expansions in space.
The exact definitions of the asymptotic expansions are given in each section separately.

3.1.1 Single scale asymptotic analysis for confined domains

In this section the Euler equations are considered in a domain G × R+
0 with a bounded spatial

part G ⊂ Rd. Due to the boundedness of G there is always a bound Ml > 0 such that for each

29



M ∈ (0,Ml) no phenomena on a scale ξ = Mx are present in the distribution of the solution
vector u = (ρ,m1, . . . ,md, ρe)T , provided we assume that uref is fixed as M → 0. Hence, we
define the asymptotic solution space Us as the set of all functions u : G ×R+

0 × (0, M̃) → Rd+2,
M̃ > 0 which satisfy the governing equations and for which each physical quantity U can be
expressed by an asymptotic expansion

U(x, t; M) =
2∑

i=0

MiU (i)(x, t) + o(M2), M → 0

which is valid in G ×R+
0 . To study the properties of the functions U (i), i = 0, 1, 2 we introduce

the asymptotic expansion into the Euler equations and collect the terms which are multiplied
by the same power of the Mach number M. These terms are functions which do not depend on
M and, according to Lemma 3.1, must vanish in the limit M → 0. This leads to the following
asymptotic system

∂tρ
(i) + ∇x ·m(i) = 0, i = 0, 1, 2 (3.1.4)

∇xp(0) = 0 (3.1.5)

∇xp(1) = 0 (3.1.6)

∂tm
(0) + ∇x ·

(
m(0)◦v(0)

)
+ ∇xp(2) = 0 (3.1.7)

∂t (ρe)
(i) + ∇x · ((ρe+ p)v)(i) = 0, i = 0, 1, 2 (3.1.8)

in G ×R+
0 . Here we have introduced m := ρv. The above hierarchy of equations is the starting

point of the analysis presented in section 2.1.2.

3.1.2 Multiple scale asymptotic analysis for unbounded domains

In contrast to the previous section we consider a spatial domain G ⊂ Rd which satisfies

(dmin(G))−1 = O

(
M
�ref

)
, M → 0 (3.1.9)

with

dmin(G) := min
k=1,... ,d

|xk|.

This means that, for each M, the domain G is large enough to accommodate perturbations of
wavelength �ref/M, i.e., in dimensionless coordinates, perturbations on the large scale ξ = Mx.
Note that this assumption implies that either G = Rd or that G depends on M or that the physical
dimensions of G are fixed, but the reference length �ref is proportional to M. Furthermore,
without loss of generality we can require that there exists always a positive real number M′ such
that

Bx

(
1
M

)
:=

{
x ∈ Rd

∣∣∣∣|x| < 1
M

}
⊂ G
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for all M ≤ M′. To take into account multiple space scales consider the mapping

g : Rd × R+
0 × (0, M̃) → R2d × R+

0

(x, t; M)
g�−→ (x,Mx, t) .

(3.1.10)

This mapping allows us to define a particular space Ũm of functions which are solution of the
Euler equations. These are those functions U that can be expressed in G × R+

0 by a multiple
scale asymptotic expansion

U (x, t; M) =
j∑

i=0

Mi U (i) (g(x, t; M)) + o
(
Mj

)
, M → 0, j = 0, 1, 2

which is uniformly valid outside an arbitrary large ball Bx (s), s ∈ R+. The asymptotic functions
U (i) depend on two space coordinates, η and ξ:

U (i) : Rd × Rd × R+
0 → R, i = 0, 1, 2

(η, ξ, t) U(i)

�−→ U (i) (η, ξ, t) ,

Note that one cannot derive the uniform validity of the asymptotic expansion for j = 0, 1 from
the fact that the asymptotic expansion is uniformly valid for j = 2. Therefore, it is necessary to
introduce this assumption in the multiple scale case. First, let us consider the so-called sub-linear
growth condition for asymptotic functions. This condition represents a basic tool throughout
the analysis.

Lemma 3.2
Let U : Rd ×R+

0 × (0, M̃) → R be uniformly bounded with respect to x and M, let s ∈ R+, and
let the asymptotic multiple scale expansion

U (x, t; M) =
j∑

i=0

Mi U (i) (g(x, t; M)) + o
(
Mj

)
, M → 0

be valid in Rd × R+
0 and uniformly valid in Rd \ Bx(s) × R+

0 for each j = 0, 1, 2. Then the
leading order asymptotic function U (0) satisfies

U (0) (g(x, t; M)) = o (|x|α) , x ∈ ∂Bx

(
1
M

)
, M → 0 (3.1.11)

for all α > 0. Furthermore, the first order and second order asymptotic functions satisfy

U (i) (g(x, t; M)) = o (|x|) , x ∈ ∂Bx

(
1
M

)
, M → 0, i = 1, 2, (3.1.12)

respectively.

Proof: From the uniform validity of the asymptotic expansion we have

U (i) (g(x, t; M)) = o
(
M−1

)
, M → 0 (3.1.13)

31



uniformly in Rd\Bx(s)×R+
0 for i = 1, 2. Given a null sequence {Mn}n∈N we define an arbitrary

vector sequence {xn}n∈N with xn ∈ ∂Bx
(

1
Mn

)
. Now, we define the null sequence {M̃n}n∈N as a

subsequence of {Mn}n∈N by taking only those elements which satisfy M̃n < s−1. Furthermore,
we define the vector sequence {x̃n}n∈N as a subsequence of {xn}n∈N which is given by the

elements satisfying x̃n ∈ ∂Bx
(

1

M̃n

)
. Using the uniform validity of (3.1.13) we obtain

0 = lim
n→∞

U (i)(g(x̃n, t; M̃n))

M̃−1
n

= lim
n→∞

U (i)(g(x̃n, t; M̃n))
|x̃n|

= lim
n→∞

U (i)(g(xn, t; Mn))
|xn|

which proves (3.1.12). In order to derive the equation (3.1.11) we use the uniform boundedness
of U . This yields

U(x, t; M) = o(rα), x ∈ ∂Bx(r), r → ∞ (3.1.14)

for all α > 0. Using the asymptotic expansion we obtain

U(x, t; M) = U (0) (g(x, t; M)) + o(1), M → 0 (3.1.15)

uniformly in Rd \ Bx(s) × R+
0 . A simple combination of the equations (3.1.14) and (3.1.15)

leads to

U (0) (g(x, t; M)) = U(x, t; M) + o(1)

= o
(
M−α

)
+ o(1) = o (|x|α) ,

where x ∈ ∂Bx
(

1
M

)
and M → 0.

Notice that the validity of theorem 3.2 does not depend on the special form of the mapping g and
therefore the sub-linear growth condition is also valid in the case of a single scale expansion if
an unbounded domain is considered. The assumption that the physical quantity U is uniformly
bounded is motivated by (3.0.1) and guarantees that we have chosen the reference values in a
proper manner. Using the derivatives

∂t(U (i) ◦ g)(x, t; M) = ∂tU
(i)(g(x, t; M)) , (3.1.16)

∂xj (U
(i) ◦ g)(x, t; M) = ∂ηjU

(i)(g(x, t; M)) + M∂ξjU
(i)(g(x, t; M)), j = 1, . . . , d (3.1.17)

and introducing the asymptotic expansion into the Euler equations one obtains

∂tρ
(0) + ∇ηm(0)

+ M
(
∂tρ

(1) + ∇ηm(1) + ∇ξm(0)
)

+ M2
(
∂tρ

(2) + ∇ηm(2) + ∇ξm(1)
)

= o
(
M2

)
, M → 0 in D̃(M), (3.1.18)

M−2∇ηp(0) + M−1
(
∇ηp(1) + ∇ξp(0)

)
+

(
∂tm

(0) + ∇η ·
(
m(0)◦v(0)

)
+ ∇ηp(2) + ∇ξp(1)

)
= o (1) , M → 0 in D̃(M), (3.1.19)
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∂t(ρe)(0) + ∇η · ((ρe+ p)v)(0)

+ M
(
∂t(ρe)(1) + ∇η · ((ρe+ p)v)(1) + ∇ξ · ((ρe+ p)v)(0)

)
+ M2

(
∂t(ρe)(2) + ∇η · ((ρe+ p)v)(2) + ∇ξ · ((ρe+ p)v)(1)

)
= o

(
M2

)
, M → 0 in D̃(M), (3.1.20)

where the manifold D̃(M) is defined to be

D̃(M) :=
{

(η, ξ, t) ∈ R2d × R+
0

∣∣(η, ξ, t) = g(x, t; M), (x, t) ∈ G × R+
0

}
.

In contrast to the single scale expansion the manifold D̃ depends on the reference parameter M
and therefore we are not able to decompose the above system (3.1.18) – (3.1.20) in the same
manner as described in Section 3.1.1. In order to overcome this difficulty it is convenient to
introduce the space Um ⊂ Ũm of those asymptotic functions U (0), U (1), U (2) which satisfy the
equations (3.1.18) – (3.1.20) in

D :=
{

(η, ξ, t) ∈ R2d × R+
0

∣∣∣ξj < M̃ηj , j = 1, . . . , d
}

and fulfill the sub-linear growth condition in the sense that, for fixed ξ, one has

U (0) (η, ξ, t) = o (|η|α) , η ∈ ∂Bη

(
1
M

)
, M → 0

for all α > 0 and

U (i) (η, ξ, t) = o (|η|) , η ∈ ∂Bη

(
1
M

)
, M → 0, i = 1, 2.

Then, in analogy with the single scale case, we can express equations (3.1.18) – (3.1.20) in the
equivalent form

∂tρ
(0) + ∇η ·m(0) = 0 (3.1.21)

∂tρ
(1) + ∇η ·m(1) = −∇ξ ·m(0) (3.1.22)

∂tρ
(2) + ∇η ·m(2) = −∇ξ ·m(1) (3.1.23)

∇ηp(0) = 0 (3.1.24)

∇ηp(1) = −∇ξp(0) (3.1.25)

∂tm
(0) + ∇η ·

(
m(0)◦v(0)

)
+ ∇ηp(2) = −∇ξp(1) (3.1.26)

∂t (ρe)
(0) + ∇η · ((ρe+ p)v)(0) = 0 (3.1.27)

∂t (ρe)
(1) + ∇η · ((ρe+ p)v)(1) = −∇ξ · ((ρe+ p)v)(0) (3.1.28)

∂t (ρe)
(2) + ∇η · ((ρe+ p)v)(2) = −∇ξ · ((ρe+ p)v)(1) (3.1.29)

in D. This hierarchy of equations is the starting point of the analysis presented in section 2.1.3.
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3.1.3 Examples

The sub-linear growth conditions stated in lemma 3.2 are the key to derive many of the results
presented in previous sections. We discuss two examples. First, consider equation (2.1.36) and
let p(0) ∈ Um. Then equation (3.1.24) implies p(0) = p(0)(ξ, t). Equation (3.1.9) together with
the mapping g allows the integration of (3.1.25) over the open ball Bη

(
1
M

)
. Using sub-linear

growth condition this leads to

∇ξp(0) = − 1
|Bη

(
1
M

)
|

∫
Bη( 1

M)
∇ηp(1) dη = − 1

|Bη
(

1
M

)
|

∫
∂Bη( 1

M)
p(1) · n ds

= O(Md) O(M1−d) o(M−1) = o(1), (M → 0).

Hence, we obtain p(0) = p(0)(t) and the first order momentum equation (3.1.25) gives p(1) =
p(1)(ξ, t) as stated in (2.1.36). In the second example we emphasize the meaning of small-scale
averaging in the derivation of equation (2.1.41). Consider the small-scale average operator

U(ξ, t) := lim
M→0

1∣∣Bη (
1
M

)∣∣
∫

Bη( 1
M)

U(η, ξ, t) dη.

Again, using the sub-linear growth condition, one has

1∣∣Bη (
1
M

)∣∣
∫

Bη( 1
M)

∇ηp(2) + ∇η ·
(
m(0)◦v(0)

)
dη = o(1), (M → 0).

As seen above p(1) = p(1). Thus, averaging the momentum equation (3.1.26) leads to

0 = lim
M→0

1∣∣Bη (
1
M

)∣∣
∫

Bη( 1
M)

(
∂tm

(0) + ∇η ·
(
m(0)◦v(0)

)
+ ∇ηp(2) + ∇ξp(1)

)
dη

= lim
M→0

1∣∣Bη (
1
M

)∣∣
∫

Bη( 1
M)

∂tm
(0) dη + ∇ξp(1)

= ∂tm(0) + ∇ξp(1)

which is the first equation of system (2.1.41).

4 Numerics

4.1 Discrete identification of a multiple scale - low Mach number flow
regime

In the following sections all quantities are assumed to be in dimensional form, unless it is
otherwise stated. The superscriptˆdenotes the dimensional form. For the sake of simplicity we
neglect the superscript whenever its omission does not lead to misunderstandings.
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The identification of a low Mach number – long wave regime is closely related to the determina-
tion of a discrete equivalent M̌ of the Mach number M̌ ∈ (0, 1] and to the decomposition of the
primitive variables Û = (ρ̂, v̂, p̂)T needed in the multiple scale ansatz. In particular, the density
ρ̂ and the velocity v̂ can be decomposed in the form

ρ̂ = ρ+ ρ′,

v̂ = v + v′,

where the superscript ′ denotes short wave phenomena and the over-bar characterizes long wave
parts, respectively. On the other hand it is appropriate to decompose the pressure into three
terms

p̂ = p̂(0) + M̌p̂(1) + M̌2p̂(2). (4.1.1)

Consider, first, the pressure decomposition. Notice that no truncation error of order o(M̌2)
appears in equation (4.1.1). Here, in contrast to the ansatz introduced in the asymptotic analysis,
the pressure splitting is exact and p̂(0), p̂(1), and p̂(2) are not solutions of the asymptotic equations
discussed in section 2.1. The idea, however, is to try to construct functions p̂(0), p̂(1), and
p̂(2) that have the same asymptotic behavior as the corresponding pressure components of the
asymptotic sequence. First consider the leading order pressure p̂(0). If the reference parameter
M̌ is sufficiently small we require p̂(0) to be spatially homogeneous and the first order pressure
p̂(1) has to represent exclusively long wave phenomena. Due to the exactness of the pressure
decomposition (4.1.1) the second order pressure p̂(2) can then be computed from p̂, p̂(0) and p̂(1)

and represents the remaining long and short wave influences. If the data are in the low Mach
number regime we expect this construction to provide a discrete pressure decomposition that
guarantees the boundedness constraints

p̂(i) ≤ Cp̂ref , i = {1, 2, 3}. (4.1.2)

If not we consider the flow field not to fall into the single-time, multiple space scale regime
considered here (notice, however, that this ansatz excludes multiple time, single space scale
regimes as considered, e.g., in [5], [3], [34], [35], [4] and references therein). Notice also that the
constant C but must be independent of M̌ .

