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1. Introduction 

The results to be obtained in this paper are applicable to a general 
problem regarding the far field behavior of the solution A(x) of the vector 
Poisson equation in space, 

zXA = - f ~ ,  (1.1) 

subjected to the boundary condition, 

IA]--*0 as r = Ixi-  00. (1.2) 

Here x denotes the position vector with Cartesian coordinates xi, i = 1, 2 
and 3. In this paper, boldface symbols are used to denote vector quantities 
and the subscripts i = 1, 2 and 3 denote their components.  Thus A; and coi 
denote the three components of  A and 12 respectively. 

The inhomogeneous term, 12(x), is assumed to be divergence free, 

V.12 = 0 ,  

and to decay exponentially in r, that is 

1121= o(r-"), for all n as r ~ 00. 

(1.3) 

(1.4) 

Note that (1.4) is a realistic condition for vortical flows but is not necessary- 
for the results to be derived here. It suffices to require that (1.4) holds for 
n less than a sufficiently large integer instead of  for all n. 

The above problem originated from our analysis of  a three dimensional 
unsteady incompressible flow induced by a vorticity field 12. Therefore, we 
shall present our motivations and findings in the context of  a fluid dynamics 
problem. 

In the first subsection, we state the governing equations for a vortex 
dominated viscous flow, show the relevance of  the above problem defined 
by (1.1) to (1.4) and then explain why we are interested in the far field 
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behavior of A. We recount in Sec. 1.2 several known results regarding the 
far field behavior of A so as to provide the necessary background informa- 
tion for the current investigation and then point out in Sec. 1.3 several 
questions regarding the far field behavior. The answers to those questions, 
which are presented in the following sections, in turn constitute the new 
results mentioned in the Abstract. 

1.1. Governing equations for  an incompressible viscous f low induced by an 
initial vorticity f ie ld  

The vorticity 12 is related to the velocity v by 

12 = V  x v, (1.5) 

and hence has to be divergence free, (1.3). On the other hand the continuity 
equation, 

V. v =0 ,  (1.6) 

implies that the velocity, v, can be expressed in terms of the curl of a vector 
potential, A, i.e., 

v = V  x A. (1 .7)  

Since the addition of a vector function of the form Vf to A does not change 
the velocity, we may suppose the function f to be chosen so that [1] 

V . A = 0 .  (1.8) 

The vector potential is then related to the vorticity f~ by the vector Poisson 
equation (1.1). This equation is equivalent to (1.5), (1.7) and (1.8). We 
observe that (1.8) is consistent with (1.3). 

The vorticity is assumed to decay exponentially in r, (1.4), consequently 
the induced flow field remains at rest at infinity, i.e., 

]vl~0 as r ~ o o .  (1.9) 

This in turn leads to the above boundary condition (1.2) for A. 
In the above, the dependence of the functions on time t has been 

suppressed because t can be treated as a parameter. A time derivative 
appears only in the vorticity evolution equation, 

f~t + (v �9 V)I2 - (12 �9 V)v = v AI2, ( 1.1 O) 

where v denotes the kinematic viscosity. The above equation can be derived 
by applying the curl operator to the Navier-Stokes equation, thereby 
eliminating the gradient of pressure. 
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By specifying an initial vorticity distribution, 
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12(x,t)=Y(x) at t=O, (1.11) 

where F(x) fulfills the condition of exponential decay, (1.4), Eqs. (1.1), 
(1.7), (1.10), (1.2), (1.4) and (1.11) define an initial value problem in space 
for A(x, t) and 12(x, t). The solution A of the vector Poisson equation (1.1) 
subject to the boundary condition (1.2) then appears as a part of the 
initial value problem. 

In general, the solution of this nonlinear initial value problem requires 
a numerical solution. This involves a discretization of the equations in a 
finite computational domain 9. Hence it is necessary to impose boundary 
conditions along ~ which are consistent with the unbounded domain 
problem or to impose approximate ones and specify their degree of accu- 
racy. A numerical scheme for the above problem was proposed in [2] and 
implemented in [3] and [4]. The scheme is efficient in the sense that the 
degree of accuracy of the approximate boundary conditions can be 
matched with that of the finite difference scheme to define the size of 
and that for each time increment the number of computational steps for 
the evaluation of the boundary data is at most of the order of magnitude 
of that for the finite difference solution. In the scheme, the number for the 
former is O(N) while the number for the latter is dominated by that 
needed to invert the Poisson equation and hence is O(N log N), where N 
is the number of grid points in 9. The approximate boundary conditions 
proposed in [2] were obtained by making use of the far field behavior 
of A. 

Another application of the far field behavior of A can be found in a 
recent study on aerodynamic noise induced by an unsteady vortical flow at 
low Mach number [5]. Matched asymptotic solutions of the unsteady 
compressible N-S equations are constructed such that the leading inner 
solution is identified as an incompressible vortical flow governed by the 
equations of the above initial value problem, Eqs. (1.1, 1.7, 1.10, 1.2, 1.4 
and 1.11), while the leading outer solution, which obeys the simple wave 
equation, yields the acoustic field. From the matching conditions, the far 
field behavior of the inner solution, A, provides the boundary data for the 
leading outer solution. 

1.2. Far field behavior of a vector potential--review of known results 

To study the far field behavior of the vector potential A, we can deal 
with the problem defined by Eqs. (1.1) to (1.4) and suppress the depen- 
dence of the functions on t from hereon. 
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The solution of the Poisson equation, (l.1), subject to (1.2), is given by 
the Poisson integral 

1 ; f f f  
A(x)  = -~  oo I x - - x ' l  d3x' '  (1.12) 

where d3x ' stands for dx~ dx'2 dx'3. 
The far field behavior of A is defined by an expansion of the Poisson 

integral in powers of r - l ,  see for example Ref. [6]. The result is, 

.4(x) = + O ( r - m - 2 ) .  (1.13) 
n=0 

where 

1 
A (")(x) = ~ Q(")(0, ~b)r -" -1 (1.14) 

and 

Q(n)(O, c~, t) = 12(x', t)(r')nPn(la) d3x ', (1.15) 
oO 

with # = x .  x ' / ( r r ' ) =  .~. ~'. Here 0 and ~b denote the spherical angles of 
the unit vector :~ and P~ is a Legendre polynomial. The nth term A (") in the 
series (1.13) will be called the vector potential of nth order because it fulfills 
the Laplace equation and is proportional r - n -  

We note that (r')nP~(la) and r"P~(#) are homogeneous polynomials of 
degree n in x~ and xi respectively. Consequently r"Q (n) is a homogeneous 
polynomial in xi of degree n and its coefficients are the nth moments of 
vorticity. The number of nth moments of the components of 12 is 
3(n + 2)(n + 1)/2. These moments exist for all n because 12 decays exponen- 
tially (1.4). Using (1.3) and (1.4), Truesdell [7], [8], showed that the nth 
coaxial moment along an axis parallel to a vector B should vanish: 

