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Abstract Relative to the full compressible flow equations, sound-proof models filter acoustic waves
while maintaining advection and internal waves. Two well-known sound-proof models, an anelastic
model by Bannon and Durran’s pseudo-incompressible model, are shown here to be structurally very
close to the full compressible flow equations. Essentially, the anelastic model is obtained by suppressing
∂tρ in the mass continuity equation and slightly modifying the gravity term, whereas the pseudo-
incompressible model results from dropping ∂tp from the pressure equation.

For length scales small compared to the density and pressure scale heights, the anelastic model reduces
to the Boussinesq approximation, while the pseudo-incompressible model approaches the zero Mach
number, variable density flow equations. Thus, for small scales, both models are asymptotically consis-
tent with the full compressible flow equations, yet the pseudo-incompressible model is more general in
that it remains valid in the presence of large density variations. For the relatively small density vari-
ations found in typical atmosphere-ocean flows, both models are found to yield very similar results,
with deviations between models much smaller than deviations obtained when using different numerical
schemes for the same model. This in agreement with Smolarkiewicz and Dörnbrack (2007).

Despite these useful properties, neither model can be derived by a low-Mach number asymptotic
expansion for length scales comparable to the pressure scale height, i.e., for the regime they were
originally designed for. Derivations of these models via scale analysis ignore an asymptotic time scale
separation between advection and internal waves. In fact, only the classical Ogura & Phillips model,
which assumes weak stratification of the order of the Mach number squared, can be obtained as a
leading-order model from systematic low Mach number asymptotic analysis.

Issues of formal asymptotics notwithstanding, the close structural similarity of the anelastic and
pseudo-incompressible models to the full compressible flow equations makes them useful limit sys-
tems in building computational models for atmospheric flows. In the second part of the paper we
propose a second-order finite-volume projection method for the anelastic and pseudo-incompressible
models that observes these structural similarities. The method is applied to test problems involving
free convection in a neutral atmosphere, the breaking of orographic waves at high altitudes, and the
descent of a cold air bubble in the small-scale limit. The scheme is meant to serve as a starting point
for the development of a robust compressible atmospheric flow solver in future work.
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1 Introduction

Sound waves are considered unimportant for most atmospheric flow applications, yet they provide
for technical difficulties in numerical solutions of the compressible flow equations in atmospherically
relevant flow regimes due to their fast characteristic time scale. The quest for efficient ways of han-
dling these difficulties is ongoing (see, e.g., [48,7,22,18,38,19,28,21,20] and references therein). An
alternative to solving the full compressible flow equations is to adopt approximate sound-proof model
equations. These anelastic, [36,17,31,4] or pseudo-incompressible [15,16] models involve a velocity di-
vergence constraint which eliminates the undesired sound modes while maintaining the meteorologically
important advection and internal gravity wave modes. The numerical methods used to integrate these
sound-proof models are relatives of incompressible Euler and high-Reynolds number Navier-Stokes flow
solvers as exemplified, e.g., in [48,46,2,19,42]. The scheme in [19] is an example of an all-speed solver
designed to smoothly cover the transition from weakly compressible to sound-proof flow regimes. In a
similar fashion, the method by Janjic et al., [22], solves the compressible and the hydrostatic primitive
equations within a unified numerical framework.

For flows on length scales small that are compared to the atmospheric pressure scale height, the two
most frequently used sound-proof models are the Boussinesq approximation and the equations for
incompressible variable density flows. Formal asymptotic and rigorous analyses demonstrate how these
reduced models can be derived from the full compressible flow equations in the limit of vanishing Mach
number (see, e.g., [56,41,52], and references therein). One representative of the family of anelastic
models by Bannon, [4], is shown here to reduce to the Boussinesq model for sufficiently small scales.
In contrast, Durran’s pseudo-incompressible model, [15], approaches the more general equations for
incompressible variable density flows in this limit. Thus, for small scales, both Bannon’s anelastic
and Durran’s pseudo-incompressible models are asymptotically consistent with the compressible Euler
equations in the limit of vanishing Mach number, M, albeit in different regimes for variations of density
or, equivalently in this case, potential temperature.

In contrast, for meteorologically relevant length and time scales comparable to 10 km and 20 min
or larger, the relation between the full compressible flow equations and the anelastic or pseudo-
incompressible models is less clear. By reconsidering the low Mach number analysis in [25], we demon-
strate here that only the classical anelastic model by Ogura and Phillips, [36], which assumes weak
potential temperature stratification of order O(M2), can be derived from the compressible flow equa-
tions through systematic scale analysis or asymptotics. In contrast, the generalizations in [17,31,4,
15] which allow for more realistic stronger stratification cannot be justified in this way. Because of an
asymptotic time scale separation between advection and internal wave motions that arises for such
stronger stratifications, derivations that would simultaneously incorporate both these processes would
have to explicitly adopt multiple time and/or multiple spacial scales. Models that do not address this
scale separation represent compositions of lower and higher-order terms, whose (temporal) range of
validity remains unclear.

Nevertheless, consider the full compressible flow equations as obtained for α = 1 from

ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) + P∇π = −ρ g k
αPt +∇ · (Pv) = 0

. (1)

These are the Euler equations in non-dimensional form for an ideal gas with constant specific heat
capacities with ρ,v, P, π denoting density, velocity, and the pressure-related variables,

P = p
1
γ = ρθ , π = Γ−1pΓ , Γ =

γ − 1
γ

, (2)

with p, θ the pressure and potential temperature, and γ the isentropic exponent. The anelastic and
pseudo-incompressible models not only share the two principal meteorologically relevant fluid dynam-
ical processes of advection and internal waves with (1), but they are also structurally very similar.
In fact, as we will demonstrate here, one obtains, e.g., Durran’s pseudo-incompressible flow equations
by simply setting α = 0 in (1)3 and assigning P ≡ P (z) to its hydrostatic background distribution.
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Of course, the definitions in (2) cease to be valid in that case, and π assumes its usual role as a La-
grange multiplier that guarantees compliance with the divergence constraint ∇ · (Pv) = 0. Analogous
explanations are given in section 2.4.1 for the relation of Bannon’s anelastic model to (1).

We intend to exploit this structural similarity in designing a family of atmospheric flow solvers which
address anelastic, pseudo-incompressible, and fully compressible flows within a single numerical frame-
work and with minimal modifications needed to switch between these versions. In section 3 below we
start the development with an anelastic / pseudo-incompressible solver based on Godunov-type finite
volume techniques.

The scheme provides the following features:

1. mass conservation,
2. stability for advection Courant number close to unity,
3. accuracy of advection independent of the velocity divergence,
4. conceptually straight-forward extension to the full compressible flow equations,
5. accuracy independent of whether or not a background mean state is subtracted.

To achieve these, we devise a second-order projection method following ideas from [40,26,35,23]. The
scheme combines a conservative Godunov-type predictor step for mass, momentum, potential tem-
perature, and other advected scalars with two projections controlling compliance with the anelastic
/ pseudo-incompressible divergence constraints from [54,55]. This provides for mass conservation and
allows advection Courant numbers close to unity. The predictor step solves an auxiliary hyperbolic
equation system that does not involve a velocity divergence constraint. As in a compressible flow
solver, advection is thus represented equally well for divergent and non-divergent flows. Also, (i) this
provides robustness of the results with respect to the level of divergence-control in anelastic / pseudo-
incompressible computations, (ii) it reduces a subsequent extension of the scheme to the full compress-
ible flow equations to the task of “merely” incorporating the ∂tP term in (1)3, and (iii) it prepares
the ground for extensions to higher than second order through the spectral deferred correction time
integration technique from [23].

The predictor step can be implemented using a range of conservative advective transport schemes
and different time integrators. Here we opt for simplicity and combine second-order Godunov-type
MUSCL (Monotone Upstream Scheme for Conservation Laws) techniques (see, e.g., [34,30,53]) with
Strang splitting, [49], to account for multiple dimensions. Standard TVD slope limiters as used in the
MUSCL-scheme are known to clip extrema of advected quantities. This turns out to be detrimental,
e.g., in the “rising-bubble” test discussed in section 4.2 below. Improved results are obtained using
(unlimited) upwind-biased piecewise parabolic reconstruction, [14], combined with a simple plateau-
detection scheme. We describe a preliminary implementation of the scheme in the appendix and use
it to demonstrate the effects of clipping of extrema. A detailed discussion of the advection scheme is
deferred to a separate publication. The reader may also want to consult [6] for a detailed discussion of
a very similar approach to advection.

Implementing the gravity source term, we adopt the well-balanced discretization based on local hy-
drostatic reconstruction which was first described by Botta et al. in [10] in the context of an explicit
compressible Euler solver. As in that paper, we achieve here a discretization that does not require
subtraction of a hydrostatic background state to achieve full accuracy. Without penalty, the scheme
may, but does not have to, be run advecting the full potential temperature and using the full pressure
field.

We should mention that Gatti-Bono and Colella, [19], substantially extending and then implementing
ideas from [25], propose a strategy for constructing all-speed atmospheric flow solvers that separately
handle sound waves, internal gravity waves, and advection in the discretization. This approach is thus
designed in principle to account for the time scale separation between advection and internal waves
mentioned above, although that was not yet achieved in [19].

In section 2 we summarize the various flow models discussed in this paper as well as their asymptotics
and structure. In section 3 we propose the numerical flow solver. Section 4 we demonstrate properties
of the models and of the numerical scheme using three test cases: the breaking of lee waves at high
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altitudes, the rising of a hot air bubble in a neutrally stratified deep atmosphere, and the descent of
cold air patches of various temperatures in a small box of neutrally stratified gas.

2 Compressible, anelastic, and pseudo-incompressible flow models

2.1 Compressible Euler equations

The dimensionless mass, momentum, and energy balances for an ideal gas with constant heat capacities
under the influence of gravity read

Compressible Euler equations

ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) +∇p = −ρgk

(ρE)t +∇ · (v[ρE + p]) = 0

, (3)

where

ρE =
p

γ − 1
+
ρv2

2
+ ρgz . (4)

Here ρ, p,v are density, pressure, and the flow velocity vector, respectively, g is the gravitational
acceleration, γ the isentropic exponent, z the vertical space coordinate, and “◦” denotes the tensorial
product. We think of [p, ρ,v, g], and the independent variables [t, (x, y, z)] in (3) as nondimensionalized
by [pref , ρref , cref , c

2
ref/`ref ], and [`ref/cref , `ref ], respectively, where cref =

√
pref/ρref is of the order of

the speed of sound, and
`ref =

pref

ρref gref
= hsc (5)

is the pressure scale height.