We propose discrete filter operations that, given a pressure distribution, determine M̌ and the
relevant underlying length scales and simultaneously provide a pressure decomposition that,
in the low Mach number – long wave regime, satisfies the above boundedness constraint. It
turns out that pressure decomposition (4.1.1), determination of an effective numerical value M̌
corresponding to the physical Mach number M and extraction of short and long wavelengths
have to be synchronized in a suitable way to achieve a decomposition satisfying the boundedness
constraint (4.1.2).

Notice that if M̌ is much smaller than the ratio between the smallest flow scale l̂ref and the
maximal diameter of the domain Ω̂, i. e.,

1
M̌

� dmax(Ω̂)

l̂ref
= dmax(Ω),

long wave acoustic phenomena on a scale ξ = M̌x cannot be accommodated and the multiple
scale expansion degenerates into a single scale expansion. In this case computing the first
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order pressure and the long wave parts of density and velocity is inappropriate. The limit of
M̌ = M = 0 will be discussed in more detail in section 4.3.

If we define

p̂(0)(t) := p̂ref (t) =
1

|Ω̂|

∫
Ω̂

p̂(x, t) dx,

then the requirements mentioned above to the leading order pressure p̂(0) hold for all M̌ ∈ (0, 1].
Furthermore it is possible to rewrite the pressure decomposition (4.1.1) as

φ = φ+ φ′,

with φ := p̂− p̂(0), φ := M̌p̂(1) and φ′ := M̌2p̂(2). We can describe a decomposition algorithm in
the following way:

Let I denote the index set of the discretization. Decompose every given signal (fi)i∈I
of a function f in the form

fi = f i + f ′i , ∀i ∈ I,

where (f i)i∈I represents only long wave phenomena and (f ′i)i∈I contains the remain-
ing long and short wave parts. Furthermore (f ′i)i∈I has to be small compared to
(f i)i∈I with regard to the maximum norm, i. e.

‖(f i)i∈I‖∞ � ‖(f ′i)i∈I‖∞.

An optimal decomposition algorithm should satisfy the following requirements:

A. The decomposition as well as M̌ have to be calculated simultaneously to satisfy (4.1.1)
and (4.1.2) in an optimal way.

B. The reference parameter M̌ should continuously depend on the data of the discretization.

C. The algorithm should be almost parameter-free and must terminate automatically.

D. The method should locally be self-adaptive with respect to the data of the discretization,
i.e. the decomposition should be invariant in regions where the signal is sufficiently smooth.

E. Relevant features of the solution should be neither dislocated nor smoothed.

F. The algorithm must be independent of the type of discretization. It also must be robust
to grid refinements and to numerical noise. In this context it seems to be worthwhile to
prove the continuity of the decomposition operators used.

G. The method must be fast, since the physical quantities have to be decomposed at each
time step. Thus, if n denotes the number of discretization points or control volumes, the
algorithm has to be of order O(n log n) or even faster.
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Due to the last requirement averaging operators based on convolutions with a box function or
a Gaussian kernel must be discarded. We also disregard filtering algorithms based on Fourier
transformations. These would require certain manipulations of high frequencies associated with
aliasing errors and non-periodicity of the analyzed signals. The net effects on the resulting
signal components are ambiguous and hard to control, especially on unstructured grids. Besides,
Fourier decomposition is a global operation.

Wavelets have local properties in space and time, but until now they are restricted to structured
grids. This makes them too rigid in the context of remark (F). Furthermore, the reference
parameter M̌ must be precisely determined for small values, but this is impossible by means of
a single wavelet analysis. Sampling the high frequency parts of the wavelet analysis again it is
possible to determine all frequencies at the cost of loosing the multiple scale properties and the
order of the algorithm.

A survey of scale-space evolution algorithms which are based on parabolic differential equations
is given in [36]. Besides the advantages of a curve evolution based on linear diffusion equations
there are serious problems arising in this approach (Weickert [36], p. 6):

a. ”Gaussian smoothing does not only reduce noise, but also blurs important features such
as edges and, thus, makes them harder to identify. Since Gaussian scale-space is designed
to be completely uncommitted, it cannot take into account any a-priori information on
structures which are worth being preserved (or even enhanced).

b. Linear diffusion filtering dislocates edges when moving from finer to coarser scales. So
structures which are identified at a coarse scale do not give the right location and have
to be traced back to the original image[..]. In practice, relating dislocated information
obtained at different scales is difficult and bifurcations may give rise to instabilities. These
coarse-to-fine tracking difficulties are generally denoted as the correspondence problem.”

To overcome these problems anisotropic and non-linear diffusion processes or even reactive-
diffusion filters are being considered, but these decomposition strategies are not parameter-free
and controlling the termination of the resulting algorithms is still an open problem. Furthermore,
the computational effort associated with this class of complex filter algorithms increases in
comparison with the simpler linear diffusion approaches, which already have an operation count
similar to convolution processes. Hence, such techniques are also not suitable to the kind of
problem considered.

4.1.1 Long wave - short wave filters based on polygonal curves

In the area of discrete geometrical data analysis, [37], polygonal curves are simplified to extract
the important visual parts neither changing the coarse structure of the borderline nor dislocating
the relevant features. This is done via a step–by–step algorithm. During each curve analysis step
a certain number of successive edges are replaced by a straight line connecting the endpoints
of such a set of edges. The key to success of this very simple algorithm is hidden in the order
of these replacements. In each step of the evolution a relevance measure assigns a cost value
to each pair of edges. If the cost value is small, that is, the structure embraced by the pair of
edges is insignificant, it will be replaced. The sequence of replacements enforced by the relevance
measure produces a hierarchy of structures.
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In our case a suitable relevance measure has to be defined to classify those points of a discrete
distribution (fi)i∈I which are not represented by the function f which has to be calculated.
Then the values of these points have to be replaced to give f some kind of discrete smoothness.

First of all, we must derive an appropriate definition to distinguish long wave and short wave
phenomena. In contrast to the Fourier ansatz we will call any function to be of long wave type,
if the distance between its turning points is sufficiently large. On the basis of this definition
a sine function belongs to the same class as an arbitrary function having equivalent minimal
distances between its turning points.

This definition of “long-waviness” suffers from the drawback that high frequency parts in the
sense of Fourier can conceal themselves in long wave structures. An example is given by a wave
steepening into a shock. Although the frequency increases rapidly with respect to the Fourier
series, the distance between two turning points can still remain constant during the steepening
process. Consequently the wavelength of the function as defined by our “turning point” measure
is constant. Thus, it might be necessary to execute a Fourier-analysis of the signal after it is
decomposed.

Generally, in areas with short wave structures turning points are very frequent, whereas in areas
with long wave structures only a few turning points can be found. We will exploit this property
of the wavelength to define a cost function and finally derive the relevance measure.

4.1.2 A discrete wavelength decomposition algorithm

For the sake of simplicity we confine ourselves to a single space dimension. Let (σi)i∈ I be a
given disjunct decomposition of the domain Ω into control volumes, boxes for short. Let I be an
index set and n its size: n := #(I). We associate the values (fi)i∈I to the centers of the boxes.
Connecting each value with its neighbors with a segment leads to a piecewise linear function
comparable to the polygonal contours investigated in [38]. We denote an edge connecting the
values fi and fi+1 by ki+ 1

2
and the turn angle (the angle enclosed by the edges ki− 1

2
and ki+ 1

2
)

by αi.

Using the sign of αi, the domain Ω can now be subdivided into overlapping concave and convex
subdomains Ωj , j ∈ J . J denotes the index set of subdomains. Each sub-domain consists of
points with the same sign of the turning angle plus the left and right turning points. Therefore
each point on the boundary of a sub-domain is called a discrete turning point of the function
f . Note that discrete turning points always appear in pairs. Between a pair of turning points
there might be points with vanishing turning angles.

The discrete curve decomposition of a function f produces a sequence of functions {f0 =
f, . . . , fm} and a sequence of index sets {I0 = I, . . . , Im} with #I l+1 < #I l and #Im ≤ 2. In
this description the index set I l denotes those points which are still unchanged at the beginning
of the l−th decomposition step. To determine those points which are to be removed during the
l-th step, every point f li , i ∈ I l, is allocated a cost value k(i, I l) ∈ R+ via the relevance measure
to be determined in the next section. Let

kmin(I l) := min{k(i, I l) : i ∈ I l}.

The set Imin(I l) denotes the set of points with minimal costs at the l−th step,

Imin(I l) := {i ∈ I l : k(i, I l) = kmin(I l)}.
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Now the algorithm removes the index set Imin(I l) from I l,

I l+1 = I l \ Imin(I l).

4.1.3 The relevance measure and the singular reference parameter

The relevance measure represents the significance of each individual structure compared to all
others and therefore controls the sequence of the decomposition steps.

In our case the relevance measure should be characterized by the wavelength of the function.
The wavelength itself was fixed by the distance of the turning points from each other. So the
cost function of a cell average fi should primarily be a function of the sum of the distances from
its neighboring turning points with different signs of the turning angles compared to the angle
at index i. The cost function should only secondarily depend on other properties like its relative
position between its turning points or its curvature. The sum of the distances to the so called
neighboring turning points are equal to the length of the concave or convex subdomains |Ωj |
projected onto the x-axis. Note that σi can be a member of up to three different subdomains.
Because the number of subdomains changes during the evolution, we also introduce a sequence
of index sets {J0 = J, . . . , Jm} of subdomains Ωj .

Now, define the cost function k(i, I l) ∈ R+ to be

k(i, I l) :=
∣∣ min
j∈{J l, σi∈Ωj}

|Ωj | − min
j∈J l

|Ωj |
∣∣ ∗ |αi|, ∀i ∈ I l. (4.1.3)

Obviously, the cost function represents a non-negative function which is equal to zero for all
points of the smallest sub-domain. Hence, in addition to the points with collinear arranged
function values all points of the smallest sub-domain are removed during the next step.

If we define the minimal wavelength of the function fl as the minimal distance of two neighboring
subdomains Ωj , Ωj+1

λmin(f l) := min
j∈J l

(
|Ωj | + |Ωj+1| − |Ωj ∩ Ωj+1|

)
with Ωj := ∅, ∀j /∈ J l, then the inequality

λmin(f l) ≤ λmin(f l+1)

does not hold for all l ∈ {0, . . . , (m− 1)}, in general. Nevertheless, for the stopping criterion, it
follows

λmin(f0) ≤ λmin(fm) = |Ω|.

In the case λmin(f0) �= |Ω| the inequality is sharp. Thus, the minimal wavelength increases
during the evolution although it is theoretically possible that the progress is not monotone.

Now we can easily define the reference parameter M̌ as

M̌(f l) := min
{

1
λmin(f l)

, 1
}
. (4.1.4)
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4.1.4 Properties of the scale decomposition scheme

A summary of all steps of the algorithm described in the previous chapters is now given:

1. Set M̌ = 1, l = 0, f i = fi, f
′
i = 0, ∀i ∈ I0 = I.

2. Subdivide Ω into overlapping concave and convex subdomains Ωj of the function f i, ∀i ∈
I0.

3. Compute M̌ by means of equation (4.1.4) and check the validity of the estimates in (4.1.2)
as well as #I l > 2. If one of these conditions is not satisfied the evolution is stopped.

4. Assign a relevance measure k(i, I l) to each box σi, i ∈ I l, using the cost function (4.1.3).

5. Compute Imin(I l) = {i ∈ I l : k(i, I l) = 0}.

6. Reduce the index set of the maintained function values,

I l+1 = I l \ Imin(I l).

7. Compute f i, i ∈ I0 \ I l+1 taking the maintained points fi, i ∈ I l+1 into account.

8. Compute f ′i = fi − f i, i ∈ I0 \ I l+1.

9. Increase the index of the evolution, l = l + 1.

10. Go to (2.).

We add some remarks regarding the smoothness of the discrete function f . The use of a simple
linear interpolation in order to define discrete values for the smooth function f at those points
which are actually removed does not lead to a suitable recovery procedure since it is possible that
all points in larger parts of the domain have been removed. The tempting alternative of cubic
splines has the considerable disadvantage that it may or may not generate new turning points.
This would necessitate a recursive decomposition procedure with an undetermined, possibly
infinite number of steps until termination.

We have decided to employ the following ansatz. First of all we add some of the removed points
in such a way that no additional turning points are introduced. Only then we apply one of the
recovery techniques mentioned above. The resulting scheme yields good results already in the
case that the recovery step is given in the form of a linear interpolation documented in section
(4.1.5) below.

In [38] those properties which are independent of the relevance measure chosen are jointly em-
ployed in the numerical framework. Now, we want to additionally investigate the properties
which are dependent on the underlying relevance measure (4.1.3) in order to introduce them in
a proper manner.

a. The decomposition of the pressure is enforced simultaneously with the computation of the
reference parameter. During each step of the decomposition procedure the wavelength of
the smoothed function increases, while the reference parameter will decrease.

40



b. The accuracy of the value of M̌ depends only on the quality of the discretization.

c. The algorithm is parameter-free and terminates automatically. At the end of the evolution
process a straight-line is obtained, if #Iab ≤ 2.

d. The method is self-adaptive to the data. Due to the chosen relevance measure only subdo-
mains of Ω including short wave phenomena will be processed during one decomposition
step. All other points remain unchanged.

e. The scheme does not introduce any shape rounding effects and there is no dislocation of
relevant features, because the remaining points do not change their values.

f. The cost function is not continuous and passes this property to the algorithm employed to
decompose the physical quantities. Nevertheless, numerical experiments emphasize that
the splitting does not depend on the discretization due to the fact that parts of the domain
Ω are treated as a whole in the evolution. Furthermore, noise is a short wave phenomenon
and therefore noise elimination takes place in the early stages of the evolution process.

g. The algorithm requires O(n log n) operations.

