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Abstract. We consider a molecule constrained to a hypersurface Σ in the configuration space
Rm. In order to derive an expression for the mean force acting along the constrained coordinate
we decompose the molecular vector field, and single out the direction of the respective coordinate
utilising the structure of affine connections. By these means we reconsider the well-known results
derived by Sprik et al. [1] and Darve et al. [2]; we gain concise geometrical insight into the different
contributions to the force in terms of molecular potential, mean curvature, and the connection 1-
form of the normal bundle over the submanifold Σ. Our approach gives rise to a Hybrid Monte-Carlo
based algorithm that can be used to compute the averaged force acting on selected coordinates in
the context of thermodynamic free energy statistics.
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1. Introduction

Many simulations in molecular-dynamics (MD) applications are devoted to the
calculation of free energy profiles along selected essential coordinates [3]. These coor-
dinates may be slow degrees of freedom or parameterisations of certain pathes along
which a reaction takes place. Here, the term �reaction� is understood in a very broad
sense, and mostly refers to any conformational transition in a molecule.

Theoretically, the free energy observable could be easily computed from the invari-
ant measure of the underlying dynamical system. However, since, e.g., conformational
changes occur rather rarely, reliable sampling of these parts of the phase space mea-
sure is a relatively tedious issue [4, 5]. Thus, one approach amongst others is to
constrain the system to fixed values of those coordinates one is interested in, and
which correpond to rare events. Then the free energy turns out to be the potential of
the mean force which acts along the constraint coordinate. This technique is known
as thermodynamic integration, and it goes back to [6]. The hope is that once one has
succesfully identified the essential coordinates sampling the invariant measure of the
remaining free coordinates should be comparably fast.

During the last few years there have been made many attempts to derive expres-
sions for the mean force along specified coordinates computed from constrained MD
simulations. Most authors proposed to exploit the force of constraint, that is necessary
to conserve the constraint during the course of integration [1, 2, 7, 8]. Nevertheless
at the beginning, there was some disagreement, firstly, about the correct expression
for the force acting on the reaction coordinate as well as, secondly, about the proper
averaging procedure — which is the probability measure to be taken? There are even
incommensurable definitions of free energy (see the review [9]). Once all these prob-
lems have been resolved, it is natural to ask, how the mean force can be evaluated
in practical applications, or, secondly: how can the desired phase space measure be
generated by the constrained dynamics. Although the results presented here are not
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new, our mathematical elaboration of the free energy literature allows for two key
issues: at first it provides a clear and concise interpretation of the notion of mean
force along a reaction coordinate, and even more important, it enables us to derive a
Hybrid Monte-Carlo (HMC) scheme for constrained MD simulations. With this tool
at hand we are then able to compute free energy profiles along a reaction coordinate
from a constrained MD trajectory. The main advantage of this novel method is that
it is conceptually very simple and lucid, and that ergodicity poses no problem which
might be even most important. Additionally it offers control over the numerical error.
We shall shortly sketch the approach:

Lagrangian vector fields and reaction coordinates. Consider a molecular
system whose motion is governed by the Lagrangian function L(q, q̇) which is as usual
kinetic minus potential energy. We introduce a reaction coordinate defining a scalar-
valued function c(q) depending upon the position coordinates only. We want to know
the following: which is the mean force acting along the reaction coordinate c for a
specific value of c′. To this end we firstly compute the unaveraged force, which we
shall denote by f . In principle this can be done by a change of coordinates according
to ϕ : q 7→ (x, c), where the reader should be aware of our abusive notation using the
same symbol for map c(q) and its coordinate counterpart c. Pulling back the original
Lagrangian by the diffeomorphism ϕ the force is given by the expression

f(x, c′, ẋ, ċ) = − d

dt
∂ċ(L ◦ ϕ−1)(x, c, ẋ, ċ)

∣

∣

∣

c=c′
.

Though this method is available a proper change of coordinates is in many cases a big
mess and not very insightful regarding the underlying physics or geometry. Therefore
we adopt an alternative approach that uses the decomposition of the vector field Z that
is generated by L into its horizontal and vertical components. Here �vertical� labels
the direction of the reaction coordinate. In coordinates the vector field Z reads

Z(q, q̇) = ∇q̇ q̇ + gradU(q) ,

where we have set the constant mass to unity. Note that the solutions to the associated
Euler-Lagrange equations are the integral curves of Z. The symbol ∇q̇ q̇ denotes
the affine connection or covariant time derivative, respectively, which indicates the
acceleration along a curve q(t) ∈ Rm. Concretely it describes how the velocity vector
q̇(t) ∈ Tq(t)R

m changes if one follows the direction of a curve q(t), where the direction
is specified by the tangent q̇(t) to the curve. Strictly speaking the covariant derivative
is explained for vector fields. But since ∇q̇ q̇ depends only locally on the values of q̇(t)
at q(t), we can consider q̇ as a vector field that coincides with q̇(t) at q(t).

Thus given a curve q(t) ∈ Rm the question is which is the component of Z in the
direction of the reaction coordinate c at c = c′. Recall that a vector field Z can be
written in the form Z = Zi∂i. We therefore may ask which is the component of Z in
the direction of the vector ∂c ∈ Rm at c = c′. Note that the vector ∂c is proportional
the gradient Dqc, and that the gradient is normal to the fibre Σ = c−1(c′). If we let
Vq denote the orthogonal projection onto the normal direction, we find for q ∈ Σ

∂c = ‖Dqc(q)‖−1VqDq with Dq = (∂q1 , . . . , ∂qm)T .

This result is known due to [10]. Here it appears rather naturally; the reason is that
Dq provides the canonical basis for the vector field Z, and we can project this basis
onto the vector ∂c. Then the force f is related to Z by

f(q, q̇) = ‖Dqc(q)‖−1VqZ(q, q̇) , q ∈ Σ .
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In order to illustrate what is going on consider the hypersphere Sm which has codimen-
sion 1 in Rm and that can be described globally by the real-valued function c(q) = 1.
Let q(t) be a curve on Sm and let the vertical space be the span of the normal vector
Dqc 6= 0. Accordingly, let Hq = 1 − Vq denote the orthogonal projection onto the
horizontal space TSm. Then our Lagrangian vector Z fields admits a decomposition

Z(q, q̇) = ∇q̇Hq q̇ + ∇q̇Vq q̇ + gradU(q)

where the horizontal velocities Hq q̇ constitute the dynamics on the sphere, whereas
the vertical velocities Vq q̇ are assigned to the motion normal to Sm. Now which is
the vertical force? Obviously if the curve lies on Sm we have Vq q̇ = 0 and the vertical
part of Z yields essentially the constraint force that is needed to stay on the sphere.
However if we take a curve hitting the sphere transversally, we have to bring up a
larger force in order to bring back the curve to the sphere. In that case Vq q̇ will
be different from zero, and in general the derivative of the vertical acceleration will
contribute to the force.

Constrained and unconstrained vector fields. In order to exploit this de-
composition algorithmically, we may think of the reaction coordinate ċ(q) = c′ as a
holonomic constraint TΣ. We then observe that it is possible to write the force f
as a sum of the constraint force and a connection term both of which can be easily
computed. This decomposition appeared as a result in [1, 2], yet the exact geomet-
rical meaning of what was called �geometric correction� remained unclear. In fact
it was pointed out in [9] that an alternative, more intrinsic definition of free energy
which is used in the community of transition state theorists leads to the force f as
the Cartesian constraint force λDqc but without the connection term.