/(")(bl, b2, b3) -- ( [ g "  x] riB" 12(x))  = 0 (1.16) 

for t > 0 and for all bi, which are the components of B. Here we use ( ) to 
denote the volume integral over the entire space in x, that is 

( f )  = f d3x. (1.17) 
cO 

A simple proof of (1.16) follows from the application of integration by parts 
and far field conditions, (1.2) and (1.4), 

1 
( ( X .  j~)n12 " B ) - -  ( ( x "  B ) n + l v  �9 ~')) = 0. (1.18) 

n + l  

Since I (") is a homogeneous polynomial in bi of degree n + 1, I (") vanishes 
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for all bi if and only if all the (n + 3)(n + 2)/2 coefficients in the polynomial 
are equal to zero. By equating a coefficient in 1 (") to zero, say that of 

b~ b~, we obtain the following consistency condition on nth  moments  of 
o91, o92 and o93, 

j ( x ~ -  l XkzXt3~O l ) + k (x~x~ - ' xl3o92) + l ( x ~ x ~ x  t -  'o93) = O, 

for j , k , l > _ O  and j + k + l = n + l > > - l ,  

(1.19) 

with the understanding that a moment  is equal to zero whenever the 
exponent of  one of  the xi's is negative. There are (n + 3)(n + 2)/2 consis- 
tency conditions, (1.t9). In particular for n = 0 ,  we have ( o g i ) = 0  for 
i = 1, 2, 3 and hence A (~ = 0. This fact is referred to in the Abstract in 
saying that the series representation of  A, (1.13), begins with n = 1. 

On account of  these consistency conditions, (1.19), the number of n th 
moments  of  o9; which can be specified or evaluated for the determination of  
A (,) in the series, (1.13), is J , ,  where 

J,  = 3(n + 2)(n + 1)/2 - (n + 3)(n + 2)/2 = n(n + 2). (1.20) 

It should be noted that by using the vorticity evolution equation, (1.10), 
Moreau [9], [10], showed that three linear combinations of  the first mo- 
ments and three linear combinations of  second moments  are time invariant 
and, therefore, are defined by the initial data. However, this result does not 
alter the above statement, leading to (1.20), on the number of  nth  moments  
to be specified. 

1.3. Motivations for  the current analys& 

Using the consistency conditions, (1.19), on nth  moments  of vorticity, 
we identify J,  of  those moments  free to be specified. They form a set ~f("). 
The remaining nth moments  are then related to those in off(,) by the 
consistency conditions. The vector potential A (") can then be expressed as a 
linear combination of J ,  vector functions with the coefficients in cg(,). Each 
vector function is also a vector potential of n th order. An obvious question 
is 

(i) what are those Jn vector potentials o f  nth order associated with the nth 
moments in oK(')? 

We now note that the far field velocity, which is V x A, should be 
irrotational to all powers of r -  1, because J2 decays exponentially, (1.4). This 
also follows directly from (1.14) which yields V • (V x A (n)) = - A A ( " ) =  0. 
Consequently, the velocity can be expressed as a power series in r - t ,  each 
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term of which is a gradient of a scalar potential, ~"). That is, 

v =  ~ v ~")= ~ V ~  ~n) ( 1 , 2 1 )  
n =  1,2,,,, n ~  1,2,,,, 

with 

�9 ~")(x) = Yn(O, alp)r-"-' (1.22) 

and 

v ~") = V x A ~") = V ~  ~"). ( 1.23) 

Here Y, denotes Laplace spherical harmonics of dimension n, see for 
example Ref. [6]. The above relationships were employed in the study of the 
acoustic field induced by a vortical flow, [5]. 

Since Y, can be represented by a linear combination of 2n + 1 spherical 
harmonics of nth order, see [6], only 2n + 1 terms will contribute to the far 
field velocity. Thus we may ask: 

(ii) what are the 2n + 1 linear combinations of  the Jn vector potentials of  nth 
order, mentioned in (i), that do contribute to far field velocity, 

(iii) what happened to the remaining J, - (2n + 1) = n 2 - 1 linear combina- 
tions and 

(iv) what are the 2n + 1 linear combinations of  nth moments of  vorticity 
which define the coefficients of  the 2n + 1 spherical harmonics in the 
scalar potential ~")? 

We also note that each component, A~ "), of the nth order vector 
potential in the series (1.13) for large r should fulfill the Laplace equation. 
Each component A! ") can then be represented by r - " -1  times a sum of 
2n + 1 linearly independent spherical harmonics of nth order and the 
coefficients will be linear combinations of nth moments of o~i. Consequently, 
we have 

M,  < 3(2n + 1), (1.24) 

where M~ denotes the number of linearly independent vector potentials of 
nth order. This number M,  is certainly less than J,  for n > 5. Thus we 
encounter the question, 

(v) what is the number M, of  linearly independent vector potentials of  nth 
order? 

It should be noted that we need only 2n + 1 linear combinations of nth 
moments of vorticity to define the nth order far field velocity provided that 
the current vorticity distribution is specified. To determine the vorticity 
distribution from its preceding time step in a numerical algorithm, we have 
to solve the vorticity evolution equation (1.10) and the Poisson equation 
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(1.1) for 12 and A simultaneously. We then need the far field behavior of A, 
including the part which does not contribute to the velocity field, to define 
the appropriate boundary data for A. 

The first three questions will be answered in Sec. 2.1, the fourth in Sec. 
2.2 and the fifth in Sec. 3. These answers are summarized in the Abstract. 
This first path of derivations goes from the motivations to the conjectures 
and then to their confirmations. Knowing what to prove we express, in Sec. 
4, the moments of vorticity in terms of Cartesian tensors and then give 
independent proofs of our results by systematically using symbolic tensor 
operations. In the process of this second path of derivations we identify 
Truesdell's consistency conditions as symmetry constraints on the moment 
tensors of vorticity. Sec. 4 can be read independent of Sec. 2 and Sec. 3 and 
vice versa. 

2. The far field vector potentials and the corresponding potential flows 

In the first subsection, we shall introduce the Maxwell representation of 
spherical harmonics [6] for the nth order vector potential in the far field, 
A (")(x), apply the consistency conditions (1.19) to show that the correspond- 
ing flow is a potential flow and identify n 2 -  1 vector potentials in A ("~ 
which are curl free. In the second subsection, we shall derive explicit 
formulas for the corresponding scalar potential q~(~) and express the co- 
efficients therein as linear combinations of nth moments of vorticity. 

