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When attempting to compute unsteady, variable density flows at very small or

zero Mach number using a standard finite volume compressible flow solver one

faces at least the following difficulties: (i) Spatial pressure variations vanish as the

Mach numberM �! 0, but they do affect the velocity field at leading order; (ii) the

resulting spatial homogeneity of the leading order pressure implies an elliptic diver-

gence constraint for the energy flux; (iii) violations of this constraint crucially affect

the transport of mass, preventing a code to properly advect even a constant density

distribution. We overcome these difficulties through a new algorithm for construct-

ing numerical fluxes in the context of multi-dimensional finite volume methods in

conservation form. The construction of numerical fluxes involves: (1) An explicit

upwind step yielding predictions for the nonlinear convective flux components. (2)

A first correction step that introduces pressure gradients which guarantee compliance

of the convective fluxes with a divergence constraint. This step requires the solution

of a first Poisson-type equation. (3) A second projection step which provides the

yet unknown (non-convective) pressure contribution to the total flux of momentum.

This second projection requires the solution of another Poisson-type equation and

yields the cell centered velocity field at the new time. This velocity field exactly

satisfies a divergence constraint consistent with the asymptotic limit. Step (1) can

be done by any standard finite volume compressible flow solver. The input to steps

(2) and (3) involves solely the fluxes from step (1) and is independent on how these

were obtained. Thus, our approach allows any such solver to be extended to compute

variable density incompressible flows.
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1. INTRODUCTION

Low Mach number variable density flows play an important role in many natural and
technological processes: Free convection in the atmosphere takes place at low speed and
is controlled by the rate of change of density with height. The general circulation of the
oceans is mainly driven by salinity and temperature, i.e. density, gradients. In combustion
processes density fluctuations occur due to thermal gas expansion upon chemical energy
conversion. If the flame fronts are thin in comparison with some characteristic length of
the flow, these density fluctuations may have very steep gradients. Prominent examples
are fuel/air combustors in energy plants, open fires, Otto engine combustion etc. Industrial
processes like spray deposition and fluid jetting require the numerical simulation of fluids
having different material properties. In these flows high density ratios (e.g. between water
and air) and low velocities are common.

Numerical methods for low and zero Mach number flows couple the evolution in time
of some set of dependent variables withdivergence constraintsfor the underlying velocity
fields. These constraints (e.g.r � ~v = 0 in inviscid non reacting flows in closed domains
of constant volume) arise because of the singularity of the governing equations in the
limit of vanishing Mach number (M ). Due to this singularity any numerical method for
zero and low Mach number flows has to cope with at least two fundamental problems.
These are thedynamic range problemand thesignal speed problem. The dynamic range
problem is associated with the fact that pressure fluctuations, non-dimensionalized by the
backgroundpressure, vanish asM �! 0. As a consequence, their numerical representation
deteriorates if only a single pressure variable is used in a numerical scheme. The signal
speed problem arises from the order of magnitude difference between the speed of sound and
a characteristic flow velocity asM �! 0. The challenge is to operate a numerical scheme
at time steps resolvingconvectionprocesses, while still capturing correctly the net effects of
acoustic waves. The dynamic range and the signal speed problem are manifestations of the
fact that in the limitM �! 0 the hyperbolic part of the governing equations degenerates
to a mixed hyperbolic-elliptic operator. At zero Mach number a numerical formulation
which explicitly accounts for the degeneration of the governing equations is unavoidable.
In the regime of low but finite Mach numbers such formulation is necessary in order to
overcome the accuracy and efficiency drawbacks which would affect a formulation which
naively ignores the singularity of the limitM �! 0.

In this paper attention is focused on the extension of conservative methods for compress-
ible flows to the zero Mach number limit. Our approach is based on the low Mach number
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asymptotic theory for conservation laws proposed in [19]. We show that the introduction
of suitable elliptic constraints for the numerical fluxes of mass, momentumand energy
allows any standard finite volume compressible flow solver to be used to compute zero
Mach number flows. The fluxes are constrained via a semi-implicit procedure. First we
compute an explicit approximation to the fluxes of an auxiliary hyperbolic system. In
our implementation this is done in a predictor stage in which the influence of pressure
gradients on the convective fluxes is neglected over a half time step. In the framework of
e.g. Runge-Kutta schemes this step would simply reduce to a reconstruction step plus flux
evaluation. Secondly a Poisson-type equation for cell-centered pressures is solved. This
pressure allows the computation of convective fluxes of mass, momentum and energy that
satisfy a velocity divergence constraint. Such constraint depends on the boundary condi-
tions for the velocity field and on the source terms of the energy equation. At this point the
grid cell interface pressure as anon-convectivecontribution to the momentum flux is yet
unknown. This pressure is obtained by solving another suitable discrete form of the energy
conservation law. This yields a second elliptic problem. The solution of this problem leads
to a new cell-centered velocity field whichexactlysatisfies a discrete divergence constraint
that is consistent with energy conservation.

The form of the auxiliary system associated with the computation of the convective
fluxes is close to that of the compressible Euler equations but retains finite signal speeds as
M �! 0. Importantly, any finite volume compressible flow solver can be employed in this
first explicit step after minor modifications. The overall scheme enjoys a CFL time step
restriction which is dictated by the speed of the flow, is second order accurate on smooth
flows and requires the solution of two elliptic problems per time step. The discrete operators
associated with these problems have compact stencil. The resulting linear systems can be
solved by standard iterative methods.

In the next two sections we discuss the relation between energy conservation and velocity
divergence constraints in zero Mach number flows with variable density. We introduce an
asymptotics based regularization and present a new approach for constructing fluxes via
upwind techniques and divergence constraints that are consistent with energy conservation.
Sections 4 and 5 describe in detail the construction of numerical fluxes. Section 6 deals
with initial and boundary conditions for the explicit fluxes and for the elliptic problems. In
this section we also discuss a time step restriction for our semi-implicit scheme. In section
7 we summarize the flux construction algorithm. To focus attention on the essentials of
the method we consider inviscid non-reactive flows throughout the paper. At the end
of section 3 we describe extensions of the method to account for viscosity, heat transfer
and background compression/expansion and discuss the meaning of the first projection for
Runge-Kutta time discretizations. In section 8 we point out the differences between the
present and other modern approaches for the numerical computation of zero Mach number
variable density flows. Numerical results are presented in section 9. We assess the accuracy
of the method for unsteady constant as well as variable density flows. Numerical results
for two and three dimensional inviscid flows are presented and discussed. We use standard
driven cavity computations to validate a straightforward extension of the method to the
viscous case and compare our results with reference solutions. In the last example we show
the results of the numerical simulation of a thermo-acoustic refrigerator. This computation
involves viscous effects, heat transfer and background compression/expansion. In the last
section we draw conclusions and outline further work to be done.
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2. DIVERGENCE CONSTRAINTS INDUCED BY ENERGY CONSERVATION

Consider the equations governing the evolution of a calorically perfect gas in a gravita-
tional force field:

�t +r � (�~v) = 0

(�~v)t +r � (�~vÆ~v) +
1

M2
rp =

1

Fr2
�~g

(�e)t +r � ((�e+ p)~v) =
M2

Fr2
�~v �~g

p = (
 � 1)(�e�
1

2
M2�~v �~v)

(1)


 represents the ratio of the specific heats which is assumed to be constant and set to1:4

in all computation shown in this paper. By non-dimensionalization the acceleration~g is a
constant unit vector. In these equations all variables are dimensionless andO(1). M and
Fr represent the Mach number and the Froude number respectively

M :=
urefp

pref=�ref
Fr :=

urefp
glref

: (2)

uref , pref , �ref andlref are reference quantities andg is the (dimensional) acceleration
due to gravity. ForM �! 0 the above equations develop a singularity, because:

1. The third term of the momentum equationrp=M2 obviously degenerates.
2. The eigenvalues of the Jacobian of the flux functionfM associated with the homoge-

neous part of (1)

fM :=

0
B@

�~v �~n

�~v~v �~n+
1

M2
p~n

(�e+ p)~v �~n

1
CA (3)

degenerate asM �! 0. These eigenvalues are~v �~n and~v �~n� c=M with c2 = 
p=� and
~n any unit vector.

Thus some reformulation is required. According to the asymptotic analysis presented in
[34], [35], [19], we decompose the pressurep into a thermodynamic pressurep(0) and a
second order pressurep(2) i.e. p = p(0) + M2p(2). The leading order pressurep(0) is
required to be homogeneous in space i.e.rp(0) = 0. As a resultrp=M2 = rp(2). With
this formulation the governing equations for zero Mach number variable density flow in
conservation form become

�t +r � (�~v) = 0

(�~v)t +r � (�~vÆ~v) +rp(2) =
1

Fr2
�~g

(�e)t +r � ((�e+ p)~v) = 0

p = (
 � 1)�e

p = p(0)(t)

(4)

These are the equations we will deal with in this paper. We end this paragraph with the
following three remarks, that are crucial for the subsequent developments:
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Remark. Equation(4:5) and the state equation(4:4) imply a strong restriction on the
energy�e which must be prescribed at the initial time: this energy must be homogeneous
in space.

Remark. Consider the zero Mach number governing equations (4). The rate of change
of energy is

(�e)t =
1


 � 1

dp(0)

dt
: (5)

If boundary conditions for the normal component of the velocity are prescribed on the
boundary@
 of the domain
:

~v �~n = b on @
 ; (6)

then the rate of change of the thermodynamic pressurep(0) can be computed by integrating
(4:3) over
, using equation(4:5), the state equation(4:4), the divergence theorem and the
boundary condition (6)

j
j
dp(0)

dt
= �
p(0)

I
@


b dS : (7)

Otherwisedp(0)=dt must be imposed and equation (7) is a constraint for the distribution
of velocity along@
. In both cases equation (5) implies a constraint for the energy flux,
namely

I
@V

(�e+ p)~v �~ndS = �jV j
1


 � 1

dp(0)

dt
(8)

for arbitraryV � 
. This is an integral constraint for the velocity divergence onV because
�e+ p = 
=(
 � 1)p(0) is constant in space.

Remark. The auxiliary system, (see [19])

�t +r � (�~v) = 0

(�~v)t +r � (�~vÆ~v) +rp =
1

Fr2
�~g

(�e)t +r � ((�e+ p(0))~v) = 0

p = (
 � 1)�e

(9)

with flux function

f� :=

0
@ �~v �~n

�~v~v �~n+ p~n

(�e+ p(0))~v �~n

1
A (10)

enjoys the following properties:

1. The system is hyperbolic.
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2. The eigenvalues of the Jacobian of the flux functionf� are~v �~n and~v �~n � c with
c2 := (
 � 1)(�e+ p(0))=� (see [19]).