For flows without shocks, two equivalent equations can be derived that we will use below to replace
the energy conservation law, (3)3,

(ρθ)t +∇ · (ρθv) = 0 , (θ = p
1
γ /ρ)

Pt +∇ · (Pv) = 0 , (P ≡ p
1
γ ) .

(6)

Equation (6)1 may be interpreted as expressing the first law of thermodynamics for an adiabatic fluid.
It may also be interpreted as a transport equation in conservation form for the potential temperature,
θ, and this will be important in the sequel. Equation (6)2 is a somewhat unusual way of writing the
more familiar non-conservative pressure equation for an adiabatic fluid

pt + v · ∇p+ γp∇ ·v = 0 . (7)

Also, for flows without shocks, the momentum equation, (3)2, may be rewritten as

(ρv)t +∇ · (ρv ◦ v) + ρθ∇π = −gk , (8)

where
π = Γ−1pΓ , with Γ =

γ − 1
γ

, (9)

is proportional to the Exner pressure variable, pΓ .

While it is clear that shock waves must be excluded when adopting (6) and (8) instead of the mass, mo-
mentum, and energy conservation laws, it seems likely that contact discontinuities, i.e., discontinuities
of θ, would still be allowed. Addressing this question is beyond the scope of the present paper.
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2.2 Ogura & Phillips’ (1962) anelastic model

2.2.1 Asymptotic derivation

In their seminal paper, [36], Ogura and Phillips derive a reduced system of equations from (3) through
scale analysis based on the limit of vanishing Mach number. To summarize their analysis, we consider
flow velocities much smaller than the speed of sound, and nondimensionalize velocity and time by

uref = M cref , tref =
hsc

uref
, with (M� 1) . (10)

With this rescaling and using (6)1 instead of energy conservation, the governing equations from (3)
become

ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) +
1

M2
∇p = − g

M2
ρk

(ρθ)t +∇ · (ρθv) = 0

. (11)

If we do not allow for a further rescaling of the space or time coordinates with M, i.e., if we restrict
ourselves to the Lagrangian time scale for flows over distances of O(hsc) as M→ 0, then the momentum
equation and the thermodynamic relationship, ρθ = p1/γ , require

ρ(x, t; M) = ρ(z) + M2ρ′(x, t) + o(M2)

p(x, t; M) = p(z) + M2p′(x, t) + o(M2)

θ(x, t; M) = θ(z) + M2θ′(x, t) + o(M2)

as (M→ 0) , (12)

and
v(x, t; M) = v0(x, t) + o(1) , as (M→ 0) . (13)

Subtracting the leading-order hydrostatic balance

dp

dz
= −ρg , ρθ = p

1
γ (14)

from (11)2 and dropping higher-order terms, we find the rescaled leading-order evolution equations

∇ · (ρv0) = 0

(ρv0)t +∇ · (ρv0 ◦ v0) +∇p′ = ρ

(
θ′

θ
− p′

γp

)
gk

θ′t + v0 · ∇θ′ +
S

M2
θ w0 = 0

(15)

with the local stability

S =
1
θ

dθ

dz
. (16)

Equation (15)3 forces us to either accept w0 ≡ 0, which would suppress internal waves, or to restrict
ourselves to weak stratification with S = O(M2) as M→ 0. For a discussion of the former regime see,
e.g., [56,25,32]. The latter regime was considered by Ogura & Phillips, [36], and leads to the classical
anelastic model with a homentropic background stratification,

ρ(z) = p(z)
1
γ = (1− Γ g z)

1
γΓ . (17)

More specifically, dropping the 0-subscript, we have the
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Ogura & Phillips’ model

∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) + ρ∇π′ = gρθ′k

(ρθ′)t +∇ · (ρθ′v) = 0

. (18)

Without (further) loss of generality we have assumed

θ = 1 + M2θ′ + o(M2) , (19)

thereby absorbing the weak background stratification in θ′, and introduced the scaled pressure pertur-
bation

π′ =
p′

ρ
, (20)

so that

ρ(∇π′ − gθ′k) = ∇p′ + gρ

(
p′

γp
− θ′

θ

)
k (21)

as required by (15)2. In deriving (21) we have used

ρ
d

dz

1
ρ

= −1
ρ

(
∂ρ

∂p

)
θ

dp

dz
=

g

γp
, where

(
∂ρ

∂p

)
θ

=
ρ

γp
,

dp

dz
= −gρ . (22)

For later reference, note that due to (17) the anelastic divergence constraint in (18)1 is equivalent to
the pseudo-incompressible one in the weak stratification regime, i.e.,

∇ · (p
1
γ v) = ∇ · (ρθv) = ∇ · (Pv) = 0 . (23)

2.2.2 Remarks on asymptotic models for stronger stratification

In deriving a model that is sound-proof but does incorporate advection and internal waves on the same
length and time scales, we were forced to adopt asymptotically weak stratification. To corroborate this
from a physical point of view, Table 1 compares the characteristic time scales of these three processes,
both in dimensional and non-dimensional terms (notice that ghsc = pref/ρref ∼ cref).
As M → 0, the characteristic frequency of internal waves is of the same order as the inverse of the
characteristic time of sound wave propagation unless we assume weak stratification dθ/dz = O(M2).
For stronger stratification and on the Lagrangian advection time scale, both sound waves and internal
waves get eliminated in the low Mach number limit, and one obtains model equations for buoyancy-
controlled flow, [56,8,25,32,27], also known as the Weak Temperature Gradient approximation (WTG),
[47]. The leading-order model, in the presence of diabatic heating Sθ, in this case reads,

ut + u · ∇‖u+ θ∇‖π = 0

ρ0∇‖ ·u+ (ρ0w)z = 0

w =
Sθ

dθ/dz

.

Here u, w denote the horizontal and vertical velocity components, respectively, θ(z) is the background
stratification of potential temperature, and∇‖ is the gradient operator w.r.t. the horizontal coordinates
only, [25]. This set of equations excludes both sound and internal waves.

If, again for stronger stratification, we were to adopt the internal wave time scale, i.e., the inverse of the
characteristic frequency mentioned above, in constructing a reduced low Mach number model, then
advection would be asymptotically slow in the limit, and the leading-order model would describe
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Table 1 Characteristic inverse time scales

dimensional dimensionless

advection :
uref

hsc
1

internal waves : N =

√
g

θ

dθ

dz

√
ghsc

uref

√
hsc

θ

dθ

dz
=

1

M

√
hsc

θ

dθ

dz

sound :

√
ghsc

hsc

√
ghsc

uref
=

1

M

linearized internal waves but would exclude advection. See [27] for a related derivation including
moisture effects. The leading-order model in this case reads,

ut +∇‖π = 0

wt + πz = θ′

θ′t + w
dθ

dz
= Sθ

ρ0∇‖ ·u+ (ρ0w)z = 0

.

This model describes internal gravity waves, while it excludes the effects of sound propagation and
advection.

Of course, one could develop an asymptotic model that includes both advection and internal waves in
a regime with stratification stronger than O(M2) by using techniques of multiple scales asymptotics.
While this would surely be a worthwhile endeavour, it would not provide a set of equations that is
structurally similar to the anelastic or pseudo-incompressible models. Rather, one would obtain two
sets of equations, one for the fast, one for the slow components of the flow, together with suitable
prescriptions for their coupling derived via the standard secular (sublinear growth) conditions.

We conclude:

1. It is not possible to derive a sound-proof model incorporating advection and internal waves for
dimensionless stabilities stronger than O(M2) through single-scale asymptotics (or classical scale
analysis).

2. The leading-order model for O(M2) stratification is that of Ogura and Phillips, [36].

Bannon observes in [4] that one can systematically derive anelastic models for the entire range of
stratifications from homentropic to isothermal provided one is willing to asymptotically constrain the
fluid’s equations of state. Thus, e.g., for an isothermal background state we have

p(z) = ρ(z) = exp(−z) , and θ(z) = exp(Γz) . (24)

In this case one obtains weak stratifciation with dθ/dz = O(M2), if

Γ = (γ − 1)/γ = O(M2) as (M→ 0) . (25)

While this limit does enable a systematic derivation of an anelastic model for flows in the homentropic-
to-isothermal range, and while it is particularly useful in asymptotic analyses of diabatic flows, [37,
27], it does not change the previous conclusion that the resulting leading-order flow model is that of
Ogura and Phillips (1962).
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2.3 Anelastic and pseudo-incompressible models

2.3.1 Dutton & Fichtl (1969), Lipps & Hemler (1982), Bannon (1996)

The Ogura and Phillips model is attactive because it filters the fast sound waves while maintain-
ing advection of momentum and entropy and supporting internal gravity waves. It is criticized by
practitioners, however, on the basis of the expansion scheme for potential temperature in (19) which
restricts variations of the (dimensional) background potential temperature to unrealistically small val-
ues of M2θ′pref/Rρref <∼ 1 K. Realistic variations of potential temperature across the troposphere are
instead of the order of 30− 50 K.

This drawback has motivated a number of researchers to suggest extensions of this classical model that
would render it applicable to flows with stronger stratification. Bannon, [4], combining developments
by Dutton and Fichtl, [17], and Lipps and Hemler, [31], proposed

Bannon’s anelastic model

∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) + ρ∇π′ = gρ
θ − θ
θ
k

(ρθ)t +∇ · (ρθv) = 0

. (26)

Here π′ = p′/ρ is a scaled perturbation pressure, and θ(z) is the desired z-dependent background strat-
ification of potential temperature. By assuming a time-independent hydrostatic background density
distribution,

ρ(z) =
p(z)

1
γ

θ(z)
=

1
θ(z)

1− γ − 1
γ

g

z∫
0

1
θ(z′)

dz′

 1
γΓ

, (27)

the full continuity equation from (3)1 reduces to the divergence constraint in (26)1, and sound waves
are eliminated.