If we carefully separate both vertical and horizontal velocity contributions, and
then applying the vertical projection to the whole vector field Z, we obtain the force
in the direction of the reaction coordinate

f(q, q̇) = −λ(q,Hq q̇) + ‖n‖−4 〈n, q̇〉 〈n, dn[q̇]〉 , q ∈ Σ ,

where λ as defined in (A.4) is the constraint force, n = Dqc is normal to TqΣ, and
dn[q̇] denotes the directional derivative of the normal field along the vector q̇. In some
sense the connection 1-form can be understood as a constraint force that does work to
the intrinsic motion on the constraint bundle TΣ, because it appears as a correction
force in the way we have just explained.

We have to be a bit careful; the approach using holonomic constraints from the
outset is very subtle as on the one hand we want to evaluate the force f at c = c′

regardless of ċ, and on the other hand the holonomic constraint imposes the condition
ċ(q) = 0 on the velocities. For that reason the supposedly attractive Routh construc-
tion L′ = L−λc, or as well approaches using the Dirac bracket are bound to miss the
point: either ċ = 0 on both sides of the equality, or ċ 6= 0 in case of which λ will not
be the constraint force. In the end, the connection 1-form bridges this gap, collecting
the velocities acting in the vertical direction.

Conditional forces from constrained averages. In principle the above ex-
pression for f allows for an averaging scheme with respect to any distribution over
the remaining coordinates. Mostly averaging is meant with regard to an invariant dis-
tributions of the system. Considering free energy calculations one uses the canonical
distribution µ ∝ exp (−βH), which evaluated at c = c′ is called the conditional den-
sity with the Hamiltonian H(q, p) as sum of kinetic and potential energy. Intriguingly
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the constrained density µΣ is related to the conditional density in a simple way

µΣ(q, p) = µ(q,H∗
q p) , q ∈ Σ ,

where H∗
q = MHqM

−1 is the projection onto the horizontal (constrained) momentum
subspace T ∗Σ, and M is the mass matrix. Thus µΣ is merely the full density µ
restricted to T ∗Σ. On the one hand this representation is very convenient because
it does not rely on introducing local coordinates. On the other hand we catch a
singularity in the Gaussian part of the canonical distribution, since the covariance
matrix becomes rank-deficient. However this does not pose severe problems as we
only want to compute expectation values from time series provided the flow is ergodic.

Conditional sampling with hybrid Monte-Carlo. From the considerations
above it should be clear that we are interested in sampling the constrained distri-
bution in position space only. It is known that the momentum contribution to the
constraint force is related to the second fundamental form of the embedding, whereas
the configuration part is due to the molecular potential only. The second fundamental
form describes the curvature of the constraint surface in the surrounding space (ex-
trinsic curvature). Taking the momentum average of the curvature term reveals that
only the mean curvature of Σ in Rm contributes to the force. A similar expression
arises from averaging the connection 1-form. Thus with ν = n/‖n‖ we get

f(q) = −‖n‖−1
(

〈ν,DqU〉 − β−1κ− β−1ω[ν]
)

, q ∈ Σ ,

where ω[ν] = ‖n‖−2 〈n, dn[ν]〉 is the average connection 1-form. The first term is the
vertical part of the molecular force field, β is the inverse temperature parameter and
κ = κ(σ) denotes the mean curvature. The mean curvature stands for the metric
entropy of the constraint surface, whereas the connection yields the average ambient
space forcing on the surface.

Once the velocities have been averaged out, the conditional density in configura-
tion space can be efficiently computed from the constrained canonical density using
the blue moon sampling procedure [11]. In principle computing the mean force is
not a big deal using any of the standard thermostat techniques. However they have
to satisfy two major requirements: firstly the thermostat has to be consistent with
constrained dynamics, and secondly the dynamics has to be ergodic with respect to
to the constrained canonical density in the position variables.

It is well-known that the ordinary Nosé-Hoover thermostat suffers from ergodicity
problems for certain classes of Hamiltonians [12, 13]. This pathology can be removed
by using extensions to the single-oscillator chain or the Andersen constant tempera-
ture thermostat [14, 15]. But also there the sampling works well only if the dynamics
is ergodic; and conditions to guarantee ergodicity are still lacking. Additionally all
these more sophisticated methods have in common that due to their complexity they
are relatively hard to implement, and that they require a careful adjustment of the
involved parameters. Even worse, it is not clear a priori how these methods fit con-
strained symplectic integration; see [16] for a discussion on that topic. In particular
for the Nosé-Hoover method the Lagrange multiplier λ becomes dependent on the
thermostat variables, which means that it can no longer be interpreted as the con-
straint force for the original subsystem. A promising alternative is to use stochastic
high friction Langevin dynamics since it is ergodic for the systems under considera-
tions. The procedure to generate the canonical ensemble on the constraint surfaces
is described in [9]. However since our approach is heavily based on deterministic
molecular motion we shall not discuss this method here.

4



We adopt the hybrid Monte-Carlo (HMC) technique. Belonging to the class of
Metropolis Monte-Carlo it is conceptually very simple, and it is perfectly designed
to handle symplectic integration, as one can use standard integrators for constrained
Hamiltonian systems. Moreover it is proven that the HMC dynamics is ergodic with
respect to the positional density under rather weak conditions which are fulfilled for
our purposes. We show that HMC generates indeed the constrained canonical density
with an acceptance procedure that is similar to the usual Metropolis acceptance step.
We further demonstrate how HMC can be efficiently used in connection with ordinary
constrained molecular dynamics and show how the proposal can easily be generated.
Note that the acceptance procedure also controls the numerical error, for the HMC
rejects those moves that have too large energy fluctuations. We apply HMC to the
problem of free energy calculations, but we emphasize that the algorithm can be used
for any constrained MD runs.

2. Some geometry

Holonomic constraints. We start from the Lagrange function L : TRm → R

for a molecule in an Euclidean configuration space that is defined by

L(q, q̇) =
1

2
〈Mq̇, q̇〉 − U(q) , (2.1)

where M is the diagonal mass matrix, and U : Rm → R is the molecular interaction
potential. In order to keep a compact notation, we choose mass-scaled coordinates
q 7→ M1/2q which allows us to set M = 1 in the following. By no means this will
affect our considerations; all computations can be carried out with respect to the
scaled coordinates using the standard inner product of Rm.

Generally, a constraint for any Lagranian system is an affine subspace of the
tangent space TqR

m for each q ∈ Rm. Let c : Rm → R be any smooth and regular
vector-valued function. We define the configurational manifold of constraints as

Σ = {q | c(q) = c′} . (2.2)

Assume that the gradient n = Dqc nowhere vanishes. Then Σ is a proper submanifold
of codimension one in Rm, and the 1-form ω = nidq

i determines a distribution D ⊂
TRm of dimension m− 1 as the collection of

D(q) = kern(q) , (2.3)

Now recall the following notion: a constraint is holonomic if the distribution D is
involutive, i.e., for any two vector fields X,Y ∈ D their Lie derivative ∇XY −∇Y X
lies in D. Note that q̇ ∈ D, or equivalently ċ(q) = 0 is sometimes referred to as the
hidden constraint although it is the proper constraint.