3. This system has the same convective fluxes as the zero Mach number governing
equations (4).

4. Solutions of (9) satisfy, for homogeneous pressurep and zero flow divergence at time
t = 0, the following estimates at timet > 0 (see appendix A.1):

r � ~v = O(t)

rp = O(t2) :
(11)

System (9) is the auxiliary hyperbolic system mentioned earlier, which is used in the first
step of our method to obtain explicit predictions of the convective fluxes.

3. FLUX CONSTRUCTION

Consider a finite volume method for the zero Mach number governing equations (4):

Un+1

V
= Un

V
�

Æt

jV j

X
I2I@V

jI jFI + ÆtWV : (12)

Un
V

is a numerical approximation to the averageun
V

of the solutionu(~x; t) of (4) over the
cell V at timetn

Un

V
� un

V
un
V
:=

1

jV j

Z
V

u(~x; tn) dV u :=

0
@ �

�~v

�e

1
A : (13)

FI andWV are numerical approximations to the averagesfI andwV of the flux function
f and of the right hand sidew of (4). These averages are taken over the time interval
[tn; tn+1 := tn + Æt] and over the interfaceI and the cellV for fI andwV , respectively.

FI � fI fI :=
1

Æt

1

jI j

tn+1Z
tn

Z
I

f(u(~x; t); ~n(~x)) dS dt f :=

0
@ �~v �~n

�~v~v �~n+ p(2)~n

(�e+ p)~v �~n

1
A (14)

WV � wV wV :=
1

Æt

1

jV j

tn+1Z
tn

Z
V

w(u(~x; t)) dV dt w :=

0
B@

0
1

Fr2
�~g

0

1
CA : (15)

V is a cell of a conformal space discretization of
. jV j is the volume ofV . I is an
interface between two adjacent cells andjI j is the area ofI . By V , I we denote the set of
all cells and of all interfaces, respectively.I@V � I are those interfaces ofI which lay on
the boundary@V of the cellV . The sum on the right hand side of (12) is equivalent to the
double integral on[tn; tn+1]� @V

Æt
X

I2I@V

jI j fI =

tn+1Z
tn

I
@V

f dS dt : (16)
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We use the indicesV andI to represent sets of cell and interface averages, respectively.
In particularUn

V
is a set of approximate cell averages (space averages) at timetn while

FI,WV represent sets of interface and cell averages (space and time averages). The time
averages are taken over the interval[tn; tn+1]. We will often use the termnumerical flux
to indicate an interface averageFI . In our implementation the space discretization is a
regular Cartesian grid in two or three space dimensions, but we expect our approach to
be applicable to more complex spatial discretizations as well. We focus the attention on
second order schemes.

We propose a new algorithm for constructing numerical fluxesFI for the finite volume
method (12). These are defined through the flux functionf as follows

FI := f(UI ; ~nI) =

0
@ �~v �~n

�~v~v �~n+ p(2)~n

�h~v �~n

1
A

I

: (17)

In (17) the enthalpy�h := �e+ p has been used to express the energy flux. The numerical
fluxes or, equivalently, the interface averagesUI, are constructed according to the following
criteria

1. FI is defined on the basis of higher order upwind rules with respect to convection.

2. The interface average velocities~vI used to construct the numerical fluxesFI satisfy
the divergence constraint (8), thereby guaranteeing energy conservation.

3. On smooth solutionsFI approximates the average fluxfI up to errors of orderO(Æt2).

The numerical fluxes are obtained as follows. First explicit auxiliary numerical fluxesF�
I

are computed

F�
I
:=

0
@ �~v �~n

�~v~v �~n+ p~n

�h0~v �~n

1
A
�

I

(18)

with h(0) := e+ p(0)=�. F�I approximates the average fluxf�I

F�
I
� f�

I
f�
I
:=

1

Æt

1

jI j

tn+1Z
tn

Z
I

f�(u(~x; t); ~n(~x)) dS dt (19)

of the auxiliary system (9) up to errors of orderO(Æt2). The auxiliary numerical fluxes are
computed by using an explicit high resolution upwind method for hyperbolic systems of
conservation laws. Our present implementation employs operator splitting techniques to
account for the source terms. The high resolution method is a MUSCL scheme (see [22],
[23], [24], [25], [26]) based on slope limiting of characteristic variables and the numerical
flux proposed byEinfeldt[12]. This flux has been extended for system (9) according to the
characteristic analysis presented in [19].

OnceF�
I

are known we apply a two-step elliptic correction to compute the final numerical
fluxesFI. In the first step we compute theconvective partofFI. In particular, the interface
velocities~v�

I
associated with the auxiliary numerical fluxF�

I
are corrected to enforce the
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divergence constraint (8):

~vI = ~v�
I
�

Æt

2

rp(2)jI
�I

8 I 2 I (20)

X
I2I@V

jI j (�h~v)
I
�~nI = �jV j

1


 � 1

dp(0)

dt
8V 2 V : (21)

Notice that the correction term on the right hand side of (20) can be interpreted as a
numerical approximation for the integral overI � [tn; tn+ Æt=2] of the difference between
the acceleration implied by the governing equations (4) and that implied by the auxiliary
system (9). The estimate(11:2) guarantees that this interpretation is correct up to terms of
orderO(Æt3). Assume the interface averages�I , hI are known. Then equations (20),(21)
are, in conjunction with a linear rule to computerp(2)jI on the basis of cell-centered
pressuresp(2)V , a discrete Poisson-type problem for these pressures. Its solution provides
p(2)V and the interface average velocity~vI responsible for advecting mass, momentum
and energy. The pressure gradientrp(2)jI guarantees, through (21), that these interface
velocities satisfy the divergence constraint associated with energy conservation. This is a
crucial property in conservative schemes for zero Mach number variable density flows: a
violation of this property implies, e.g., the failure to properly advect even a constant density
distribution! This first step closely resembles a MAC projection as described in [16]. In
the present context it naturally follows from energy conservation.

In the second correction step the pressure component of the momentum flux at the
interfaces,p(2)I ~nI is computed. A straightforward way to do this would be to use the
cell-centered valuesp(2)V to compute, e.g. by the trapezoidal rule, the interface average
pressures. This simple approach, however, doesnotguarantee that the new velocities~vn+1

V

exactly satisfy the zero Mach number divergence constraints. To enforce this property
the pressure forcesp(2)I ~nI are computed by solving a second Poisson-type problem. This
problem is discussed in section 5.

In summary our scheme is a systematic procedure for constructing numerical approxi-
mations to the interface averages off overI� [tn; tn+Æt]. Consistently with second order
accuracy, the time integrals are replaced byÆt times second order approximations to the
exact values of the integrand at timet = tn + Æt=2. These approximations are defined in
terms of three contributions: the explicit fluxF�

I
yields the influence of convection on the

time evolution of�, �~v and�e. The first correction step includes the effect ofrp(2) on the
interface velocities. Finally, the second projection provides the pressure contributionp(2)

to the momentum flux at the desired time level.
There is a conceptually different interpretation of this construction of numerical fluxes

for (4). One may view the scheme as an add-on to an existing explicit compressible flow
solver. The sophisticated technology of a high resolution scheme is employed to provide
proper upwinding for the convective fluxes, thereby allowing a robust representation of
high Reynolds number or even inviscid flows.

In this context the two correction steps can be understood as discrete projections for
the intermediate interface velocity field~vI and for the final cell velocity field~vn+1

V
. These

projections are similar in spirit to Chorin’s original projection method from [10], [9] and
more recent advanced schemes, e.g., in [2], [3], [33], [13], [1].
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3.1. Extensions of the method

Viscous flows. The method outlined in the last two sections can be easily extended to
to cope with viscous flows. A model with zero heat conduction and finite Reynolds (Re)
number has been used in the computation of the driven cavity flows presented in section 9.
At zero Mach number viscosity has no effect on the energy balance (because the work of
viscous forces scales withM2=Re) and only enters in the momentum equation through a
viscous stress

1

Re
r � � � := r~v + (r~v)T �

2

3
r � ~v (22)

on the right hand side of the zero Mach number governing equations(4:2) and of the
auxiliary system(9:2). In the finite volume method viscous effects appear in the form of a
numerical viscous flux; equation (12) becomes

Un+1

V
= Un

V
�

Æt

jV j

X
I2I@V

jI jFI +
Æt

jV j

X
I2I@V

jI jRI + ÆtWV :

RI � rI rI :=
1

Æt

1

jI j

tn+1Z
tn

Z
I

r(u(~x; t); ~n(~x)) dS dt r :=

0
B@

0
1

Re
� �~n

0

1
CA

In the extended method such fluxes are added to the convective fluxes e.g. viaStrang[38]
splitting.

Heat transfer, background compression/expansion.Heat conduction brings an addi-
tional term on the right hand side of the energy equation:





 � 1

1

PrRe
r � rT : (23)

Pr and T denote the Prandtl number and the temperature, respectively. The thermal
conductivity is assumed to be constant. Let

rT �~n = q on @
 (24)

be the boundary condition for the heat flux across the boundary@
 of the domain
. The
additional term modifies the divergence constraint that results from energy conservation.
The rate of change of the thermodynamic pressurep(0) becomes

j
j
dp(0)

dt
= �
p(0)

I
@


b dS + 

1

PrRe

I
@


q dS : (25)

The divergence constraint (8) for the velocity on some arbitraryV � 
 becomes local;
using the equation of statep(0) = �T for the temperatureT this constraint can be written as

I
@V

(�e+ p)~v �~ndS = �jV j
1


 � 1

dp(0)

dt
+





 � 1

p(0)

PrRe

I
@V

r

�
1

�

�
�~ndS : (26)
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The first term on the right hand side of (26) is determined by equation (25). In the
computation with heat transfer to be presented in section 9 the time step integration is done
with a second order Runge-Kutta scheme:

U
n+1

2
V = Un

V
�

Æt

2jV j

X
I2I@V

jI j (Fn

I
+Rn

I
+Qn

I
)

Un+1

V = Un

V �
Æt

jV j

X
I2I@V

jI j
�
F
n+1

2
I +R

n+1
2

I +Q
n+1

2
I

�

Qn

I � q
n

I qnI : =
1

jI j

Z
I

q(u(~x; tn); ~n(~x)) dS q :=

0
B@

0

0




�1
p(0)

PrRer
�
1
�

�
�~n

1
CA

In the above scheme the numerical fluxesFn
I
, F

n+1
2

I , Rn
I

andR
n+1

2
I do not represent

time averages. As the heat fluxesQn
I
, Q

n+1
2

I , they are evaluated at fixed times. In the
computation of the numerical fluxes the cell interface pressurep(2)I is approximated by the
pressure that results from the first projection. This is done in order to restrict the number
of elliptic problems per time step to two. The order of the method is not affected by this
approximation.