2.1. Vector potentials of nth order 

It was mentioned in Sec. 1.3 that in the far field each component of the 
vector potential of n th order should fulfill the Laplace equation. We can 
then introduce the Maxwell representation [6] for each component, 

Al")(x) = H}"~({, rl, ~)r-' for l = I, 2, 3, (2.1) 

where 

Hi n) = ~ C~,~k,, {"t/J~ k. (2.2) 
i + j + k = n  

Each coefficient in Ht n) is related to an  nth moment of vorticity by, 

C!3?k, ' = ( -- 1)"(x{ xJ2x~og, ) 
4rci~!k! (2.3) 

Here Hi n~ is a homogeneous polynomial of n th degree and its variables ~, r/ 
and ~" stand for partial differentiations with respect to x~, x2 and x3 
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respectively. In particular, the gradient operator is 

V = i~ + ]~/+ ~(, (2.4) 

where ~h stands for the unit vector along the mth axis with m = 1, 2, 3. 
From (2.3), the (n + 3)(n + 2)/2 consistency conditions (1.19) become 

c(n) r-,(n) • f,(n) 
1-- 1,j,k,X "~ = 0, (2.5) "~" i , j - -  l,k,2 T ~-" i,j,k -- 1,3 

for i,j, k > 0 and n = i + j  + k - 1. From (2.2) and (2.4), we get 

V " H (') = e H ~  ") + rlH~ ") + ~H~ n) 

: E t--trC('n)-- 1,j,k,1 -~ f i t  ) -  1,k,2 -~- "~i,j,kP(n) _ i , 3 ] ~ i ~ j ~ k .  
i + j + k = n + l  

and then show that 

(I) the consistency conditions, (1.19) or (2.5), are equivalent to the condition 
that the vector polynomial H r satisfies 

V . H (') = ~H~ ") + rlH~ ") + ~H~ ") = 0, (2.6) 

for  all ~, rl and ~. 

It follows that A (~) is divergence free, 

V" A (n) = V" H(n)r- 1 = O. 

Since A r also fulfills the Laplace equation, we recover the result that 

(II) the corresponding velocity v(n)(x) is irrotational and hence there exists a 
scalar potential t~(')(x), such that 

v (") = V x A (')  = V(I)  (') .  

This statement is noted in the Abstract and also in Sec. 1.3. 
We note that in general a homogeneous vector polynomial H (') of 

degree n lies in a 3(n + 2)(n + 1)/2 dimensional linear vector space spanned 
by ~irf~kth, i , j , k > O ,  i + j + k = n  and m = 1 , 2 , 3 .  Because of the 
(n + 3)(n + 2)/2 consistency conditions, (1.19), (2.5) or (2.6), H (") has to be 
in a J, = n(n + 2) dimensional subspace ~f(~). We shall define ~(")  in Sec. 
2.1.1 and then define in Sec. 2.1.2 an n : - 1  dimensional subspace ~(0 n) 
which satisfies V • H (') = 0, and hence does not contribute to the far field 
velocity. 

2.1.1. The consistency conditions and the .In divergence free vector 
polynomials 

Because of the consistency conditions on the nth moments, i.e., the relation- 
ships between the coefficients, (2.5), only "In = n(n + 2) of the ~(n + 2)(n + 1) 
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coefficients in H ~") can be assigned. We now proceed to identify the set ~r 
of  those J ,  coefficients and the corresponding set ~(") of  J .  vector polynomi-  
als in H ~"). 

For  example, for i = 1 , . . . ,  n, we express the first coefficient in (2.5) in 
terms of  the second and /or  the third. The vector polynomials  in H ("~ 
associated with the coefficients C}"]_ ~,k,2 are 

W(~,3) i,j : [ - - i r ]  "~- ~]~ i - - l~ j - - l f fk ,  (2.7) 

for j = 1 . . . .  , n + 1 -- i with k = n + 1 - i - j  while those associated with 
c (n )  i , j , k -  1,3 are 

W!,~ 2) : [ - - i ~  -4- ~ . ]~ i - l l~ j (k- -1 ,  (2.8) 

for k = 1 , . . . ,  n + 1 - i  w i t h j = n  + 1 - i - k .  
For  i = 0, the first coefficient in (2.5) vanishes and only one of  the 

remaining two coefficients can be assigned, say the third. The vector 
functions in H ~") associated with the third coefficients C~},k_ ~,3 are 

W(oT~,) = [ _  ] (  + ]q ] r / i - , (k -~ ,  (2.9) 

for k = 1 , . . . ,  n w i t h j  = n  + 1 - k .  
The above three equat ions define n(n + I) vector polynomials  W!.~. ~3) and 

W!"~ and n vector polynomials  W~,~ 3~. Altogether  there are J ,  of  them. They 
const i tute  the set ~("), i.e., 

~ ( n )  ,f IIV(.n:3) tlv(n,2) 
= t . .  ,,j , , ,  i , k ,  ( 2 . 1 0 )  

The corresponding .In coefficients referred to in the above three equat ions in 
turn form the set cg(,~. 

We note that  the J, vector polynomials  in ~(") are linearly independent ,  
because they differ f rom each other either in the exponents  of  4, r / and  ( or 
in the missing spatial component .  Thus  ~(") serves as the basis for the 
vector space ~ (" )  and we show that,  

(III) the set ~("~ of  those J, vector polynomials spans a J, dimensional vector 
space ovg("~ which fulfills (2.6). 

It follows f rom statements (I) and (III) that,  

(IV) a homogeneous vector polynomial H ("~ of  ~, q and ( of  degree n fulfilling 
(2.6) has to be in ~ff("). 

The vector potential  of  n th order, A (~)(x), is therefore defined by a linear 
combina t ion  of  the following J .  vector functions, 

W!~'3~r -~, W~2)r -~ and W~,i,1)r -~ (2.11) 

This answers questions (i) raised in Sec. 1.3. It should be noted  that  those 
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J, vector functions are not  linearly independent  for n > 3 because we have 
not  made  use of  the fact that ,  

[~2 + rl2 + ~2]r-~ = A r - '  = 0. (2.12) 

We shall address this question, (v) in Sec. 1.3, later in Sec. 3, 
N o w  we shall identify the scalar potentials corresponding to those 

vector functions in (2.11). We note  that  all those vector functions have one 
componen t  missing. For  example, any one vector polynomial ,  W ('), of  
W(.':I) misses its first component ,  i.e., W1 ") = 0. Equat ion  (2.6) then yields, 

l , J  , 

=  ff'2,3, w i ' )  = -nff'2,  a n d  W (") = - ( 2 . 1 3 )  

where ff'2,3 is a homogeneous  polynomial  of  degree n - 1. N o w  we evaluate 
the velocity corresponding to A (') = W(")r-~ and make  use of  (2.12). The 
result is 

I)(n) = V~72 ,3  r - I  

and the corresponding scalar potential  is 

(I) (n) = ~ I~2,a r - l .  (2.14) 

Similarly, the scalar potential  corresponding to a vector potential  of  W~.,n/~ 2) 

having the second componen t  missing, i.e., W~ ") = 0, is 

(I) (n) ---- r/~'3,1 r - l ,  with W~ ") = ~/3,1 and W] ") = ~I~3,1 

and that  for W~ ") = 0 is 

(I) (") = (l~'~,2r - l ,  with W~ ") = ~/~,2 and W~ ") = -~VV1,2 

(2.15) 

(2.16) 

We can then apply (2.14), (2.15) or (2.16) to reconfirm that  the velocity field 
corresponding to any one of  the above J, vector functions in (2.11) is a 
potential  flow. For  example, the scalar potential  corresponding to W~,~ '3) is 