4.1.5 Numerical results

We have chosen two one dimensional test cases to demonstrate the numerical accuracy of the
decomposition algorithm. In both cases we use a regular discretization of the domain Ω =
[−51, 51] into control volumes σi with |σi| = 1

10 , ∀i ∈ I, I = {0, . . . , 1019}.
First, we considered a long sinusoidal pressure wave (M̌ = 1

102) which is disturbed by a regular
short wave noise function,

p̂ = p̂(0) + M̌p̂(1) + M̌2p̂(2)

with the reference of the pressure p̂ref set to p̂ref = 4
M̌2 and

p(0) = 1,
p(1) = 2γ(1 + cos(2πM̌x),
p(2) = 2γ sin(80πM̌x).

Place figure 1 around here.

Place figure 2 around here.

Place figure 3 around here.

Place figure 4 around here.

Place figure 5 around here.
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Figures 1 and 2 show the analytical long and short wave components of the pressure wave p̂.
The total pressure distribution defined by adding long and short wave components is shown in
figure 3. In figures 4 and 5 the decomposed long and short wave components are plotted. The
long wave part of the pressure is reproduced very well and it is separated from the short wave
perturbation. There are only two pairs of turning points left, so the reference parameter M̌ has
taken the value of the frequency of the analytical pressure wave in a natural way.

The other example is concerned with a density distribution moving in a long wave acoustic field.
The initial conditions are

ρ̂(x, t = 0) = 1 +
1
51

(
1 + cos(

2πx
102

)
)

+ Φ(x)
1
2

sin(
80πx
102

),

v̂(x, t = 0) =
√
γ
(
1 + cos(

2πx
102

)
)
,

p̂(x, t = 0) = 512
(
1 +

γ

51
(1 + cos(

2πx
102

)
)
,

and

Φ(x) =

{
1
2

(
1 − cos(10πx

102 )
)
, if 0 ≤ x ≤ 102

5

0 otherwise.

The signal of the density is filtered at time T = 5, 071.

Place figure 6 around here.

Place figure 7 around here.

Place figure 8 around here.

This example clearly shows the advantages of the proposed decomposition algorithm. The de-
composition is almost completely restricted to the sub-domain where the short wave oscillations
of the density distribution are found. In the other parts of Ω the filtered function and the
original one are almost the same neglecting numerical noise of size 10−6. Therefore, no shape
rounding effects have taken place.

4.2 Extension of incompressible methods to weakly compressible flows

In the following we will show how to use the asymptotic analysis described in section 2 to extend
an incompressible method to the weakly compressible regime. Incompressible solvers are usually
based on the primitives variables. We adopt this formulation here and use a staggered grid to
stabilize the pressure velocity coupling. We restrict ourselves to describe the extension of a
projection method. The modification for the SIMPLE-type scheme is given in [39].

4.2.1 A compressible projection method

Projection methods for incompressible flows have been introduced by Chorin [40, 41] and Temam
[42]. In such methods discrete approximate solutions to the incompressible Navier-Stokes equa-
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tions are advanced in time through two steps. First, the new time level density and an interme-
diate velocity field are obtained by a discrete integration of the convection-diffusion system

ρt + v · ∇ρ = 0,

vt + (v ◦ ∇)v = − 1
ρRe

∇ · τ,
(4.2.1)

over tn < t ≤ tn+1 with the old time level distributions vn, ρn as initial data

v(tn) = vn ρ(tn) = ρn . (4.2.2)

(Note that the original method was designed for constant density flow, for which (4.2.1a) is void
the density advection equation is ignored.)

The auxiliary velocity field v∗,n+ 1
2 obtained from this step is not divergence-free due to the

absence of the pressure gradient in the momentum equation. A correction is constructed through
discrete integration of over tn < t ≤ tn+1 of the projection equation

vt +
1
ρ
∇p(2) = 0, (4.2.3)

with the intermediate field v∗,n+ 1
2 as initial data, and with the divergence constraint for the new

time level velocity field,

∇ · vn+1 = 0 . (4.2.4)

In the weakly compressible regime, we split the full compressible Navier-Stokes equations into
two subsystems in a similar way. The convection-diffusion system now reads as

ρt + v · ∇ρ = 0,

vt + (v ◦ ∇)v = − 1
ρRe

∇ · τ,

pt + v · ∇p = 0,

(4.2.5)

and the ”sonic” system as

ρt + ρ∇ · v = 0,

vt +
1

M2ρ
∇p = 0,

pt + γp∇ · v =
γ

PrRe
∇ · q,

(4.2.6)

which contains all effects that spread with sound velocity and degenerate to an elliptic constraint
as M −→ 0. Heat conduction with heat flux q is retained here since it influences the divergence
constraint as seen in equation (2.1.30) whereas diffusion doesn’t. Neglecting the viscous and
heat conduction terms this decomposition may be called a hyperbolic-elliptic splitting and is
motivated by the wave speed as mentioned above but also by the asymptotic analysis, see [2, 39].
In the system (4.2.5) all the terms which are associated with elliptic expressions in the zero Mach
number limit are neglected.
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The convection-diffusion system is discretized using an explicit MUSCL-type upwind-scheme for
the convective terms and implicit second-order central differences for the diffusion part. Thus,
the CFL-time step condition contains only the finite flow velocity.

The sonic system is discretized implicitly to avoid time-step restrictions due to the sound velocity
tending to infinity in the limit. Here, the pressure expansion p

(
x, t; M̂

)
= p(0) (t)+M̂p(1) (ξ, t)+

M̂2p(2) (x̄, ξ, t) comes into play. Notice that the numerical parameter M̂ is now identified with the
Mach number M, as we consider a case where compressibility effects do not change dramatically
as the solution evolves in time. First, the total pressure has to be decomposed into its leading,
first and second order contributions. Using the fact the leading order pressure p(0) becomes
constant on both space scales and the first order term p(1) on the small space scale, they may
be defined by averaging procedures,

p(0) :=
1
|V |

∫
V
p dV, (4.2.7)

and

p(1) :=
1

M̂|Vac|

∫
Vac

(
p− p(0)

)
dV, (4.2.8)

where Vac is the acoustic domain. On a two-dimensional Cartesian grid of constant grid spacing h
and coordinates x and y, Vac is the rectangle [x−h/(2M), x+h/(2M)]×[y−h/(2M), y+h/(2M)].
The second order pressure p(2) then becomes

p(2) :=
1

M̂2

(
p− p(0) − M̂p(1)

)
. (4.2.9)

for consistency. For M̂ → 0, the acoustic domain exceeds the computational domain and p(1)

becomes zero and drops out of the equations. As M̂ becomes very small, but non-zero, the
influence of the pressure term p(2) on the thermodynamics of the system becomes negligible. It
is thus considered as a new variable independent of the total thermodynamic pressure, which is
consistent with the earlier asymptotic results.

The temporal evolution of p(0) and p(1) can be determined using (2.1.32) and (2.1.44). From
equation (2.1.32), we obtain p(0)

t by applying a suitable ODE-integrator. To determine p(1)
t , the

acoustic system (2.1.44) has to be solved. To do so, we have two possibilities. Either the large
scale derivatives ∇ξ are replaced by ∇x/M̂ using the chain rule and the equations are solved
on the same grid as used to resolve the flow structures. This requires an implicit scheme since
the time step for an explicit scheme would be restricted by a CFL-condition including the speed
of sound. Thus, the time step would tend to zero for M̂ → 0. On the other hand, equations
(2.1.44) include only large scale effects. No resolution of short scale phenomena is necessary and
a much coarser grid can be used. The coarsening factor is known to be 1/M̂, which is the factor
between the two space scales x and ξ. In a discretization based on such an adapted coarse grid
the Mach number cancels from the CFL-condition for the acoustic equations and they can be
solved explicitly with low computational effort. The only potentially expensive computational
step remains the extraction of the appropriate long wave solution components needed to initiate
the coarse grid time step. The näive integral filters from (4.2.7), (4.2.8) must be replaced by
more elaborate techniques as discussed in section 4.1 to overcome this obstacle.
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System (4.2.6) is solved in the following way. Introducing the pressure decomposition and
rewriting it as a system for density, velocity and the incompressible pressure p(2), we obtain

ρt + ρ∇ · v = 0,

vt +
1
ρ
∇p(2) = − 1

M̂ρ
∇p(1),

M̂2p
(2)
t + γp∇ · v =

γ

PrRe
∇ · q − p

(0)
t − M̂p

(1)
t .

(4.2.10)

For q = 0, this system can be viewed as the second step of the incompressible projection method
since the right hand sides of equations (4.2.10b) and (4.2.10c) vanish for M̂ → 0 and the equations
coincide with system (4.2.6).

Equations (4.2.10) are solved by nested iterations. All equations are discretized implicitly. Then,
the density is fixed at the value obtained from the convection-diffusion step solving equations
(4.2.5). The leading and first order pressure terms at the new time level are already determined,
p(0),n+1 = p(0),n + ∆tp(0)

t and p(1),n+1 = p(1),n + ∆tp(1)
t where p(0),n and p(1),n are obtained

from the discretized equations (4.2.7), (4.2.8). The old time level pressure p(2),n was given by
equation (4.2.9), the one at the new time level has to be guessed. Usually, it is either assumed
to be p(2),∗ = p(2),n or p(2),∗ = 0. Then the estimate for the total pressure at the next time level
is set according the consistency condition p∗ = p(0),n+1 + M̂p(1),n+1 + M̂2p(2),∗. With these, the
new time level velocity v∗ can be guessed from the discretized velocity equation (4.2.10b). The
new time level pressure can then be set to be the guess plus a correction,

p(2),n+1 = p(2),∗ + δp(2),

pn+1 = p∗ + M̂2δp(2).
(4.2.11)

Inserted into the discretized pressure equation (4.2.10c), a Poisson-equation is obtained for the
pressure-correction term δp(2) which reads as

M̂2

∆t
δp(2) − γp∗∇ ·

(
∆t
ρ ∇δp(2)

)
=

−γp∗∇ · v∗ +
γ

RePr
∇ · q − p

(0)
t − M̂p

(1)
t

−M̂2

∆t

(
p(2),∗ − p(2),n

)
.

(4.2.12)

The estimate p∗ for the total pressure is used as the linearisation term here. With the solution
δp(2) of this equation, the estimates p(2),∗ and p∗ are improved according to (4.2.11), the corre-
sponding velocity estimate is calculated and the process is repeated up to convergence. With
the velocity obtained from this inner iteration, a new density estimate is obtained and the inner
loop is started again. Most of the computing time for the simulation is spent in solving the
linear system resulting from discretizing the pressure correction equation (4.2.12). For this we
use preconditioned Krylov-Subspace schemes or multi-grid techniques.

4.2.2 Numerical Results

The algorithm given above does not depend on any special spatial discretization. For the numer-
ical examples to be given now, a Cartesian staggered grid arrangement was applied defining the
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scalar variables at the cell centers, the horizontal vector components on the vertical cell interfaces
and the vertical components on the horizontal interfaces. As already mentioned, the convection-
diffusion system (4.2.5) uses an explicit MUSCL-type scheme for the convective terms, and
implicit central differences for the diffusive part. The sonic system (4.2.10) is discretized with
implicit central differences for all terms.

Gresho & Chan’s transported vortex The first test case is an incompressible Euler calculation
proposed by Gresho [43, 44] as a test case with known but non-trivial solution. A triangular
vortex is convected through a channel while revolving around its center. It should be transported
without any damping of the vorticity. Figure 9a shows the vorticity distribution at the initial
stage, figures 9b and 9c the vorticity after one and two turnarounds. The vortex is transported
one spatial unit to the right during one revolution.

Place figure 9 around here.

It can be clearly seen, that the vorticity is well reproduced. There’s rather no damping of the
magnitude, the distortions are due to the fact that a rotational symmetric vortex has to be
approximated on a Cartesian grid. These asymmetries are reduced with grid refinement. The
calculations shown here have been carried out on a 160 × 40 mesh for a 4 × 1-units domain.

The standard driven cavity test This second test case involves an incompressible viscous flow
at Reynolds number Re = 1000. It is characterized by a large vortex in the center of the cavity
and two smaller ones in the lower left and right corners, see figure 10.

Place figure 10 around here.

Place figure 11 around here.

Place figure 12 around here.

The computational domain is the unit square, discretized by 100 × 100 grid points. At first,
the standard incompressible test case is compared to results in the literature. Figure 11 shows
the horizontal velocity at the vertical cross section at x = 0.5, figure 12 the vertical velocity at
y = 0.5. The solid lines show the results obtained with the MPV code. They are in very good
agreement with the benchmark solutions obtained by Ghia et al. [45] on a 129 × 129 Cartesian
grid.

Driven cavity with differentially heated side-walls The driven cavity test case can be extended
to the weakly compressible regime by differentially heating the vertical walls. The left wall was
kept at constant temperature of 30◦C(293.6K). The right wall was heated to 293.6K + ∆T . As
long as the temperature difference ∆T is small, the Boussinesq approximation can be applied.
Results of calculations with the full MPV-scheme and incompressible calculations using the
Boussinesq approximation were quite similar in this case. For ∆T larger than a few degrees, the
Boussinesq approximation is no longer valid. To show this discrepancy, we applied a temperature

46



difference ∆T = 150K and compared the results of the MPV scheme with those obtained by an
incompressible Boussinesq approximation. The Mach number for this test case is M = 0.0005,
the Prandtl number Pr = 0.7 and the Reynolds number Re = 1000 as above. Figure 13 shows
the temperature distribution of the steady state.

Place figure 13 around here.

Figures 14 and 15 show the temperature profiles at the left and right walls.

Place figure 14 around here.

Place figure 15 around here.

The solid lines give the results of the MPV scheme, the dashed lines are the results obtained using
an implicit solver with Boussinesq approximation. It can be clearly seen, that the incompressible
code shows a much thicker thermal boundary layer than the MPV scheme. This is due to the
fact that it cannot reproduce the thermal density changes.