The Frobenius Theorem asserts that D is involutive if and only if it is integrable
[17, 18]. This is equivalent to state that Σ is an integral manifold of the vector field
generated by D. As a consequence we may introduce local coordinates x1, . . . , xm−1, y
in a tubular neighbourhood of Σ, such that the constraint is expressed by

y = 0 and ẏ = 0 .

Lagrangian vector field. We shall shortly sketch the geometric framework that
we need basically adopting the notation in [19]. Our aim is to study the vector field Z
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which is generated by the Lagrangian (2.1) on the configurational submanifold (2.2).
Consider a tubular neighbourhood of Σ, and define the normal bundle over Σ by

NΣ = {(σ, η) |σ ∈ Σ, η ∈ NσΣ} ⊂ Rm × Rm .

As there is a natural diffeomorphism of NΣ into Rm given by (σ, η) 7→ σ+ η, we may
express the Lagrangian (2.1) in a sufficiently small tubular neighbourhood of Σ by

L(σ, η, σ̇, η̇) =
1

2
〈σ̇, σ̇〉 +

1

2
〈η̇, η̇〉 + U(σ + η) .

The first step is to decompose the tangent spaces to NΣ into horizontal and vertical
parts, where vertical means the direction normal to Σ. For each σ ∈ Σ consider a
decomposition TσR

m = TσΣ⊕NσΣ into tangent and normal space. Since we can nat-
urally identify TσR

m with Rm, we obtain a decomposition of Rm. The corresponding
orthogonal projections are defined by

Hσ : TσR
m → TσΣ , Vσ : TσRm → NσΣ ,

such that the decomposition X = HσX + VσX holds for an arbitrary tangent vector
X ∈ TσR

m. Now let X,Y be any two vector fields on Rm, and let ∇XY be the
covariant derivative or affine connection in Rm. Then the derivative ∇ assigns another
vector field ∇XY to X,Y which we can decompose in the same way, namely

∇XY = Hσ∇XY + Vσ∇XY .

In particular the Lagrangian vector field can be expressed in the language of covariant
derivatives: take an arbitrary curve q(t) in Rm. Then the vector field

Z(q, q̇) = ∇q̇q̇ + gradU

is the second-order Lagrangian vector field on TRm, which boils down to the well-
known q̈ = −DqU in case q(t) is a solution of the Euler-Lagrange equations.

Coordinate expressions. Suppose x = x(σ) ∈ Rm−1 provides a local coordi-
nate map for Σ. Conversely, the inverse σ = σ(x) is a local embedding of Rm−1 onto
Σ ⊂ Rm. In accordance with the Frobenius Theorem, we introduce the local normal
coordinate y by η(x, y) = y n(σ(x)), where y is an abbreviation for c − c′ which is
considered being an independent variable. Here n(σ(x)) denotes the non-unit normal
to Σ, whereas the unit normal is denoted by ν(σ(x)).

In the usual manner we identify all tangent spaces Tσ,ηNΣ with m-dimensional
subspaces of Rm×Rm. If (σ(t), η(t)) is a curve in NΣ the tangent vectors are mapped
into Rm due to (σ̇(0), η̇(0)) 7→ σ̇(0) + η̇(0). In accordance with the choice of local
coordinates above the tangent vectors ∂i ∈ Tσ,ηNΣ and ∂y ∈ Tσ,ηNΣ correspond to
the tangent vectors1 in Rm × Rm

vx = (∂iσ(x)ẋi, y dn[∂iσ]ẋi) , vy = (0, ẏ n(σ(x))) .

Suppose q(t) = σ(t) + η(t) is a curve in NΣ and we want to know the component of
Z pointing in the direction of the coordinate c at c = c′. This is equal to asking for
the normal component ∂y of the velocity vector Dq at y = 0. Namely

Dq = ∂iσ∂
i + n∂y , Dq = (∂q1 , . . . , ∂qm)T ∈ TσRm

1What follows is a rather serious abuse of notation as we will use the symbols ∂i and ∂y for
partial derivatives as well as to denote the corresponding vectors in Tσ,ηNΣ.
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which clearly holds only on the surface y = 0. Here ∂iσ and n are vectors in Rm.
Note that we have raised one index to indicate summation over i. Hence we conclude

∂c = ‖n‖−1Vσ Dq . (2.4)

Force expressions. Using the previous arrangements we are ready to compute
the force along c. We may address the molecular potential and the velocity field
separately. Firstly note that due to (2.4) the contribution from the potential is related
to the molecular force field DqU = gradU in the following simple way

∂cU = ‖n‖−2 〈n,DqU〉 , (2.5)

Omitting the potential in what follows we proceed with the calculation of the velocity
field vx + vy = σ̇ + η̇. From the bilinearity of the connection ∇ we see that

Z = ∇σ̇σ̇ + ∇η̇σ̇ + ∇σ̇+η̇η̇ (2.6)

where η̇ = ẏ n on condition that y = 0. Before carefully inspecting each single term,
we may first of all note that ∇η̇σ̇ = ẏ∇nσ̇. It is also true that ∇nσ̇ ∈ TσΣ, which
follows from differenting the equation 〈n, σ̇〉 = 0 along the normal direction, since

〈∇nn, σ̇〉 = −〈n,∇nσ̇〉 ,

where the left hand side of the equation is zero, because ∇nn = dn[n] ∈ NσΣ.
Therefore the vertical projection applied to∇η̇σ̇ vanishes. Moreoverwe can utilise a
similar argument regarding the very first term ∇σ̇σ̇ to see that

〈n,∇σ̇σ̇〉 = −〈σ̇,∇σ̇n〉 .

As both sides of the equation are different from zero we know that ∇σ̇σ̇ has a non-
zero component in NσΣ. In fact the left hand side of the equation is known to be the
second fundamental form. For the last term in (2.6) we obtain

∇σ̇+η̇ η̇ = ẏ∇σ̇+η̇n ,

which means that the variations of the normal velocity η̇ along a curve (σ, η) is due
to the variations of the moving normal frame n(σ) and the independent variable ẏ.
Due to (2.4) the interesting magnitude is the vertical component of Z

VσZ = Vσ (∇σ̇σ̇ + ∇σ̇+η̇ η̇) (2.7)

Note that the expressions on the right hand side are quadratic forms in ż = (ẋ, ẏ),
and observe the following fact: if we had started from the ordinary Euler-Lagrange
equations, the right hand side of (2.7) would have the form Γm

jk ż
j żk, where the coeffi-

cients Γm
jk denote the Christoffel symbols associated with the Levi-Civita connection

on TNΣ, and Z would be the geodesic spray of the pulled back Euclidean metric.

Interpretation of force terms. We may split (2.7) and discuss the two parts
separately. The first one is the extrinsic curvature of the hypersurface Σ:
Lemma 1. Let Σ be a regularly immersed hypersurface, endowed with a Riemannian
structure 〈·, ·〉x = 〈·, G(x)·〉. If q(t) is a curve in NΣ, and if q̇ ∈ TRm denotes its
tangent vector field, then

Vσ∇σ̇σ̇ = 〈S(q)q̇, q̇〉 ν (2.8)
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whenever q = σ, where ν is the unit normal to Σ and S denotes the matrix of the
Weingarten map −dν[ · ] associated with the second fundamental form.

Proof. Let σ(t) ∈ Σ be the projection of the curve q(t) = (σ(t), η(t)) onto the
hypersurface. Differentiating 〈ν, σ̇〉 = 0 along the projected curve yields

〈ν,∇σ̇σ̇〉 = −〈σ̇,∇σ̇ν〉 .