Bannon’s model in (26) is structurally very similar to that of Ogura and Phillips from (18). The only
obvious change concerns the buoyancy term: Ogura and Phillips linearize density perturbations relative
to a constant background potential temperature, whereas Bannon linearizes w.r.t. a height-dependent
background. For a given background distribution of the density, ρ(z), this would be the only difference
between these models, however, the background density distributions in (17) and (27) also differ in
general as they are based on constant and stratified background potential temperature distributions,
respectively.

Pressure gradient and gravity terms
The combination of the pressure gradient and buoyancy terms in (26)2 can be expanded to give

ρ

(
∇π′ − g θ − θ

θ
k

)
= ∇p′ + gρ

(
p′

γp
− θ′

θ

)
k +

p′

θ

dθ

dz
k . (28)

The first two terms on the right hand side match those in (21) providing the linearized influences of
pressure and potential temperature perturbations on the buoyancy. Yet, there is now the additional
term, p

′

θ

dθ
dzk, which is not consistent with a perturbation analysis of the pressure gradient and gravity

terms. Bannon, [4], argues that, his model is explicitly restricted to relatively weak stratifications with
hsc

θ

dθ
dz � 1, so that this erroneous term is small. In addition, he suggests a possible further improvement

through a re-definition of the potential temperature perturbation variable

θ′

θ
= − p

′

ρg

1
ρ

dρ

dz
− ρ′

ρ
(29)
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which turns the entire right hand side of (28) into ∇p′ + gρ′. This modification amounts to a change
of the thermodynamic equation of state.

In deriving (28) and in discussing (29) we have used

ρ
d

dz

1
ρ

= −1
ρ

((
∂ρ

∂p

)
θ

(p, θ)
dp

dz
+
(
∂ρ

∂θ

)
p

(p, θ)
dθ

dz

)
=
ρg

γp
+

1
θ

dθ

dz
. (30)

2.3.2 Durran (1989)

Durran’s model, [15], is obtained from the compressible flow equations in (1) by assuming a time
independent leading-order pressure instead of a time independent leading-order density. The pressure
equation, (1)3(or(6)2), then yields the pseudo-incompressible divergence constraint, [9,8,25],

∇ · (Pv) = ∇ · (ρθv) = 0 . (31)

Durran actually suggests a slightly different version of the divergence constraint, ∇ · (ρθv) = 0, which is
equivalent to the above at leading order only if the deviations of both density and potential temperature
from their background values are small. See section 2.4.3 on the small-scale limit for further discussion.

The pseudo-incompressible model is now obtained from the full compressible flow equations by replacing
the energy conservation law with (31) and modifying the pressure gradient term as described shortly.
Specifically, we have

Durran’s pseudo-incompressible model

ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) + P∇π′ = gρ
θ − θ
θ
k

∇ · (Pv) = 0

, (32)

where

P = p
1
γ , θ =

P

ρ
, π′ = π − π =

1
Γ

(
pΓ − pΓ

)
. (33)

The background pressure distribution, p(z), is assumed to satisfy

P
dπ

dz
=
P

Γ

dpΓ

dz
=

γ

γ − 1
p

1
γ
dp

γ−1
γ

dz
=
dp

dz
= −gρ = −gp

1
γ

(
1
θ

)
, (34)

which yields

P (z) = p(z)
1
γ =

1− Γ g
z∫

0

(
1
θ

)
(z′) dz′

 1
γΓ

. (35)

This is analogous to the background distributions in Ogura and Phillips’ and Bannon’s models, provided
1/θ(z) in (27) is replaced with (1/θ)(z).

Advection of potential temperature
In the pseudo-incompressible model, (32), the mass conservation law is responsible for the advection of
potential temperature. In fact, under the pertinent assumption that pressure variations are very small,
the leading-order approximation to the thermodynamic relation reads

ρ = p
1
γ /θ ,= P/θ (36)

and, using the divergence constraint from (32)3 in the continuity equation (32)1, we find

(1/θ)t + v · ∇ (1/θ) = 0 . (37)
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Pressure gradient and gravity terms
The sum of the pressure gradient and gravity terms in (32) is

P∇π′ − gρθ − θ
θ
k ≈ ∇p′ + kgρ

(
(
ρ

ρ
− 1) +

p′

γp

)
. (38)

In deriving (38) we have assumed that ρ = P/θ = ρθ/θ, which is justified as long as variations of
density and potential temperature remain small (see, however, also our remarks on the small-scale
limit below). Furthermore we have assumed that π′/π � 1, and linearized the relation π = pΓ /Γ , so
that

π′ =
1
Γ

(pΓ − pΓ ) = pΓ−1p′ + o(p′) =
p′

P
+ o(p′) where p′ = p− p . (39)

Durran, [15], points out that the momentum equation of the pseudo-incompressible model in (32)2
carries the fully nonlinear dependence of density on the potential temperature. From (38) we conclude
that the influence of pressure perturbations on the density is included through a Boussinesq-type
approximation: a linearized version of that influence is retained in the combination of the gravity and
pressure gradient terms through the last term in (38) while it is otherwise neglected in the momentum
balance.

2.4 Structural comparison of the three flow models

2.4.1 Non-perturbative form of the equations

The compressible Euler equations may be written as

Compressible Euler equations

ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) + P∇π = −gρk

Pt +∇ · (Pv) = 0

(40)

with P = p1/γ = ρθ and π = pΓ /Γ where Γ = (γ − 1)/γ. Durran’s model is obtained from this
system by simply dropping the pressure time derivative and assuming that P matches the prescribed
background distribution P ≡ P (z) from (35). In fact, if we add the background hydrostatic balance to
the momentum equation in (32), the pseudo-incompressible model becomes

Pseudo-incompressible model

ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) + P∇π = −gρk

∇ · (Pv) = 0

. (41)

Bannon’s model is obtained from (40) by dropping the density time derivative, assuming ρ ≡ ρ(z) from
(27), and slightly modifying the pressure gradient and gravity terms, and thus we have the

Anelastic model
∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) + ρ∇π = −gρ
(

1− θ − θ
θ

)
k

(ρθ)t +∇ · (ρθv) = 0

. (42)
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Here we have replaced the pressure variable π′ in (26) with

π = π′ +Π with Π satisfying
dΠ

dz
= −g . (43)

In section 3 below we will exploit the close structural similarity of these models to construct a numerical
scheme that solves either of the two sound-proof sets of model equations using the same basic numerical
techniques. For a subsequent paper we plan to extend this solver to the case of (weakly) compressible
flow in such a way that the sound-proof limits remain accessible.

2.4.2 Energy and pseudo-energy conservation

An important requirement for reduced flow models is that they do not exhibit spurious instabilities
incompatible with the full model. One criterion that is generally checked is the conservation of a
nonlinear energy for the full nonlinear models or a quadratic pseudo-energy for their linearized coun-
terparts. Both Bannon’s anelastic hybrid model and Durran’s pseudo-incompressible model observe
such conservation laws. The reader is referred to the original references for corroboration, [4,15].

2.4.3 Small-scale limits

In section 2.2.1 we point out that the sound-proof models of the present section cannot have a system-
atic asymptotic derivation for stratifications hsc

θ

dθ
dz > O(M2). We now show that, nevertheless, both

Bannon’s and Durran’s model do agree asymptotically with particular asymptotic low Mach number
limits of the compressible flow equations when `ref � hsc. To verify this, we introduce the rescaled
variables (ρ̂, θ̂, v̂, π̂; t̂, x̂) defined by

(ρ, θ, v, π′; t, x′) =
(
ρ̂, θ̂, δ

1
2 v̂, δπ̂; δ

1
2 t̂, δx̂

)
, δ =

`ref
hsc
� 1 , x′ = x− x0 , (44)

where x0 is the center of the considered (small) flow domain. These new variables are chosen such that

1. x̂ resolves the new characteristic length `ref ,

2. t̂ resolves the advective time scale in the rescaled system, so that(
∂

∂t
+ v · ∇

)
= δ−

1
2

(
∂

∂t̂
+ v̂ · ∇̂

)
, (45)

and

3. accelerations retain their order of magnitude, since

∂v

∂t
= δ

1
2
∂v̂

∂t̂

dt̂

dt
=
∂v̂

∂t̂
. (46)

The pseudo-incompressible and anelastic models from (41), (42), are invariant under this transforma-
tion, except for a δ-dependent re-interpretation of the background distributions ρ(z), P (z), and θ(z),
respectively. With the transformation z = z0 + δẑ, the background density and potential temperature
distributions in (27) obey

(ρ̂, θ̂)(ẑ) = (ρ, θ)(z0 + δẑ) = (ρ, θ)(z0) +O(δ) for ẑ = O(1) as δ → 0 . (47)

In the limit, (ρ̂, θ̂) ≡ (ρ, θ)(z0) = const, and the anelastic model from (26) becomes identical to the

Boussinesq-approximation



12 Rupert Klein

∇ ·v = 0

vt + v · ∇v +∇π′ = gθk

θt + v · ∇θ = 0

. (48)

Analogously, P → P (z0) as δ → 0 in (35), and the pseudo-incompressible model from (41) reduces to
the more general

Zero Mach, variable density flow equations

ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) +∇π = −gρk
∇ ·v = 0

. (49)

To simplify the notation, we have absorbed a factor of θ(z0) in θ in (48), and a factor of P (z0) in π in
(49).

Both the Boussinesq approximation and the zero Mach number variable density flow equations do
have systematic asymptotic derivations from the full compressible flow equations, see, e.g., [56,41,52].
The Boussinesq approximation is more restrictive as it requires small density variations in addition to
vanishing Mach number. We conclude that, at least on small scales, there is asymptotic agreement of
the anelastic and pseudo-incompressible models with the full compressible flow equations and that the
pseudo-incompressible model is more general in that it is not restricted to small potential temperature
variations.