Oid. = ~i--1q j-- l ( k +  ~r-1. (2.17) 

2.1.2. Vector potential not contributing to the far field velocity 

To find (n 2 - 1) linear combinat ions  of  vector polynomials  in ~<") which 
do not  contr ibute  to the far field velocity, we s tudy the curl, i.e., V x ,  of  the 
corresponding vector polynomials  of  degree n - 1, i.e., those in ~ ( ' - 1 ) .  Let 
us denote the elements of  the set ~<,-1)  by Z ~  -1) for m = 1 , . . . ,  

- - n  2 1 ,  and then denote  V x Z(~-  x) by Tin. F r o m  (2.4) we note that  Jn-1 
Tm is a homogeneous  vector polynomial  of  ~, ~/and ( of  degree n and 

V- T,, = V.  [V x Z~-1)]  = 0. (2.18) 

It follows f rom statement  (IV) that,  

T,, = V x Z ~ -  ~) ~ ~ ( ' )  (2.19) 



Vol. 41, 1990 Far field velocity potential induced by a vorticity distribution 405 

On the other hand,  s ta tement  (II) says that  there exists a scalar potential  
~ ( . -  1) such that  

Tm r-1 = V • Z(~ - 1u = VO(, -1) 

Consequently,  we have 

V • T,,r -1 = 0 (2.20) 

and conclude that: 

(V) the vector polynomials, T,,, m = 1 , . . . ,  n 2 -  1, span an (n 2 -  1) dimen- 
sional subspace ~ " )  o f  ~ ( ' )  and that 

(VI) the vector potentials Tm r - I  are curl free and hence do not contribute to 
the far  field velocity. 

Thus quest ion (iii) raised in Sec. 1.3 is answered. 
We can also prove (V) directly by showing that  T,, is a linear combina-  

- w(--1,3) We than  have tion of  elements of  ~( ' ) .  For  example, let Z ~  1) be --i.j �9 

T m  =- V • W ~ , ~ -  1,3) = _ V ~ i -  l ~ j -  l~k+  1 [,l[Z(n,3) [.~[.,z(n,2) 
- -  vv i , j  + I - -  r i ,k + 1" 

Knowing  the n 2 -  1 dimensional  subspace ov~') of  9ff ('), we can con- 
struct the subspace, ~(~') which is complementary  to 5r "), i.e., 

•(-)  = ~(0-) (~ ;,vg?). (2.21) 

The dimension of  ~f(~') is n(n + 2) - (n2 - l) = 2n + 1. In other words, we 
can determine 2n + 1 linear combinat ions  of  vector polynomials  in ~(") that  
contr ibute  to the far field velocity and answer quest ion (ii) in Sec. 1.3. Also 
we can express the corresponding 2n + 1 coefficients as linear combinat ions  
of  n th  moment s  of  vorticity. However,  it is easier to determine them directly 
f rom A (') defined by (1.15). This is done  in the next subsection. 

2.2. Relating the coefficients in the scalar potential o f  nth order to nth 
moments o f  vortieity 

We recall s ta tement  (II) which says that  the far field velocity corre- 
sponding  to the vector potential  A (')(x) can be identified as the gradient  of  
a scalar potential  ~('). On the other  hand,  the latter can be expressed in 
terms of  spherical harmonics,  see [6], 

@(')(x) = Y,(O, c~)r- ' -1.  (2.22) 

Here, Y, is a linear combina t ion  of  the 2n + 1 spherical harmonics  of  n th  
order. N ow we shall relate the 2n + 1 coefficients in II, directly to the n th  
moment s  of  vorticity by making  use of  Eq. (1.15). In particular,  we note 
that  the radial componen t  of  V • A (") defines ~")(x),  which in turn  defines 
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Y,,(O, 4~). The result is 

If;I_~ 2 �9 [ V  x A (")(x)] = 4 ~ r "  + 2 oo 

= a)~n)(r, O, 0)  

= --(n + 1)Y,(0, ~b)r - " - 2 ,  

and then 

R. Klein and Lu Ting ZAMP 

r "  - 1p~,(2,. 2)2 . [x' x f2(x')] d3x" 

(2.23) 

@(1)(x) = ~ < xjogk - xk~oj > Oir - l (2.28) 
i = l  

and 

1 3 1 3 
= ~ 0i r , (2.29) @(2)(x) ~ ~ F;OjOkr- '+~ =ItGj--Gk] 2 - ,  

i = I  i =  

with i, j, k in cyclic order. 
In this section, we began with Truesdell's (n + 3)(n + 2)/2 consistency 

conditions on nth moments of vorticity, found a set (g(") of J, -- n(n + 2) 

- 1 f f f L  r'" - 1p, (~ , .  :~)[x' x f]] �9 ~ d3x ". r , ( o ,  ~b) = 4rffn -Tr 1) (2.24) 

where P',(/0 stands for the derivative of  P,(#). Since the integrand is a 
homogeneous polynbmial of  x~ and xi, i = 1, 2, 3, of  degree n, the 2n + 1 
coefficients in Y, are linear combinations of  nth moments of vorticity. Thus 
we have settled question (iv) in Sec. 1.3. 

For  example, there are three spherical harmonics in Yl, 

�9 <x '  x . e >  1 
Yl(0,  q~) = 81r = -  8--~ ,-= =,  2~(XfjCOk--X'kOOj> (2.25) 

and five in Y2, 

1 3 
r2(o ,  4,) = Y, 2 . <x" x 

/ = l  

1 3 
= ^ ^ ^ 2  24rc ~ [9F~XjXk + 2x i  (Gg -- Gk)], (2.26) 

i = l  

with i, j ,  k in cyclic order. Here F~ and H, are linear combinations of second 
moments  of vorticity, 

Ft = <coi(x 2 - x~ , ) )  and Gi = <209iXjXk -- COjXkXi -- COkXiXj>. (2.27) 

We note that G1 + G2 + G3 = 0, SO there are only five linearly independent 
combinations. The first two terms of  the far field scalar potential, can be 
identified as three doublets and five quadrupoles respectively. They are 



Vol. 41, 1990 Far field velocity potential induced by a vorticity distribution 407 

moments  which can be assigned and identified the corresponding set 9~ ~") of  
J ,  vector polynomials  and the J ,  vector functions in A ("~, see (2.11). We 
then employed the condi t ion that  in the far field each componen t  of  A (")(x) 
is a potential  solution to show that  only 2n + 1 linear combinat ions  of  those 
J ,  vector functions in A (") will contr ibute  to the far field velocity. 

In the next section, we shall carry out  our  investigations in the reverse 
order. We shall begin with the condi t ion that  each componen t  of  A (")(x) is 
a potential  solution and later employ the condi t ion that  each vector 
potential  of  n th  order should be divergence free to deduce the answer to 
question (v) and then (iv) in Sec. 1.3. That  is for n > 2 there are 4n linearly 
independent  vector potentials of  n th  order, while only 2n + 1 linear combi-  
nat ions of  them contr ibute to the far field velocity. 