Note that since σ̇ and ν are vectors in Rm the covariant derivative ∇σ̇ν is the usual
directional derivative dν[σ̇], and we may write the right hand side as

−〈σ̇, dν[σ̇]〉 = −〈∂jσ, dν[∂kσ]〉 ẋj ẋk .

The equation suggests to define a matrix R(x) ∈ R(m−1)×(m−1) which is the matrix of
the Weingarten map −dν[ · ] written in the local basis {∂iσ} (see [24] or the Appendix
for details). If G(x) ∈ R(m−1)×(m−1) denotes the metric tensor of Σ, then

Gh
jRhkẋ

j ẋk = −〈∂jσ, dν[∂kσ]〉 ẋj ẋk .

By carefully manipulating the vectors ẋ we can extend the quadratic form to Rm: if
we bear in mind that σ̇ = Dxσẋ, and if we set J = Dxσ ∈ Rm×(m−1) then we find
that ẋ = G−1JT σ̇, for it is true that G = JTJ is invertible.

As dν[ · ] = ‖n‖−1Hσdn[ · ] we may replace σ̇ ∈ TσΣ by q̇ ∈ TσR
m. Clearly σ̇ is

the horizontal part of an arbitrary tangent vector only on the hypersurface Σ, which
means σ̇ = Hσ q̇. But as q̇ = σ̇ + η̇ with η = y n(σ(x)) the matrices Dxσ and Dxq
coincide on the surface y = 0, and we are allowed to perform

〈

RG−1JTHσ q̇, J
THσ q̇

〉

=
〈

HσJRG
−1JT q̇, q̇

〉

,

where we have used the symmetry of G−1 and Hσ with respect to the product 〈·, ·〉,
and we have taken advantage of the idempotency of the horizontal projection. Hence
it is reasonable to define a matrix S(σ(x))

Sjk q̇
j q̇k := Gh

jRhkẋ
j ẋk , with S = HσJRG

−1JT ∈ Rm×m .

Apparently on Σ the definition S = HσJRG
−1JT makes sense for vectors q̇ ∈ Rm.

If we take into account that G−1JT is the pseudo inverse to J , we uncover S as the
Weingarten matrix in the standard Euclidean basis, i.e.,

S(q) = −‖n(q)‖−1HqD
2
qc(q) , q ∈ Σ

where n(q) = Dqc(q) is the gradient of c evaluated on the hypersurface.
Remark 2.1. We have extended the smaller matrix GR to the larger one S in Rm

without any ambiguities. The intriguing point however is: up to sign the second
fundamental form is known to be the velocity contribution to the constraint force [25].
Hence we can uniquely assign it to the constraint force, although we have ẏ 6= 0 in
the equations for the total vector field Z (see also the Appendix).

The second term in (2.7) describes the coupling between the intrisic (constrained)
flow and the normal vector field. Hence we address the connection part :
Lemma 2. Let all assumptions from the previous Lemma hold, and let dn[ · ] denote
the directional derivative of the normal field along some vector. Then

Vσ∇σ̇+η̇ η̇ = ω[q̇]Vσ q̇ , (2.9)
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where ω[ · ] = ‖n‖−2 〈n, dn[ · ]〉 is the connection 1-form of the normal frame n.
Proof. Set q̇ = σ̇ + η̇, and note that we can replace the covariant derivative by

the directional derivative dη̇[q̇]. Resolving η̇ = ẏ n, where the independent variable ẏ
is not affected by the derivative, we find that

Vσ∇σ̇+η̇η̇ = ẏ 〈ν, dn[q̇]〉 ν .
Then exploiting that ẏ = ‖n‖−1 〈ν, q̇〉 on condition that y = 0, and plugging this
relation into the last equation we obtain the result with ω[q̇] = ‖n‖−2 〈n, dn[q̇]〉.
Remark 2.2. The connection 1-form ω[ · ] is a vertical valued 1-form, which is as-
sociated with the connection ‖n‖−1dn[ · ] of the normal frame n. Unlike in case of
a normalised basis ν for the normal bundle to a hypersurface the connection 1-form
does not vanish. In the latter case ‖ν(σ)‖2 = 1 is conserved by the flow on Σ and
therefore 〈ν, dν[ · ]〉 = 0. Contrarily in our case the normal motion is coupled to the
motion on the surface, which is responsible for our specific choice of a normal frame.

Let us summarise the last few steps: after projecting the force field onto the
vertical direction according to (2.4) and taking the norm we get from the equations
(2.5),(2.8) and (2.9) the final expression for the force along the reaction coordinate

f(q, q̇) = −λ(q,Hq q̇)) + ‖n‖−2 〈n, q̇〉 ω[q̇] , (2.10)

which holds upon q ∈ Σ, and in correspondence with (A.4),

λ(q,Hq q̇) = −‖n‖−2 〈n,DqU〉 + ‖n‖−1 〈S(q)q̇, q̇〉 ,
is the constraint force with respect to the coordinate c.

3. Free energy as potential of mean force

In accordance with the MD literature we shall call the parameter c′ ∈ R the
reaction coordinate. It determines the hypersurface Σ = c−1(c′) over which we will
have to average the force. Without closer specification at this stage we let E[ · | c = c′]
denote the average over the hypersurface Σ (conditional average). If f(q, q̇) is the
force acting along c on condition that q ∈ Σ, then the mean force reads

fmean(c
′) = E

[

f(q, q̇)
∣

∣

∣
c = c′

]

.

In case the average is understood with respect to the canonical density µ ∝ exp(−βH)
it is easy to show [26] that the potential which corresponds to the mean force is the
thermodynamical Helmholtz free energy

F (c′) = −β−1 ln

∫

exp(−βH(q, p))δ(c(q) − c′) dq1 ∧ . . . ∧ dpm

= −β−1 ln

∫

q∈Σ

exp(−βH(q, p))‖Dqc(q)‖−1dσ(q) ,

whereH = 〈q̇, p〉−L denotes the molecular Hamiltonian, β is the inverse temperature,
and dσ is the ordinary surface element (see the Appendix). In principle the last
equation defines the free energy, and the mean force identity above pops out after
taking the partial derivative with respect to the parameter c′.
Remark 3.1. As an algorithmic approach it is common to compute the free energy by
integrating the mean force, a method which is known as thermodynamic integration [6].
In our case we want to use constrained simulations in order to compute the mean force.
After having derived the expression for the force f one point remains to be clarified:
how can the conditional expectation be obtained from constrained simulations? We
will address this questions in the following subsections.
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Remark on the canonical density I. We are aiming at computing the mean
force in a molecular ensemble at constant temperature. This means that we have to
average over the canonical ensemble which we shall denote by µ. In case that q is
restricted to lie on the hypersurface Σ we may call µ(q, p) with q ∈ Σ the conditional
density. Since this makes no difference on the conceptual level, we stick to the symbol
µ in either cases. In order to state what the canonical density is we introduce the
molecular Hamiltonian H : T ∗Rm → R by

H(q, p) = 〈p, q̇〉 − L(q, q̇) with pi =
∂L

∂q̇i
∈ T ∗Rm .