This latter observation may be of interest in the context of high-resolution and LES models for meteo-
rological applications. On length scales comparable to the pressure scale height, the differences between
simulation results obtained with either sound-proof model differ only very little as discussed in section
4.1. For simulations involving much smaller scales, the pseudo-incompressible model is preferable as it
remains uniformly valid independent of the magnitude of density or potential temperature variations.
A related example is given in section 4.3.

3 Finite-volume sound-proof model solver

The scheme proposed in this section combines ideas from [5,40,10,42,54,55,23] as follows. Borrowing
from the projection methods in [5,40], from the auxiliary variable projection approach in [23], and
from the well-balanced discretizations for the gravity source term in [10], the scheme consists of

1. predictor step, including
(a) Godunov-type advection (section 3.1.1)
(b) well-balanced discretization of the gravity term (section 3.1.2)

2. MAC-projection (Marker and Cell) for the advective fluxes (section 3.2)
3. projection of the cell-centered velocity fields (section 3.3)

Following [42], we assign a special role to the divergence-controlled fields Pv (or ρθv) in the pseudo-
incompressible model and ρv in the anelastic model in that upwinding in the Godunov-type advection
scheme is done relative to these fields. Thus, the advective flux ρφv of some quantity φ is discretized
in section 3.1.1 as (ρθv) (φ/θ)upw and (ρv)φupw, respectively, with (ρθv) and (ρv) obtained from
upwind-free interpolations.

Following [10] we describe in section 3.1.2 an explicit well-balanced discretization of the gravity source
term based on local hydrostatic reconstruction and Archimedes’ principle. This approach is used in
[10] to discretize the compressible Euler equations for atmospheric applications without reference to a
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hydrostatically balanced background state, and we achieve the same here for the pseudo-incompressible
and anelastic models (except, of course, for the explicit dependence of the buoyancy term on θ in the
anelastic model).

The MAC-projection described in section 3.2 controls the divergence of the advection velocities in
a somewhat non-standard fashion. Consider first the approach for the pseudo-incompressible model.
Rather than directly enforcing ∇ · (ρθv) = 0, which would require explicit evaluation of the background
distribution ρθ(z), we enforce ∇ · (ρθv) = 0 [without the overbar !]. This will guarantee that, upon
updating ρθ to the new time level according to the potential temperature transport equation (ρθ)t +
∇ · (ρθv) = 0, the quantity ρθ will retain its old time level and thus its distribution at the initial
time, up to the tolerance to which the divergence constraint is enforced. As a consequence we have
∇ · (ρθv) = ∇ · (ρθv) + h.o.t. at the discrete level where h.o.t. denotes higher-order terms that do not
affect the second-order accuracy of the scheme, and the pseudo-incompressible divergence constraint is
satisfied. Note that we also solve a discrete version of the mass continuity equation, ρt+∇ · (ρv) = 0, for
which, however, ∇ · (ρv) 6≡ 0, so that a non-trivial time evolution of the density distribution results.
In fact, our analysis given in appendix A1 below shows that the approach provides a second-order
accurate discretization of the advection of 1/θ independent of the tolerance with which we control the
divergence of ρθv.

For the anelastic model, the variables ρθ and ρ switch their roles, with ∇ · ρv being controlled and the
equation (ρθ)t +∇ · (ρθv) = 0 being responsible for the advection of θ.

The same strategy is applied in the final projection of the cell-centered velocities described in section
3.3. This “second projection” is a derivative of the inf-sup-stable projection for the zero-Froude number
shallow water equations developed in [54,55].

The entire scheme accesses the background distributions only within the formulations of initial and
boundary conditions and, as mentioned above, in the gravity term for the anelastic model.

3.1 Predictor

In the predictor step we solve the following auxiliary hyperbolic systems using Godunov-type upwind
techniques:

Auxiliary system
ρt +∇ · (ρv) = 0

(ρv)t +∇ · (ρv ◦ v) + ρχ∇πn = −gρΘk

(ρθ)t +∇ · (ρθv) = 0

. (50)

Here πn is the approximate Exner pressure field from the respective last completed, i.e., nth, time
level, and

(χ,Θ) =


(θ, 1) pseudo-inc.(

1,
[
1− θ−θ

θ

])
anelastic

. (51)

As in [42] we cast the individual equations in these auxiliary systems into the generic form

(ρ̂φ)t +∇ · (ρ̂φv) + ρ̂Qφ = 0 , (52)

where
ρ̂ = ρθ , φ ∈ {1/θ, u/θ, w/θ, 1} pseudo-inc.

ρ̂ = ρ , φ ∈ {1, u, w, θ} anelastic
(53)
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and u and w are cartesian velocity components. The additional term Qφ is non-zero only for the
momentum equations with

Qφ =


0 (φ ∈ {1/χ, θ/χ})

∂πn/∂x (φ = u/χ)

∂πn/∂z + gΘ/χ (φ = w/χ)

. (54)

Second-order predictions for these auxiliary systems provide second-order accurate advective fluxes
for the full pseudo-incompressible and anelastic systems. See the analogous discussions in [40,23]. In
section 3.1.1 we describe the discretization of the advective transport terms, in section 3.1.2 we address
Qφ.

Notation:

For the predictor step we use Strang-splitting for the spatial directions on an equally spaced cartesian
mesh. In describing the scheme, we use the generic notation

x : current computational direction
u : flow velocity in the x-direction
i : grid cell index
g : gravitational acceleration if x-direction is vertical, 0 otherwise

3.1.1 MUSCL scheme for advection

We use a slightly modified MUSCL-approach (Monotone Upstream Scheme for Conservation Laws) to
discretize the advection terms (see, e.g., [34,53] and references therein). The generic update for the
one-dimensional advection step reads

(ρ̂φ)n+1
i = (ρ̂φ)ni − λ

(
(ρ̂uφ)n+ 1

2
i+ 1

2
− (ρ̂uφ)n+ 1

2
i− 1

2

)
−∆tQφ,n+ 1

2
i , (55)

with λ = ∆t
∆x and the numerical fluxes (ρ̂uφ)n+ 1

2
i+ 1

2
computed as follows: First, we determine left and

right cell-edge data for φ via

φ
n+ 1

2 ,−
i+ 1

2
= φni +

∆x

2
(
1− λuni

)
sn,+i − ∆t

2
Qφ,n
i+ 1

2

φ
n+ 1

2 ,+

i+ 1
2

= φni+1 −
∆x

2
(
1 + λuni+1

)
sn,−i+1 −

∆t

2
Qφ,n
i+ 1

2

. (56)

(See section 3.1.2 for the discretizations of Qφ,n+ 1
2

i and Qφ,n
i+ 1

2
from (55) and (56), respectively.)

In (56) the

sn,±i = ±sgn
(
φni±1 − φni

) (
∂lim
x φ

)n
i
,

(
∂lim
x φ

)n
i

= Lim
(∣∣∣∣φni − φni−1

∆x

∣∣∣∣ , ∣∣∣∣φni+1 − φni
∆x

∣∣∣∣) (57)

are limited slopes. In producing the results presented in section 4 we have used variations of van Leer’s
limiter,

Lim(a, b) =


2ab
a+ b

ψ
(
min(a/b, b/a)

)
(sgn(ab) > 0)

0 otherwise
, ψ(r) = 1 + r(1− r)(1− rk) . (58)

For k = 0, ψ ≡ 1 and we recover van Leer’s original limiter. For k = 1, 2, 3, 4 the limiter function
remains smooth but “sharpens” in that its ability to maintain steep gradients improves. We have
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introduced this modified limiter, because smooth limiter functions that are free of “if–then” decisions
provide for superior maintainance of flow symmetries in comparison with limiters that are not. (See
Appendix A2 for further discussion.)

The formulae in (57) are non-standard in that we distinguish a left and a right linear reconstruction
in each cell. Wherever (φni+1 − φni )(φni − φni−1) ≥ 0, we have sn,+i = sn,−i and the reconstruction is
equivalent to that of a standard MUSCL-scheme. At an extremum, however, slopes are not set to zero
as they normally would be. Instead a limited slope is computed from the modulus of the discrete left
and right slopes, and left and right reconstructions are distinguished within the cell. This modification
led to considerably reduced damping in the strongly flucutating flows induced by gravity wave breaking
in one of the tests discussed below.

See appendix A3 for a variant of the present scheme that uses standard TVD slope limiting and is
shown to observe a maximum principle.

For the density variable ρ̂ whose overall evolution, including the influence of the marker-and-cell
(MAC)-projection, is controlled by the divergence constraint, we use central differencing in the half-
time update, i.e.,

ρ̂
n+ 1

2
i+ 1

2
=

1
2
(
ρ̂ni + ρ̂ni+1

)
− ∆t

2∆x
(
(ρ̂u)ni+1 − (ρ̂u)ni

)
. (59)

With these ingredients we compute the advective numerical flux for φ from

(ρ̂uφ)n+ 1
2

i+ 1
2

=
(
ρ̂〈u〉φupw

)n+ 1
2

i+ 1
2

,

〈u〉n+ 1
2

i+ 1
2

=
1
2

(
u
n+ 1

2 ,+

i+ 1
2

+ u
n+ 1

2 ,−
i+ 1

2

)
,

(60)

where
φupw = σ φ+ + (1− σ)φ− , σ =

1
2

(1− sgn〈u〉) (61)

is the upwind value of φ based on the averaged advection velocity 〈u〉.

3.1.2 Well-balanced discretization of the pressure gradient and gravity terms

We need to evaluate the pressure gradient and gravity terms in two places in the scheme: (i) to produce
the half-time update of the cell-interface fluxes in (56), and (ii) for the update of the cell-averaged
momenta in (55). As in [10] we adopt Archimedes’ principle and represent the gravity term by the
gradient of a locally reconstructed hydrostatic pressure.

Cell interfaces

The cell-interface half-time updates in (55) are Qφ,n
i+ 1

2
= 0 for φ 6= u and

Qu,n
i+ 1

2
=
(
∂πn

∂x
+ g

Θ

χ

)n
i+ 1

2

=

(
πni+1 − πni

∆x
− πh,ni (xi+1)− πh,ni (xi)

∆x

)
, (62)

with the local hydrostatic pressure distributions

πh,ni (x) = πni −
x∫

xi

g

(
Θ

χ

)
(ζ) dζ . (63)

The integral is evaluated analytically using piecewise linear interpolation for Θ/χ, i.e.,(
Θ

χ

)
(x) =

(
Θ

χ

)n
i

+ (x− xi)
(Θ/χ)ni+1 − (Θ/χ)ni

∆x
for (xi ≤ x < xi+1) . (64)
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These formulae hold for all cartesian directions with g assuming its standard value for the vertical
direction and zero for the horizontal ones.