3. Linearly independent vector potentials of n th order 

It was pointed  out  in Sec. 1 and also in Sec. 2.1 that  in the far field each 
componen t  of  A ~") is a potential  solution. It can therefore be expressed in 
terms of  spherical harmonics  of  n order, 

2n 

Al"~(x) = ~ ak,,y,,k(O, dp)r -" -1  (3.1) 
k=O 

for l = 1, 2, 3. Here y,,k(O, ~b), k = 0 , . . . ,  2n denote  the set Y/(") of  2n + 1 
linearly independent  spherical harmonics  of  n th  order. They are [6] 

Y.,o = P o ( c O s  0) ,  

Yn.2h - 1 = COS hq~Pnh(COS 0), 

Y..zh = s i n  h ~ b p h ( c o s  0) ,  

(3.2) 

for h = 1 . . . .  , n. Each coefficient, ak,l, can be related to a linear combina-  
tion of  n th  moments  of  o~ t by (1.15). The vector potential  becomes, 

3 2n 

A('~ = ~ 2 ak,, iy,,,k(O, ~p)r-"-'.  (3.3) 
l = l k = O  

We then conclude that,  

(VII) the vector potential A (") ties in the vector space s ~) spanned by the 
3 ( 2 n +  1) linearly independent vector potentials o f  nth order, 
"lY,,k r - ~ - 1, and 

(VIII)  A (")(x) is defined by 3(2n + 1) linear combinations of  nth moments of  
vorticity, among 3(n + 2)(n + 1)/2 of  them. 
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Now we shall make  use of  the fact that  A (") has to be divergence free, 
i.e., 

2n 3 

V ' A ( " ~ =  ~ Z ak,lO'[Yn,k r - " - l ]  = 0 .  (3.4) 
k = O l = l  

We note that  V- d ~n~ is a potential  solution of  (n + 1)th order and hence 
can be expressed in terms of  the spherical harmonics  in ~ " +  1), i.e., 

2n + 2  

V" A (")= ~ by,+,j(O,  dp)r -"-2 .  (3.5) 
j ~ 0  

The divergence free condit ion,  (3.4), requires that  all the coefficients, bj, 
equal to zero, which in turn  yields 2n + 3 linear relationships on the 6n + 3 
coefficients, ak,t. The relationships are 

3 2n ; : i ' ~  
2 ~ a k , t  yn+lj(O, dp)[~ty~,k(O, dp)r -~-~] sinOdOddp = 0 ,  (3.6) 

l = l k = 0  ~ , ,  

for j = 0 , . . . ,  2n + 2. Therefore,  we can reduce the 6n + 3 coefficients, ak, z, 
in A ~ to 4n and express A ~ in terms of  4n linearly independent  vector 
potentials A ~,i), i = 1 . . . .  ,4n.  Each one of  them is a linear combina t ion  of  
the elements of  ~ times r --n-- 1. Since 4n < n(n + 2) for n > 2, we conclude 
that  

(IX) a divergence free vector potential of  nth order, A ('), can be represented 
by a linear combination of  M,  linearly independent vector potentials 
A (-,o and the M,  coefficients are linear combinations of  nth moments of  
vorticity, where M,  = 3 for n = 1 and M,  = 4n for n > 2. 

This is the answer to question (v) in Sec. 1.3. 
Another  way of  arriving at this is to note that  the condit ions (3.6) for 

j = 0 . . . . .  2n + 2, exclude the vector potentials in a 2n + 3 dimensional  
subspace 50 ~) of  5 ~ (") and we have 

50(") = 50~") 0) d (") (3.7) 

where d (n) denotes the complementary  subspace of  dimension 4n. Let its 
basis be denoted by {A ("'i), i =  1 , . . . ,  4n}. We then say that  

(X) a divergence free vector potential of  nth order has to be in sJ ~"~ for 
n > 2 .  

N o w  we shall rederive the answer to question (iv) by the method  of  
induction.  We shall show that  

(XI) the far field velocity corresponding to A ~") depends only on 2n + 1 vector 
potentials Z ("J), j = 1 . . . . .  2n + 1 with the 2n + 1 coefficients defined 
by linear combinations of  nth moments of  vorticity. Each one of  the 
Z("J)'s is a linear combination of the 4n vector potentials A (,,o 
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This is equivalent to saying that  

d ~") = d~0 ") ~ ~ " ) ,  (3.8) 

where ~'~") is a 2 n -  1 dimensional  subspace which is curl free while a 
vector potential  of  n th  order  which contr ibutes  to the far field velocity is in 
the complementa ry  subspace ~ . " )  of  dimension 2n + 1. The  dimension of  
the latter has to be 2n + 1 because a scalar potential  o f  n th  order  has 2n + 1 
spherical harmonics.  

For  n = 1, there are four linearly independent  vector potentials  
A ~1,") i = 1 , . . . ,  4. Since V r -  ~ is a divergence free vector potential  of  first 
order, and is curl free, it has to be in d ~  1) and the dimension of  d ~  ~) is 
2n + 1 = 3. The above s ta tement  is proven for n = 1. Of  course, we can 
arrive at this result immediately f rom statements (II) and (III) not ing that  
f o r n = l , J ~ = n ( n + 2 ) = 2 n + l .  

N o w  we assume that  the above s ta tement  is true for n - l, that  is, there 
are 2n - 1 vector potentials of  (n - 1)th order, Z ~"- lu)j  = 1 , . . . ,  2n - l, 
which fo rm the basis of  d ~  ~-  1). Note  that  V x Z ~"- ~u) represents a diver- 
gence free vector potential  of  n th order, hence it is in d ~"). Since it is also 
curl free, it has to be in ~1~o ~) which is then spanned by the 2n - 1 vector 
potentials of  n th  order,  V • Z ~"- ~'J), j = 1 , . . . ,  2n - 1. 

Thus  the above s ta tement  is true for n and is thereby proven for all n. 
It should be noted  that  the derivation presented in this section is much  

simpler than that  in Sec. 2 but  on the other hand  it relaxes the connect ion 
with the explicit presentations.  In the next section we shall present an 
alternative but  systematic derivation of  the results in See. 2 and Sec. 3. 