The canonical invariant measure of the dynamics generated by H then has the density

µ(q, p) = Z−1 exp (−βH(q, p)) , with Z =

∫

exp (−βH(q, p)) Λ (3.1)

using the common notation β = 1/T for the inverse temperature with the Boltzman
constant set to unity. Here, Λ = dq1 ∧ . . . ∧ dpm is the standard volume Liouville
volume form. As well as any other function χ(H) of the Hamiltonian µ is a stationary
solution of the Liouville equation χ̇ = {χ,H} for {χ,H} : T ∗Rm → R denoting the
Poisson bracket on T ∗Rm. We can compute the momentum average of (2.10):
Proposition 1. Let Σ = c−1(c′) be the configurational manifold of constraints with
mean curvature κ in Rm, and let ν = n/‖n‖ bethe unit normal to TΣ. Suppose q ∈ Σ.
If we average out the velocities in (2.10) with respect to to the canonical density the
force as a function in configuration space is given by

f(q) = −‖n‖−1
(

〈ν,DqU〉 − β−1κ− β−1ω[ν]
)

, (3.2)

where ω[ν] = ‖n‖−2 〈n, dn[ν]〉 is the averaged connection 1-form of the normal frame.
Proof. It suffices to consider the velocity contributions only. Setting q̇ = p in

(2.10) which we are allowed to do due to M = 1, we consider integrals of the type

∫

〈K(q) p, p〉 exp (−β/2 〈p, p〉) dp1 ∧ . . . ∧ dpm .

The task is to compute the covariance matrix of the Gaussian density. Due to the
shape of the Gaussian density only the diagonal terms pipi survive, i.e.,

∫

〈K(q) p, p〉 exp (−β/2 〈p, p〉) dp1 ∧ . . . ∧ dpm

= β−1tr(K(q))

∫

exp (−β/2 〈p, p〉) dp1 ∧ . . . ∧ dpm .

It is well-known that in case K(q) = S(q) is the matrix of the Weingarten map, the
trace tr(S) is the expression for the mean curvature κ of Σ in Rm up to a normalisation
factor 1/n. Concerning the connection term we firstly observe that only the vertical
momenta 〈ν, p〉 6= 0 contribute on average. Taking the trace over the vertical subspace
we obtain tr(K) = 〈n, dn[ν]〉 and thus the result.
Remark 3.2. Carefully inspecting the last equation a manifest physical interpretation
for the curvature contribution reveals: Recall the the thermodynamical definition of
the Helmholtz free energy F = U − TS, where T = 1/β. The first part U is the
energetic contribution which is equivalent to our potential function U in the equations
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of motion. Thus comparing F to the formula (3.2) for the average force we claim
that the mean curvature represents the entropic part of the free energy. The averaged
connection is again a connection 1-form [27], and can be considered as the average
ambient space forcing arising from the normal velocities. Note our result coincides
with the previously derived results in [1, 8, 2].

Remark on the canonical density II. In the same manner as we have in-
troduces the canonical density we can construct the constrained canonical density
µΣ. As we can express the constrained density in terms of the intrinsic Hamiltonian
HΣ(x, px) = 〈ẋ, px〉 − L(x, ẋ, c′, 0), where px denotes the conjugate momentum to x,
we may express µΣ using local coordinates. That is

µΣ(x, px) = Z−1
Σ exp (−βHΣ(x, px)) , with ZΣ =

∫

exp (−βHΣ(x, px)) ΛΣ

with ΛΣ = dx1 ∧ . . . ∧ dpm−1
x . However we might be willing to stick to the original

coordinates and state the relation between µ and µΣ in terms of q and p rather than
x and px. To this end we define a family of vector fields Xλ, which are generated
by the family of Hamiltonians Hλ = H + λ(c(q) − c′). The parameter λ can be
chosen in such a way, that the function c(q) is a first integral of Xλ, and that the
corresponding vector field is again of Hamiltonian type on the restricted phase space
T ∗Σ. A procedure which establishes a relation between vector fields generated by
H and Hλ is due to Dirac [28]. Taking the Poisson bracket of z = (q, p) with the
parametrised Hamiltonian Hλ on condition that c = c′ and ċ = 0 we obtain [29]

Xλ = XH + {X, c}{c, ċ}−1{ċ, H} = Xλ + λDqc . (3.3)

The last equation states that the constrained vector field is is the molecular vector
field XH = {z,H} plus the constraint force λDqc both evaluated at c = c′ and ċ = 0.
The last identification requires that we have fixed the parameter as

λ = {c, ċ}−1{ċ, H}

which is thus no longer an independent parameter but rather a function of q and p. The
condition that {c, ċ} be invertible is called the cosymplecticity condition on Σ, which is
sufficient for the constrained dynamics being Hamiltonian [30]. It guarantees that the
symplectic form on Σ is non-degenerate and closed, which obviously cannot be taken
for granted without imposing ċ = 0. At the same time, it is a necessary condition to
ensure that the bracket on the left hand side is well-defined. It is frequently stated,
that the constrained dynamics were not Hamiltonian [31, 32]. This is wrong as far
as the dynamics on the constraint surface is concerned, for the above principle states
that the resctriction of the full Hamiltonian vector field to the constraint surface is
the same as the vector field that is generated by the restricted Hamiltonian. The
latter one is clearly a Hamiltonian vector field.

We want to use this relation to compute the constrained density from the canonical
density µ = Z−1 exp(−βH). We endeavour the relation (3.3) and find for p ∈ T ∗

σΣ

µ̇Σ(q, p) = µ̇(q, p) + {µ(q, p), c}{c, ċ}−1{ċ, H} = µ̇(q, p) .

This identity is owed to the fact, that {µ, c} is proportional to 〈p, n(σ)〉, which is zero
on condition the constraint is satisfied. Note, that since we are using mass-scaled
coordinates, we can identify coordinates on T ∗Rm with those on TRm and therefore
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n = Dqc is perpendicular to p, too. This is a handy result, because it shows that
the unconstrained canonical density µ evaluated on T ∗Σ is indeed the constrained
invariant density µΣ in Euclidean coordinates, or that

µΣ(q, p) = µ(q,H∗
q p) , q ∈ Σ , (3.4)

where H∗
q : T ∗

q Rm → T ∗
q Σ is equal to Hq due to the mass scaling assumption.

Conditional and constrained averages. So far we have put away any ques-
tions concerning the computational aspects of the conditional measure: how can the
conditional measure be obtained from the constrained dynamics? It is a straight con-
sequence of its definition that the constrained Liouville form is the restricted standard
Liouville form Λ 7→ ΛΣ (see Remark 4.1 below). In contrast, the volume form cor-
responding to a conditional measure cannot be a Liouville form, because it is odd
dimensional; even worse, it cannot be invariant with respect to the Hamiltonian flow.