4. CONVECTIVE FLUXES

In this section the algorithm for computing the convective part of the numerical fluxes
FI, i.e. the interface averages�I~vI �~nI , �I~vI~vI �~nI and�IhI~vI �~nI in (17), is described
in detail. We assume that the auxiliary numerical fluxesF�

I
are known. As explained in

the introductionF�
I

are computed by a standard high resolution method for the auxiliary
system (9).FI are then constructed according to the following rules:

1. Density�I and enthalpyhI are those associated with the numerical fluxF�I :

�I = ��I
hI = h0;�

I :
(27)

2. The velocity~vI is obtained from~v�I through the projection step (20), (21).

Using these rules and the definition ofF�I in (18) we find

FI = F�I �
Æt

2

0
@ rp(2) �~n

~v�rp(2) �~n+rp(2)~v� �~n� p(2)~n

h0;�rp(2) �~n

1
A

I

(28)

up to termsO(Æt2). As mentioned in the introduction, the pressure gradientrp(2)jI is
computed on the basis of cell-centered pressuresp(2)V . Let

rp(2)j
I
:= GV

I
(p(2)

V
)j
I
= GV

I (p
(2)

V
): (29)

GV

I
(p(2)V ) is a linear operator mapping cell-centered pressures into interface average pressure

gradients. Using (29) and (27) the discrete Poisson-type problem (20), (21) for the cell-
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centered pressuresp(2)V becomes

Æt

2

X
I2I@V

jI jh0;�

I GV

I (p
(2)

V
)�~nI =

X
I2I@V

jI j (�h0~v)�I �~nI +
jV j


 � 1

dp(0)

dt
8V 2 V : (30)

LetDI

V
be the discrete divergence

DI

V
(�) : DI

V
(~aI)jV = DI

V (~aI) :=
1

jV j

X
I2I@V

jI j~aI �~nI 8V 2 V : (31)

DI

V
maps interface averages of vector fields into their cell average divergences. UsingGV

I
,

DI

V
the linear system (30) for the cell-centered pressuresp(2)V reads

Æt

2
DI

V
(h0;�

I
GV

I
(p(2)

V
)) = DI

V
((�h0~v)�

I
) +

1


 � 1

dp(0)

dt
: (32)

The set product appearing as the argument of the discrete divergence operator on the left
hand side of (32) is the set of interface averages, say~w�

I
such that~w�

I
:= h0;�

I
GV

I
(p(2)V ). The

gradientGV

I
is defined in such a way that the discrete Laplacian on the left hand side of

(32) has compact stencil and the linear system forp(2)V can be solved by standard iterative
methods. WithGV

I
as given in appendix A.2,DI

V
GV

I
is, on Cartesian grids, the standard

5-point (7-point) Laplacian in two (three) space dimensions. Boundary conditions for (32)
are discussed in section 6.

Notice that our flux construction algorithm (28) requires, besides the auxiliary fluxF�
I
,

the interface averages��
I
,~v�

I
andh0;�

I
. The enthalpyh0;�

I
also appears in the elliptic problem

(32) for the pressuresp(2)V . This is a delicate issue, because the numerical fluxF�
I

is not
obtained, in general, by evaluating the exact flux functionf� in some stateUI . After
all, as explained in the introduction, we do not want to restrict the computation ofF�

I
to

some special class of high resolution methods. In our current implementation, for instance,
F�
I

are computed using a standard high resolution method which makes use of directional
splitting and approximate Riemann problem solvers, but any other method designed for the
hyperbolic system (9) could be used as well. We circumvent this problem by computing
��
I

(and~v�
I
, h0;�

I
) through a suitable interpolation of cell averages

��
I
:= LV

I
(��

V
) : (33)

The cell averages��
V

are those obtained by advancing the data from time leveltn to time
level tn + Æt using the high resolution finite volume method for the auxiliary system (9).

5. INTERFACE PRESSURES

Consider the finite volume method (12). With the convective fluxes for mass and energy
computed as described in the previous section, this method provides the cell averages�n+1

V

and(�e)n+1
V

at the new timetn+1. Due to our exact projection

(�e)n+1

V =
1


 � 1
p(0)(tn+1) 8V 2 V : (34)
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To compute the new cell averages(�~v)n+1
V

we still need the pressure components of the
momentum flux: this is the last term of(14:2). Let

(�~v)n+1

V
= (�~v)��

V
�

Æt

jV j

X
I2I@V

jI j p(2)
I
~nI : (35)

Here(�~v)��
V

is the cell average obtained by settingp(2)I to zero in the momentum flux(28:2)
while retaining the effects ofrp(2) �~n on�~v~v �~n and using the finite volume method (12) to
update(�~v)n

V
. Remember thatp(2)I is, according to (14), a numerical approximation to the

average, on[tn; tn+1] � I , of the exact pressurep(2). Assume a numerical approximation
to the exact pressurep(2) at timetn + Æt=2 be known in the grid nodes. Then the interface
averagep(2)I could be computed from the nodal values using some suitable quadrature rule.

We need to extend our notation: letV be adualdiscretization of
. V consists of control
volumesV centered around the nodes of the original grid. The interfaces between the cells
of V are denoted byI . As usualI is the set of all such interfaces. In figure 1 a cell-centered
and a node-centered control volume,V andV , are drawn for a two dimensional Cartesian
grid. In this figure the cell centers, the nodes and the midpoints of the interfaces are marked
by circles, squares and crosses, respectively. Letp(2)

V
be a set of node-centered pressures.

FIG. 1. Cell (V ) and node centered (V ) control volumes; cell centers, nodes and the midpoints of the
interfaces are marked by circles, squares and crosses, respectively.

The interface-centered pressuresp(2)I can be computed by

p(2)
I

:= LV
I

�
p(2)
V

�
: (36)

In (36)LV
I

is a linear operator which maps nodal values into interface averages. LetGV

V
be

the linear operator

GV

V
(�) : GV

V
(aV)

��
V
= GV

V (aV) :=
1

jV j

X
I2I@V

jI jLVI (aV)~nI (37)

mapping nodal values of a scalara into cell averages of its gradient field. Using (36) and
(37), the last step of our finite volume method for the momentum equation reads

(�~v)n+1

V = (�~v)��V � ÆtGV

V

�
p(2)
V

�
: (38)

The nodal valuesp(2)
V

are computed following an idea originally proposed byGeratz[18].
The average change of energy onV :

(�e)n+1

V
� (�e)nV := �

Æt

jV j

X
I2I@V

jI j
1

2
((�h~v)nI + (�h~v)n+1

I
)�~nI (39)

is required to be consistent with the constraint (5) i.e.

(�e)n+1

V
� (�e)nV =

1


 � 1
(p(0);n+1 � p(0);n) : (40)
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p(0);n+1 is the same as was computed and used in the first projection step. Notice that the
interface averages under the sum on the right hand side of (39) can be expressed to the
desired order accuracy by means of cell averages:

(�h~v)n
I
= LV

I
((�h~v)n

V
) : (41)

LV
I

is a (linear) operator mapping cell averages into interface averages. The interfaces are
those associated with the control volumes of the dual grid. In fact (39) is a finite volume
method for the averages of(�e) on the cells of the dual grid and the sum on the right
hand side of (39) is, after division byjV j, a discrete divergence. LetDV

V
be this discrete

divergence:

DV

V
(�) : DV

V
(~aV)jV = DV

V
(~aV) :=

1

jV j

X
I2I@V

jI jLV
I
(~aV)�~nI : (42)

UsingLV
I
, DV

V
and taking into account equation (40) the finite volume method (39) yields

�ÆtDV

V ((�h~v)n+1

V
) = ÆtDV

V ((�h~v)n
V
) +

2


 � 1
(p(0);n+1 � p(0);n) : (43)

Using equation (38) to replace the new cell averages(�h~v)n+1
V

on the left hand side of this
equation leads to the following elliptic problem for the unknown nodal pressuresp(2)

V
:

ÆtDV

V

�
hn+1

V
GV

V

�
p(2)
V

��
= DV

V
(hn+1

V
(�~v)��

V
) +DV

V
((�h~v)n

V
)

+
2


 � 1

p(0);n+1 � p(0);n

Æt
:

(44)

The linear operatorsLV
I

andLV
I

are chosen in such a way that the discrete LaplacianDV

V
GV

V

has a compact stencil and the linear system (44) forp(2)
V

can be solved by standard iterative
methods. Boundary conditions for (44) are discussed in section 6; the explicit rules for
computingGV

V
andDV

V
on Cartesian grids that we have used to produce the results shown

in section 9 are given in appendix A.3. For flows without background compression or
expansion the last term on the right hand side of (44) is zero. In this case the new velocities

~vn+1

V
: ~vn+1

V
:= (�~v)n+1

V
=�n+1

V
(45)

are divergence free in the following sense.

Lemma 5.1. LetDV

V
(~vn
V
) = 0, (�h)n

V
homogeneous in space andp(0);n+1 = p(0);n (no

background compression or expansion). Then(�e)n+1
V

are homogeneous in space and the
velocities~vn+1

V
obtained by our semi-implicit fluxes from (38) wherep(2)

V
is solution of (44)

satisfyDV

V
(~vn+1
V

) = 0.

Proof of Lemma 5.1. Forp(0);n+1 = p(0);n equation (44) becomes

ÆtDV

V

�
(�h)n+1

V

�n+1
V

GV

V

�
p(2)
V

��
�DV

V

�
(�h)n+1

V

�n+1
V

(�~v)��
V

�
�DV

V
((�h)n

V
~vn
V
) = 0: (46)

Remember that our flux correction method has been constructed around a divergence
constraint that guarantees the new cell averages(�e)n+1

V
to be homogeneous in space (cf.
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equation (34)). Therefore(�h)n+1
V

are homogeneous in space as well. Using homogeneity
of (�h)n

V
, (�h)n+1

V
, the linearity ofDV

V
and the assumptionDV

V
(~vn
V
) = 0 equation (46) yields

DV

V

�
1

�n+1
V

�
�~v��

V
� ÆtGV

V

�
p(2)
V

���
= DV

V

�
1

�n+1
V

(�~v)n+1

V

�
= DV

V
(~vn+1

V
) = 0:

Remark. Notice: In the last two sections we have formulated the details of the method
in a general fashion to support readers interested in applying our approach to curvilinear
or unstructured grids. Specialized formulae for Cartesian grids are compiled in appendices
A.2 and A.3.