4. Systematic derivation using tensor algebra 

In this section we present a unified and systematic derivation of  the 
answers to questions (i) to (v) raised in See. 1.3. All derivations in the 
preceding two sections use cartesian coordinates of  vectors in the three 
dimensional  Euclidian physical space g.  Those results may  be rederived in 
a comprehensive way using the concept  o f  affine tensors (see e.g. [12]). To 
this end we first in t roduce the relevant nomenclature .  Let y ( ,0  denote  the 
space of  affine tensors of  rank n of  g.  Then,  for example, the scalar funct ion 
�9 (x) is in y-c0) and the vector functions ~(x) ,  A(x), v(x) and the posi t ion 
vector x are in oj-(1). The n th  moment s  of  vorticity (x~x~x~o~ m ) are then 
canonical  coordinates of  the n th  m o m e n t  tensor 

( (x  o y-c .+  (4.1) 

The symbol ' o '  indicates the tensorial p roduct  and (x o )" denotes the 
tensor o f  rank n: (x o x . . . . .  x). Let (V o )" s tand for n-fold appl icat ion of  
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the gradient operator, then the multipoles 0] 0{ O~(1/r) with (i + j  + k = n) 
are canonical coordinates of the nth gradient tensor 

( V o ) " ( ! )  ~ 3 -("). (4.2) 

Using (4.1) and (4.2), we rewrite the far field expansion of the Poisson 
integral, ( 1.13-1.15), as 

A: fi A(.)= I__ ~ (--1)"__ o ( ! )  
0 4n n! ( ( x ' ) ~ f / ' ) @ " ( V  o)" , (4.3) 

n =  ~=0 

where ~ '  stands for ~ ( x ' )  and the symbol ' Q '  denotes the contraction of  
tensors from the left after tensorial multiplication. For  instance the two-fold 
contraction, (3 2, of tensors (a o b o c) and (z o y ~ x), both in Wo), is 

(a  o / ,  o c)  |  o y o x )  = (a  �9 z ) ( / ,  �9 y ) c  o x .  (4.4) 

From hereon we further say: 

A tensor T (n) ~ J-(~) is symmetric with respect to its vth and #th argument, 
if  in a canonical representation 

. . . .  ~ ~ "g" r 
Tq--.,, ........ ,,(! l . . . . . . . . . .  tv ~ . . . .  l ,) (4.5) 

(Summation over double indices) 

the coefficients do not alter upon interchange of  the #th and vth index. 

In Sec. 4.1, we address question (i). We present an alternative formula- 
tion of Truesdell's consistency conditions and show that they are equivalent 
to certain symmetry constraints on the nth moment  tensor (4.1). These 
constraints confine the tensor to a J ,  = n(n + 2)-dimensional subspace ~(") 
of ~-~,+o. This reflects the fact, pointed out in Sec. 1.2, that J ,  is the 
number  of  nth moments free to be assigned. As a consequence A ~") is a 
linear combination of J, vector potentials of  nth order each of  which 
corresponds to an element of a basis of  ~("~. 

In Sec. 4.2 we use the symmetry constraints and the fact that ( l / r)  
satisfies the Laplace's equation to decompose A (n) as 

A ("~ = V~O (") + V x B("L (4.6) 

We express the vector function B ("~ and the scalar function O ("~ in terms of  
the nth moment  tensor and of the (n - 1)st gradient tensor, (V o )" - l (1 / r ) .  
The far field velocity v ("~ = V x A ("~ then becomes V(V �9 B ("~) in anticipation 
of  AB ("~ = 0. Thus the corresponding nth order scalar potential is related to 
B (") by 

�9 ~"~ = V- B("L (4.7) 
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It should be noted  that  it is not  the Helmhol tz  decomposi t ion  theorem, 
[13], that  leads to (4.6), because A (~) is singular at x = 0. 

In Sec. 4.3 we show that  ~k (n) and (I) (=) are determined by two sets of  
linear combinat ions  of  n th  moment s  of  vorticity, qt "), (l = 1 . . . .  , 2n  - 1) 
and p~:~), (k = 1 , . . . ,  2n + 1) respectively, which are part icular  projections 
of  the n th  m o m e n t  tensor onto  subspaces 6 a ~  ("- ~) and 6P~f (=) of  ) " ( " -  ~) 
and if("). These subspaces are spanned by the (n - 1)st and n th  gradient  
tensors (4.2) as x varies within g.  The second term V x B (=) in (4.6) is also 
readily determined by the coefficients p~). The construct ion of  the ql ") and 
p~") will provide the answers to questions (ii) to (v). 

4.1. Symmetry constraints on the moment o f  vorticity tensor 

We shall rederive Truesdell 's consistency condit ions (1.19) as symmetry  
constraints  on the n th  m o m e n t  tensor ( (x  o )"12), which will restrict the 
tensor to a subspace ~(") of  3 -("+ 1) 

First we note  that  an n th  m o m e n t  tensor  is symmetric  with respect to its 
first n arguments ,  i.e. 

((X o ) n O )  ~ ~--~n) ( ~ )  ~'-(1), (4.8) 

where 9-~ n) denotes the completely symmetric ~n + 2)(n + l ) -dimensional  
subspace of  ~(")  and where | indicates the tensorial p roduc t  o f  linear 
vector spaces. 

N o w  we let T (~) be any tensor of  rank n in 9 -(=) and consider the volume 
integral 

(v'-  (r("~ | ((x' o )~fJ')) 5 = T (~) |  ( ( x '  o )"V'. s 
r/--1 

+ r (~ (3 = Y, ( ( x ' o ) " - ' - ' o ' o  (x 'o)v) .  
v : 0  

Here V' is the gradient  opera tor  with respect to x ' ,  and 12' o (x'  o )v stands 
for O '  if v = 0 and for f~ 'o  ( x ' o ) V - i x '  if v _ 1. Using the divergence 
theorem and the far field behavior  (1.4) of  t2 one can show that  the left 
handed  side o f  the above equat ion vanishes. The first term on the right 
handed  side vanishes as well, because V �9 12 = 0. The equat ion thus becomes 

rt--1 
T (") (D ~ ~ ( ( x ' o ) ~ - ' - v 1 2 ' o  ( x ' o ) ~ )  = 0, (4.9) 

v=0 

for all T(")e ~-'(=). This relation only holds if the symmetric  part  of  the 
tensor ((x o ) , - 1~2 )  vanishes and,  with (n - 1) replaced by n, we obtain 

( (xo) - t2 )== 1 ~, )._.,~ o o n + 1 ( (x  ( x o ) v )  = 0, (4.10) 
v=0 
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o r  

( (x  o ) r a )  r y- r + 1) 

Equation (4.10) is equivalent to the consistency conditions given in (1.19), 
but, as we shall see later, one can easily derive new identities from (4.9) by 
choosing tensors T ~r) different from (B o )n which leads back to (1.16) and 
(1.19). 

Since T~s r+l) has dimension �89 +2)(n + 3) and is a subspace of 
3-~ ) | 9 "~ of dimension ~(n + 1)(n + 2), we conclude from Eqs. (4.8) and 
(4.10) that: 

The n-th moment tensor ( (x 'o  )~n)[2") belongs to the subspace 

~(") ..= (5<s ~) | Y-<l)) \5~sr + ~) (4.11) 

of 5 -~r+ i) with dimension J, = n(n + 2). 

Note that a basis of ~ r )  will constitute the set of linearly independent nth 
moments c~,) mentioned in Sec. 1.3. 