Though we will not pick up this topic in too much detail, the basic problem is
easy to understand: according to the cosymplecticity condition the canonical choice
to dc = 0 would be dpc = 0. If the vertical momenta are left free, dpc 6= 0 creates
a non-trivial functional determinant occuring in the volume form of the conditional
average which indeed equals blue moon factor [31, 11].
Proposition 2. Let µ(q, p) denote the conditional probability density and assume
that it is separable, i.e., µ(q, p) = Q(q)P (p) for each q ∈ Σ. Likewise we let µΣ(q, p)
denote the constrained density. Then with n(q) = Dqc(q) the following identity holds

∫

O(q)µdq1 ∧ . . . ∧ dpm =

∫

O(q) ‖n(q)‖−1µΣdq1 ∧ . . . ∧ dpm , (3.5)

for any integrable function O(q) and q ∈ Σ.
Proof. The result follows from the transformation properties of integrals. Recall

that mass scaling q 7→ M1/2, p 7→ M−1/2p leaves the symplectic form invariant and
so the Liouville measure remains unrendered. Moreover we can identify coordinates
in TRm with those in T ∗Rm such that the constraint equation ċ(σ) = 0 reads

〈n(σ), q̇〉 = 〈n(σ), p〉 = 0 , σ ∈ Σ

defining an integrable codistribution D∗(σ) ⊂ T ∗
σRm, where T ∗

σRm will be naturally
identified with Rm in what follows. Suppose nm 6= 0. Then we can locally parame-
terise the constrained momenta by a map ξ(u)

ξ(u1, . . . , um−1) = (u1, . . . , um−1,−n−1
m njuj) ∈ Rm

with pj = uj, and j is running from 1 to m− 1. Note that the nj, nm are functions
of σ only. We shall omit O(q) = O(σ + η) since it is not affected by the momentum
integration, and compute the constrained momentum average simply as the surface
integral of the conditional density over the codistribution D∗(σ), i.e.

∫

Rm∩D∗

P (dp) =

∫

Rm−1

(P ◦ ξ)(u)vol (Duξ) du1 ∧ . . . ∧ dum−1 . (3.6)

The matrix volume occurring in the last equation is the analogue of the functional
determinant for the map ξ. Endeavouring the Theorem of Cauchy-Binet we find [33]

vol(Duξ) =
√

det(DuξTDuξ) =

√

1 + n−2
m njnj .
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Note that ξ(u) is an embedding; contrarily u(ξ) is a local coordinate map for D∗(σ).
On the other hand we can write down the conditional density changing variables in
the spirit of the previous sections: set ċ(σ) = γ, and define a family of maps

pm
γ (p1, . . . , pm−1) = n−1

m (γ − njpj) ,

where the free parameter γ acts like a coordinate. We may change coordinates ac-
cording to ζ(p1, . . . , pm) = (p1, . . . , pm−1, γ). As before we slightly abuse notation,
and denote the map as well as the new coordinates by ζ. Now the corresponding
functional determinant reduces to det(Dζp) = ∂γp

m. Therefore

∫

Rm

P (dp) =

∫

Rm

(P ◦ ζ−1)(p, γ)|nm|−1dp1 ∧ . . . ∧ dγ (3.7)

follows from pulling back the integrand by ζ. In fact the surface integral in (3.6)
corresponds to the constrained density PΣ for the momenta. Provided that both µ
and µΣ are normalised we can combine the equations (3.6) and (3.7) to conclude that

∫

PΣ(σ, dp)

(
∫

P (dp)

)−1

=
√

n2
m + njnj = ‖n(σ)‖ . (3.8)

Hence the result follows from the requirement that µ and µΣ are normalised.
Remark 3.3. This Proposition is a rather general version of the famous Fixman
Theorem, which is the basis for the classical blue moon ensemble method [11, 34].
To the best of the author’s knowledge the sole way in the MD literature to prove
”blue moon” in the context of Hamiltonian dynamics relies on the specific form of the
Gaussian-like momentum distribution of the canonical density. In this case the weight
arises from the ratio of the determinants of the covariance matrices of constrained and
conditional densities, respectively [26]. However the considerations above show that
the weight is a merely geometric property, and that it is independent of the associated
density provided only it is separable. In principle the assumption that the observable
O is a purely configurational function only may be weakened in the sense that it must
not depend on the vertical momenta.

4. Hybrid Monte-Carlo

So far however, it is by no means obvious how a discretisation of (A.2) should put
forth a canonical measure rather than the microcanonical one. In order to calculate
canonical averages by means of (3.2), we want to develop an algorithmic concept that
allows for computing canonical averages, and that does not involve any artificially
added heat bath dynamics.

We start with a local representation according to Section §2; the invariant measure
of the constrained dynamics is given by (3.1). On T ∗Σ we cannot separate momentum
dependent parts from position dependent parts, and so we write µΣ = Q(x)Px(u),
indicating that the kinetic energy depends on the position coordinates. In order
to see how the constrained HMC scheme works with µΣ, we let the one-parameter
semigroup ϕτ denote a symmetric and symplectic flow map that is consistent with the
constrained equations of motion. Then for a single integration step (x′, u′) = ϕτ (x, u)
the HMC acceptance function is defined by

a(x, x′) = min

{

1,
µΣ(x′,−u′)Λ′

µΣ(x, u)Λ

}

= min

{

1,
Q(x′)Px′(u′)

Q(x)Px(u)

}

. (4.1)
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This definition relies on the symmetry of Px(u) and the Liouville form Λ with respect
to momentum inversion u 7→ −u as well as on the invariance of Λ under ϕτ , since the
flow map is symplectic (see the Remark below). We have to show that propagating
according to the HMC transition function — which is the acceptance function a(x, x′)
for a deterministic flow — leaves the canonical density µΣ invariant. This is by
no means trivially fulfilled, since our Hamiltonian system has no unique invariant
measure. The following statement holds
Proposition 3. Set the accepted proposal to x∗ = (π ◦ a ◦ ϕτ )(x, u) with an initial
momentum u distributed according to µΣ(x, ·) = Q(x)Px(·). Furthermore let ϑ(x∗, u′)
denote the distribution of the position coordinates after one HMC step. Then for any
position dependent observable O ∈ L1(µΣ) the identity Eϑ[O] = EQ[m(x∗)O] holds,
where m(x∗) depends only on the Riemannian structure of the constraint surface Σ.

Proof. For notational convenience, we drop the subscript Σ. Suppose the initial
position x follows the canonical distribution µ(·, u). Then for a given x we draw
a momentum vector from Px(u), and propagate a single time-step according to ϕτ .
Following [35], this yields for the expectation value

Eϑ[O] =

∫

O
(

µ(ϕ−τ (x∗, u′))min

{

1,
µ(x∗, u′)

µ(ϕ−τ (x∗, u′))

}

det(Dϕ−τ )

+ µ(x∗, u′)

(

1 − min

{

1,
µ(ϕ−τ (x∗, u′))

µ(x∗, u′)

}))

Λ′ ,

where the first term of the right-hand side of the equation comes from the accep-
tance, the second one stems from the rejection step. Furthermore we made use of the
symmetry of ϕτ in the second term. On condition that ϕτ is symplectic, det(Dϕ−τ )
equals one. From integrating out the momenta we easily find that

Eϑ[O] =

∫

O
(

µ(x∗, u′) + min
{

µ(ϕ−τ (x∗, u′)), µ(x∗, u′)
}

− min
{

µ(x∗, u′), µ(ϕ−τ (x∗, u′))
}

)

Λ′

=

∫

O µ(x∗, u′) Λ′ =

∫

O
√

detG(x∗)Q(x∗)dx∗1 ∧ . . . ∧ dx∗m−n .

The square root in the very last expression originates from the inverse metric tensor
G−1 on the horizontal subbundle T ∗Σ. We therefore have m =

√
detG which is the

correct marginal distribution in the position variables.

Corollary 1. Let O(q) with q ∈ Σ stand for the restricted positional density in
Cartesian coordinates and let ϑ(x) denote the density after one HMC step. Then
Eϑ[Õ(x)] = EQ[O(q)] with Õ(x) = O(q) holds true.