6. INITIAL AND BOUNDARY CONDITIONS; TIME STEP RESTRICTION

In this section we discuss initial conditions for the approximate cell averages at time
t = 0 and boundary conditions for the computation of the auxiliary numerical fluxF�

I
and

for the Poisson equations (32) and (44). We also address the problem of finding a suitable
time step restriction for our semi-implicit method.

6.1. Initial conditions
As mentioned in the introduction the constraintrp(0) = 0 implies, because of the state

equation (4), a restriction on the initial condition for the energy(�e), namely

r(�e) = 0:

The initial cell averages(�e)0V must be homogeneous in space and equal top(0)(0)=(
�1).
We takep(0)(0) = 1. The initial density distribution is arbitrary. In section 9 we show
numerical results both for smooth and for discontinuous density distributions. In the case
of a falling “droplet”, for instance, the density is equal to 1000 inside the droplet and 1
outside. The initial velocity field

~v0V :=
(�~v)0V
�0V

is required to satisfy the divergence constraint

DV

V (~v0
V
) =

1


p(0)
dp(0)

dt

����
t=0

8V 2 V:

As stated in Lemma 5.1DV

V
(~v0
V
) = 0 is sufficient, for constant background pressurep(0),

to obtainDV

V
(~vn
V
) = 0 for all n > 0. Using an argument similar to the proof of Lemma 5.1

one can show that this condition is also necessary.

6.2. Boundary conditions
In a finite volume formulation boundaryconditions appearas constraints for the numerical

fluxes on@
. In our method the interface averagesFI are computed by means of an implicit
correction of the explicit auxiliary numerical fluxesF�

I
. Thus, we have to prescribe

boundary conditions both forF�
I

and for the implicit cell-centered and node-centered
pressuresp(2).
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6.2.1. Explicit fluxes

For periodic boundary conditions the constraints forF�
I

are straightforward. For rigid
non permeable walls the convective part ofFI must be zero. This constraint applies to the
numerical fluxF�

I
as well:

F�I :=

0
@ 0

p~n

0

1
A
�

I

8 I 2 Iw: (47)

In the above equationIw represents the set of all wall interfaces. Boundary conditions
for in- and outflow boundaries can be derived by coupling suitable assumptions about
the outside of the computational domain with a characteristic analysis of the governing
equations. Again these boundary conditions must be translated into constraints for the
numerical fluxesF�

I
.

In our Cartesian grid framework the boundary conditions are implemented by filling rows
of “ghost” cells laying outside the computational domain with suitable cell averages and
then treating@
 as a set of standard grid cell interfaces. In the case of periodic boundary
conditions the rules for filling these cells are straightforward. LetV be a ghost cell andV 0

the image obtained reflectingV with respect to the boundary. LetI 0 2 Iw be the boundary
interface lying betweenV andV 0. For rigid non permeable fixed walls one can show that,
with the numerical flux function that we use to computeF�

I0
, the filling rules

�
V

= �
V 0

~v
V
�~n = �~v

V 0
�~n

p
V

= p
V 0

are sufficient to guarantee that the numerical fluxF�
I0

satisfies the boundary conditions
(47). In the case of inflow and outflow boundaries other filling rules must be derived.
Notice that, in general, the filling rules depend both on the boundary conditions and on
the numerical flux function used to constructF�

I
. Notice also that, no matter what the

boundary condition, the energy fluxF �

�e;I
on @
 must satisfy some discrete form of the

integral condition (7). As we will see in the next paragraph this is a solvability constraint
for the elliptic problem (32) for the cell-centered pressuresp(2)V .

6.2.2. Cell centered pressures.

Consider the Poisson-type problem associated with the first projection, equation (32).
The normal derivative

rp(2)j
I
�~nI := GV

I (p
(2)

V
)�~nI

must be evaluated on all interfaces belonging to the boundary@
 of the computational
domain. Let the boundary condition for the auxiliary interface velocity~v�

I
be the same as

those for~vI i.e.

~v�I �~nI = ~vI �~nI : (48)
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This assumption seems to be quite standard in projection methods and has been used in all
our computations. Using (48) equation (20) yields

Æt

2

1

�I
GV

I (p
(2)

V
)�~nI = (~v�I � ~vI)�~nI = 0 8 I � @
:

With these boundary conditions the right hand side of the linear system (32) must satisfy
an integral constraint for a solutionp(2)V to exist, namely:

X
V 2V

jV jDI

V

�
~F �

�e;I

�
+

j
j


 � 1

dp(0)

dt
= 0 (49)

Notice that (49) is nothing but a discrete form of equation (7) which prescribes the rate of
change of the background pressurep(0) on the basis of the mass flux through the boundary
@
 of the computational domain. Equation (7) was directly derived from the governing
equations for zero Mach number flows (4). In the introduction we pointed out thatdp(0)=dt

must be computed from (7) or, alternatively, that (7) implies, for a givendp(0)=dt an integral
constraint for the velocities on@
. However we did not specify in which discrete sense
equation (7) should be fulfilled: the answer to this question is now given by equation (49).

6.2.3. Node centered pressures.

Consider the elliptic problem(44) for the nodal pressuresp(2)
V

. To compute the divergence
fieldDV

V
the discrete normal derivative

LV
I

�
hn+1

V
GV

V

�
p(2)
V

��
�~nI

and the scalar products

LV
I
(hn+1

V
(�~v)��

V
)�~nI LV

I
((�h~v)n

V
)�~nI (50)

must be evaluated on interfacesI 2 I laying beyond the boundary of the computational
domain
. This has been done as follows. The dual cells around nodes laying on walls
of @
 have been cut by@
: on these interfaces both the normal derivative ofp(2)

V
and the

scalar products (50) have been set to zero. Dual cells around nodes laying on periodic
boundaries have been left overlap the outside of
: rows of “ghost” cell averages and nodes
have been filled with suitable values andLV

I
has been evaluated as on internal interfaces.

6.3. Time step restriction
Because of the explicit computation of the numerical fluxesF�I , the time stepÆt is subject

to a CFL [31] stability restriction. We useÆt := CÆt� with 0 � C < 1 and

Æt� := min
I2I

�
1

jI j
min

�
jV L

I
j

jminf0; ~v�
I
�~nI � c�

I
gj
;

jV R
I
j

maxf0; ~v�
I
�~nI + c�

I
g

��
:

V L
I , V R

I are the control volumes on the two sides of theI-interface. Notice that on a
regular grid of spacingÆx this restriction impliesÆt = CO(Æx) because the characteristic
speeds~v �~n� c of the auxiliary system (9) are ofO(1). C is a safety factor. In most of the
computations presented in section 9 we usedC = 0:8.
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7. SUMMARY OF THE TIME STEP ALGORITHM

In this section we summarize the time step algorithm for the computation of the approx-
imate cell averagesUn+1

V
at timetn+1 := tn + Æt fromUn

V
. The time stepÆt is given by

the constraint from section 6.3. We assume that the boundary conditions are compatible
with the background pressurep(0)(t) (in the sense that suitable discrete forms of (7) e.g.
equation (49), hold) and that cell averages of ghost cells are properly set whenever they are
needed.

1. Explicit numerical fluxes and interface averages.Using a standard high resolution
finite volume method for the auxiliary system (9) compute numerical fluxesF�

I
, source

termsW�

V
and auxiliary cell averages

U�

V := Un

V �
Æt

jV j

X
I2I@V

jI jF�I + ÆtW�

V : (51)

Compute the auxiliary interface averages

��
I
:= LV

I
(��

V
) ~v�

I
:= LV

I
(~v�
V
) h0;�

I
:= LV

I
(h0;�

V
) :

2. Implicit flux correction: cell-centered pressures.Solve the discrete Poisson prob-
lem for the cell-centered pressuresp(2)V :

Æt

2
DI

V
(h0;�

I
GV

I
(p(2)
V
)) = DI

V
((�h0~v)�I) +

1


 � 1

dp(0)

dt

3. Implicit flux correction: density and energy updates, source term.Compute the
numerical fluxes of density and energy

F�;I = F �

�;I
�

Æt

2
GV

I
(p(2)

V
)�~nI F�e;I = F �

�e;I
�

Æt

2
h0;�

I
GV

I
(p(2)

V
)�~nI ;

the new density and energy cell averages

�n+1

V = �nV �
Æt

jV j

X
I2I@V

jI jF�;I (�e)n+1

V = (�e)nV �
Æt

jV j

X
I2I@V

jI jF�e;I ;

and the source term of the momentum equation

W�~v;V :=
1

Fr2
1

2
(�nV + �n+1

V )~g

4. Implicit flux correction: intermediate momentum update. Compute the convec-
tive momentum numerical fluxes

F ��

�~v;I = F �

�~v;I �
Æt

2
(~v�IG

V

I (p
(2)

V
)�~nI +GV

I (p
(2)

V
)~v�I �~nI) ;

and the temporary momentum cell averages

�~v��V = �~vnV �
Æt

jV j

X
I2I@V

jI jF ��

�~v;I + ÆtW�~v;V (52)
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5. Implicit flux correction: node-centered pressures. Solve the discrete Poisson
problem for the node-centered pressuresp(2)

V
:

ÆtDV

V

�
hn+1

V
GV

V

�
p(2)
V

��
= DV

V
(hn+1

V
(�~v)��

V
) +DV

V
((�h~v)n

V
) +

2


 � 1

p(0);n+1 � p(0);n

Æt
:

6. Implicit flux correction: final momentum update. Compute the new cell averages

(�~v)n+1

V = (�~v)��V � ÆtGV

V

�
p(2)
V

�
:

Remark. Note that the combination of the intermediate and final momentum updates are
equivalent to the following formulation of the effective momentum flux

F�~v;I = F ��

�~v;I + (p(2)I � p(0);n+1=2)�~nI p(2)I = LVI
�
p(2)
V

�

Remark. In the present implementationF�
I

andW�

V
are computed by coupling a standard

high resolution finite volume method for hyperbolic systems of conservation laws with
Strang[38] splitting to account for the source term on the right hand side of the auxiliary
system (9):

Un;1

V := Un

V �
Æt

2

1

jV j

X
I2I@V

jI jF�I (U
n

V
)