Subtracting from the nth moment tensor in A ~r) in (4.3) its symmetric 
part (4.10), we obtain 

Afr) = dr ( ( x ' o ) r - l [ x ,  o 1 2 ' -  • 'o  x ' ] )  G r (Vo)r(1-~, (4.12) 
\ r /  

where dr = (-1)rn/[4n(n + 1)!]. By carrying out the contractions on the 
right handed side and using the identity for the triple vector product 

(axb) x c = c Q ( a o b - b o a ) ,  (4.13) 

with (a, b, c) replaced by (x', f2', V), we get 

A'r)=dn ( (x ' .  V)" - ' (x '  x f 2 ' ) ) •  V ( ! )  

= dr[((x'  o ) ' r - l ) (x '  x f ~ ' ) ) x V ]  (S)r-1 (V ~ )"-1 ( 1 ) .  (4.14) 

Note that V is the gradient operator with respect to x and hence commutes 
with x'  and 12'. 

We are now ready to answer question (i): The coefficient tensor 
((x '  o)<r-~)(x' x f2 '))  is symmetric with respect to its ( n -  1) leftmost 
arguments and therefore belongs to 5 ~ -  ~) | 5 <1). Furthermore it has zero 
contraction ( ( x ' o ) " - 2 x ' .  ( x ' •  f 2 ' ) ) =  0 of the rightmost with anyone of 
the other arguments. These contractions are in 5"<s r-2) of dimension 
�89 1). Therefore, the coefficient tensor in Aft) has only 
3n(n + 1) - �89 - 1) = Jr independent components free to be assigned. Due 
to the equivalence of the axial vector (x x 12) and the skewsymmetric tensor 
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of rank two (x o 1 2 -  12 o x) in three dimensions there is a one to one 
correspondence between a linearly independent set of these components of 
the coefficient tensor and a basis of cg{,). Hence any basis of gT("), via (4.14), 
provides a set of J ,  vector potentials of nth order. A particular such set is 
given by (2.10). 

4.2. The decomposition of A ~} 

We shall decompose A (") into a gradient and a curl contribution, 
according to (4.6). For n = 1 the decomposition is readily given by Eq. 
(4.14) which yields 

A ~1}=VxB ~ with B~ n = ( x ' x l 2 ' )  and ~p~o=0. (4.15) 
8zrr 

Equation (4.7) provides the corresponding scalar potential 

~ , ~ ) = ( x ' x l 2 ' ) .  V ( I ~ .  
(4.16) 

81r \ r /  

We see that the vector potential for n = 1 is defined by the three compo- 
nents of (x  x 12) and thus we find M~ = 3 (see question (v)). 

For n > 2 we first evaluate the velocity of nth order. Using (4.13) and 
the fact that A(1/r) = 0, we obtain from (4.12) 

v { " ) = V x A  ")--  - d , V ( ( x ' . V ) ' - ' ( x ' x • ' ) ) .  V(1)  (4.17) 

and hence the corresponding scalar potential is 

tI)<~) = - d ,  <(x' .  V)"-~(x'  x , ' ) >  �9 V(~)  

__ _ r r o , , . - , , . ,  x , , ,  , o  , . - , ( ! ) .  (4.18) 

In the above equations we may replace the tensor ( (x '  o )~. - ~)(x' x ~ ' ) )  by 
its. symmetric part because of the symmetry of the n th gradient tensor. 
Equation (4.7) now implies 

B {')= - d , < ( x ' o ) ( " - ~  Q"-~ ( V ~  ~ - 1 ( ~ ) .  (4.19) 

This equation shows the special role played by the symmetric part of the 
coefficient tensor in the curl contribution to A ~") and suggests that the 
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difference of A (") and V x B (") be curl free. This difference is 

1 
[A (") - V x B(")] = 

_ n  - . x , ' ,  . . ( 4 . 2 0 )  
n k r /  

We observe that the first term equals (n - 1)A(")/nd. and, by applying (4.13) 
twice and noting that A(1/ r )=0,  we find that the second term can be 
replaced by 

n - 1  n - 1  1 
- - -  V(((x '"  V)"-Z(x ' x 12') x x'>" Vr -1) 

n n d, 
A~,~. 

Equation (4.20) then yields the decomposition 

A (") - V • B (") = 7 r  (") 

of A ~") with 

~ l ( n )  - -  n - l <(X' " V ) n - 2 ( X t  X f~t) X X'> " V ( ! ) .  (4.21) 

We will further simplify ~0 ~") by using the following identity derived from the 
symmetry constraints (4.9) with T ~") = i'o f o (V o )("-2)(1/r)(summation over 

and with n replaced by n + 1: 

< [ x 1 2 ( x ' . v ) n - I ( ~ t . V ) >  = n  _ 1 ( ( x ' . V ) "  �9 12')> . 

With this relation and using again (4.13) we obtain from (4.21) 

~k(.)_ n +____lln d. ( ( x ' '  V)"-~(x ' '  12 ' ) ) ( ! ) .  (4.22) 

Thus the decomposition of A (") is accomplished. 

4.3. Linear combinations o f  nth moments  in the vector potential A (") and the 
scalar potential  ~(n) 

Equation (4.18) says that only the contraction of the symmetric mo- 
ments ( ( x ' o ) " - l ( x '  • fI ' )>s with the nth gradient tensor (V o )"(l/r) can 
contribute to the nth order scalar potential ~("). Now it is well known [6] 
that any multipole 0~ 0~ a3k(l/r), with (i + j  + k = n), can be expressed as a 
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linear combination of (2n + 1) spherical harmonics of  n th  order Y~,")(x), 
(k = 1 , . . . ,  2n + 1). We infer that there is a representation of an nth 
gradient tensor as 

(V o)" = ~ G~")Y}~")(x), (4.23) 
k = l  

where the tensors G~ "), which span a (2n + l)-dimensional subspace ~ ( n )  
of Y("), are defined once a set of  n th spherical harmonics is chosen and vice 
versa. We consider a set of  orthonormalized tensors G}~ ") so that 
G! ") G" G} ") = 6u. Then the answer to question (iv) is: 

The scalar potential q~(") is defined by a set {p~,)}~__+ 1 of  2n + 1 linear 
combinations of  nth moments of  vorticity as 

2n+ 1 

�9 (")(x) = - d ,  ~ p~,")Y~")(x), (4.24) 
k=l 

where 

p?) = ( ( x ' o ) " - l ( x '  • 12')) s (D" G(~ ). (4.25) 

The same argument holds for the scalar field ~p~") in (4.22), except that the 
gradient tensor in (4.22) is of rank (n - 1). Consequently, 

~,~") is defined by a set of  (2n - 1) independent projections qt ") as 

n + l  2,-1 
~O(")(x) = - -  d, ~ qt ") Yt"-1)(x), (4.26) 

n l=1 

where 

qt ") = ( ( x ' o ) " - ' ( x '  �9 12')) O " - I G t  "-~). (4.27) 

Our calculations in Sec. 2 are equivalent to choosing particular G~ ") and 
Gt "-~) and deriving explicit formulae for the projections in (4.25) and 
(4.27). It remains to show that the set {p~,")}~+~ also completely determines 
V • B ~"), which is not obvious from equation (4.19). To prove this we will, 
in a first step, construct the complement 

c~Se~")  = Y - ~ " ) \ 5 ~  ~") (4.28) 

of the subspace of ~ " )  in 9-~"), thereby discovering a general representa- 
tion of any tensor in this space. Then, given a basis {ZJ ")} of  cgSc.~cf~"), the 
symmetric tensor appearing in B ~") has the decomposition 