Proof. Recall that dσ = vol(J)dx, where J = Dxσ is the Jacobian of the parame-
terisation σ(x) of Σ. Also note that G = JTJ is the corresponding metric tensor, i.e.,
vol(J) =

√
detG. Using the transformation rule for integrating over a form yields

Eϑ[Õ(x)] =

∫

Õ(x)Q(x)
√

detG(x)dx1 ∧ . . . ∧ dxm−n

=

∫

O(σ)Q(σ)dσ1 ∧ . . . ∧ dσm

=

∫

O(q)Q(q)dq1 ∧ . . . ∧ dqm = EQ[O] ,
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where the last step is justified since the range of Dxq is equal to the range of Dxσ if
the derivatives are evaluated on Σ, and we can replace σ by q ∈ Σ ∩ Rm.

So, why does HMC give a symplectic and time-reversible mapping, too? Certainly,
the HMC inherits symplecticity from the discrete flow ϕτ . Time-reversibility can be
verified by checking detailed balance:

µ(x, u)a(x, x′) = µ(x, u)min

{

1,
µ(x′, u′)

µ(x, u)

}

= min {µ(x′, u′), µ(x, u)} .

The last equation is symmetric in regard to the primed and unprimed variables. Hence
the detailed balance condition is satisfied, for µ(x, u)a(x, x′) = µ(x′, u′)a(x′, x).

Remark 4.1. The invariance of the Liouville form is a consequence of the sym-
plecticity of the flow map ϕ. Bear in mind that the Liouville form is related to the
symplectic form Ω by the coordinate-free definition [25]

Λ =
(−1)k(k−1)/2

n!
Ω ∧ . . . ∧ Ω , (4.2)

where the right hand side contains an n-fold exterior product. As a fundamental
property the pull-back of an exterior product by a map is the exterior product of the
pull-back, i.e., (α ∧ β) ◦ ϕ−1 = (α ◦ ϕ−1) ∧ (β ◦ ϕ−1). Hence we can conclude from
symplecticity of the flow map, i.e., Ω ◦ ϕ−1 = Ω that Λ′ = Λ above.

Appendix A. More geometry.

Fixing local coordinates. Let us now address the practical issues of finding
local coordinates. A hypersurface Σ defined by the scalar equation c(q) = 0 is called
non-singular, if Dqc 6= 0 on the surface [36, 37]. Then, the following Lemma holds:

Lemma 3. Be q∗ ∈ Σ any non-singular point of the hypersurface, and let Uε(q
∗)

denote a sufficiently small tubular neighbourhood including that point. Then, there is
a parameterisation of Σ in Uε(q

∗) given by {q1, . . . , qm−1, h}, where h : Rm−1 → R

is the local inverse of c defined by qm = h(q1, . . . , qm−1).

Proof. Suppose, q∗ is a non-singular point of Σ, and say ∂mc 6= 0 at q∗ ∈ Σ. In this
case, the Implicit Function Theorem guarantees that we can locally solve the equation
c(q) = 0 for qm, obtaining a smooth function of the remaining coordinates. Let this
function be denoted by qm = h(q1, . . . , qm−1), such that c(q1, . . . , qm−1, h) = 0. Then
the set {σi} = {q1, . . . , qm−1, h(q1, . . . , qm−1)} is a parameterisation in Σ ∩ Uε(q

∗).

Note, that the assumption ∂mc 6= 0 does not affect our considerations, for we can
always choose a different parameterisation σ̃, say with q1 = h̃(q2, . . . , qm). Then, if c
is at least of class C2, the transition functions ψ = σ ◦ σ̃−1 are C2, too. Thus Σ will
be globally smooth. Furthermore, if we bear in mind the identity qm = h, we obtain
from implicit differentiation of c(q1, . . . , qm−1, h) = 0

∂ih = −∂ic (∂mc)
−1
, q ∈ Uε(q

∗) . (A.1)

Now, defining local coordinates for the normal bundle NΣ is pretty much straight-
forward: take local coordinates {x1, . . . , xm−1, c} with xi = qi for i = 1, . . . ,m − 1.
Then, {x1, . . . , xm−1} provide local coordinates on Σ and σ = σ(x) is an embedding
of Σ into Rm. We may regard y ∈ R as normal cordinate for NσΣ = span{n(σ)},
such that points on Σ are fixed by y = c− c′ = 0, where n(σ) stands normal to Σ.
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Geometry of the constraint force. We like to get physical or geometrical
insight into the different contributions to the constraint force. Rather that using
local coordinates we may apply some sort of index reduction technique for differential
algebraic equations. Utilising the Theorem on Lagrange multipliers the constrained
Euler-Lagrange equations are [25]

d

dt
Dq̇L(q, q̇) = DqL(q, q̇) − λDqc(q) , c(q) = 0 . (A.2)

which leads to the standard Newtonian equations

q̈ = −DqU(q) − λDqc(q) , c(q) = 0 .

As the constraint imposes ċ(q) on the dynamics it is certainly also true that all higher
derivatives vanish identically. In particular c̈(q) = 0, which in detail reads,

0 = 〈Dqc, q̈〉 +
〈

D2
qc q̇, q̇

〉

. (A.3)

Now we can plug the equations of motion into the equation for c̈ and solve for the
constraint force −λDqc. On condition that q̇ = σ̇ is tangent to Σ this yields

−λDqc(σ) = ν(σ) (〈ν(σ), DqU(σ)〉 − 〈S(σ) σ̇, σ̇〉) , (A.4)

where ν = n/‖n‖ with n = Dqc denotes the unit normal to the constraint surface and
S = −dν[ · ] is again the matrix of the Weingarten map — but here in the mass-scaled
Euclidean basis. Comparing the first term in last equation to (2.5) we see that it
basically equals ∂cU . Indeed S is the shape operator is easy to see as

dν[ · ] = ‖n‖−2(‖n‖dn[ · ]− n‖n‖−1 〈n, dn[ · ]〉) = ‖n‖−1Hσ dn[ · ] ,

which by definition is the Weingarten map. However we have to be careful since we
have to read the last equation from right to left, and the identification is valid only
on condition that ċ(q) = 0, that is, q̇ = Hσ q̇ is tangent to the constraint surface.

Appendix B. Generating random momenta for constrained HMC.

In order to implement the HMC algorithm, we have to randomly draw a velocity
or momentum vector, respectively, from the constrained canonical density µΣ. As we
have shown by means of the Poisson bracket identity (3.3), the constrained density is
simply obtained from a restriction of the original canonical density to T ∗Σ. So the
easiest way to draw momenta from the constrained invariant distribution is to

1. generate a vector X according to the unconstrained canonical distribution,
2. and then apply the projection of the vector X onto the constraint surface.