Cell centers

The updates of the momentum cell averages read

(ρu)n+1,∗
i = (ρu)ni − λ

((
ρ̂〈u〉uupw

)n+ 1
2

i+ 1
2

−
(
ρ̂〈u〉uupw

)n+ 1
2

i− 1
2

)
−∆t

(
ρ̂

[
∂πn

∂x
+ g

Θ

χ

])n+ 1
2

i

, (65)

with (
ρ̂

[
∂πn

∂x
+ g

Θ

χ

])n+ 1
2

i

= ρ̂
n+ 1

2
i

(
1
2

[
Qu,n
i− 1

2
+Qu,n

i+ 1
2

]
+
g∆t

2

(
∂

∂t

Θ

χ

)n
i

)
. (66)

Here the Qu,n
i− 1

2
are taken from (62), and the last term in (66) provides the half-time update of the

gravity term needed to ensure a second-order accurate approximation. For this last term we have

ρ̂
n+ 1

2
i =

1
2

(
ρ̂
n+ 1

2
i+ 1

2
+ ρ̂

n+ 1
2

i− 1
2

)
, (67)

and, recalling the definitions of Θ and χ in (51) and that 1/θ and θ are advected quantities in the
pseudo-incompressible and anelastic models, respectively, we let

(
∂

∂t

Θ

χ

)n
i

=


− uni

2∆x

(
(1/θ)ni+1 − (1/θ)ni−1

)
pseudo-inc.

uni
2∆xθ(xi)

(
θni+1 − θni−1

)
anelastic

. (68)

Instead of central differences we have also tested limited slopes in this term. The differences are small
(not shown).

3.2 Marker and Cell (MAC) projection of the advective fluxes

The projection steps are inherently multi-dimensional, and we describe here the implementation for
two space dimensions, dropping the simplified dimensionally split notation of the last section.

The predictor step produces a preliminary advective update for ρ̂ through

ρ̂n+1,∗
i,j − ρ̂ni,j = −∆t

(
∇̃ · ρ̂v

)n+ 1
2 ,∗

i,j
, (69)

where the right-hand side represents the accumulated discrete finite volume flux divergence over a
full Strang-splitting cycle for the cartesian directions. This flux divergence will be non-zero in general
because the auxiliary equation in (50) involves the old time level pressure gradient in the momentum
equation instead of a pressure field adjusted so as to enforce the divergence constraint on the flux of ρ̂.
Also, this use of the old time level pressure is the only source of error that prevents the predictor step
from attaining the desired second-order accuracy. Therefore, in the MAC-projection step we compute
a pressure correction π′ whose gradient adjusts the flux of ρ̂ to comply with the divergence constraint.
Specifically, we let, e.g., for the x-direction,

(ρ̂u)n+ 1
2

i+ 1
2 ,j

= (ρ̂u)n+ 1
2 ,∗

i+ 1
2 ,j
− ∆t

2

(
ρ̂χ
∂π′

∂x

)n+ 1
2

i+ 1
2 ,j

. (70)

Inserting this into (69) we obtain a Poisson-type equation for π′,

1
ρ̂n+1,∗
i,j

(
∇̃ ·

(
ρ̂χ∇̃π′

))n+ 1
2

i,j
=

2
(∆t)2

ρ̂n+1,∗
i,j − ρ̂ni,j
ρ̂n+1,∗
i,j

. (71)



Asymptotics, structure, and integration of sound-proof atmospheric flow equations 17

The scaling by 1/ρ̂ represents a diagonal preconditioner that ensures accurate corrections of the advec-
tion velocities even for deep atmospheres in which ρ̂ varies vertically by several orders of magnitude.

For the discrete divergence, ∇̃ · , in (71) we use the standard finite volume flux divergence. To approx-
imate the required integral of ρ̂χ∇π′ ·n over the grid cell interfaces, we adopt the discretization from
[50,54]. Specifically, we assume piecewise bilinear continuous ansatz functions for π′ on the dual cells
of the cartesian mesh and piecewise constant data for ρ̂χ on the interfaces of the primary cells. Then
we approximate the discrete divergence by exact integrations along the boundaries of the primary
cells. The resulting discrete weighted Laplacian is composed of flux contributions across the grid cell
interfaces, so that

∇̃ ·
(
ρ̂ χ∇̃π′

)
i,j

=
1
∆x

(
FMAC
i+ 1

2 ,j
− FMAC

i− 1
2 ,j

)
+

1
∆z

(
GMAC
i,j+ 1

2
−GMAC

i,j− 1
2

)
, (72)

with

FMAC
i+ 1

2 ,j
=
(
ρ̂χ
)n+ 1

2 ,∗

i+ 1
2 ,j

(
3
4
π′i+1,j − π′i,j

∆x
+

1
8

[π′i+1,j+1 − π′i,j+1

∆x
+
π′i+1,j−1 − π′i,j−1

∆x

])
(
ρ̂χ
)n+ 1

2 ,∗

i+ 1
2 ,j

=
1
4

([
(ρ̂χ)n+ 1

2 ,∗
i,j + (ρ̂χ)ni,j

]
+
[
(ρ̂χ)n+ 1

2 ,∗
i+1,j + (ρ̂χ)ni+1,j

]) , (73)

and analogous formulae for GMAC
i,j+ 1

2
.

Having solved for π′, we correct the predictions for advected quantities by

(ρ̂φ)n+1
i,j = (ρ̂φ)n+1,∗

i,j

+
(∆t)2

2

{
(φF )MAC

i+ 1
2 ,j
− (φF )MAC

i− 1
2 ,j

∆x
+

(φG)MAC
i,j+ 1

2
− (φG)MAC

i,j− 1
2

∆z

}
− ∆t

2
ρ̂Q′

φ
i,j

(74)

with
(φF )MAC

i+ 1
2 ,j

= φupw

i+ 1
2 ,j
FMAC
i+ 1

2 ,j

φupw

i+ 1
2 ,j

= σφn+1,∗
i−1,j + (1− σ)φn+1,∗

i,j

σ = sgn
(

(ρ̂u)n+ 1
2 ,∗

i+ 1
2 ,j
− ∆t

2
FMAC
i+ 1

2 ,j

) , (75)

analogous formulae for (φG)MAC
i,j+ 1

2
, and

ρ̂Q′
φ
i,j =



1
2

(
FMAC
i− 1

2 ,j
+ FMAC

i+ 1
2 ,j

)
(φ = u/χ)

1
2

(
GMAC
i,j− 1

2
+GMAC

i,j+ 1
2

)
(φ = w/χ)

0 otherwise

. (76)

Remarks:

In (75)2 we have also tried more involved second-order central and third-order upwind-biased interpo-
lations. The effects are small, they do not affect second-order accuracy of the scheme, and the simple
upwinding formula has the advantage of obeying the maximum principle for advected scalars as shown
in Appendix A3. Thus, the simple first-order upwind formula is sufficient and has been used in all
computations presented in this paper.

Updating the cell-averaged momenta by Q′
u/χ
i,j and Q′

v/χ
i,j from (76) acts as a preconditioner for the

second projection step described in the next section. Although not sufficient to ensure second-order
accuracy of the momentum updates or to reduce the flow divergence to truncation errors less than
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O((∆x)2, these preliminary updates do result from elliptic pressure corrections that ensure the diver-
gence constraint on the mass- and ρθ fluxes, thereby containing valid information on the pressure field.
We found that using these updates reduces the number of CG-iterations needed to achieve a given
tolerance in the second projection for the cell-centered velocities by more than one half on average.

3.3 Projection of the cell-centered velocities

The cell-averaged momenta have been updated in the predictor taking into account second-order
accurate advection but only first-order accurate pressure gradient terms. As in [5,40], we introduce
a second node- or dual-cell-centered projection to achieve second-order accuracy. We use again the
discretization of the weighted Poisson operator from [55]. For simplicity, we do not implement the
exact projection version described in [55], which would imply monitoring and correcting the slopes of
the momenta within the grid cells in addition to correcting their cell averages. Thus, here we introduce
an approximate projection for the cell-centered velocities similar to those analyzed in [3]. Note, however,
that the advective fluxes are exactly projected, as described in the previous section.

We determine the predicted discrete flow divergence for dual cells through, dropping the ( · )n+1,∗-
superscript,(

∇̃ · (ρ̂v)
)
i+ 1

2 ,j+
1
2

=
1

2∆x

([
(ρ̂u)i+1,j+1 + (ρ̂u)i+1,j

]
−
[
(ρ̂u)i,j+1 + (ρ̂u)i,j)

])
+

1
2∆z

([
(ρ̂w)i+1,j+1 + (ρ̂w)i,j+1)

]
−
[
(ρ̂w)i+1,j + (ρ̂w)i,j)

])
.

(77)

To achieve approximately divergence-free fields ρ̂v, we correct the momenta by the approximate gra-
dient of a node-based pressure field, π′

i+ 1
2 ,j+

1
2
, so that

(ρu)n+1
i,j = (ρu)n+1,∗

i,j − ∆t

2∆x
(ρ̂χ)n+1

i,j

([
π′i+ 1

2 ,j+
1
2

+ π′i+ 1
2 ,j−

1
2

]
−
[
π′i− 1

2 ,j+
1
2

+ π′i− 1
2 ,j−

1
2

])
, (78)

with an analogous formula for ρw.