N c 2n+ 1 
( (X t~  ) n - - l ( x /  X ~ '~ ' ) )S  = 2 ~ (n)Z(vn) "Jr- ~ P~")G~ "), ( 4 . 2 9 )  

v = l  k = l  

where Nc is the dimension of cg6e~") .  Any of  the Z) ") will prove to yield 
a zero contribution to V x B ~") when it replaces the moment  tensor in (4.19). 
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Therefore the mere knowledge of the projections {p~")}~__+l I is sufficient to 
compute the curl contribution to A ("). We proceed by establishing the 
general form of members of r162162 

Let  c g S P ~ )  be the set 

{C(")lc(n)=(C~s"-2) o f o b s ,  C~s "-2) ~ Y-~s n-=)} (4.30) 
(Summation over j~ 

with ( f o ~  being the unit tensor o f  rank 2. Then we claim that 

cg Se ~ ~") = cg Se ~ ~,"). (4.31) 

If C~ 'i2 ..... i.-2 are the coordinates of C~ -2) with respect to the canonical 
basis (~ . . . . .  / , -2)  of y-~,-2), the symmetrization in (4.30) according to 
(4.10) reads 

} C(" )=C~ ''2 ..... " -  ~ 2 tr(~~ . . . .  f o . ~  , (4.32) 
a ~ ~(n) 

where ~(") denotes the set of all permutations of arguments in the tensorial 
product of n vectors. We note that the C (") span a vector space equivalent 
to Y~s " -  2), which has dimension �89 - 1). In addition they are all orthogo- 
nal to the nth gradient tensor (V o )"(I/r) under n-fold contraction, and 
hence c~Sa~ ~,") is orthogonal to 5egeg ~"). To see the orthogonality one has to 
realize that the combination ( fo~  in each term of the permutations in (4.32) 
produces the Laplacian operator when it meets two gradients in the 
contraction. It follows that the dimension of the direct sum 
5e~(")~c~Se~,")  is the sum of the dimensions of both spaces, namely 
(2n + 1) + �89 + 1) = ~(n + 1)(n + 2). Since this is also the dimension of 
Y-~s "), the claim (4.31) is confirmed. 

We now show that none of the projections fl~") of 
((X,O)(n--1)( xt X ~'~t)) S into c~Se~(") can influence V x B ("). Any basis of 
~ -  2), via (4.30), yields a basis {Z~ ")} of ffow~<"), and when an element of 
this basis replaces the moment tensor in (4.19) the result for n > 2 after 
application of the curl operator is 

[(Z(v n-2 ,  ofohs  x V] (~)n-1 (V ~ )n--I ( ~ )  

= - a ,  V2(V • z~ "-2)) + b,(f .  V ~ x  V(V" z~"-2)), (4.33) 

where a, = (n - 2)/n, b, = 2/n and 

z(n-2)(X)=[Z~ n-2) c)n--3 (V o )"--3] ( ~ )  . (4.34) 

The first term on the right handed side of (4.33) drops out due to the 
Laplacian acting on (l/r)  and the second term covers the zero operator 
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( f "  v ) f  x V = (V  x V) - O. For n = 2 the expression on the left handed side 
of (4.33) vanishes as well. This finishes our argument and shows that the 
coefficients p~") given in (4.25) not only determine completely the nth scalar 
potential ~("), but also fix the curl contribution V x B (n~ to the nth vector 
potential. 

The results of the Sec. 4.2 and 4.3 now yield the answers to questions 
(ii), (iii) and (v): 

Question (ii): Given a basis {G~ "~} of YYt ~(n) one obtains (2n + 1) 
independent vector potentials which contribute to v (") by 

A~: n~= - d . V  x (G~ n) Q)"- '  (V o ) n - '  ( ! ) ) .  (4.35, 

Question (iii): The coefficients of these vector potentials in A (") and the 
p}~") given in (4.25). Section 4.2 shows that only the symmetric part of 
((x '  o )" -  l(x' x 12')) can contribute t o  V x B ("~, while the nonsymmetric 
components yield the gradient V0 ("~. The number of moments excluded in 
this way is J. - d i m ( J ( s  ")) = �89 + 1) - 1. The Arc = �89 - 1) components 
fl(~Z(~ ) of ( ( x ' o ) " - l ( x '  x f2 '))s  in qfSecf("~ neither influence the velocity 
field. Together these are the (n 2 -  1) combinations of moments which are 
irrelevant for v (~). 

Questions (iv), (v): We have shown explicitly that M1 = 3 at the 
beginning of the present subsection. For n > 1 the projections q}") and p~") 
are M,, = 4n independent combinations of moments governing A (~). 
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Abstract 

We study the velocity field induced by a vorticity distribution decaying rapidly in the distance r from 
the origin. In the far field, the vector potential for the velocity field can be represented by a series ~ A tn), 
with A <n) proportional to r -n-L,  for n = 1,2 . . . . .  We show that A(") can be expressed as a linear 
combination of Mn linearly independent vector functions. The number M~ is equal to 3 for n = 1 and 
4n for n -> 2 and the coefficient of a vector function is defined by a linear combination of ~n + 2)(n + 1) 
nth moments of vorticity. We then show that only 2n + 1 linear combinations of those M, vector 
functions contribute to the far field velocity which is irrotational. The corresponding scalar potential O(n) 
is then represented by a linear combination of 2n + 1 spherical harmonics of nth order whose coefficients 
are again linear combinations of nth moments of vorticity. 

Zusammenfassung 

Die vorliegende Arbeit beschreibt das Geschwindigkeitsfeld fernab einer Wirbelverteilung, welche 
mit dem Abstand r vom Ursprung eines geeigneten Bezugssystems hinreichend sehneU abklingt. Die 
Geschwindigkeit besitzt ein Vektorpotential, dessen Fernfeldverhalten einer Reihenentwicklung ~ A <n), 
genfigt. Dabei ist A (~) proportional zu r - n -  t f'tir n = 1, 2 . . . . .  Wir entwickeln eine explizite Darstellung 
von A (n) als Linearkombination von M n linear unabh/ingigen Vektorfunktionen. Die auftretenden 
Koeffizienten sind ihrerseits Kombinationen n-ter Momente der Wirbelverteilung3 Die Zahl M~ ist gleich 
3 und es ist M n = 4n fiir n > 2, w/ihrend die Gesamtzahl der nten Momente ~(n + 1)(n + 2) betr/igt. 
Weiterhin zeigen wir, dab nur 2n + 1 dieser Vektorfunktionen auch zum drehungsfreien Fernfeld der 
Geschwindigkeit n-ter Ordnung beitragen k6nnen und identifizieren die zugeh6rigen Kombinationen von 
Wirbelmomenten. Dieselben Kombinationen liefern dann auch die Koeffizienten in einer Entwieklung 
des skalaren Fernfeldpotentials nach Kugelfunktionen. 
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