Un;2

V := Un;1

V + ÆtW�

V (Un;1

V
) (53)

U�

V
:= Un;2

V
�

Æt

2

1

jV j

X
I2I@V

jI jF�
I
(Un;2

V
)

Steps(53)1, (53)3 and(53)2 are second order numerical methods for the homogeneous
part and for the source term of (9), respectively:

�t +r � (�~v) = 0 �t = 0

(�~v)t +r � (�~vÆ~v) +rp = 0 (�~v)t =
1

Fr2
�~g

(�e)t +r � ((�e+ p(0))~v) = 0 (�e)t = 0 :

(54)

Comparing (53) with (51) yields

F�I =
1

2
(F�I (U

n

V
) + F�I (U

n;2

V
)) W�

V =W�

V (Un;1

V
) (55)

8. RELATION TO OTHER LOW AND ZERO MACH NUMBER APPROACHES

Projection methods. The present method resembles a projection method for incom-
pressible flows [10], [9], [2], [3], [33] in that we first generateexplicitestimates for various
vector fields which are then corrected in an additional elliptic projection step so as to
comply with the desired divergence constraints. Our scheme differs from these techniques
in various ways, however:
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1. Chorin’s classical projection method and its modern higher order extensions explicitly
adopt a constraint for the velocity divergence. Their “projection step” thus projects explicit
estimates of the velocity field back onto the subspace of divergence-free fields or onto the
subspace of fields with a prescribed divergence in more general situations. In contrast, the
first elliptic correction in our conservative finite volume scheme yieldsconvective fluxes
that are consistent with energy conservation for zero Mach number. In this fashion we
combine projection techniques with the conservation of mass, momentum and energy.

2. The projection step of a projection method is an abstract mathematical construction
designed to achieve velocity fields complying with suitable divergence constraints and the
pressure is validly considered as a “Lagrangian multiplier” in this context. In contrast,
the first elliptic flux correction in our scheme naturally appears as part of a half-timestep
update from time leveltn to tn+ Æt=2 of the convective fluxes at grid cell-interfaces based
on the original equations.

3. Most of the projection methods cited require a single elliptic solve per time step. Our
approach requires two, which are in addition based on two different discretizations of the
Poisson operator in the respective pressure equations.

4. On the other hand, our approach does not compromise on the discrete divergence,
which we satisfy exactly up to the order of the convergence threshold of our elliptic solvers.
Thus we avoid the approximate projection that has been introduced in a number of higher
order projection methods.

SIMPLE-type methods.Extensions of incompressible flow solvers for inclusion of com-
pressibility effects are often based on the SIMPLE [39] method for incompressible flows
of Karki & Patankar[5]. Successful representative examples of this class of methods can
be found in [14], [17], [7].

One important feature of these methods is also implemented in our approach: There is
a separate scaling of the background pressure by some suitable thermodynamic reference
value and of pressure gradients or pressure corrections by a characteristic value of�j~vj2.
This is equivalent to the introduction of two separate pressure variables in the sense of an
asymptotic expansionp = p(0)(t) + M2p(2)(~x; t) with a spatially homogeneous leading
order pressure (notice thatM2 � �j~vj2=p in dimensional variables). We have also found
this kind of “multiple pressure variable ansatz” to be a necessary ingredient of a numerical
method that is supposed to smoothly transit to zero Mach number (see the later sections
and [19], [8]).

In [8] the authors also discuss the compressibility extension of a class of SIMPLE-type
methods and provide a more comprehensive account of earlier work in this area. Their work
goes beyond earlier approaches in that they explicitly allow for the presence of acoustic
pulses that are compatible with the small Mach number assumption, but nevertheless
affect the velocity field at leading order. The abovementioned pressure expansionp =

p(0)+M2p(2) withrp(0) � 0 precludes such a leading order acoustic effect. This is, in fact,
common knowledge from the theory of characteristics [32], has been proven rigorously
in [34], [35] and was discussed in the context of a multiple length scales asymptotic
expansion in [19]. Thus, in [8] the authors introduce a three-fold pressure expansion
p = p(0) + Mp(1) + M2p(2) in the SIMPLE framework and include a physics-induced
multi-grid procedure in order to deal with long wavelength acoustics associated withp(1).
There are currently two major differences between these derivatives of incompressible flow
computation methods and the approach proposed in this paper:
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1. Some of the SIMPLE-type schemes are able to handle flows with largespatialvaria-
tions of the local flow Mach number [17], [14].

2. The SIMPLE-type schemes generally compromise on conservation of one or more of
the fundamental conserved quantities, mass, momentum and energy.

The first item emphasizes a current limitation of our approach, as we assume a single,
spatially global characteristic Mach number. The asymptotic analysis that backs up our
numerical techniques will have to be extended in future work to include this case, which
is important for quite a number of realistic applications. As a consequence of the second
item, the extended SIMPLE schemes do not automatically reduce to a conservative finite
volume formulation for compressible flows as the Mach number increases. This, on the
other hand, was one of the major motivations of the present work, even though in this paper
we only discuss the zero Mach number limit version of our method (see [18] for a first “all
Mach number implementation” in more than one space dimension).

Direct extensions of high resolution shock capturing schemes.Another class of low
Mach number techniques results from the desire to extend existing modern high resolution
shock capturing schemes to the incompressible limit. This is also one of the key points
of the present paper. In [20], [21], [6], [15] the truncation and round-off errors of various
compressible flow solvers are carefully analyzed in the limit of small Mach numbers. The
approach in [20], [21] differs quite substantially from that in [6], [15] but both arrive at the
same conclusion: The incompressible limit cannot be achieved by standard compressible
flow solvers, unless particular care is taken to eliminate large errors that stem from subtle
interactions of truncation errors and the zero Mach number singularity of the compressible
flow equations.

The difficulties of representing low Mach number flows are traced back in [21] to round-
off errors upon subtraction of large numbers. This is consistent with the previous discussions
regarding the asymptotic pressure scalingp = p(0)(t)+M2p(2)(~x; t). AsM �! 0, spatial
pressure differences are of orderO(M2) and naive discrete differentiation ofp without an
appropriate rescaling must ultimately result in unacceptable round-off errors. Interestingly,
the authors in [21] do not introduce this scaling explicitly as, e.g., in [17], [14], [19], [8],
[18]. Instead they propose to let the automatic scaling of modern floating point arithmetic
take care of the problem. The idea is to always handle deviations from appropriately
chosen homogeneous background values rather than the original absolute values of all flow
quantities. The reader should consult the original references regarding a detailed account
of differentiation schemes that do not suffer from the round-off error problem. It is not
clear to us, whether the approach actually allows to compute the limit forM = 0, because
(i) the floating point arithmetic would have to overcome an infinite gap in amplitudes and
(ii) there is no evidence that the numerical solutions obey, for Mach number tending to
zero, a proper divergence constraint.

The ansatz in [6], [15] specifically addresses higher order upwind schemes that can
be written in the form of central differences plus the effects of an upwind dissipation
matrix. One prominent example is Roe’s method. Turkel’s [11] pre conditioning technique,
originally developed only for steady state computations, is employed and selectively applied
only to the upwind dissipation terms. It is shown that artificially excited small scale
acoustics that are associated withO(M) pressure variations can be suppressed in this
fashion. In contrast to the original method in [11] the resulting scheme does provide a
consistent discretization of the unsteady flow equations. Unfortunately, the authors do not
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provide any evidence that their numerical solutions would actually approach a divergence-
free flow as the Mach number diminishes and that their pressure variables obey some
elliptic Poisson-type equation. By employing an implicit time stepping algorithm, the
dissipation-preconditioned scheme does not suffer from the sound-speed CFL constraint,
so that efficient computations are possible even for very small Mach numbers.

9. NUMERICAL RESULTS

In this section we discuss the numerical results obtained with the semi-implicit method
for five test problems. The first four problems are chosen to assess the accuracy and the
efficiency of the method and test its capability to cope with large density variations and small
scale gravity driven flows. For these tests either the exact solution or at least some properties
of the exact solution are known. This allows a meaningful validation of the method and
provides a flavor of the difficulties that must be faced in the numerical simulation of more
realistic flows. Problem number five is included to show that the proposed numerical
method can be extended to cope with boundary driven backward compression/expansion,
viscous forces and heat transfer. All test problems can be run with trivial geometries. For
the first five problems the boundary conditions are those discussed in section 6. These
imply a constant thermodynamic pressurep(0). Thusdp(0)=dt = 0 and p(0);n = p(0);0

8n � 0.
The computations have been performed on regular Cartesian grids. The discrete gradient

and divergence operators and the linear systems for the cell-centered and for the node-
centered pressures are those explicitly given in appendixes A.2 and A.3. These two
linear systems must be solved at each time step. This has been done using a multi-grid
preconditioned conjugate gradient method. The difference with respect to the standard
conjugate gradient solver is that, in each iteration, the new residual vector is computed
by applying a multi-grid cycle to the previous residual vector. There are several ways of
visiting the grid levels during the multi-grid procedure, such as a V-cycle, W-cycle, F-cycle
[30] and nested cycle. In our case, the F-cycle turned out to provide the best contraction
rate. As smoother a Gauss-Seidel method was used with two pre and post smoothing steps
on each grid level. In two space dimensions a standard nine point prolongationoperator was
used. This operator is defined through bilinear interpolation. In three dimensions trilinear
interpolation provides a 27 point prolongation operator. The adjoint prolongation operator
served as restriction operator. In presence of large density variations, the coefficients of
both linear systems can change by order of magnitudes. In this case the linear coarse grid
operators need to be constructed by Galerkin’s approximation [30].

As expected the computations show that the CPU time needed to solve the systems
depends linearly on the number of unknowns. The solution of the linear systems accounts
for about 95% of the time required for a computation and demands a memory allocation of
roughly one K-byte per computational point. In each solution the residuals
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have been driven down to10�7. In the above definitionskaVk2 represents the Euclidean
norm of a vector whose components are the valuesaV i.e.

kaVk2 :=

 X
V 2V

a2V

!1=2

and similarly forkaVk2.