The pressure field satisfies the (preconditioned) Poisson-type equation

1
ρ̂
∇̃ ·

(
ρ̂χ∇̃π′

)
i+ 1

2 ,j+
1
2

=
1
∆t

(1
ρ̂
∇̃ · (ρ̂v)

)
i+ 1

2 ,j+
1
2

, (79)

where

∇̃ ·
(
ρ̂χ∇̃π′

)
i+ 1

2 ,j+
1
2

=
1
∆x

(
F sp

i+1,j+ 1
2
− F sp

i,j+ 1
2

)
+

1
∆z

(
Gsp

i+ 1
2 ,j+1

−Gsp

i+ 1
2 ,j

)
, (80)

with

F sp

i+1,j+ 1
2

=
1
2

(
(ρ̂χ)i+1,j + (ρ̂χ)i+1,j+1

) 3
4∆x

(
π′i+ 3

2 ,j+
1
2
− π′i+ 1

2 ,j+
1
2

)
+

1
8∆x

(
(ρ̂χ)n+1

i+1,j+1

(
π′i+ 3

2 ,j+
3
2
− π′i+ 1

2 ,j+
3
2

))
+

1
8∆x

(
(ρ̂χ)n+1

i+1,j

(
π′i+ 3

2 ,j−
1
2
− π′i+ 1

2 ,j−
1
2

)) (81)

and the analogous definition for Gsp

i+ 1
2 ,j+1

.

The elliptic equations defined in this section have all been solved by either a matrix-free implementation
of the classical BiCGStab method, or by a conjugate residual scheme as described by Smolarkiewicz
and Margolin in [44].
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4 Properties of the flow models and the numerical scheme and related tests

This section provides empirical evidence that the scheme proposed above

– captures convective motions as well as (nonlinear) internal waves,
– produces nearly the same results when used to solve either the anelastic or the pseudo-incompressible

model equations for flows with characteristic scales comparable to the pressure scale height and
larger, thereby corroborating findings by Smolarkiewicz and Dörnbrack, [42],

– reveals the expected differences between the models for flows on smaller scales with large potential
temperature variations,

– is robust with respect to large tolerances in the stopping criteria for the CG-iterations in the
projection steps.

We will also demonstrate that the differences in the results produced by varying the numerical scheme
within the range of second-order methods are larger than the differences obtained when switching
between the anelastic and pseudo-incompressible model but using the same numerics components.
This, too, supports the findings in [42].

4.1 Breaking lee waves: influences of flow model, divergence tolerance, and nonlinear slope limiting

4.1.1 Description of the test case, (from Smolarkiewicz and Margolin, [45])

In a domain of dimensions −60 km ≤ x ≤ 60 km and z0(x) ≤ z ≤ 60 km, we embed a stably stratified
atmosphere with constant Brunt-Väisälä frequency of N = 0.01 s−1. There is a constant barotropic
background wind sweeping from left to right (from x < 0 to x > 0) at 10 m/s over the “witch of
Agnesi” bottom topography

z0(x) =
z∞

1 + (x/`)2
,

z∞ = 2π × 100 m

` = 1 km
. (82)

The hydrostatic density distribution is computed assuming an ideal gas with constant specific heat
capacities and an isentropic exponent of γ = 1.0696864111498257, a base density at z = 0 of 1 kg/m3,
and a gravitational acceleration of g = 10 m/s2. The “weird” value of the isentropic exponent is chosen
such that the potential temperature as well as the hydrostatic density and pressure distributions are
all exponential. For the same potential temperature distribution with constant buoyancy frequency
but larger, more realistic values of the isentropic exponent, pressure and density would drop to zero
at heights less than 60 km, and the test case would be meaningless.

The bottom boundary condition is implemented approximately in that we impose a vertical velocity at
the flat bottom boundary that equals the horizontal velocity in the adjacent grid cell times the slope
of the topography.

The rigid wall boundary conditions at the top and bottom of the domain and periodic conditions in
the horizontal are combined with damping/driving layers near the left, right, and top boundaries. In
these layers, the solution is relaxed towards the hydrostatic background state and mean wind. This
relaxation is implemented by incorporating source terms for (u,w, θ) in either model through two
additional Strang splitting steps directly before and after the predictor step from section 3.1, which
enforce

φnew = φbg +
φold − φbg

1 + α∆t/2
, (φ ∈ {u,w, θ}) , (83)

where φbg is the prescribed background state. This corresponds to two half-time steps for the relaxation
equation dφ/dt = −α(φ − φbg) discretized by the backward first-order Euler scheme. The inverse of
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the relaxation rate, α, is

α(x, z) = max
(
αl(x), αr(x), αt(z)

)
where


αl(x) = max

(
0, αx(x− xl)/Dx

)
αr(x) = max

(
0, αx(xr − x)/Dx

)
αt(z) = max

(
0, αz(zt − z)/Dz

) (84)

with
αx = αz =

1
600 s

, Dx = Dz = 20 km . (85)

We have also experimented with αx = 1/120 s, Dx = 5 km but found little difference in the essential
characteristics of the solutions.

In all computations for the breaking wave tests the time step is determined by

∆t = min(31 s,CFL∆x/max
Ω

(|u|, |w|)) with CFL = 1.0 (86)

where maxΩ(|u|, |w|) denotes the maximum over the flow domain of the horizontal and vertical veloc-
ities.

This test was suggested to us by P. Smolarkiewicz, [45].

4.1.2 Results

Results for this test case sensitively depend on the dissipative properties of the considered scheme
as explained in [45]. Following linear theory one should expect wave breaking to have fully affected
the upper downstream quarter of the domain some time between 3 to 4 hours into the simulation.
Smolarkiewicz and Margolin observe that the actual time of breaking depends on the numerical scheme
used. A semi-Lagrangian version of their numerical scheme yielded wave breaking between 3 and
3.5 hours, their Eulerian scheme, using the monotone positive definite advection transport algorithm
(MPDATA), exhibited wave breaking between 2.5 and 3 hours.

Figures 1 (a,b) show contours of the potential temperature after 2.5 and 3 hours into the simulation,
obtained solving Durran’s model with the scheme from section 3 on a grid with 240x120 cells, controlling
the divergence so that ∆t∇ · (Pv)/P < TOLdiv = 1.0 · 10−3. This is our reference solution for the
present test case. Its grid resolution matches that of the reference solution in [45] and it corresponds
roughly to the minimal resolution necessary to obtain qualitatively correct behavior of the solution.

Wave breaking occurs shortly after t = 2.5 h, indicating that the present scheme’s numerical dissipation
is comparable to that of MPDATA for this test case. After wave breaking, the numerical solution will
strongly depend on the details of the numerical scheme, as localized small-scale instabilities arise and
are captured by the scheme’s nonlinear, local dissipation mechanism. The behavior of the present
scheme after wave breaking is roughly comparable to the Eulerian version of MPDATA in [45].

Influence of the flow model
For the results in Fig. 1 (c) we have used the exact same parameter setting as for Fig. 1 (a,b) except that
we have now solved the Bannon’s anelastic model instead of the pseudo-incompressible flow equations.
Up to the time of wave breaking, the contours are practically identical, and the qualitative behavior
after breaking is entirely comparable. This supports observations by Smolarkiewicz and Dörnbrack
[42] who also find that the differences between computations based on the anelastic and pseudo-
incompressible model equations for this test case are very small.

Influence of divergence tolerance
In Fig. 2 (a) we show results for the same test case, again with Durran’s model and the same parameter
set as for Fig. 1 (b), yet with a much tighter divergence control of TOLdiv = 1.0 · 10−6. Again, the results
differ only slightly from those shown in the earlier figures. We begin to see stronger deviations if instead
of tightening, we loosen the divergence constraint. For Fig. 2 (b) we have used TOLdiv < 1.0 · 10−2
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and now the solution is considerably affected, although still qualitatively correct. Wave steepening is
weaker, occuring 10 to 15 min later, and breaking is less violent.

In this last run with TOLdiv < 1.0 · 10−2, the first projection step needed on average less than 5
conjugate residual or BICGSTAB iterations to achieve the required divergence control, the second
iteration needed less than two iterations. We conclude that the pressure field will no longer be accurate
in this setting with the said consequences for the overall solution. For completeness, with divergence
tolerance TOLdiv = 1.0 · 10−3, the first and second projections needed less than 10 and less than 4
iterations, respectively, while for TOLdiv = 1.0 · 10−6 the iteration counts increased to roughly 120
and 65 for the first and second projections. Iteration counts were roughly the same, independently of
whether we solved the anelastic or the pseudo-incompressible model equations.

Influence of the slope limiter
In the last paragraph we see how, for the breaking wave test problem, differences between simulations
based on different model equations (anelastic vs. pseudo-incompressible) are small. Smaller, in particu-
lar, than the differences we see when solving one and the same model equation set with different levels
of divergence control. Here we show that comparable effects arise with variations of the slope limiting
procedure, which represents a degree of freedom of the present second-order upwind technology.

In (58) we described the slope limiting procedure that is needed to avoid unphysical oscillations in the
vicinity of sharp transients. If we insert ψ(r) ≡ 1 instead of (58)2, we have van Leer’s standard limiter
function, and obtain the breaking wave test results displayed in Fig. 2 (c). Again, wave steepening
is slowed down, wave breaking is delayed by about 15 min, and the structures after wave breaking
are less violently fluctuating than in the reference case from Fig. 1 (b). The deviations between this
run and the reference case are as large as those between the two runs with divergence tolerances
TOLdiv = 1.0 · 10−3 (Fig. 1 (b)) and TOLdiv = 1.0 · 10−2 (Fig. 2 (b)), respectively.

This is somewhat disappointing, because the choice of the limiter function represents “just” a degree
of freedom in the design of the second-order scheme, but it neither affects the scheme’s fundamental
design nor its order of convergence. One would therefore expect that the choice of a limiter function
should not have a significant effect, yet it does. Nevertheless, with the “sharpened van Leer’s limiter”
from (58) we do obtain competetive results for the breaking wave test.

4.2 Rising hot plume: clipping of extrema

4.2.1 Description of the test case

In a box with rigid walls of dimensions −10 km ≤ x ≤ 10 km and 0 km ≤ z ≤ 10 km we embed a
neutrally stratified atmosphere that is at rest initially and perturbed by a bubble of hot air. We consider
the following smoothed version of the cone-shaped initial distributions of potential temperature from
[33],

θ(0, x, z) = 300 K +

{
δθ cos2(π2 r) (r ≤ 1)

0 otherwise
,

δθ = 2 K

r = 5
√(

x
L

)2 +
(
z
L −

1
5

)2
L = 10 km

(87)

The hydrostatic background density distribution is computed assuming an ideal gas with constant
specific heat capacities and an isentropic exponent of γ = 1.4, a base density at z = 0 of 1 kg/m3, and
a gravitational acceleration of g = 10 m/s2. Contours of the initial potential temperature distribution
are displayed in Fig. 3.