We shall shortly explain, why this works, and why the projected vector is properly
distributed. For obvious reasons, we may restrict our attention to only the momentum
part of the invariant density, and we drop the mass-scaling. Up to a factor 1/2 the
kinetic energy is then represented by the quadratic form T =

〈

M−1X,X
〉

, describing
a hypersphere in a mass-weighted Euclidean norm. In the following we regard X as a
vector in Rm. Suppose, we set T = 1, which means to define a unit hypersphere Sm−1,
or an isodensite in momentum space, respectively. Recall that Hσ is the orthogonal
projection onto the constraint distribution D(σ). Accordingly

H∗
σ = 1− V ∗

σ with V ∗
σ = Mν

〈

M−1ν, ·
〉
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is the orthogonal projector onto the constraint codistribution D∗(σ), where ν = ν(σ) is
the unit normal to D(σ). Geometrically, the constrained isodensite is the intersection
of the codistribution at σ ∈ Σ with the isodensite I = {X ∈ Rm |T (X) = 1}. Hence
H∗

σ ◦ Sm−1 = Sm−2, and we have to identify the norm, in which Sm−2 is again a
unit hypersphere — of lower dimension however. Obviously for any vector X in D∗,
the identity H∗

σX = X holds, and so does it on D∗ ∩ I. Hence, for X ′ ∈ D∗ ∩ I the
following relation holds:

1 =
〈

H∗
σX

′,M−1H∗
σX

′
〉

=
〈

X ′, H∗
σM

−1X ′
〉

,

describing a degenerate unit hyperellipse in the metric which is determined by the
projected inverse mass matrix H∗

σM
−1. Note that H∗

σ and M−1 commute, and there-
fore we can forget about the second projector. But according to the considerations
in the derivation of (3.3) this is in fact the correct covariance matrix for the con-
strained momentum distribution in Cartesian coordinates. It is degenerate, because
the projector H∗

σ has reduced rank m− 1, but X ′ is a vector in Rm. In this way the
projection maintains the full dimensionality for the HMC algorithm.

Appendix C. Example: Free energy computation for n-Butane.

We illustrate how the constrained HMC algorithm works. For the short-time
integration steps we use the RATTLE symplectic integrator. In order to sufficiently
guarantee long-time stability, the constraint has to be satisfied exactly; this is done
by means of a Newton iteration solving the nonlinear equations [38]. In order to
obtain a physically meaningful result we have to remove the mass scaling first. To
this end we introduce a rescaled metric

‖X‖2
M−1 =

〈

X,M−1X
〉

, X ∈ Rm

which renders the expression (3.2) for the force in the way that

f(q) = −‖n‖−1
M−1

(〈

ν,M−1DqU
〉

− β−1κ− β−1ω[ν]
)

, q ∈ Σ

with

ω[ν] = ‖n‖−2
M−1

〈

n,M−2D2
qc ν

〉

and κ = ‖n‖−1
M−1tr(M

−2HqD
2
qc) .

Bear in mind that the two inverse masses comes into play from the second derivatives
with respect to the scaled variables, and also from the momentum average. Also note
that the normalisation of the unit normal ν is understood with respect to ‖ · ‖M−1 .
A rather compact representation of the force is due to [9]

f(q) = −‖n‖−1
M−1

〈

M−1ν,DqU
〉

+ β−1div(M−1ν‖n‖−1
M−1) , q ∈ Σ .

The HMC scheme consists of the usual proposal and acceptance step, with the nu-
merical integration using the RATTLE symplectic integrator in between. Let (qn, pn)
satisfy the constraints. Then the algorithm proceeds as follows:

1. choose a random momentum vector ξ ∈ Rm according to ξ ∼ N (0,M)
2. apply the projection ξ 7→ (1 − V ∗

qn

) ξ onto the codistribution D∗(qn)
3. compute the total energy Hn = H(qn, ξ) from the Hamiltonian
4. propagate (qn+1, ζ) = ϕτ (qn, ξ) using the discrete flow map ϕτ

5. evaluate the total energy Hn+1 = H(qn+1, ζ) again
6. accept qn+1 with probability min{1, exp (−β(Hn −Hn+1))} or reject
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Note that in the last step the acceptance probability using the unconstrained Hamil-
tonian H(·, ·) is equal to the expression in (4.1), since all arguments are vectors sat-
isfying the constraints and thus µΣ equals µ. The whole procedure then generates a
discrete time series in Rm where the points {q1, q2, . . . , qN} are distributed accord-
ing to the constrained distribution QΣ ∝ ‖n(q)‖M−1 exp (−βU(q)). We can kill the
weight in front of the exponential dividing it by the blue moon factor. With the above
expressions for the partially averaged force we obtain

fmean(c
′) =

N
∑

l=1

Z(ql)
−1 f(ql)

/

N
∑

l=1

Z(ql)
−1 ,

where Z = ‖n‖M−1 is the usual blue moon weight. Ergodicity is guaranteed by the
irreducibility and positive recurrence of the underlying Markov chain [39], such that
we can compute the average by means of the time series. Once the mean force has
been computed for successive values of the reaction coordinate c′ the free energy can
be extracted from numerical integration along the reaction coordinate.

As an illustration the figure below shows the potential of mean force for a Butane
molecule. We used the united-atoms (UA) force field by Ryckaert and Bellmanns
[40]. Since the UA force field contains no Lennard-Jones interaction for Butane, the
free energy should be identical to the torsion potential for all temperatures. We
compute the free energy in [0, 2π] on a grid of 30 points. All data were calculated
at 1/β = 600K from a 50ps HMC trajectory with 1fs step size using the RATTLE

integrator, and the acceptance-rejection step every 50fs.
Let us concludingly comment on two outstanding numerical aspects. Firstly,

for very high temperatures above T = 1000K the molecule may move too far away
from the constraint surface in a single integration step due to eventually chosen large
momenta. As a consequence the Jacobian in the Newton iteration solving for the
constraint will be badly scaled and will have a poor condition number. This lack
of convergence can be tackled by using very small step sizes, or by using a clever
damping scheme in the iteration. Secondly, for torsion angle constraints we recom-
mend to carefully deal with the mean curvature term; computing the partial trace
of the Hessian matrix on the horizontal subspace substituting Hσ = 1 − Vσ a mass
weighted Laplacian arises from the first term which is very small though it is different
from zero. Thus computing the trace of the shape matrix is numerically unstable due
to extinction effects while evaluating the Laplacian. Even worse, dividing the mean
curvature term by Z = ‖n‖M−1 which is a very small number again, amplifies the
absolute error dramatically.

REFERENCES

[1] M. Sprik and G. Ciccotti. Free energy from constrained molecular dynamics. J. Chem. Phys.,
109(18):7737–7744, 1998.

[2] E. Darve, M.A. Wilson, and A. Pohorille. Calculating free energies using a scaled-force molec-
ular dynamics algorithm. Mol. Sim., 28(1-2):113–144, 2002.

[3] C. Chipot and D.A. Pearlman. Free energy calculations. The long and winding gilded road.
Mol. Sim., 28(1-2):1–12, 2002.

[4] B. Roux. The calculation of the potential of mean force using computer simulations. Comp.
Phys. Comm., 91:275–282, 1995.

[5] J. VandeVondele and U. Rothlisberger. Efficient multidimensional free energy calculations for
ab initio molecular dynamics using classical bias potentials. J. Chem. Phys., 113(12):4863–
4868, 2000.

[6] J.G. Kirkwood. Statistical mechanics of fluid mixtures. J. Chem. Phys., 3:300–313, 1935.

18



0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

φ

U
to

r(φ
),

F
(φ

) 
(k

J/
m

ol
)

Torsion angle potential
Potential of mean force

Figure C.1. Torsion angle potential U(φ) and potential of mean force F (φ) for Butane in UA
representation. The data were calculated from a 50ps HMC trajectory with the provided simulation
scheme at 600K. We suspect that the numerical error stems from computing the mean curvature κ

which is badly conditioned (see the explanation below).
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[37] B.A. Dubrovin, A.T. Fomenko, and S.P. Novikov. Modern Geometry – Methods and Applica-

tions: Part I. The Geometry of Surfaces, Transformation Groups, and Fields. Springer,
Berlin, 1984.

[38] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration. Springer, Berlin,
2002.
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