9.1. Convergence studies.
This test problem was originally proposed inAlmgren et al.[33]. It has been designed to

assess the accuracy of the method on constant density flows. For any timet and0 < x < 1,
0 < y < 1, the velocity field

u(x; y; t) :=1� 2 cos(2�(x� t)) sin(2�(y � t))

v(x; y; t) :=1 + 2 sin(2�(x � t)) cos(2�(y � t));

together with the pressurep(2)(x; y; t)

p(2)(x; y; t) := � cos(4�(x� t))� cos(4�(y � t))

is an exact solution of the zero Mach number governingequations (4) with constant pressure
p(x; y; t), constant density�(x; y; t) and periodic boundary conditions on the unit square.
Starting fromt = 0, we have computed numerical approximationsuNi;j to the cell-averages
u(xi; yj; t

N) of the exact velocityu at time tN = 3. Similarly vNi;j , �
N
i;j are numerical

approximations to the cell-averagesv(xi; yj; tN) and�(xi; yj ; tN) of the exactv, � at time
tN = 3.

Three equally spaced regular Cartesian grids of spacingsh = 1=32, h = 1=64 and
h = 1=128 have been used on the unit square. On a each grid the time step was chosen
according to a fixed Courant numberC = 0:8. (see section 6.3). The initial cell averages
(�~v)0

i;j
have been computed for~v0

i;j
to be discretely divergence free

(�~v)0
i;j

= (�~v)(xi; yj ; 0)�GV

i;j

�
p(2);0
V

�
i.e the initial pressurep(2);0

V
is solution of the Poisson problem

DV

V

�
1

�0i;j
GV

i;j

�
p(2);0
V

��
= DV

V

�
(�~v)(xi; yj ; 0)

�0i;j

�

with �0
i;j

= �(xi; yj; 0) = 1. In the MUSCL scheme for the computation of the auxiliary
numerical fluxesF�

I
unlimited slopes have been used. For each grid we have measured the

2-norme2 and the maximum norme1 of the cell-errorei;j at timetN = 3:

ei;j :=
���(xi; yj ; tN)� �Ni;j

��+ ��u(xi; yj ; tN)� uNi;j
��+ ��v(xi; yj ; tN)� vNi;j

�� :

e2 :=

0
@X

i;j

(ei;jh)
2

1
A

1=2

e1 := max
i;j

fei;jg
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Notice that this is essentially a measure of the velocity error: due to the exact projection
of the interface velocity, the density error in the 2-norm is of the same order asr2(p

(2)

V ) i.e.
10�7. Table 1 showse2, e1 on the three grids together with the corresponding convergence
rates. These have been computed as follows: Given e.g. coarse and fine grid 2-norm

TABLE 1

Constant density: errors and convergence rates in the 2-norm and in the maximum norm.

errorse2;c, e2;f and the corresponding grid spacingshc, hf the convergence ratep is

p :=
log(e2;c=e2;f)

log(hc=hf)

The exact velocity field (9.1) has been constructed by differentiating the streamline function

�(x; y; t) := y � x+
1

�
cos(2�(x� t)) cos(2�(y � t))

and takingu := @�=@y, v := �@�=@x. � represents a vortical motion' := � � y + x

superimposed on a translation. The vortical motion is simply advected by the velocity field
~v i.e.

D'

Dt
:=

@'

@t
+ ~v �r' = 0 ;

as one can verify by inspection. Thus, variable density exact solutions to the governing
equations (4) can be constructed by taking

�(x; y; t) := f (')

with some smooth functionf . We used

f (') := 2 + (�')
2 (56)

The constant on the right hand side is taken to avoid negative densities. The square ensures
that densities monotonically increase from the center to the outer boundary of each vortex:
a density distribution with local maxima in vortex cores would undergo Rayleigh-Taylor
instability. With (56) an exact solution for the density of (4) is

�(x; y; t) := 2 + 0:5 cos2(2�(x� t)) cos2(2�(y � t)):

In table 2 the error norms for the variable density computations are shown. As for the
constant density case we obtain second order accuracy both in the 2-norm and in the
maximum norm.

TABLE 2

Variable density: errors and convergence rates in the 2-norm and in the maximum norm.

9.2. Advection of a vortex.
We consider the advection of a vortex in a channel. The computational domain is the

rectangle[0; 4] � [0; 1]. The upper and lower boundaries are walls; periodic boundary
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conditions are imposed at the left and right boundaries. The grid consists of80� 20 cells.
The initial velocity field is:

�(x; y; 0) = 1; p(x; y; 0) = 1; u(x; y; 0) = 1� v�(r) sin �; v(x; y; 0) = v�(r) cos �

with

v�(r) =

8>><
>>:
r=0:2 if 0 < r < 0:2

2� r=0:2 if R < r < 0:4

0 if r > 0:4

and r =
p

(x� 0:5)2 + (y � 0:5)2

For the above initial data the exact velocity fort > 0 can be computed:u(x; y; t) =

u(x�u1t; y; 0) andv(x; y; t) = v(x�u1t; y; 0) i.e. the initial data are simply advected
by the background velocityu1. This problem was originally proposed byGresho et al.
[27]. In figure 2 we show contour lines of the stream function for three computations.
They have been done using different slope limiters in the MUSCL step of the Godunov
type method for the computation of the auxiliary fluxes. Due to the rough discretization

FIG. 2. Advection of a vortex at timest = 0:0; 1:0; 2:0; 3:0: 9 contour lines of the stream-function in
[0.02,0.18]. Unlimited slopes (top), monotonized central-difference (middle) and Sweby’s limiter withk := 1:8
(bottom).

the results exhibit a significant deformation of the vortex. In contrast to the results shown
in [27] figure 13, however, the core of the vortex is advected along the axis of the channel
in agreement with the exact solution. The first computation (unlimited slopes) shows a loss
of vorticity comparable with [27] by exhibiting a stronger deformation of the vortex. The
second and the third computations (monotonized central-difference and Sweby’s limiter
with k := 1:8, see e.g.Schulze-Rinne[36]) show even stronger deformation of the initial
vorticity distribution.

9.3. Driven cavity flows.
The driven cavity test problems proposed in [28] have been the subject of many numerical

computations, see e.g. [37], [4]. For Reynolds numbers (Re) up to 1000 most computations
seem to converge towards a steady state and there is an excellent agreement between
stationary solutions obtained with different numerical schemes. Thus, these problems are
very well suited to validate new numerical methods. Here driven cavity flows at Reynolds
numbers 100 and 1000 have been computed. Our main goals are

� Show that the method can be easily extended to cope with viscous flows.
� Investigate the behavior of the method with respect to the coupling between pressure

and velocity fields.
� Investigate the behavior of the method with respect to convergence towards stationary

solutions.
� Compare our numerical results with established reference solutions.

In agreement with [28], we consider a viscous zero Mach number flow with no heat
conduction. Viscous effects only enter in the momentum equation through a viscous stress
and are accounted for as explained in paragraph 3.1.
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A delicate issue in the numerical computation of incompressible flows is that of the
coupling between pressure and velocity fields. For finite discretizations this problem (often
referred to as “local grid decoupling” or “checker-board instability”) can be described as
follows. Assume that the null space of the discrete gradient operator,ker(GV

V
), contains

highly oscillating fields. SinceGV

V
has a local stencil this is usually the case whenever

dim(ker(GV

V
)) > 1. If the solutionpV of the Poisson-type problem (44) has components

in ker(GV

V
) one obtains pressure oscillations which do not influence the velocity field:

pressure and velocity field decouple.
For two-dimensional equally spaced Cartesian grids and the implementation described

in appendix A.3 one finds thatdim(ker(GV

V
)) = 2 andker(GV

V
) contains, beside constant

pressurespc
V
, a non-trivial highly oscillating modepo

V
. Therefore, we expect to observe

pressure-velocity decoupling whenever the iterative linear system solver for (44) converges
towards solutionspV with components inker(GV

V
). The method of conjugate gradients

preserves, by exact arithmetics, the components ofpk
V

in ker(GV

V
). Since we always start

our iteration withp0
V
:= 0 we expect a numerical solution obtained in a reasonable number

of iteration steps to be oscillation free. This is confirmed by our numerical results. On
the other hand numerical solutions obtained through a random choice ofp0

V
may exhibit

pressure-velocity decoupling.
The understanding of the pressure-velocity decoupling in the limit of vanishing grid

size requires a deeper analysis. We have investigated numerically the effects (1) of grid
refinement at constant convection-based Courant numberC of 0.8 and (2) of time step
refinement for a fixed grid size. Some results are shown in figures 3 and 4. Neither in
the first nor in the second case do we observe the onset of pressure-velocity decoupling.

FIG. 3. Driven cavity atRe = 100, C = 0:8: 30 contour lines of the nodal pressurep(2)
V

in [�0:4; 0:4].
64� 64 (left) and256� 256 (right) grid cells.

FIG. 4. Driven cavity atRe = 100, 64 � 64 grid cells: 30 contour lines of the nodal pressurep(2)
V

in
[�0:4; 0:4]. C = 0:08 (left) andC = 0:008 (right).

Figure 5 shows the time history of the residual

rn2 :=
X
V2V

h2kUn
V �U

n�1
V jk2

for aRe = 1000 computation on several grids. The residual is plotted versus the number of
computational steps. The cost of a single step on a64� 64 grid is of about 1.3 seconds on
a DEC Alpha 21164 CPU running at 500 MHz. For the128� 128 grid cells computation

FIG. 5. Driven cavity atRe = 1000: Residual versus number of iterations for32 � 32, 64 � 64 and
128� 128 grid cells computations; coarser grid solutions have been taken as initial data for finer grid solutions.

pressure and streamlines of the numerical solution after 5000 time steps are shown in
figures 6 and 7. These results are in a good qualitative agreement with the ones presented
by Ghia et al. [28] page 400. For a more quantitative comparison the horizontal (vertical)
component of the velocity along the vertical (horizontal) line through the geometric center
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FIG. 6. Driven cavity atRe = 1000, 128 � 128 grid cells: 30 contour lines of the nodal pressurep(2)
V

in
[-0.4;0.4] (left) and streamlines (right). Streamline values and labels are taken from [28].

FIG. 7. Driven cavity at Re=1000,128� 128 grid cells: streamlines in the left and right bottom secondary
vortices. Values and labels are taken from [28].

FIG. 8. Driven cavity at Re=1000,128 � 128 grid cells: horizontal (vertical) component of the velocity
along the vertical (horizontal) line through the geometric center of the cavity; present results (solid line) and
reference solution from [28] (dots).

of the cavity have been drawn in figure 8. The solid line represents the numerical solution
obtained with the present method. The dots are values of a reference solution, taken from
[28]. The accuracy of this solution has been confirmed by many independent computations.