The test with a smoothed potential temperature distribution was suggested to us by O. Knoth. See
the references, e.g., in [33,1] for a history of this test.

In all computations for these tests the time step was determined by

∆t = min(16 s,CFL∆x/max
Ω

(|u|, |w|)) with CFL = 1.0 . (88)
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Fig. 1 Contours of potential temperature for the breaking wave test case from section 4.1.1. (a) pseudo-
incompressible model, 2.5 hours, (b) pseudo-incompressible model 3 hours, (c) anelastic model, 3 hours. Pa-
rameters of the numerical solution: 240x120 cells, sharpened van Leer’s limiter, divergence tolerance 1.0 · 10−3.
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Fig. 2 Same as Fig. 1 (b) but with divergence tolerances 1.0 · 10−6 (a) and 1.0 · 10−2 (b), and using the
standard van Leer’s limiter (c).
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Fig. 3 Initial distribution of potential temperature in the rising plume test case. The contours represent the
level sets θ = 300 K + {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75} K.

4.2.2 Results

The flow in this test case is entirely driven by buoyancy forces whose location and strength are de-
termined by the advection of potential temperature. Therefore, one may expect a strong influence
of the quality of the advection approximation on the evolving flow field. As time evolves, the “hot
bubble” is strongly stretched into a thin sheet, and the solution approaches the limit of resolution on
the computational grids used here.

The initial data for this test case are symmetric with respect to the middle vertical axis of the domain,
and the initial maximum of potential temperature is located on the symmetry line. Since the boundary
conditions, too, are set up mirror-symmetrically, the solution should maintain the symmetry, the
maximum should remain located on the symmetry line, and it should not decrease. Yet, Fig. 4a),
which displays the potential temperature distribution as computed at t1 = 1 000 s in our reference run
on a grid with 160x80 equally spaced cells and using the sharpened van Leer’s limiter with k = 2,
exhibits two local extrema located symmetrically some finite distance away from the centerline. By
that time, the initial maximal excess potential temperature of δθmax(0) = 2 K above the constant
background value of 300 K has decayed to δθmax(t1) = 1.50 K, a decrease due to (nonlinear) numerical
dissipation of about 25%. The loss in θmax may still be acceptable, as our scheme is in conservation
form and therefore redistributes the excess thermal energy contained in the hot bubble but does not
dissipate it away. The off-axis development of two extrema appears to be more severe, however, as it
will affect the flow field through the associated buoyancy forces.

Limiter functions such as (58) are designed to support the maintainance of sharp gradients while avoid-
ing the occurance of new overshoots in advected scalars. They have built-in mechanisms to maintain
plateaus of constant values, leading to the undesired “clipping” of extrema, and others to “steepen”
fronts against numerical dissipation. Thus one may suspect that the marked separation of two off-axis
extrema in the present test case might be the result of (i) the strongest dissipation occuring near the
extremum on the axis, and (ii) an enhancement of the arising gradients by the “sharpened” van Leer’s
limiter as applied here. Figure 4b) shows the result of a related calculation that differs only in that we
have used van Leer’s original limiter function, i.e., we set ψ(r) ≡ 1 in (58). The distribution of potential
temperature is now in fact less peaked towards the off-axis extrema, but these are still prominently
visible. Besides, van Leer’s limiter is considerably more dissipative, so that the maximum excess of θ
beyond the background value is now δθmax(t1) = 1.38 K corresponding to a loss in the maximum of
about 30%.

In avoiding over- and undershoots of advected scalars, TVD limiters do not distinguish plateaus of
constant values from the discrete representation of extrema. If, near an extremum, two neighboring
cells reach nearly the same value of the scalar, they are treated as a plateau and no overshoot over their
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Fig. 4 Potential temperature distributions at time t = 1 000 s for the rising plume test case based on the
anelastic model and different options for the advection scheme. Countours every 0.25 K, beginning at 300.25 K.
Common numerical parameters: 160x80 grid cells, (∆t)max = 17 s, CFL = 1.0 otherwise. a) piecewise linear
MUSCL approach using sharpened van Leer’s limiter (k = 2 in (58)), b) same but using original van Leer’s
limiter (k = 0 in (58)), c) upwind-biased quadratic reconstruction with plateau detection.
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common value is allowed in the sequel. That, however, is inappropriate because a smooth extremum,
when advected towards one of the two cells, would make that cell attain a new maximum while
decreasing the value in the cell left behind.

To investigate the influence of this “clipping” phenomenon on the solution of the present buoyancy-
driven flow, we have implemented a preliminary version of an alternative advection scheme. As in
PPM, the “piecewise parabolic method” from [14], and extensions thereof, [6], or in a poor man’s one-
dimensional version of MU, [48], quadratic reconstruction is applied in each grid cell. The reconstruction
parabola matches the cell averages in the reconstructed cell and its next neighbors. Edge values of the
scalar, to be used in the upwind flux computation from (60) are then determined by imposing, e.g.,
for 〈u〉 > 0,

∆t (ρ〈u〉φupw)n+ 1
2

i+ 1
2

= ρ

x
i+ 1

2∫
x∗
i+ 1

2

φ(x) dx (89)

where x∗
i+ 1

2
is the foot point of the Lagrangian characteristic that arrives at xi+ 1

2
at time tn+1. These

upwind-biased reconstruction and half-time predictor steps are used everywhere except where a plateau-
indicator switches back to the standard slope-limited piecewise linear reconstruction and prediction
described earlier. Importantly, the indicator is designed not to act on cells that carry local extrema.
For a detailed description of the scheme as used here see Appendix A2. An extensive study of this
method, including rules for determining its free parameters, is deferred to future work.

Figure 4c) shows the result of a computation using this “upwind-biased reconstruction with plateau
detection”. The contours of potential temperature at t = 1 000 s reveal that the tendency to form
off-center extrema is considerably diminished. As expected, the maximum potential temperature is
maintained at a much higher level than in the previous runs due to the absence of the clipping phe-
nomenon from the advection scheme. In fact, δθmax(t1) = 1.73 K which corresponds to a loss in the
maximum of 13.5% only. Considering that, by this time, the peak of potential temperature in a vertical
slice is squeezed to merely 5 to 7 grid points, this is quite an acceptable level of dissipation.

Maintainance of symmetry
In all computations shown above, mirror symmetry with respect to the middle vertical axis of the
domain is maintained up to relative deviations of the order of 3 · 10−4 in all variables. If instead of the
smooth van Leer’s limiter and its sharpened version we use, e.g., Sweby’s or the Superbee limiter, [51,
39], which have built-in switches besides the clipping near extrema, symmetry is much more severely
affected (not shown). These observations and the fact that van Leer’s original limiter is much more
dissipative than the Sweby and Superbee limiters motivated us to suggest the sharpened versions of
van Leer’s limiter function. Using the upwind biased-quadratic reconstruction, symmetry is maintained
to relative errors below 1 · 10−7.

4.3 Falling drop of cold air

Here we demonstrate how solutions to the anelastic and pseudo-incompressible model equations deviate
from each other at small scales for increasing variation of the potential temperature. The results for the
pseudo-incompressible model are more reliable for the cases with large density variation, because this
model approaches the zero Mach number variable density flow equations in this regime. In contrast,
the anelastic model approaches the Boussinesq approximation for an incompressible fluid, which is
valid only in the limit of small potential temperature variations.

4.3.1 Description of the test case

In a small rigid box of dimensions −10 m ≤ x ≤ 10 m, 0 ≤ z ≤ 10 m filled with a neutrally strati-
fied ideal gas with constant specific heat capacities which is at rest initially we embed cold, circular
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“droplets” of air, with increasing initial potential temperature perturbations. The potential tempera-
ture initial data read

θ(0, x, z) = 300 K−


δθ

2
(1 + cos2(πr)) (r ≤ 1)

0 otherwise
,

δθ = 30, 150, 270 K

r = 5

√( x
L

)2

+
( z
L
− 0.7

)2

L = 10 m

(90)

In all computations for these tests the time step was determined by

∆t = min(0.04 s,CFL∆x/max
Ω

(|u|, |w|)) with CFL = 0.9 . (91)

4.3.2 Results

Figure 5 displays results for the anelastic model in the left column, and for the pseudo-incompressible
in the right. From top to bottom the minimum of the potential temperature in the cold air bubble at
time t = 0.0 is 270 K, 150 K, and 30 K, respectively. There are two mechanisms of baroclinicity that
distort the originally circular cold air bubble. The first is due to horizontal variations of the buoyancy
force, and this effect is active in both the anelastic and pseudo-incompressible models. Its influence
is seen prominently in the left column of graphs in Fig. 5, which shows the simulation results for
the anelastic (or Boussinesq) model. For this model, the first of the two baroclinic effects is the only
relevant process distorting the droplet. The flow induced by the heavy cold air displacing the warmer
surrounding air induces a vortex pair that tends to stretch the bubble into a thin sheet in a similar
way as seen in the rising bubble test case of section 4.2.

The second baroclinic effect is due to the nonlinearity of the pressure gradient term, θ∇π, found in
both in the pseudo-incompressible and in the full compressible model. This term gives rise to a vorticity
production term proportional to ∇θ×∇π. There is a pressure maximum at the bottom of the bubble
and the pressure drops continuously towards its sides. This pressure drop interacts with the outward
pointing potential temperature gradient to induce positive vorticity on the right and negative vorticity
on the left side of the cold air patch. These sheets of vorticity imply a jet-like flow of the surrounding
air around the bubble, and this tends to counteract the stretching associated with the first mechanism.
The pseudo-incompressible model includes this second effect of baroclinic torque and the right column
in Fig. 5 shows that for very heavy air in the cold pocket this vorticity generation mechanism even
overcomes the stretching effect.