Baroclinic vorticity generation by long wave acoustics The next test problem considered is
again a weakly compressible one and shows the approximation of acoustic waves. Here, we want
to show the interaction of a long wave length acoustic wave with small entropy fluctuations on
the local length scale. The initial data,

ρ(x, y, 0) = 1.0 + 0.2M(1.0 + cos(πx/L)) + Φ(y)
p(x, y, 0) = 1.0 +Mγ(1.0 + cos(πx/L))
u(x, y, 0) =

√
γ(1.0 + cos(πx/L)),

v(x, y, 0) = 0.0,

with

Φ(y) =

{ 0.8
Ly
y for 0 ≤ y ≤ 1

2Ly,

0.8
Ly

(
y − 1

2Ly)
)
− 0.4 for 1

2Ly ≤ y ≤ Ly,

represent a saw-tooth like density stratification in the vertical direction set into motion by a
right-running acoustic pulse in the horizontal direction. At M̂ = 1/20, the computational domain
is a double-periodic domain of [−L : L] × [0 : Ly] with L = 1

M̂
= 20 and Ly = 2L

5 = 8, just long
enough to let one period of the acoustic wave take place. Due to the non-homogeneous density,
the fluid is subject to a higher acceleration for lower density values and a lower acceleration at
higher densities. This leads to the well known phenomenon of baroclinic instability. A shear
layer of sinusoidal shape is generated and moved with the acoustic wave. Figure 16 shows the
density at different times. The first plot shows the initial data, the second one the first forming
of the sinusoidal shape at time t = 6. The interface starts rolling up and small vortices are
formed. This can be clearly seen at the later times t = 9, 11, 14.

Place figure 16 around here.
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Place figure 17 around here.

Place figure 18 around here.

The smallest structures resolved have a thickness of a few grid zones length, smaller ones are
damped out by numerical viscosity. In figure 17 vorticity contours are given at the same times.
It can be seen that in the initially vortex-free flow two thin regions of vorticity are created along
the density interface. As the interface starts rolling up, counter rotating vortices are formed.
These computations demonstrate that the interaction of the long wave length acoustic wave with
the local flow structures creates small scale vortices.

A model-problem for the flow in a disc brake Here we discuss some simulations of the cooling
flow in a simplified disc brake facility. The key issue in this problem is the increase of the rate
of heat transport due to the stripping of the boundary layer by the brake block. To study this
problem the heat transport coefficient is qualitatively evaluated and the physical phenomena are
investigated. For the sake of simplicity the brake block is modeled as a fixed standing rectangular
obstacle. The brake disc moves at constant velocity. The starting point is the dimensionless
compressible Navier-Stokes equations. With following reference values

ρref = 1.205 [kg/m3]
Tref = 303.15 [K]
pref = 1.0499 · 105 [N/m2]
lref = 2 · 10−2 [m]
cp = 1.0006 · 103 [J/(kg K)]
λ = 2.637 · 10−2 [W/(mK)]

Uref = 21.8 [m/sec2]
ν(T = 500◦C) = 7.890 · 10−5 [m2/sec]
µ(= ρref · ν) = 9.50 · 10−5 [kg/(msec)],

the three dimensionless numbers, Reynolds-, Prandtl- and Mach number, important for the flow
become

Re = 5525.98
Pr = 3.627
M = 0.0738.

The total computing area covers the range from −18lref to 18lref in the x-direction and from
0lref to 6lref in the y-direction. The brake block is fixed at the origin and has length 6lref and
height 1lref . We have used an equidistant grid in x-direction (∆x = 0.1lref). In the y-direction we
adopted a non-equidistant grid (∆ymin = 0.03lref) for a better resolution in the boundary layer.
For the simulation we assume periodic conditions for all variables at the left and right boundary,
outflow conditions at the upper boundary and no-slip conditions at the brake block and brake
disc. As initial condition the state at rest is assumed. The temperatures at the brake block and
brake disc are given as 500◦C and at the outflow 30◦C. In figure 18 the time development of
the hot temperature boundary layer is shown. During the so-called ’stripping-process’ of the
boundary layer at the brake block a strong left rotating vortex develops rapidly and interacts
with the outer flow. This process transports heat away from the brake disc very efficiently.
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Behind the brake block cold air is in contact with the hot brake disc and the heat transport
coefficients are large. A new boundary layer forms in this region.

For small brake disc velocities and low temperatures, the numerical results are similar to those of
an incompressible simulation. For higher temperatures (about 500◦C when braking while driving
down a hill or during sudden braking at high velocities) a compressible calculation is necessary.
Future work will examine the stability of the boundary layer. Using the linear stability analysis
based on the Orr-Sommerfeld equations appropriate perturbations will be overlaid to the flow
field.

4.2.3 Summary

The numerical results for the test problems clearly demonstrate that the MPV concept works
very well in the incompressible as well as in the low Mach number regime. No modifications
are necessary for viscous and inviscid fluid flows. The basics are the results of a multi-scale
asymptotic analysis and these results are used to motivate a pressure decomposition where
every term of the asymptotic series plays a different physical role. The asymptotic equations
themselves are only used to obtain estimates which have to be corrected. Therefore, the scheme
always solves the full compressible Euler or Navier-Stokes equations and is not restricted to very
small Mach numbers as it would be when solving the asymptotic equations only. The MPV
concept proposed may be used to extend any incompressible solver to the low Mach number
regime.

4.3 A fully conservative zero Mach number variable density flow solver

The conservation laws governing the evolution of a compressible calorically perfect gas are given
by (2.1.15). Neglecting viscous effects, chemical reactions and taking into account a gravitational
force field these equations read

ρt + ∇ · (ρv) = 0 ,

(ρv)t + ∇ · (ρv◦v) +
1

M2
∇p =

1
Fr2

ρg ,

(ρe)t + ∇ · ((ρe+ p)v) =
M2

Fr2
ρv ·g ,

(4.3.1)

with the equation of state

p = (γ − 1)(ρe− 1
2
M2ρv ·v) . (4.3.2)

After scaling, the acceleration g is a constant unit vector. All variables are dimensionless and
O(1). Beside the Mach number M, a new characteristic number appears in (4.3.1). This is the
Froude number Fr := vref/

√
glref . In the limit of M → 0 but finite Fr solutions of (4.3.1) exhibit

the singular behavior analyzed in section 2.1, see also [2], [46], [6]). Let us stress the issues
which are particularly relevant for the computation of numerical approximations of (4.3.1) in
the M → 0 limit.

1. ∇p tends to zero but ∇p/M2 tends to some non trivial function ∇p(2).
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2. The total energy per unit volume ρe tends to p/(γ−1) and the right hand side of the energy
equation tends to zero. Thus, the energy fluxes ∇ · ((ρe+ p)v) must satisfy a constraint
for the time derivative of ρe to have zero gradients. This is a constraint for the divergence
of the velocity field v.

3. Assume this constraint is ∇ · v = 0 (this is a special but important case). Then the first
equation of (4.3.1) requires the density ρ to be simply advected along particle paths. Thus,
if ρ is constant at the initial time (and density variations are not entering the computational
domain through the boundary) it should remain constant at any time.

4. The eigenvalues of the Jacobian of the flux function associated with the homogeneous part
of (4.3.1) degenerate: These eigenvalues are v ·n and v ·n ± c/M with c2 = γp/ρ and n
any unit vector.

Due to this singular behavior, when attempting to compute numerical solutions of (4.3.1) for
M → 0 using a standard finite volume method for compressible flow, one faces at least the
following difficulties:

1. A finite arithmetic single variable representation of the pressure p does not allow a mean-
ingful computation of ∇p/M2.

2. The energy fluxes do not satisfy the correct divergence constraint. As a consequence the
total energy does not tend to p/(γ − 1) and has non-zero gradients.

3. The velocity field does not satisfy the correct divergence constraint.

4. The numerical method fails to compute the correct rate of change of density along particle
paths. For the special case in which the divergence constraint for the velocity is simply
∇ · v = 0, the numerical method fails to preserve an initially constant density distribution.

5. Explicit methods suffer from a Courant-Friedrichs-Lewy [47] time step stability restriction
of the kind δt < O(M).

The first and the last difficulties can be overcome by replacing (4.3.1) with its asymptotic limit:

ρt + ∇ · (ρv) = 0 ,

(ρv)t + ∇ · (ρv◦v) + ∇p(2) = 1
Fr2
ρg ,

(ρe)t + ∇ · ((ρe+ p)v) = 0 ,

p = (γ − 1)ρe ,

p = p(0)(t) .

(4.3.3)

Let us comment on the above equations. According to the results discussed in section 2.1,
the pressure field p has been decomposed into a zero-gradient time dependent thermodynamic
component p(0) plus a second order perturbation M2p(2). The thermodynamic pressure p(0) is
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given by (2.1.38). For (γ−1)(ρe)t to be equal to dp(0)/dt the energy fluxes through the boundary
∂V of any arbitrary control volume V ⊂ Ω must satisfy the following constraint

1
|V |

∮
∂V

(ρe+ p)v ·n dS = − 1
γ − 1

dp(0)

dt
. (4.3.4)

Since ρe+p has no variations in space, equation (4.3.4) is a divergence constraint for the velocity
field v. It implicitly defines the perturbation pressure p(2): At any time the gradients ∇p(2)

must guarantee that the acceleration vt has a well defined spatially constant time dependent
divergence. This divergence can be computed by taking the time derivative of equation (4.3.4).
In the special case dp(0)/dt = 0 (closed vessel, periodic boundary conditions, etc.) equation
(4.3.4) becomes the well known ∇ · v = 0 constraint of the “incompressible” Euler equations
and ∇p(2) a Lagrangian multiplier projecting convective and gravitational accelerations onto the
space of divergence-free vector fields.

System (4.3.3) enjoys a time step stability restriction of the kind δt < O(1) and explicitly
introduces a two-variable representation of the pressure field which allows a meaningful finite
arithmetic computation of pressure gradients in the M = 0 limit. Notice that, because of the
implicitness of p(2), (4.3.3) is not a hyperbolic system. Our aim is to solve (4.3.3) numerically
by means of a finite volume method in conservation form:

Un+1
V = Un

V − δt

|V |
∑

I∈I∂V
|I|FI + δtWV ∀V ∈ V . (4.3.5)

Here V ∈ V is a cell of a conformal space discretization of the flow domain Ω and |V | is the
volume of V . I ∈ I is an interface between two adjacent cells and |I| is the area of I. By V,
I we denote the set of all cells and of all interfaces, respectively. I∂V ⊂ I represents the set of
those interfaces which lay on the boundary ∂V of V . Un

V is a numerical approximation to the
average unV of the solution u of (4.3.3) over the cell V at time tn. FI and WV are numerical
approximations to the averages fI and wV of the flux function f and of the right hand side w
of (4.3.3). These averages are taken over the time interval [tn, tn+1 := tn + δt] and over the
interface I and the cell V for fI and wV , respectively:

u :=

 ρ
ρv
ρe

 , f :=

 ρv ·n
vρv ·n+ p(2)n
hρv ·n

 , w :=

 0
ρg/Fr2

0

 .

In the above expressions h is the enthalpy per unit mass of the gas: ρh := ρe+ p. Let us focus
the attention on the numerical flux FI :

FI := f(UI ,nI) =

 (ρv)I ·nI
vI(ρv)I ·nI
hI(ρv)I ·nI

 +

 0
p(2)
I nI
0

 . (4.3.6)

We want to construct numerical fluxes FI or, equivalently, interface averages UI , that fulfill the
following requirements:

1. On smooth solutions FI approximates the average flux fI up to errors of order O(δt2).
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2. The energy fluxes satisfy the divergence constraint

1
|V |

∑
I∈I∂V

|I|hI(ρv)I ·nI = − 1
γ − 1

p(0),n+1
V − p(0),n

V

δt
∀V ∈ V . (4.3.7)

This is a discrete form of the divergence constraint (4.3.4) which is consistent with the
finite volume method (4.3.5).

3. The mass fluxes guarantee the correct rate of change of density along particle paths. Notice
that, in the special case dp(0)/dt = 0, this can be achieved if (and only if) the interface
velocities vI which are responsible for the advection of the density are divergence-free in
the sense that

1
|V |

∑
I∈I∂V

|I|vI ·nI = 0 .

4. The discrete velocity field vn+1
V satisfies some discrete form of the divergence constraint

(4.3.4).

In the next paragraph we describe how to construct numerical fluxes which fulfill the require-
ments listed above. This is done via a semi-implicit procedure. First we compute an explicit
approximation to the fluxes of an auxiliary hyperbolic system. In our implementation this is
done in a predictor stage in which the influence of pressure gradients on the convective fluxes
is neglected over a half time step. Secondly a Poisson-type equation for cell-centered pressures
p(2)
V is solved. This pressures allow the computation of convective fluxes of mass and energy that

fulfill requirement 1.) to 3.) and the update of density and total energy cell averages. At this
point the grid cell interface pressure-induced momentum fluxes p(2)

I nI are yet unknown. This
pressure is obtained by solving another suitable discrete form of the energy conservation law.
This yields a second elliptic problem. The solution of this problem leads to a new cell-centered
velocity field vn+1

V which exactly satisfies a discrete divergence constraint that is consistent with
energy conservation. For a detailed description of the flux construction algorithm and of the
discrete operators involved in such construction we refer to [7]. In paragraph 4.3.2 we discuss
some numerical results.

4.3.1 Semi-implicit construction of numerical fluxes

The auxiliary system

ρt + ∇ · (ρv) = 0 ,

(ρv)t + ∇ · (ρv◦v) + ∇p =
1

Fr2
ρg ,

(ρe)t + ∇ · ((ρe+ p(0))v) = 0 ,

(4.3.8)

with equation of state

p = (γ − 1)ρe (4.3.9)
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and flux function

f ∗ :=

 ρv ·n
v ρv ·n+ pn
h(0)ρv ·n

 , ρh(0) := ρe+ p(0)

enjoys the following properties:

1. The system has the same convective fluxes as the zero Mach number governing equations
(4.3.3).

2. The system is hyperbolic.

3. The eigenvalues of the Jacobian of the flux function f ∗ are v ·n and v ·n ± c with c2 :=
(γ − 1)h(0) (see [6]).

4. Solutions of (4.3.8) satisfy, for homogeneous pressure p and zero flow divergence at time
t = 0, the following estimates at time t > 0 (see [7]):

∇ · v = O(t) ,

∇p = O(t2) .