9.4. Falling droplet.
A heavy “droplet” falls through a light fluid atmosphere and impacts into the surface of

the heavy fluid in a cavity. The density ratio is 1000:1 and the Froude number equal to one.
The flow is assumed to be inviscid and there is no account for surface tension or for a change
of the equation of state (hence, the quotes on “droplet”!). The computational domain is the
rectangle[0; 1] � [0; 2]. We present both two- and three-dimensional computations. The
goal is to investigate the capability of the method to cope with large density variations.
From the numerical point of view the effect of density variations is to increase the condition
number of the discrete Poisson-type operators associated to the numerical computation of
the pressurep(2). We expect poor convergence in the iterative solution of the linear systems
and, in the worst case, oscillations in the pressure fieldp(2)I . Since our interface pressures
p(2)I are computed via a discrete Poisson-type operator which, for two-dimensional equally
spaced Cartesian grids, exhibits local grid decoupling, we are particularly interested in the
behavior ofp(2)I in the two dimensional case.

9.4.1. Two-dimensional case.

This problem was originally proposed inPuckett et al.[13] to test a tracking method for
incompressible variably density flows. Here the interface between light and heavy fluid is
captured but we still expect our second order method to properly describe the main features
of the flow. The computational grid consists of64� 128 cells. The initial data are:

�(x; y; 0) =

(
1000:0 if 0:0 � y � 1:0 or 0:0 � r � 0:2

1:0 if 1:0 < y � 2:0 or 0:2 < r

p(x; y; 0) = 1; ~v(x; y; 0) = 0 and r =
p

(x� 0:5)2 + (y � 1:75)2

Figure 9 shows density contours at a sequence of output times. After the impact of the
droplet some areas of lighter fluid appear within the heavy fluid (last three frames). This
is consistent with the results shown in [13] where this effect was referred to as “trapped air
bubbles”. Figure 10 shows contour lines of the cell interface pressurep(2)

I
as the droplet hits

the surface of the heavy fluid in the cavity. We do not notice spurious oscillations or local
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FIG. 9. Two-dimensional falling “droplet” atFr = 1 and density ratio 1000: Contour lines of density in
[1,1000].

FIG. 10. Two-dimensional falling “droplet” atFr = 1 and density ratio 1000: 10 contour lines of the cell
interface pressurep(2)

I
at -999, -990, -900, -800, -600, -400, -200, 0, 200 and 400 (left) and 10 contour lines of

the density in [1,1000] (right) att = 1:125.

grid decoupling effects. The multi-grid preconditioned conjugate gradients technique
allows the iterative solution of the linear systems for the pressure in about the same number
of iterations as for the constant density case.

9.4.2. Three-dimensional case.

This is a simple extension of the previous case to three space dimensions. The grid
consists of64� 64� 128 cells. The initial data are:

�(x; y; 0) =

(
1000:0 if 0:0 � z � 1:0 or 0:0 � r � 0:2

1:0 if 1:0 < z � 2:0 or 0:2 < r

p(x; y; 0) = 1; ~v(x; y; 0) = 0 and r =
p

(x� 0:5)2 + (y � 0:5)2 + (z � 1:75)2

Figure 11 shows the density iso-surface 500 as the droplet falls and impacts into the surface
of the heavy fluid in the closed cavity.

FIG. 11. Three-dimensional falling “droplet” atFr = 1 and density ratio 1000: Iso-surface� = 500 of
density.

9.5. Thermo-acoustic refrigerator.
This example shows that our method can treat compressible zero Mach number flows

with heat conduction. A thermo-acoustic refrigerator basically consists of a resonance tube,
a stack of plates, two heat exchangers and an acoustic driver (usually a loudspeaker). The
basic components of a thermo-acoustic refrigerator are sketched below : The flow within

FIG. 12. Sketch of a simplified thermo-acoustic refrigerator.

the tube is characterized by two length scales, namely the short hydrodynamic and the long
acoustic scale. The Mach number in the tube is very small, typicallyO(10�3). Thus,
the flow between the plates, which are much shorter than the tube, can be assumed to be
incompressible with a prescribed velocity field imposed on the inlet and outlet boundaries.
The calculation focuses on the flow along the plate and the heat exchangers. The plate
is modeled as a zero thickness plate with finite thermal mass. The thickness of the heat
exchangers is zero as well. The geometry of the domain is shown below. The problem is
defined in terms of several characteristic numbers: the Prandtl numberPr, the Reynolds
numberRe and the ratio of specific heats
. The temperatures of the heat exchangersThot,
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FIG. 13. Computational domain (dotted line).

Tcold are kept constant. The temperature distribution within the plate is governed by a heat
conduction equation:

@T

@t
=

1

Pes

 
@2

@x2
T +

2�

�

@

@y
T

����
gas

!
(57)

WherePes denotes the Peclet number of the solid,� represents the ratio of the thermal
conductivities,� is the thermal penetration depth. The specific values are listed below.
After 200 acoustic cycles a periodical solution is reached. Figure (14) shows the temperature

TABLE 3

Specific numbers.

at different times during the 201-th acoustic cycle. The heat fluxes through the surface of
the exchangers during an acoustic cycle are shown in figure (15).

FIG. 14. Temperature field during different times of an acoustic cycle;T := 2�.

FIG. 15. Heat fluxes through the surface of the hot (left) and cold (right) heat exchanger during an acoustic
cycle.

10. CONCLUSIONS AND FUTURE WORK

Summary and Conclusions.This paper demonstrates that a finite volume compressible
flow solver can be extended to handle incompressible, zero Mach number flows. Our
approach is general enough to include a wide variety of underlying compressible flow
schemes. The major ingredients of the required extensions are two pressure Poisson-
solutions. These allow us to enforce zero Mach number elliptic divergence constraints for
the convective numerical fluxes as well as for the final cell centered velocity fields.

The design of the scheme directly draws on a low Mach number asymptotic analysis
of the governing equations in conservation form. The analysis, which was presented in
[19], shows how the well-known velocity divergence constraint of incompressible flows
emerges in a natural way from an associated divergence constraint on the energy flux as
the Mach number vanishes. The insight gained in this way is used to construct numerical
fluxes of mass, momentum and energy that are consistent with the zero Mach number limit.
The scheme thus represents a discretization of the full conservation equations rather than
one of an asymptotic limit system which would explicitly introduce a velocity divergence
constraint!

The computational examples given are chosen to demonstrate various features of the
proposed method. Thus we show second order accuracy for a test problem proposed by
Almgren et al., [33], and we obtain competitive results on the test problem of an advected
zero circulation vortex as proposed by Gresho and Chen, [27]. After adding a first order in
time extension to viscous incompressible flow, we find very close agreement with published
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results in the literature for standard driven cavity test problems (see Ghia, Ghia & Shin,
[28]). Notably, grid refinement at constant convection-based CFL number of 0.8 as well as
decreasing time steps at constant spacial resolution do not affect the results. This suggests
stability and convergence of the method, even though we cannot provide rigorous proofs at
this stage. Excellent behavior of the scheme is found for variable density flows. A “falling
droplet” with a density ratio of 1000, simulated by a suitable choice of an initial entropy
distribution in an ideal gas, is handled without evidence of pressure, velocity or density
oscillations.

Current limitations and future work. The asymptotics in [19] has been carried out for an
ideal gas equation of state assuming constant ratio of heat capacities. A consequence is that
the total energy per unit volume, which is the conserved energy quantity in our numerical
scheme, is proportional to pressure to leading and first order in the Mach number. This
simplifies the formulation of the asymptotic limiting form of the energy equation and,
hence, the set-up of the numerical method.

In the present paper we have restricted ourselves to the zero Mach number limit, but
considered multi-dimensional flows. In contrast, [19] was restricted to one space dimension
for the numerics, but allowed small, but non-zero Mach numbers. The obvious next step
is to combine the approaches and construct a method that allows a smooth transition from
fully compressible to zero Mach number. A first realization of this generalization of the
present ideas has been described by one of the authors in [18].

The original motivation for this work stems from combustion applications; notably
from the desire to simulate deflagration-to-detonation transitions, where, throughout a
computation, the Mach number would vary fromM � 10�4 to M � 10. Thus, two of
our further goals are (i) to extend the scheme to include chemical reactions for resolved
computations of combustion processes at arbitrary Mach number and (ii) to combine the
present technology with the flame front capturing-tracking ideas from [40] (compressible
flow) and [29] (zero Mach number combustion).
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APPENDIX

A.1. FAKE ACOUSTICS IN THE SYSTEM I
� REMAIN SMALL

Let~v(~x; t), p(~x; t) be a smooth solution of the auxiliary system (9) for initial data~v(~x; 0),
p(~x; 0) such that

r � ~v(~x; 0) = 0

rp(~x; 0) = rp(0)(~x; 0) = 0 :
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From(9:3), (9:4) one has

pt(~x; 0) = (
 � 1)(�e)t(~x; 0)

= � (
 � 1)r � ((�e(~x; 0) + p(~x; 0))~v(~x; 0))

= �r � (
 p(~x; 0)~v(~x; 0))

= � 
 ~v(~x; 0)�rp(~x; 0)� 
 p(~x; 0)r � ~v(~x; 0)

= 0 :

Expanding~v(~x; t) andp(~x; t) aboutt = 0 and using the above equations yields

r � ~v(~x; t) =r � ~v(~x; 0) +O(t) = O(t)

rp(~x; t) =rp(~x; 0) +rpt(~x; 0)t+O(t2) = O(t2)

as stated in (11).