Let F∗I be numerical fluxes obtained with an explicit high resolution upwind method for the
auxiliary system (4.3.8). In our implementation, for instance, the method is a MUSCL scheme
(see [48], [49], [50], [51], [52]) based on slope limiting of characteristic variables and the numerical
flux proposed by Einfeldt [53] which has been extended for system (4.3.8) according to the
characteristic analysis presented in [6].

Due to the first and the last of the above items, the difference between the rate of change of
the conserved variables u as given by (4.3.3) and the rate of change of u in the auxiliary system
(4.3.8) is, over short times t and up to terms O(t2):

ut|(4.3.3) − ut|(4.3.8) = −

 0
∇p(2)

0

 . (4.3.10)

On each interface I ∈ I the numerical flux FI can therefore be obtained from the auxiliary
numerical flux F∗I by correcting the interface average momenta (ρv)I and velocities (v)I as
follows:

(ρv)I = (ρv)∗I −
δt

2
(∇p(2))I , (4.3.11)

(v)I = (v)∗I −
δt

2
1
ρI

(∇p(2))I . (4.3.12)

The term (∇p(2))I represents the interface average gradients of the unknown pressure p(2). Let
us approximate p(2) with a piecewise linear function between cell centered values p(2)

V . Inserting
(4.3.11) into the discrete divergence constraint (4.3.7) one obtains a discrete Poisson type prob-
lem for the cell centered values p(2)

V . The associated discrete Laplace operator has an enthalpy
weighted 5 points (in two space dimensions) compact stencil.
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Once (ρv)I , (v)I have been computed (ρI = ρ∗I and hI = h∗I because no correction in density
or energy is needed, see (4.3.10)) the convective part of FI is known and one can update both
density and energy. Notice that, per construction

(ρe)n+1
V = (ρe)nV − δt

1
|V |

∑
I∈I∂V

|I|hI(ρv)I ·nI

= (ρe)nV + δt
1

γ − 1
p(0),n+1
V − p(0),n

V

δt
=

1
γ − 1

p(0),n+1
V .

(4.3.13)

For the computation of (ρv)n+1
V , however, we still need the pressure component of the momentum

flux p(2)n at the interfaces. This is the last term of the numerical flux (4.3.6). This pressure is
computed by imposing requirement number 4.) i.e. the discrete velocity field vn+1

V shall satisfy
some discrete form of the divergence constraint (4.3.4). Let (ρv)∗∗V be the intermediate cell
averages

(ρv)∗∗V := (ρv)nV − δt

|V |
∑

I∈I∂V
|I|vI(ρv)I ·nI + δt

ρg

Fr2
∀V ∈ V . (4.3.14)

The finite volume method (4.3.5) for the final cell averages (ρv)n+1
V can be expressed in terms of

(ρv)∗∗V and of the unknown interface pressures p(2)
I as:

(ρv)n+1
V = (ρv)∗∗V − δt

|V |
∑

I∈I∂V
|I| p(2)

I nI ∀V ∈ V . (4.3.15)

Let V be a dual discretization of Ω. V consists of control volumes V centered around the nodes
of the original grid. The interfaces between the cells of V are denoted by I. As usual I is the
set of all such interfaces.

Place figure 19 around here.

In Fig. 19 a cell-centered and a node-centered control volume, V and V , are drawn for a two
dimensional Cartesian grid. We compute p(2)

I by linear interpolation on the set of nodal values
p(2)

V . These nodal values are computed following an idea originally proposed by Geratz [54].
Consider a second order finite volume method for the total energy ρe on the dual discretization:

(ρe)n+1

V
:= (ρe)nV − δt

|V |
∑

I∈I∂V

|I|
2

(
(ρhv)nI + (ρhv)n+1

I

)
·nI ∀V ∈ V (4.3.16)

and require the energy fluxes through the interfaces of the dual discretization to satisfy the
divergence constraint

δt

|V |
∑

I∈I∂V

|I|
2

(
(ρhv)nI + (ρhv)n+1

I

)
·nI = − 1

γ − 1
p(0),n+1

V
− p(0),n

V

δt
∀V ∈ V . (4.3.17)

Equation (4.3.17) is a discrete form of the divergence constraint (4.3.4) which is consistent with
the finite volume method (4.3.16). p(0),n+1 is the same as was computed and used in the first
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projection step. The dual interface averages can be expressed to the desired order accuracy by
means of cell averages:

(ρhv)(·)
I = LVI

(
(ρhv)(·)

V
)
. (4.3.18)

LVI is a (linear) operator mapping cell averages into interface averages. Together with (4.3.15)
and (4.3.18) equation (4.3.17) defines a discrete Poisson-type problem for the nodal values p(2)

V .
This problem is the equivalent of (4.3.7), (4.3.11) on the dual grid. Its associated discrete
Laplace operator has an enthalpy weighted 9 points (in two space dimensions) compact stencil.
In the special case dp(0)/dt = 0 the nodal values p(2)

V guarantee that the discrete velocity field
vn+1
V satisfies the divergence constraint

1
|V |

∑
I∈I∂V

|I|LVI (vnV)·nI = 0 ⇒ 1
|V |

∑
I∈I∂V

|I|LVI (vn+1
V )·nI = 0 . (4.3.19)

We have fulfilled requirements 1.) – 4.) and the construction of the numerical fluxes FI is
completed.

4.3.2 Numerical results

We discuss the numerical results obtained on five test problems. The first four problems are
chosen to assess the accuracy and the efficiency of the method and test its capability to cope
with large density variations and small scale gravity driven flows. For these tests either the exact
solution or at least some properties of the exact solution are known. This allows a meaningful
validation of the method and provides a flavor of the difficulties that must be faced in the numeri-
cal simulation of more realistic flows. Problem number five is included to show that the proposed
numerical method can be extended to cope with boundary driven compression/expansion, vis-
cous forces and heat transfer. All test problems can be run with trivial geometries and boundary
conditions.

The computations have been performed on regular Cartesian grids. The discrete operators and
the linear systems for the cell-centered and for the node-centered pressures are those explicitly
given in [7]. These two linear systems must be solved at each time step. This has been done
using a multi-grid preconditioned conjugate gradient method. The difference with respect to
the standard conjugate gradient solver is that, in each iteration, the new residual vector is
computed by applying a multi-grid cycle to the previous residual vector. There are several
ways of visiting the grid levels during the multi-grid procedure, such as a V-cycle, W-cycle, F-
cycle [55] and nested cycle. In our case, the F-cycle turned out to provide the best contraction
rate. As smoother a Gauss-Seidel method was used with two pre and post smoothing steps
on each grid level. In two space dimensions a standard nine point prolongation operator was
used. This operator is defined through bilinear interpolation. In three dimensions trilinear
interpolation provides a 27 point prolongation operator. The adjoint prolongation operator
served as restriction operator. In presence of large density variations, the coefficients of both
linear systems can change by order of magnitudes. In this case the linear coarse grid operators
need to be constructed by Galerkin’s approximation [55].

As expected the computations show that the CPU time needed to solve the systems depends
linearly on the number of unknowns. The solution of the linear systems accounts for about 95%
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of the time required for a computation and demands a memory allocation of roughly one K-byte
per computational point. In each solution the residuals

r2(p
(2)
V ) :=

∥∥∥∥DIV ((ρh0v)∗I) −
δt

2
DIV

(
h0,∗
I G

V
I

(
p(2)
V

))∥∥∥∥
2

r2(p
(2)

V ) :=
∥∥∥DVV (hn+1

V (ρv)∗∗V ) +DVV ((ρhv)nV) − δtDVV

(
hn+1
V GVV

(
p(2)

V

))∥∥∥
2

have been driven down to 10−7. In the above definitions ‖aV‖2 represents the Euclidean norm
of a vector whose components are the values aV i.e.

‖aV‖2 :=

(∑
V ∈V

a2
V

)1/2

and similarly for ‖aV‖2.

Convergence studies. This test problem was originally proposed in Almgren et al. [56]. It has
been designed to assess the accuracy of the method on constant density flows. For any time t
and 0 < x < 1, 0 < y < 1, the velocity field

u(x, y, t) :=1 − 2 cos(2π(x− t)) sin(2π(y − t))
v(x, y, t) :=1 + 2 sin(2π(x− t)) cos(2π(y − t)),

together with the pressure p(2)(x, y, t)

p(2)(x, y, t) := − cos(4π(x− t)) − cos(4π(y − t))

is an exact solution of the zero Mach number governing equations (4.3.3) with constant pressure
p(x, y, t), constant density ρ(x, y, t) and periodic boundary conditions on the unit square. Start-
ing from t = 0, we have computed numerical approximations uNi,j to the cell-averages u(xi, yj, tN)
of the exact velocity u at time tN = 3. Similarly vNi,j, ρ

N
i,j are numerical approximations to the

cell-averages v(xi, yj, tN) and ρ(xi, yj, tN) of the exact v, ρ at time tN = 3.

Three equally spaced regular Cartesian grids of spacings h = 1/32, h = 1/64 and h = 1/128
have been used on the unit square. On each grid the time step was chosen according to a
fixed Courant number of 0.8. The initial cell averages (ρv)0

i,j have been computed for v0
i,j to be

discretely divergence free

(ρv)0
i,j = (ρv)(xi, yj, 0) −GVi,j

(
p(2),0

V

)
i.e the initial pressure p(2),0

V is solution of the Poisson problem

DVV

(
1
ρ0
i,j

GVi,j
(
p(2),0

V

))
= DVV

(
(ρv)(xi, yj, 0)

ρ0
i,j

)
with ρ0

i,j = ρ(xi, yj, 0) = 1. In the MUSCL scheme for the computation of the auxiliary numerical
fluxes F∗I unlimited slopes have been used. For each grid we have measured the 2-norm e2 and
the maximum norm e∞ of the cell-error ei,j at time tN = 3:

ei,j :=
∣∣ρ(xi, yj, tN) − ρNi,j

∣∣ +
∣∣u(xi, yj, tN) − uNi,j

∣∣ +
∣∣v(xi, yj, tN) − vNi,j

∣∣ ,
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e2 :=

∑
i,j

(ei,jh)
2

1/2

, e∞ := max
i,j

{ei,j} .

Notice that this is essentially a measure of the velocity error: due to the exact projection of
the interface velocity, the density error in the 2-norm is of the same order as r2(p

(2)
V ) i.e. 10−7.

Table 1 shows e2, e∞ on the three grids together with the corresponding convergence rates.
These have been computed as follows: Given e.g. coarse and fine grid 2-norm errors e2,c, e2,f

32 × 32 rate 64 × 64 rate 128 × 128
2-norm 0.193646 2.07 0.0458949 2.10 0.010705

max-norm 0.236456 2.09 0.0553504 2.11 0.012821

Table 1: Constant density: errors and convergence rates in the 2-norm and in the maximum
norm.

and the corresponding grid spacings hc, hf the convergence rate is

log(e2,c/e2,f)
log(hc/hf)

The exact velocity field (4.3.2) has been constructed by differentiating the streamline function

φ(x, y, t) := y − x+
1
π

cos(2π(x− t)) cos(2π(y − t))

and taking u := ∂φ/∂y, v := −∂φ/∂x. φ represents a vortical motion ϕ := φ−y+x superimposed
on a translation. The vortical motion is simply advected by the velocity field v i.e.

Dϕ
Dt

:=
∂ϕ

∂t
+ v ·∇ϕ = 0 ,

as one can verify by inspection. Thus, variable density exact solutions to the governing equations
(4.3.3) can be constructed by taking

ρ(x, y, t) := f (ϕ)

with some smooth function f . We used

f (ϕ) := 2 + (πϕ)2 . (4.3.20)

The constant on the right hand side is taken to avoid negative densities. The square ensures that
densities monotonically increase from the center to the outer boundary of each vortex: a density
distribution with local maxima in vortex cores would undergo Rayleigh-Taylor instability. With
(4.3.20) an exact solution for the density of (4.3.3) is

ρ(x, y, t) := 2 + 0.5 cos2(2π(x− t)) cos2(2π(y − t)).

In table 2 the error norms for the variable density computations are shown. As for the constant
density case we obtain second order accuracy both in the 2-norm and in the maximum norm.
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32 × 32 rate 64 × 64 rate 128 × 128
2-norm 0.229332 2.02 0.0563924 2.16 0.0125899

max-norm 0.263492 1.98 0.0664518 1.68 0.0207160

Table 2: Variable density: errors and convergence rates in the 2-norm and in the maximum
norm.

Advection of a vortex. We consider the advection of a vortex in a channel. The computational
domain is the rectangle [0, 4] × [0, 1]. The upper and lower boundaries are walls; periodic
boundary conditions are imposed at the left and right boundaries. The grid consists of 80 × 20
cells. The initial velocity field is:

ρ(x, y, 0) = 1, u(x, y, 0) = 1 − vθ(r) sin θ,
p(x, y, 0) = 1, v(x, y, 0) = vθ(r) cos θ

with

vθ(r) =


r/0.2 if 0 < r < 0.2
2 − r/0.2 if R < r < 0.4
0 if r > 0.4

and r =
√

(x− 0.5)2 + (y − 0.5)2

For the above initial data the exact velocity for t > 0 can be computed: u(x, y, t) = u(x −
u∞t, y, 0) and v(x, y, t) = v(x − u∞t, y, 0) i.e. the initial data are simply advected by the
background velocity u∞. This problem was originally proposed by Gresho et al. [57].

Place figure 20 around here.

In Fig. 20 we show contour lines of the stream function for three computations. They have
been done using different slope limiters in the MUSCL step of the Godunov type method for
the computation of the auxiliary fluxes. Due to the rough discretization the results exhibit a
significant deformation of the vortex. In contrast to the results shown in [57] figure 13, however,
the core of the vortex is advected along the axis of the channel in agreement with the exact
solution. The first computation (unlimited slopes) shows a loss of vorticity comparable with
[57] by exhibiting a stronger deformation of the vortex. The second and the third computations
(monotonized central-difference and Sweby’s limiter with k := 1.8, see e.g. Schulz-Rinne [58])
show a slightly stronger deformation of the initial vorticity distribution, but a much better
conservation of the maximum level of vorticity.

Driven cavity flows. The driven cavity test problems proposed in [59] have been the subject
of many numerical computations, see e.g. [60], [61], and the section 4.2 above. For Reynolds
numbers (Re) up to 1000 most computations seem to converge towards a steady state and
there is an excellent agreement between stationary solutions obtained with different numerical
schemes. Thus, these problems are very well suited to validate new numerical methods. Here
driven cavity flows at Reynolds numbers 100 and 1000 have been computed. Our main goals are

• Show that the method can be easily extended to cope with viscous flows.
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• Investigate the behavior of the method with respect to the coupling between pressure and
velocity fields.

• Investigate the behavior of the method with respect to convergence towards stationary
solutions.

• Compare our numerical results with established reference solutions.

In agreement with [59], we consider a viscous zero Mach number flow with no heat conduc-
tion. Viscous effects only enter in the momentum equation through a viscous stress and are
accounted for via operator splitting techniques. A delicate issue in the numerical computation
of incompressible flows is that of the coupling between pressure and velocity fields. For finite
discretizations this problem (often referred to as “local grid decoupling” or “checker-board insta-
bility”) can be described as follows. Assume that the null space of the discrete gradient operator,
ker(GVV), contains highly oscillating fields. Since GVV has a local stencil this is usually the case
whenever d(ker(GVV)) > 1. If the solution pV of the Poisson-type problem has components in
ker(GVV) one obtains pressure oscillations which do not influence the velocity field: pressure and
velocity field decouple.

For two-dimensional equally spaced Cartesian grids and the implementation described in [7] one
finds that d(ker(GVV)) = 2 and ker(GVV) contains, beside constant pressures pcV , a non-trivial highly
oscillating mode poV . Therefore, we expect to observe pressure-velocity decoupling whenever the
iterative linear system solver converges towards solutions pV with components in ker(GVV). The
method of conjugate gradients preserves, by exact arithmetics, the components of pkV in ker(GVV).
Since we always start our iteration with p0

V := 0 we expect a numerical solution obtained in a
reasonable number of iteration steps to be oscillation free. This is confirmed by our numerical
results. On the other hand numerical solutions obtained through a random choice of p0

V may
exhibit pressure-velocity decoupling.

Place figure 21 around here.

Place figure 22 around here.

Place figure 23 around here.

Place figure 24 around here.

Place figure 25 around here.

Place figure 26 around here.

The understanding of the pressure-velocity decoupling in the limit of vanishing grid size requires
a deeper analysis. We have investigated numerically the effects 1) of grid refinement at constant
convection-based Courant number CFL of 0.8 and 2) of time step refinement for a fixed grid
size. Some results are shown in Figs. 21 and 22. Neither in the first nor in the second case do
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we observe the onset of pressure-velocity decoupling. Figure 23 shows the time history of the
residual

rn2 :=
∑
V∈V

h2‖Un
V − Un−1

V |‖2

for a Re = 1000 computation on several grids. The residual is plotted versus the number of
computational steps. The cost of a single step on a 64×64 grid is of about 1.3 seconds on a DEC
Alpha 21164 CPU running at 500 MHz. For the 128 × 128 grid cells computation pressure and
streamlines of the numerical solution after 5000 time steps are shown in Figs. 24 and 25. These
results are in a good qualitative agreement with the ones presented by Ghia et al. [59] page 400.
For a more quantitative comparison the horizontal (vertical) component of the velocity along
the vertical (horizontal) line through the geometric center of the cavity have been drawn in Fig.
26. The solid line represents the numerical solution obtained with the present method. The
dots are values of a reference solution, taken from [59]. The accuracy of this solution has been
confirmed by many independent computations.

Falling droplet. A heavy “droplet” falls through a light fluid atmosphere and impacts into the
surface of the heavy fluid in a cavity. The density ratio is 1000:1 and the Froude number equal
to one. The flow is assumed to be inviscid and there is no account for surface tension or for a
change of the equation of state (hence, the quotes on “droplet”!). The computational domain
is the rectangle [0, 1] × [0, 2]. We present both two- and three-dimensional computations. The
goal is to investigate the capability of the method to cope with large density variations.

Place figure 27 around here.

From the numerical point of view the effect of density variations is to increase the condition
number of the discrete Poisson-type operators associated with the numerical computation of the
pressure p(2). One might expect poor convergence in the iterative solution of the linear systems
and, in the worst case, oscillations in the pressure field p(2)

I . Since our interface pressures p(2)
I

are computed via a discrete Poisson-type operator which, for two-dimensional equally spaced
Cartesian grids, exhibits local grid decoupling, we are thus particularly interested in the behavior
of p(2)

I in the two dimensional case.

Place figure 28 around here.

Two-dimensional case. This problem was originally proposed in Puckett et al. [62] to test a
tracking method for incompressible variably density flows. Here the interface between light and
heavy fluid is captured but we still expect our second order method to properly describe the
main features of the flow. The computational grid consists of 64 × 128 cells. The initial data
are:

ρ(x, y, 0) =

{
1000.0 if 0.0 ≤ y ≤ 1.0 or 0.0 ≤ r ≤ 0.2
1.0 if 1.0 < y ≤ 2.0 or 0.2 < r

p(x, y, 0) = 1, v(x, y, 0) = 0 and r =
√

(x− 0.5)2 + (y − 1.75)2 .
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Figure 27 shows density contours at a sequence of output times. After the impact of the droplet
some areas of lighter fluid appear within the heavy fluid (last three frames). This is consistent
with the results shown in [62] where this effect was referred to as “trapped air bubbles”. For this
sequence we monitored the cell interface pressure p(2)

I without noticing any spurious oscillations
or local grid decoupling effects. The multi-grid preconditioned conjugate gradients technique
allows the iterative solution of the linear systems for the pressure in about the same number of
iterations as for the constant density case.

Three-dimensional case. This is a simple extension of the previous case to three space dimen-
sions. The grid consists of 64 × 64 × 128 cells. The initial data are:

ρ(x, y, 0) =

{
1000.0 if 0.0 ≤ z ≤ 1.0 or 0.0 ≤ r ≤ 0.2
1.0 if 1.0 < z ≤ 2.0 or 0.2 < r

p(x, y, 0) = 1, v(x, y, 0) = 0 and r =
√

(x− 0.5)2 + (y − 0.5)2 + (z − 1.75)2 .

Figure 28 shows the density iso-surface 500 as the droplet falls and impacts into the surface of
the heavy fluid in the closed cavity.

Thermo-acoustic refrigerator. This example shows that our method can treat compressible
zero Mach number flows with heat conduction. A thermo-acoustic refrigerator basically consists
of a resonance tube, a stack of plates, two heat exchangers and an acoustic driver (usually
a loudspeaker), see [63, 64, 65]. The basic components of a thermo-acoustic refrigerator are
sketched in Fig. 29: The flow within the tube is characterized by two length scales, namely the
short hydrodynamic and the long acoustic scale. The Mach number in the tube is very small,
typically O(10−3). Thus, the flow between the plates, which are much shorter than the tube,
can be assumed to be incompressible with a prescribed velocity field imposed on the inlet and
outlet boundaries. The calculation focuses on the flow along the plate and the heat exchangers.
The plate is modeled as a zero thickness plate with finite thermal mass. The thickness of the
heat exchangers is zero as well. The geometry of the domain for this simplified simulation is
shown in Fig. 30.

Place figure 29 around here.

Place figure 30 around here.

The problem is defined in terms of several characteristic numbers: the Prandtl number Pr, the
Reynolds number Re and the ratio of specific heats γ. The temperatures of the heat exchangers
Thot, Tcold are kept constant. The temperature distribution within the plate is governed by a
heat conduction equation:

∂T

∂t
=

1
Pes

(
∂2

∂x2
T +

2κ
λ

∂

∂y
T

∣∣∣∣
gas

)
. (4.3.21)

Where Pes denotes the Peclet number of the solid, κ represents the ratio of the thermal con-
ductivities, λ is the thermal penetration depth. The specific values are listed below. After 200
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acoustic cycles a periodical solution is reached. Figure 31 shows the temperature at different
times during the 201-th acoustic cycle. The heat fluxes through the surface of the exchangers
during an acoustic cycle are shown in figure 32.

Table 3: Specific numbers.
Pr 0.68 uinlet 0.7711 cos(t)
Re 200 vinlet 0.0
γ 5/3 uoutlet 1.0267 cos(t)
Thot 1.0267 voutlet 0.0
Tcold 0.9733 λ 0.05
Pes 300 κ 41.14

4.3.3 Summary

The results discussed above show that a finite volume compressible flow solver can be extended
to handle incompressible, zero Mach number flows. Our approach is general enough to include
a wide variety of underlying compressible flow schemes. The major ingredients of the required
extensions are two pressure Poisson-solutions. These allow us to enforce zero Mach number
elliptic divergence constraints for the convective numerical fluxes as well as for the final cell
centered velocity fields.

The design of the scheme directly draws on the low Mach number asymptotic analysis of the
governing equations in conservation form presented in section 2.1. This analysis shows how the
well-known velocity divergence constraint of incompressible flows emerges in a natural way from
an associated divergence constraint on the energy flux as the Mach number vanishes. The insight
gained in this way is used to construct numerical fluxes of mass, momentum and energy that
are consistent with the zero Mach number limit. The scheme thus represents a discretization
of the full conservation equations rather than one of an asymptotic limit system which would
explicitly introduce a velocity divergence constraint! The computational examples given are
chosen to demonstrate various features of the proposed method. Thus we show second order
accuracy for a test problem proposed by Almgren et al., [56], and we obtain competitive results
on the test problem of an advected zero circulation vortex as proposed by Gresho and Chen,
[57]. After adding a first order in time extension to viscous incompressible flow, we find very
close agreement with published results in the literature for standard driven cavity test problems
(see Ghia, Ghia & Shin, [59]). Notably, grid refinement at constant convection-based CFL
number of 0.8 as well as decreasing time steps at constant spatial resolution do not affect the
results. This suggests stability and convergence of the method, even though we cannot provide
rigorous proofs at this stage. Excellent behavior of the scheme is found for variable density
flows. A “falling droplet” with a density ratio of 1000, simulated by a suitable choice of an
initial entropy distribution in an ideal gas, is handled without evidence of pressure, velocity or
density oscillations.

Place figure 31 around here.

Place figure 32 around here.
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4.4 A Godunov-type scheme for weakly compressible flows

This section is devoted to the extension of a standard conservative finite volume method de-
signed for the compressible Euler equations to unsteady low Mach number flows. Neglecting the
gravitational force field, the conservation laws (4.3.1) in one space dimension can be rewritten
in the form

∂tu(x, t) + ∂xf(u(x, t)) = 0 in Ω × R+
0 , (4.4.1)

where u = (ρ,m= ρv, ρe)T denotes the vector of conserved variables and f(u) = (m,mv +
p/M̌2, Hm)T represents the convective flux function. As seen in section 4.3, the eigenvalues of
the Jacobian of the flux function are v and v ± c/M̌ with the speed of sound c =

√
γ p
ρ . Our

aim is to construct a finite volume (FV) Godunov-type method for (4.4.1) which is adaptive
in the sense that 1) for M → 0 it reduces to a FV method for zero Mach number flows of the
kind described in section 4.3, 2) for M → 1 it becomes a standard compressible flow solver. We
proceed in three steps:

• Decompose the flux function in the form

f(u) = h(u) + a(u). (4.4.2)

• Employ a modified Riemann solver to approximate the fluxes of the system

∂tu + ∂xh(u) = 0. (4.4.3)

• Correct the obtained fluxes to get an approximate solution of system (4.4.1) which is
uniformly accurate independently of the Mach number.

In the first step we define a suitable decomposition of the flux function f of equation (4.4.2).
The aim is to decompose f in such a way that subsystem (4.4.3) can be efficiently solved with
some standard Godunov-type scheme. Moreover we want the correction to be applied in step 3
to vanish as M̌ → 1. Thus, a suitable decomposition should fulfill the following requirements

• System (4.4.3) is hyperbolic and the eigenvalues of the Jacobian of the flux function h are
O(1) as M̌ → 0.

• The flux function h has to reproduce f in the case that M̌ tends to one, i. e.

lim
M̌→1

a(u) = 0.

In agreement with [6] we define the flux function h as follows

h(u) =

 m
mv + p
H∗m

 . (4.4.4)

Here the “enthalpy” H∗ is defined in terms of a non-local pressure pNL:

H∗ =
ρe+ pNL + M̌2p

ρ
.
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This pressure is computed using the averaging operator

ϕσ(t) = (Mσϕ) (t) =
1
|σ|

∫
σ

ϕ(x, t) dx, ∀σ,⊂ Ω

as

pNL =
(
1 − M̌2

)
pΩ(0). (4.4.5)

A straightforward calculation shows that the eigenvalues of the Jacobian of the flux function h
are v and

v ±

√
p+ (γ − 1)(pNL + M̌2p)

ρ︸ ︷︷ ︸
=: c∗

.

Moreover, the Jacobian of h has a complete set of eigenvectors. Furthermore, one has

a(u) = f(u) − h(u) =


0

−M̌2 − 1
M̌2

p

−(M̌2 − 1)pv − pNLv

 . (4.4.6)

Taking into account the definition of the non local pressure (4.4.5) it is easily seen that a(u)
satisfies the condition

lim
M̌→1

a(u) = 0.