A.2. FIRST PROJECTION: DISCRETE POISSON EQUATION

We write the discrete gradientGV

I
and divergenceDI

V
for a two dimensional Cartesian

grid of constant spacingsÆx and Æy and derive the explicit form of the Poisson-like
equation (32).The double index(i; j) is used to tag a cell value. The indexes(i+ 1=2; j),
(i; j + 1=2) are used for interface values between the cells(i; j), (i + 1; j) and (i; j),
(i; j + 1) respectively. The discrete gradientGV

I
is defined as follows

GV

i+1=2;j (pV) :=

0
B@

pi+1;j � pi;j
Æx

pi;j+1 � pi;j�1 + pi+1;j+1 � pi+1;j�1

4Æy

1
CA

GV

i;j+1=2
(pV) :=

0
B@

pi+1;j � pi�1;j + pi+1;j+1 � pi�1;j+1

4Æx
pi;j+1 � pi;j

Æy

1
CA :

The discrete divergenceDI

V
is, according to equation (31)

DI

i;j (~vI) :=
ui+1=2;j � ui�1=2;j

Æx
+

vi;j+1=2 � vi;j�1=2

Æy

with ~vI := (uI; vI). With these definitionsDI

V
GV

I
is the standard 5-points Laplacian

DI

i;j
(GV

I
(pV)) :=

pi+1;j � 2pi;j + pi�1;j

Æx2
+

pi;j+1 � 2pi;j + pi;j�1

Æy2
:

and the (i,j)-th equation of the linear system (32) for the cell valuespV reads

h0;�

i+1=2;jp
(2)
i+1;j �

�
h0;�

i+1=2;j + h0;�

i�1=2;j

�
p(2)i;j + h0;�

i�1=2;jp
(2)
i�1;j

Æx2
+

h0;�

i;j+1=2p
(2)

i;j+1 �
�
h0;�

i;j+1=2 + h0;�

i;j�1=2

�
p(2)i;j + h0;�

i;j�1=2p
(2)

i;j�1

Æy2
=

2

Æt

�
F �

�e;i+1=2;j
� F �

�e;i�1=2;j

Æx
+

G�

�e;i;j+1=2
�G�

�e;i;j�1=2

Æy

�
+

2

Æt

1


 � 1

dp(0)

dt
:
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with F �

�e;i+1=2;j := (�h0u)�i+1=2;j andG�

�e;i;j+1=2 := (�h0v)�i;j+1=2.

A.3. SECOND PROJECTION: DISCRETE POISSON EQUATION

We write the discrete gradientGV

V
and the divergenceDV

V
for a two dimensional regular

Cartesian grid and derive the explicit form of the Poisson-like equation (44). Beside the
notation introduced in the previous section we use the double index(i+ 1=2; j + 1=2) to
tag node values. The indexes(i+1; j+1=2), (i+1=2; j+1) are used for interface values
between the node centered control volumes(i + 1=2; j + 1=2), (i + 3=2; j + 1=2) and
(i+1=2; j+1=2), (i+1=2; j+3=2) respectively (figure 1). The linear operatorsLV

I
(p

V
),

FIG. 1. Two dimensional Cartesian grid.

LV
I
(~vV) are defined as follows

LV
i+1=2;j

(pV) :=
1

2
(pi+1=2;j+1=2 + pi+1=2;j�1=2)

LV
i;j+1=2

(pV) :=
1

2
(pi�1=2;j+1=2 + pi+1=2;j+1=2)

LV
i+1;j+1=2

(~vV) :=
1

2
(~vi+1;j+1 + ~vi+1;j)

LVi+1=2;j+1 (~vV) :=
1

2
(~vi;j+1 + ~vi+1;j+1)

With these definitions the discrete gradientGV

V
is, according to equation (37)

GV

i;j
(pV) =

0
BB@

LV
i+1=2;j

(pV)� LV
i�1=2;j

(pV)

Æx
LVi;j+1=2(pV)� LVi;j�1=2(pV)

Æy

1
CCA

=

0
B@

pi+1=2;j+1=2 � pi�1=2;j+1=2 + pi+1=2;j�1=2 � pi�1=2;j�1=2

2Æx
pi+1=2;j+1=2 � pi+1=2;j�1=2 + pi�1=2;j+1=2 � pi�1=2;j�1=2

2Æy

1
CA :

After (42) the divergenceDV

V
is

DV

i+1=2;j+1=2
(~v
V
) =

LV
i+1;j+1=2

(uV)� LV
i;j+1=2

(uV)

Æx
+

LVi+1=2;j+1 (vV)� LVi+1=2;j (vV)

Æy

=
ui+1;j+1 � ui;j+1 + ui+1;j � ui;j

2Æx
+

vi;j+1 � vi;j + vi+1;j+1 � vi+1;j

2Æy
:

With the above definitionsDV

V
(GV

V
(pV)) is the standard 9-points Laplacian

DV

i+1=2;j+1=2

�
GV

V
(pV)

�
=

1

4

Æx2 + Æy2

Æx2Æy2
ai+1=2;j+1=2 �

1

2

Æx2 � Æy2

Æx2Æy2
bi+1=2;j+1=2
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with

ai+1=2;j+1=2 := pi+3=2;j+3=2 + pi�1=2;j+3=2 + pi�1=2;j�1=2 + pi+3=2;j�1=2 � 4pi+1=2;j+1=2

bi+1=2;j+1=2 := pi+3=2;j+1=2 � pi+1=2;j+3=2 + pi�1=2;j+1=2 � pi+1=2;j�1=2:

ForÆx = Æy the second term on the right hand side of the discrete Laplacian disappears and
the stencil ofDV

V
(GV

V
(pV)) reduces to a five diagonal point stencil. The(i+1=2; j+1=2)-th

equation of the linear system (44) becomes

1

4Æx2

h
hn+1

i+1;j+1

�
p(2)
i+3=2;j+3=2

� p(2)
i+1=2;j+3=2

+ p(2)
i+3=2;j+1=2

� p(2)
i+1=2;j+1=2

�
�

hn+1

i;j+1

�
p(2)
i+1=2;j+3=2

� p(2)
i�1=2;j+3=2

+ p(2)
i+1=2;j+1=2

� p(2)
i�1=2;j+1=2

�
+

hn+1

i+1;j

�
p(2)i+3=2;j+1=2 � p(2)i+1=2;j+1=2 + p(2)i+3=2;j�1=2 � p(2)i+1=2;j�1=2

�
�

hn+1

i;j

�
p(2)i+1=2;j+1=2 � p(2)i�1=2;j+1=2 + p(2)i+1=2;j�1=2 � p(2)i�1=2;j�1=2

� i
+

1

4Æy2

h
hn+1

i;j+1

�
p(2)i+1=2;j+3=2 � p(2)i+1=2;j+1=2 + p(2)i�1=2;j+3=2 � p(2)i�1=2;j+1=2

�
�

hn+1

i;j

�
p(2)i+1=2;j+1=2 � p(2)i+1=2;j�1=2 + p(2)i�1=2;j+1=2 � p(2)i�1=2;j�1=2

�
+

hn+1

i+1;j+1

�
p(2)
i+3=2;j+3=2

� p(2)
i+3=2;j+1=2

+ p(2)
i+1=2;j+3=2

� p(2)
i+1=2;j+1=2

�
�

hn+1

i+1;j

�
p(2)i+3=2;j+1=2 � p(2)i+3=2;j�1=2 + p(2)i+1=2;j+1=2 � p(2)i+1=2;j�1=2

� i
=

1

Æt

1

2Æx

h
hn+1

i+1;j+1�u
��

i+1;j+1 � hn+1

i;j+1�u
��

i;j+1 + hn+1

i+1;j�u
��

i+1;j � hn+1

i;j �u��i;j

i
+

1

Æt

1

2Æy

h
hn+1

i;j+1
�v��

i;j+1
� hn+1

i;j
�v��

i;j
+ hn+1

i+1;j+1
�v��

i+1;j+1
� hn+1

i+1;j
�v��
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i
:
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1. FIGURES

V

V

FIG. 1. Cell (V ) and node centered (V ) control volumes; cell centers, nodes and the midpoints of the
interfaces are marked by circles, squares and crosses, respectively.



FIG. 2. Advection of a vortex at timest = 0:0; 1:0; 2:0; 3:0: 9 contour lines of the stream-function in
[0.02,0.18]. Unlimited slopes (top), monotonized central-difference (middle) and Sweby’s limiter withk := 1:8
(bottom).



FIG. 3. Driven cavity atRe = 100, C = 0:8: 30 contour lines of the nodal pressurep(2)
V

in [�0:4; 0:4].
64� 64 (left) and256� 256 (right) grid cells.



FIG. 4. Driven cavity atRe = 100, 64 � 64 grid cells: 30 contour lines of the nodal pressurep(2)
V

in
[�0:4; 0:4]. C = 0:08 (left) andC = 0:008 (right).
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FIG. 5. Driven cavity atRe = 1000: Residual versus number of iterations for32 � 32, 64 � 64 and
128 � 128 grid cells computations; coarser grid solutions have been taken as initial data for finer grid solutions.
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FIG. 6. Driven cavity atRe = 1000, 128 � 128 grid cells: 30 contour lines of the nodal pressurep(2)
V

in
[-0.4;0.4] (left) and streamlines (right). Streamline values and labels are taken from [28].
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FIG. 7. Driven cavity at Re=1000,128� 128 grid cells: streamlines in the left and right bottom secondary
vortices. Values and labels are taken from [28].
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FIG. 8. Driven cavity at Re=1000,128 � 128 grid cells: horizontal (vertical) component of the velocity
along the vertical (horizontal) line through the geometric center of the cavity; present results (solid line) and
reference solution from [28] (dots).



t = 0:000 t = 0:500 t = 0:875

t = 1:125 t = 1:250 t = 1:375

FIG. 9. Two-dimensional falling “droplet” atFr = 1 and density ratio 1000: Contour lines of density in
[1,1000].



FIG. 10. Two-dimensional falling “droplet” atFr = 1 and density ratio 1000: 10 contour lines of the cell
interface pressurep(2)

I
at -999, -990, -900, -800, -600, -400, -200, 0, 200 and 400 (left) and 10 contour lines of

the density in [1,1000] (right) att = 1:125.
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FIG. 11. Three-dimensional falling “droplet” atFr = 1 and density ratio 1000: Iso-surface� = 500 of
density.
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FIG. 12. Sketch of a simplified thermoacoustic refrigerator.
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FIG. 13. Computational domain (dotted line).
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FIG. 14. Temperature field during different times of an acoustic cycle;T := 2�.
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FIG. 15. Heat fluxes through the surface of the hot (left) and cold (right) heat exchanger during an acoustic

cycle.
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FIG. 16. Two dimensional Cartesian grid.



1. TABLES

TABLE 1

Constant density: errors and convergence rates in the 2-norm and in the maximum norm.

32� 32 rate 64 � 64 rate 128� 128

2-norm 0.193646 2.07 0.0458949 2.10 0.010705

max-norm 0.236456 2.09 0.0553504 2.11 0.012821



TABLE 2

Variable density: errors and convergence rates in the 2-norm and in the maximum norm.

32� 32 rate 64 � 64 rate 128� 128

2-norm 0.229332 2.02 0.0563924 2.16 0.0125899

max-norm 0.263492 1.98 0.0664518 1.68 0.0207160



TABLE 3

Specific number

Pr 0.68 uinlet 0:7711 cos(t)

Re 200 vinlet 0.0


 5=3 uoutlet 1:0267 cos(t)

Thot 1.0267 voutlet 0.0

Tcold 0.9733 � 0.05

Pes 300 � 41.14