Therefore, the decomposition f(u) = h(u)+a(u) satisfies both requirements (4.4.4) and (4.4.6).
For the numerical computation of unsteady flows it is advisable to use a second order time
stepping method. Let un(x) denote an approximation of the solution vector u(x, tn) of

∂tu + ∂xg(u) = 0. (4.4.7)

Then

u0
g(x) = u(x, t0)

un+1
g (x) = un

g(x) − δtΦg(u, δt), n = 0, 1, . . . (4.4.8)

with

Φg(u, δt) = −∂xg
(
un
g (x) − δt

2
∂xg

(
un

g(x)
))

represents a consistent second order predictor-corrector time discretization. Let Φ =
(
Φ(ρ),Φ(m),Φ(ρe)

)T
be a second order method for the Euler equations (4.4.1) and Φh a second order method for
the auxiliary system (4.4.3). The difference between the intermediate momenta of the Euler
equations and those of the auxiliary system can be written as

mn+ 1
2 −m

n+ 1
2

h =
δt

2
M̌2 − 1

M̌2
∂xp

n+ 1
2 +O(δt2). (4.4.9)
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This influence yields the asymptotic correction of the mass fluxes in the form

ρn+1 = ρn − δtΦ(ρ) (u, δt) +O(δt3)

(4.4.9)
= ρn − δt∂x

(
m

n+ 1
2

h +
δt

2
M̌2 − 1

M̌2
∂xp

n+ 1
2

)
+O(δt3)

= ρn − δtΦh,(ρ) (u, δt) − δtΦa,(ρ) (u, δt) +O(δt3)

with

Φa,(ρ) (u, δt) =
δt

2
M̌2 − 1

M̌2
∂2
xp

n+ 1
2 . (4.4.10)

The same analysis applied to the intermediate velocity distribution gives (ρn+ 1
2 = ρ

n+ 1
2

h )

vn+ 1
2 = v

n+ 1
2

h +
δt

2ρn+ 1
2

M̌2 − 1
M̌2

∂xp
n+ 1

2 +O(δt2).

Consequently, the entire momentum flux including the second order asymptotic correction terms
reads

mn+1 = mn − δtΦh,(m) (u, δt) − δtΦa,(m) (u, δt) +O(δt3)

where

Φa,(m) (u, δt) = −M̌2 − 1
M̌2

∂xp
n+ 1

2 + ∂x(p− ph)n+ 1
2

+δt
M̌2 − 1

M̌2
∂x

(
v
n+ 1

2
h ∂xp

n+ 1
2

)
. (4.4.11)

Analogously, we achieve the energy flux in the form

(ρe)n+1 = (ρe)n − δtΦh,(ρe) (u, δt) − δtΦa,(ρe) (u, δt) +O(δt3) (4.4.12)

where

Φa,(ρe) (u, δt)

= −(M̌2 − 1)∂x(pv)n+ 1
2 − ∂x(pNLv)n+ 1

2

+M̌2∂x

(
(pn+ 1

2 − p
n+ 1

2
h )vn+ 1

2

)
+
δt

2
M̌2 − 1

M̌2
∂x(H

∗,n+ 1
2

h ∂xp
n+ 1

2 )

+
δt

2
∂x

((
(M̌2 − 1)∂x(pv)n+ 1

2 + ∂x(pNLv)n+ 1
2

)
vn+ 1

2

)
. (4.4.13)

Two facts are remarkable. First, the additional terms representing the differences between Φa

and a straightforward discretization of the asymptotic fluxes a(u) are of order O(δt2) and hence
negligible in the case of a first order time stepping procedure. Second, the above mentioned
additional terms can be substituted by an arbitrary first order approximation without affecting
the order of accuracy. For example, one can evaluate the pressure derivative within equation
(4.4.9) at any time level tm ∈ [tn, tn+1].
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Evolution of the spatially homogeneous leading order pressure

According to the results of the asymptotic single as well as multiple scale analysis the evolution
of the spatial homogeneous leading order pressure p(0) is due to compression from the boundary
∂Ω or expansion of the reacting gas itself. In agreement with equation (2.1.38) we employ

p(0),n+1 = p(0),n − δtγp(0),n (vnr − vn/ ) , (4.4.14)

where vr and v/ represent the velocity at the right and left boundary of the computational
domain, respectively.

Evolution of the acoustic first order pressure

The evolution of the acoustic pressure p(1) is governed by the system of linearized acoustics
(2.1.41), which can be rewritten in the form

∂tm +
1
M̌
∂xp

(1) = 0

∂tp
(1) +

1
M̌
∂x (c m) = 0

(4.4.15)

where

c =

√
γ
p(0)

ρ
.

The system (4.4.15) is hyperbolic with characteristic signal speeds ± c
M̌

= O
(

1
M̌

)
. Since the

time step size with explicit discretization of the auxiliary system satisfies δt = O(δx) it is
necessary to employ a suitable discretization technique for the solution of system (4.4.15) to
overcome the restrictive Courant-Friedrichs-Lewy condition for an explicit forward Euler time
discretization. Implicit time stepping schemes have the advantage that the numerical domain
of dependence always covers the physical one and hence, these methods inherently fulfill the
CFL-condition. Due to the fortunate property that the Jacobian of the flux function within
the system (4.4.15) is very simple we decided to employ an implicit discretization. The linear
system arising from the linearization of the flux function is solved by means of the BiCGSTAB
method [66] preconditioned by an incomplete LU factorization technique. The initialization of
the long wave momentum and density distribution is performed by the decomposition algorithm
described in section 4.1.

Energy-Poisson-Equation

Introducing the equation of state written as

(ρe)n+1 =
p(0),n+1

γ − 1
+

M̌p(1),n+1

γ − 1
+

M̌2p(2),n+1

γ − 1
+

M̌2

2
ρn+1

(
vn+1

)2

into the energy equation (4.4.12) and omitting terms of order O(δt3) yield

M̌2

γ − 1
p(2),n+1 = (ρe)n − p(0),n+1

γ − 1
− M̌p(1),n+1

γ − 1
− M̌2

2
ρn+1

(
vn+1

)2

−δtΦh,(ρe) (u, δt) − δtΦa,(ρe) (u, δt) .
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Note that the leading order pressure p(0),n+1 and the acoustic pressure p(1),n+1 can be computed
by means of (4.4.14) and by solving the system of linearized acoustics (4.4.15), respectively. We
use a particular implicit discretization of the asymptotic part (4.4.13):

Φa,(ρe) (u, δt)

= −(M̌2 − 1)∂x(pv)n+ 1
2 − ∂x(pNLv)n+ 1

2

+M̌2∂x

(
(pn+ 1

2 − p
n+ 1

2
h )vn+1

)
+
δt

2
M̌2 − 1

M̌2
∂x(H

∗,n+ 1
2

h ∂xp
n+1)

+
δt

2
∂x

((
(M̌2 − 1)∂x(pv)n+1 + ∂x(pNLv)n+1

)
vn+1

)
. (4.4.16)

Using the pressure decomposition in the asymptotic flux function (4.4.16) and assuming that

the pressure terms pn+ 1
2 and p

n+ 1
2

h as well as the enthalpy form H
∗,n+ 1

2
h are available we can

discretize the derivatives within the asymptotic fluxes by means of central differences to achieve
a linear system of equations

Ap(2),n+1 = b, p(2),n+1 =
(
p
(2),n+1
1 , . . . , p(2),n+1

n

)T
(4.4.17)

for the calculation of the second order pressure. The matrix and the right hand side of equation
(4.4.17) contain density and velocity contributions at the time level tn+1. Due to this fact we
employ a fix-point iteration where the asymptotic flux corrections Φa are computed simultane-
ously. Therefore, we take vn+1

h and ρn+1
h provided by the discretization of the auxiliary system

as the initial guess for the velocity and density (i.e. vn+1,0 = vn+1
h , ρn+1,0 = ρn+1

h ), respectively.
Now, the matrix and the right hand side are fixed and one can solve the system (4.4.17) to
obtain p(2),n+1,0. Using the variables ρn+1,0, vn+1,0, and p(2),n+1,0 we can evaluate the asymp-
totic fluxes completely by means of a Crank-Nicholson approach. Clearly, a prescription for the

computation of pn+ 1
2 , p

n+ 1
2

h , and H
∗,n+ 1

2
h is required to close the system. The pressure p

n+ 1
2

h and

the enthalpy form H
∗,n+ 1

2
h are given by the discretization of the auxiliary system (4.4.3) using

δ̃t = δt
2 . In order to compute the pressure pn+ 1

2 we use the same procedure as mentioned above
for the time interval [tn, tn+ 1

2 = tn + δ̃t] where the approximation

Φa,(ρe) (u, δt)

= −(M̌2 − 1)∂x(pv)n+ 1
2 − ∂x(pNLv)n+ 1

2

+M̌2∂x

(
(pn+ 1

2 − p
n+ 1

2
h )vn+ 1

2

)
+ δ̃t

M̌2 − 1
M̌2

∂x(H
∗,n+ 1

2
h ∂xp

n+ 1
2 )

+δ̃t∂x
((

(M̌2 − 1)∂x(pv)n+ 1
2 + ∂x(pNLv)n+ 1

2

)
vn+ 1

2

)
is employed and the Crank-Nicholson time stepping scheme for the asymptotic fluxes is replaced
by a backward Euler approach.

Spatial discretization

We discretize the Euler equations (4.4.1) on a bounded domain Ω ⊂ R. The computational
domain is subdivided into control volumes σ1, . . . , σn. First, consider the auxiliary hyperbolic
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system (4.4.3). We call u a weak solution of system (4.4.3) on Ω, if

d
dt

∫
σ
u dx+ h(u)

∣∣∣∣σr
σ�

= 0

holds for all control volumes σ ⊂ Ω with σr and σ/ representing the right and left boundary of
σ, respectively. To compute numerical fluxes for the cell averages

ui(t) = (Mσiu) (t), (4.4.18)

we used the modified Riemann problem solver described in [6]. In the limit M̌ → 1 this flux is
consistent with a standard numerical flux for the Euler equations. To achieve a second order
scheme in space and time we use linear reconstruction of the characteristic variables in spatial
directions as well as a MUSCL approach in time. A detailed description of this Godunov-type
algorithm is given in [67].

The approximation of the asymptotic fluxes is done via finite differences. Each physical quantity
ϕi+ 1

2
at the interface between two adjacent boxes σi and σi+1 is computed as a mean value of

the corresponding cell averages. Similarly, we approximate the derivatives (∂xϕ)i+ 1
2

in the form
of central differences.

Time dependent scaling

In order to gain a suitable scaling of the physical quantities one has to calculate the required
reference values from a given flow field. In a standard approach the reference values are set at the
initial time and kept constant throughout the computation. Here, however, we want to consider
flows which may evolve through different regimes. Almost incompressible initial conditions may
turn into weakly compressible flows or vice-versa. Thus, it is necessary to implement some
kind of dynamical time dependent scaling and the reference values must adapt to the evolving
numerical solution.

As seen in section 2.1 a scaling is defined, in terms of v̂ref , p̂ref and ρ̂ref , via the Mach number M̌

M̌ =
v̂ref√
p̂ref
ρ̂ref

(4.4.19)

which is a measure of the compressibility of the flow. As seen in section 4.1, M̌ is also a measure
of the wave length of acoustic waves. We assume that a nearly incompressible flow field is
characterized by the following two properties of the dimensional quantities. First, we expect
that the divergence of the velocity filed is very small, and second, the flow field shows only tiny
fluctuations within the pressure distribution.

The time dependent reference values for density and pressure are determined by averaging each
quantity over the whole domain Ω,

ρ̂ref = ρ̂ref(t) =
1
|Ω|

∫
Ω

ρ̂(x, t) dx

and

p̂ref = p̂ref(t) =
1
|Ω|

∫
Ω

p̂(x, t) dx,
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respectively. Using these values we can determine the global reference of the speed of sound as

ĉref =

√
γ
p̂ref

ρ̂ref

.

We define three indicators to measure the different properties of weakly compressible fluid flows.
One of them is coupled with the pressure distribution as stated in section 4.1. To prevent
misunderstandings the parameter which is calculated within the decomposition algorithm is
called M̌l. The other two characterize the velocity flow field and are given by

M̌v = Cv
maxx∈Ω |v̂|

ĉref

and

M̌div = Cdiv

√
maxx∈Ω |∂xv̂|

ĉref
.

Now, we can formally define the reference parameter M̌. In order to ensure that the standard
Godunov type solver is used in the case that one indicator is greater or equal than a critical
value α, α ≤ 1, we define

˜̌M = min
{
α,max(M̌v, M̌div, M̌l)

}
,

and a function

g( ˜̌M) = 1 +
1
α − 1
α2

˜̌M
2
.

The reference parameter is then given by

M̌ = g( ˜̌M) ˜̌M, ˜̌M ∈ [0, 1],

where equation (4.4.19) now yields the velocity reference in the form

v̂ref =
M̌ĉref√

γ
.

We complete the scaling process by taking the reference time equal to the advective time scale:

t̂ref =
l̂ref
v̂ref

.

Due to the indicators M̌v and M̌div it is guaranteed that the dimensionless velocity field is
limited,

max
x∈Ω

|v| =
maxx∈Ω |v̂|

v̂ref

=
√
γ

M̌v

M̌
,

and that the divergence free condition in the limit of a vanishing Mach number is fulfilled,

max
x∈Ω

|∂xv̂| =
maxx∈Ω |∂xv|

v̂ref

=
√
γ

M̌2
div

M̌
.
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We want to add some remarks to the adaptive concept. As seen before, a time dependent
adaption can easily be achieved by a simple rescaling of each physical quantity after each time
step. Because the decomposition of the physical quantities has to be carried out at each time
step, the computation of the indicators as well as of the average values is not very expensive in
comparison to the costs of the decomposition. But it is possible to decrease the computational
effort and avoid the rescaling of density and pressure, if their average values do not rapidly
change in time. Then only the velocity field has to be rescaled after each time step to employ
the influences of a varying reference parameter M̌ to the flow field.

Numerical results

In order to test the novel decomposition algorithm described in section 4.1 we study 1) a weakly
compressible flow with large density fluctuations and 2) the transition of a weakly incompressible
flow into the compressible regime. These problems have been originally proposed in [6].

First, consider a long wave acoustic signal periodically passing through a region in which the
density has some short wave length large amplitude fluctuations. Every period the density
distribution will be displaced by the acoustic signal in one direction. The computation is carried
over on Ω̂ = [−51, 51] which is subdivided into 1020 regular cells. The initial conditions are
given by

ρ̂(x, t = 0) =
(
1 + 2M̌

(
1 + cos(2M̌πx)

)
+ Φ(x)

1
2

sin(80M̌πx)
)
,

v̂(x, t = 0) =
√
γ
(
1 + cos(2M̌πx)

)
,

p̂(x, t = 0) =
4

M̌2

(
1 + 2γM̌(1 + cos(2πM̌x)

)
and

Φ(x) =

{
1
2

(
1 − cos(10M̌πx)

)
, if 0 ≤ x ≤ 2

10M̌

0 , otherwise.

Periodic boundary conditions are imposed on the left and on the right end of Ω̂. The parameter
M̌ and the reference length l̂ref are set to 1

102 and 1, respectively.

Place figure 33 around here.

Place figure 34 around here.

Place figure 35 around here.

Place figure 36 around here.

In Figure 33 the density profile at the end of the computation (T = 5, 071) is plotted. The
amplitudes of the short wave density perturbation are almost preserved. The time evolution
of the reference parameter M̌ is shown in figure 34. The small oscillations of M̌ are due to
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the fact that the acoustic wave moves faster than the density distribution. Therefore density
fluctuations change their position relative to the extrema of the acoustic wave. At the beginning
of the computation the indicator M̌v controls the progress of the reference parameter. Then,
the acoustic wave slowly steepen and at the end the indicator M̌div takes over.

In the second example we compute the steepening of an acoustic wave into a shock. We use
a regular discretization of the domain Ω̂ = [−22, 44] into 330 boxes with periodic boundary
conditions. The initial conditions are

ρ̂(x, t = 0) =
(

0.955 +
1
11

(
1 − cos

(πx
11

)))
,

v̂(x, t = 0) =
√
γ

11

(
1 − cos

(πx
11

))
,

p̂(x, t = 0) =
(
2γ +

γ

11

(
1 − cos

(πx
11

)))
,

for x ≤ 0 and

ρ̂(x, t = 0) = 0.955,
v̂(x, t = 0) = 0,
p̂(x, t = 0) = 2γ,

otherwise. The reference length is l̂ref = 1. Figure 35 shows the density distribution at time
t = 33 with and without adaptation of M̌. The time evolution of M̌ is given in figure 36. The
comparison between the two computations indicates the necessity of dynamically computing M̌
and adapting the computational method in the case of transitions from weakly compressible to
compressible flow regimes.

4.5 Hyperbolic elliptic splitting for MHD equations

In this section the aim is to use results of section 2.2 in distinguishing between terms related
with pure convection and terms related with the fast wave speeds. As in the case of Euler
equations the idea behind this is to get a splitting of the system that enables us to treat the
convection terms, that remain hyperbolic also in the limit, and the fast wave speed terms, that
become elliptic in the limit, with different numerical methods.

Especially for fusion plasma, the time step stability constraint of explicit schemes may often be
too restrictive and several implicit or semi-implicit schemes have been proposed, see [68], [69]
and references therein. For the case of small Mach numbers, the implicitness of our approach
reduces to a simple pressure correction equation. The convection system for the MHD equations
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takes the following form:

ρt + ρxu = 0 , (4.5.1)

ut + uux +
1

2Av2ρ
(B2)x = 0 , (4.5.2)

vt + uvx −
1

Av2ρ
B1B2x = 0 , (4.5.3)

wt + uwx −
1

Av2ρ
B1B3x = 0 , (4.5.4)

B2t +B2ux + uB2x −B1vx = 0 , (4.5.5)
B3t +B3ux + uB3x −B1wx = 0 , (4.5.6)

pt + pxu = 0 . (4.5.7)

As usual we can write equations (4.5.1) – (4.5.7) as a system

qt +Aqx = 0 (4.5.8)

of evolution equations with the vector

q = (ρ, u, v, w,B2, B3, p)T (4.5.9)

of the physical variables. The Matrix A has the eigenvalues

λ1 = u− 1
Av

√
B2

ρ
, λ2 = u− 1

Av
cA , (4.5.10)

λ3 = λ4 = λ5 = u , (4.5.11)

λ6 = u+
1
Av
cA , λ7 = u+

1
Av

√
B2

ρ
(4.5.12)

(cA is the Alfvén velocity) and a complete set of eigenvectors. Therefore system (4.5.1) – (4.5.7)
is strictly hyperbolic. The eigenvalues of A correspond to the different wave speeds associated
with fluid convection and the magneto-sonic waves. The remaining terms of (2.2.2) reduce to
the system of the sonic waves (4.2.6). Therefore we have all terms that cause fast wave speeds in
this system. We call this system the elliptic system. The extension to multiple space dimensions
is straightforward.

While the hyperbolic system (4.5.1) – (4.5.7) can be approximated with an explicit scheme, the
system of the sonic waves should be discretized implicitly in time. This can be done as described
in section 4.2 for the equations of gas dynamics.

In the case of small Alfvén number the terms B2ux−B1vx and B3ux−B1wx become constant in
space. Their time behavior is determined by the boundary values, so the information propagates
with infinite velocity and may be considered to be elliptic. The leading order terms of the
derivatives of the magnetic terms in the velocity equations now vanish and B becomes constant
in space. In this case the splitting of the fast and slow waves may not lead to an efficient
approximation in comparison with a fully implicit scheme.
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5 Conclusions

In this paper we have introduced the notion of asymptotically adaptive numerical methods.
This research was motivated by the fact that singularly perturbed systems typically require
very different numerical solution methods depending on whether they are far from or very close
to the singular limit. This issue becomes critical when, in some general application, the solution
dynamically evolves towards or away from an asymptotic limit regime. In that case, standard
numerical methods will fail one way or the other. Here we have proposed a new strategy for
the construction of uniformly applicable discretizations. The approach requires a close interplay
between application-oriented asymptotics and numerical analysis. Typically, one must first
detect the origin of some failure of an available standard numerical scheme. This failure is then
traced back to an asymptotic singular limit. Next, an asymptotic analysis is pursued, yielding
valuable insight into the changes of the problem’s mathematical structure as this limit regime is
approached. This knowledge is then exploited to construct an extended numerical scheme that
operates with uniform efficiency and accuracy for arbitrary values of the asymptotic parameter.
Finally, for problems in which the asymptotic parameter itself is part of the solution, one needs
additional control strategies which determine the actual instantaneous or local parameter value
and trigger an automatic adjustment of the numerical discretization.

In this paper we have described a number of typical applications that call for an implemen-
tation of the above strategy. These include variable density low Mach number flows, atmo-
spheric flows under a distinguished limit of low Froude and low Mach numbers, and Magneto-
Hydrodynamics at low Mach or Alfvén numbers. For the “pure” low Mach number case, we
have almost completed the program sketched above. A numerical method for fully compressible,
multi-dimensional flows has been modified to also “survive” the zero Mach number limit. We
have proposed a numerical detection strategy that provides quantitative indicators of whether
a flow is in the appropriate asymptotic regime or not. This detection scheme, currently imple-
mented only for a single space dimension, has then be used to design an asymptotically adaptive
numerical method that, in fact, operates uniformly accurately and efficiently for arbitrary Mach
number. A second application of these asymptotic results has been the extension of an existing
standard zero Mach number flow solvers to the weakly compressible regime. This extension
addresses, in particular, the problem of long wavelength acoustics, which is typically ignored in
competing approaches. Our ansatz has led to a natural kind of “multi-gridding”: In the regime
considered acoustic perturbations live on large length scales only, and are thus amenable to accu-
rate representation on relatively coarse computational grids. The quasi-incompressible, vortical
component of the flow field is active on much smaller length scales and is thus represented on a
finer grid.

For the atmospheric flow and magneto-hydrodynamics problems we have described asymptotic
analyses that provide the necessary insight for understanding characteristic failures of standard
numerical schemes. Our current efforts are directed at exploiting these results in the construction
of new numerical techniques along the lines described above.
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Zahlen. PhD thesis Swiss Federal Institute of Technology, Diss. ETH No. 11334 (1995) 71
pp.

[24] C. Viozat, Implicit Upwind Schemes for Low Mach Number Compressible Flows. INRIA
3084 (1997).

[25] Th. Schneider, N. Botta, K. J. Geratz and R. Klein, Extension of finite volume com-
pressible flow solvers to multi-dimensional, variable density zero Mach number flow. ZIB,
Konrad-Zuse-Zentrum für Informationstechnik Berlin SC 98-31 (1998).

[26] N. Botta, R. Klein and A. S. Almgren, Dry atmosphere asymptotics. PIK Potsdam
Institute for Climate Impact Research 55 Potsdam (1999).

[27] D. R. Durran, Numerical Methods for Wave Equations in Geophysical Fluid Dynamics.
New York, Berlin, Heidelberg: Springer (1999) 465 pp.

[28] Y. Ogura and N. Phillips, Scale analysis for deep and shallow convection in the atmosphere.
J. Atmos. Sci. 19 (1962) 173–179.

[29] F. Lipps and R. Hemler, A scale analysis of deep moist convection and some related
numerical calculations. J. Atmos. Sci. 29 (1982) 2192–2210.

75



[30] M. van Dyke, Perturbation Methods in Fluid Dynamics. Stanford, CA: Parabolic Press
(1975) 271 pp.

[31] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics. New York,
Heidelberg, Berlin: Springer (1981) 558 pp.

[32] J. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods. New
York, Berlin: Springer (1996) 632 pp.

[33] A. Meister, Zur mathematischen Fundierung einer Mehrskalenanalyse der Euler-
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der Physik. Math. Ann. 100 (1928) 32.

[48] B. van Leer, Towards the ultimate conservative difference scheme. I. The quest of mono-
tonicity. Lecture Notes in Phys. 18 (1973) 163–168.

[49] B. van Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and
conservation combined in a second-order scheme. J. Comput. Phys. 14 (1974) 361–370.

[50] B. van Leer, Towards the Ultimate Conservative Difference Scheme. III. Upstream-centered
finite-difference schemes for ideal compressible flow. J. Comput. Phys. 23 (1977) 263–275.

[51] B. van Leer, Towards the ultimate conservative difference scheme. IV. A new approach to
numerical convection. J. Comput. Phys. 23 (1977) 276–299.

[52] B. van Leer, Towards the ultimate conservative difference scheme. V. A Second-order sequel
to Godunov’s method. J. Comp. Phys. 32 (1979) 101–136.

[53] B. Einfeldt, On Godunov Type Methods for Gas Dynamics. Inst. f. Geometrie u. Praktische
Mathematik, RWTH Aachen, Bericht Nr. 41 (1986).

[54] K. J. Geratz, Erweiterung eines Godunov-Typ-Verfahrens für zwei-dimensionale kompress-
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Figure 1: Long wave pressure part
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Figure 2: Pressure perturbation
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Figure 3: Total pressure distribution p̂
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Figure 4: Filtered long wave part
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Figure 5: Remaining noise
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Figure 6: Density profile
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Figure 7: Filtered long wave signal
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Figure 8: Short wave oscillations
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Figure 9: Vorticity at times t=0,1,2
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Figure 10: Streamline visualization of the lid driven cavity flow at
Re=1000
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Figure 11: Horizontal velocity at the ver-
tical cross section through the center of
the cavity
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Figure 12: Vertical velocity at the hor-
izontal cross section through the center
of the cavity
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Figure 13: Isotherms for a driven cavity with differentially heated vertical
walls with temperature difference ∆T = 150K
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Figure 14: Horizontal velocity at the verti-
cal cross section through the center of the
cavity
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Figure 15: Vertical velocity at the horizon-
tal cross section through the center of the
cavity
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Figure 16: Density at times t=0,6,9,11,14
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Figure 17: Vorticity at times t=0,6,9,11,14
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Figure 18: Temporal development of the temperature distribution in the brake-facility
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V

V

Figure 19: Cell (V ) and node centered (V ) control volumes; cell centers, nodes and the midpoints
of the interfaces are marked by circles, squares and crosses, respectively

Figure 20: Advection of a vortex at times t = 0.0, 1.0, 2.0, 3.0: 9 contour lines of the stream-
function in [0.02,0.18]. Unlimited slopes (top), monotonized central-difference (middle) and
Sweby’s limiter with k := 1.8 (bottom).
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Figure 21: Driven cavity at Re = 100, C = 0.8: 30 contour lines of the nodal pressure p(2)

V in
[−0.4, 0.4]. 64 × 64 (left) and 256 × 256 (right) grid cells.

Figure 22: Driven cavity at Re = 100, 64 × 64 grid cells: 30 contour lines of the nodal pressure
p(2)

V in [−0.4, 0.4]. C = 0.08 (left) and C = 0.008 (right).
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Figure 23: Driven cavity at Re = 1000: Residual versus number of iterations for 32×32, 64×64
and 128× 128 grid cells computations; coarser grid solutions have been taken as initial data for
finer grid solutions.
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Figure 24: Driven cavity at Re = 1000, 128 × 128 grid cells: 30 contour lines of the nodal
pressure p(2)

V in [-0.4;0.4] (left) and streamlines (right). Streamline values and labels from [59].
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Figure 25: Driven cavity at Re=1000, 128 × 128 grid cells: streamlines in the left and right
bottom secondary vortices. Values and labels from [59].
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Figure 26: Driven cavity at Re=1000, 128×128 grid cells: horizontal (vertical) component of the
velocity along the vertical (horizontal) line through the geometric center of the cavity; present
results (solid line) and reference solution from [59] (dots).

88



t = 0.000 t = 0.500 t = 0.875

t = 1.125 t = 1.250 t = 1.375

Figure 27: Two-dimensional falling “droplet” at Fr = 1 and density ratio 1000: Contour lines
of density in [1,1000].
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Figure 28: Three-dimensional falling “droplet” at Fr = 1 and density ratio 1000: Iso-surface
ρ = 500 of density.
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Figure 29: Sketch of a simplified thermo-acoustic refrigerator.
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Figure 30: Computational domain (dotted line).
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Figure 31: Temperature field during different times of an acoustic cycle; T := 2π.
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Figure 32: Heat fluxes through the surface of the hot (left) and cold (right) heat exchanger
during an acoustic cycle.
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Figure 33: Density distribution at time t =
5, 071 s
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Figure 34: Time dependent adaptation of the
Mach number parameter M̌
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Figure 35: Density distribution at time t =
33 s
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Figure 36: Evolution of the reference param-
eter
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