For the small 10% potential temperature perturbation, the results from the anelastic and pseudo-
incompressible models are again hardly distinguishable (see the top row of graphs in Fig. 5). This
corroborates one of our main conclusions: for density, or potential temperature, variations characteristic
of typical meteorological applications, the anelastic and pseudo-incompressible models are equally
viable sound-proof model alternatives.

All calculations for the falling cold drop were performed with our standard scheme using the sharpened
van Leer’s limiter with k = 2.

5 Conclusions and open issues

5.1 Conclusions

We have pointed out that the anelastic and pseudo-incompressible models by Bannon, [4], and Durran,
[15], respectively, are structurally very close to the compressible flow equations. Moreover, for length
scales small compared with the pressure scale height, both models are asymptotically consistent with
the full compressible flow equations as the Mach number vanishes. Whereas Bannon’s anelastic model
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Fig. 5 Falling “droplets” of cold air simulated based on Bannon’s anelastic model (left column) and Durran’s
pseudo-incompressible model (right column). Top row: θmin/θmax = 0.9, middle row: θmin/θmax = 0.5, bottom
row: θmin/θmax = 0.1. Contours are equally spaced at 1/10 of the maximum potential temperature difference
in the initial data.

reduces to the Boussinesq equations in this limit, the pseudo-incompressible model becomes asymptot-
ically equivalent to the zero Mach number incompressible flow equations. The pseudo-incompressible
model is therefore more generally applicable than the anelastic model as it correctly captures incom-
pressible flows with large density variations. However, for the small density variations characteristic
of flows in the atmosphere and oceans, both models yield virtually indistinguishable results. In agree-
ment with Smolarkiewicz and Dörnbrack, [42], we find that differences in flow simulations induced by
using either of these models in meteorologically relevant regimes are much smaller than the differences
encountered when one and the same set of model equations is solved using different (second order
accurate) numerical schemes.

We have proposed a numerical scheme for solving the anelastic and pseudo-incompressible model
equations using a formulation that exploits the close structural similarities between the compressible
and sound-proof models. The scheme is relatively simple, employing more or less standard Godunov-
type second-order techniques, and directional operator splitting. It features two projections per time
step for the advective fluxes across grid cell interfaces, and for the cell-centered velocities. Since the
scheme is quite insensitive to loose control of the divergence constraints, it is nevertheless quite efficient.
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Its extension to a semi-implicit solver for the full compressible flow equations should thus be relatively
straightforward. A major challenge in this context will be to devise a scheme that integrates long-wave
acoustic and internal gravity wave modes accurately with time steps determined by the advection
Courant number, see, e.g., [24,13,26,35,19] for related discussions and already proposed schemes.

Another interesting route of numerics development is a relatively simple advection scheme based on
upwind-biased parabolic reconstruction, which is constrained solely near plateaus of the advected scalar
to a standard TVD-limited piecewise linear distribution. A preliminary implementation of the scheme
does not clip extrema and performs well in advecting smooth and non-smooth distributions. Using this
scheme we demonstrated that some disturbing perturbations of flow symmetries in the rising bubble
test case observed with our standard scheme were due to the clipping of extrema by the second-order
TVD schemes.

5.2 Open issues

Consistent with earlier findings, [25], our analysis has revealed that neither the anelastic nor the
pseudo-incompressible model can be derived self-consistently through classical scale analysis or formal
asymptotics. The reason is an asymptotic time scale separation between advection and internal waves
that occurs for realistic stratifications. Only on length scales small compared with the pressure scale
height is there asymptotic agreement between the compressible flow equations in the low Mach number
limit and the sound-proof models as pointed out above. The reason is that the characteristic internal
wave time scale becomes comparable to the advection time even in the presence of large density
variations in the small-scale limit, i.e., the time scale separation between advection and internal waves
disappears.

For length scales comparable to the pressure scale height, the leading-order theory for the shorter
internal wave time scale in a multiscale analysis is a linear model, [27]. Adding the nonlinear advection
terms to this leading-order model would amount to formally increasing its accuracy by including terms
that arise for the first time in the first-order expansions. Such a model would likely be very similar, if not
identical, to the anelastic and pseudo-incompressible models in suitable regimes for the stratification.
However, whether it is justifiable to use such a model over the longer advection time scale, i.e., over
the time scale within which the higher-order terms can accumulate order O(1) effects, remains an open
question.
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Appendix

A1 Influence of the divergence control

Here we provide a semi-heuristic explanation for why the scheme presented in this paper is relatively
robust with respect to loose divergence controls. The reader may also want to consult [6] for related
discussions and further references.
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Advection

For φ ≡ 1, in either the pseudo-incompressible or the anelastic model, the relevant conservation law
reads

ρ̂t +∇ · (ρ̂v) = 0 , (92)

and the predictor step will generally yield a non-zero update ρ̂n+1,∗
i,j − ρ̂ni,j 6= 0. Even if the velocity

field is essentially divergence-free at the beginning of a time step, the density differences within each
individual directional operator split step may be large.

To properly represent advection of φ 6≡ 1 through a conservative finite volume discretization, it is
essential that these intermediate density updates are accounted for. As in compressible flow schemes,
only the combined updates for ρ̂ and ρ̂φ, i.e.,

ρ̂n+1
i − ρ̂ni = −∆t

∆x

(
(ρ̂u)n+ 1

2
i+ 1

2
− (ρ̂u)n+ 1

2
i− 1

2

)
(ρ̂φ)n+1

i − (ρ̂φ)ni = −∆t
∆x

(
(ρ̂u)n+ 1

2
i+ 1

2
φ
n+ 1

2
i+ 1

2
− (ρ̂u)n+ 1

2
i− 1

2
φ
n+ 1

2
i− 1

2

)
,

(93)

yield a proper approximation to the advection equation for φ.

To be more specific, let us compare the results for φn+1
i − φni if we do and do not account for the

divergence of ρ̂u and the associated changes in ρ̂. If we do account for the changes in ρ̂, then we
know from standard analyses for compressible flow schemes in conservation form that (93) yields a
second-order accurate approximation to φt + uφx = 0, no matter what the divergence of ρ̂u, provided
the flux terms (ρ̂u)n+ 1

2
i+ 1

2
, φ
n+ 1

2
i+ 1

2
are calculated with sufficient accuracy. In contrast, if we do not account

for the changes of ρ̂, i.e., in computing φ we assume ρ̂ni ≡ ρ̂ = const, then we find

(ρ̂φ)n+1
i

ρ̂
− (ρ̂φ)ni

ρ̂
= − 1

ρ̂n+1
i

∆t

∆x

(
ρ̂u

n+ 1
2

i

(
φ
n+ 1

2
i+ 1

2
− φn+ 1

2
i− 1

2

)
+ φ

n+ 1
2

i

(
(ρ̂u)n+ 1

2
i+ 1

2
− (ρ̂u)n+ 1

2
i− 1

2

))
. (94)

Any divergence (ρ̂u)n+ 1
2

i+ 1
2
− (ρ̂u)n+ 1

2
i− 1

2
6= 0 will induce an order O(1) error in the advection of φ. In (94)

we have used the notation
X
n+ 1

2
i =

1
2

(
X
n+ 1

2
i+ 1

2
+X

n+ 1
2

i− 1
2

)
, (95)

with X ∈ {ρ̂u, φ}. See also the closely related discussion and analysis of the differences between an
Eulerian conservative scheme and a non-conservative semi-Lagrange method in [43].

These considerations explain why the use of directional operator splitting in the predictor step does
not induce major errors, even though the derivatives ∂ρ̂u/∂x and ∂ρ̂w/∂z may be large individually.
As another consequence, a relatively weak control of the flux divergence in the MAC-projection may
be adopted within the present approach without inducing sizeable errors in the potential temperature
field (see the discussion in section 4.1).

Momentum balance

Even if advection is represented robustly, the simulated velocity field may nevertheless be affected by
how tight a control on the flow divergence is maintained through the influences of the gravity and
pressure gradient terms. Consider the evolution equation for velocity in the pseudo-incompressible
model, with the Exner variable, π, used to represent the effect of the pressure gradient,

vt + v · ∇v +
1
Γ
θ∇π = −gk . (96)

The equation does not involve any explicit dependence on ρ̂ = ρθ. The present scheme respects this
scaling in that all momentum increments (55), (65), (70), and (78) involve density weights correspond-
ing to the value of the density variable ρ̂ as computed from the scheme at the respective stage of the
algorithm, and not the fixed value given by the background stratification.
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Yet, the (pseudo-)density, ρ̂, does enter the velocity equation indirectly through the pressure gradient
term, θ∇π, because the pressure equation involves the density in a non-trival way. For, say, the pseudo-
incompressible model we have ∇ · (ρθv) = 0, and multiplying (96) by ρθ and taking the divergence
yields

1
Γ
∇ · (θ∇π) +∇ · (v · ∇v) = − 1

ρθ
∇ρθ ·

(
θ

Γ
∇π + gk + (v · ∇v)

)
(97)

The background stratification of ρθ enters through its logarithmic derivative only. Errors in ρθ will
thus affect the flow field, though relatively weakly.

A2 Advection based on quadratic reconstruction and plateau detection

Here is the advection scheme outlined briefly in section 4.2.2 for one-dimensional advection at constant
velocity, i.e., for

ut + aux = 0 , (a ≡ const.) (98)

No plateau detected in the neighborhood cell i:
For, say, the ith grid cell at time tn, we fit a parabola uni (x) that has the same mean as the current
computational cell-averages in three adjacent cells, so that

1
∆x

x
k+ 1

2∫
x
k− 1

2

uni (x) dx = unk (k ∈ {i− 1, i, i+ 1}) . (99)

The cell-interface value of u that enters the flux evaluation at xi+ 1
2

then reads

u
n+ 1

2
i+ 1

2
=

1
|a|∆t

x
i+ 1

2∫
x
i+ 1

2
−a∆t

uni∗(x) dx where i∗ =
{

i (a ≥ 0)
i− 1 (a < 0) . (100)

Plateau detected in the neighborhood of cell i:
In this case, the reconstruction of left and right cell-interface values within cell i procedes according to
the standard MUSCL scheme. We have used the sharpened van Leer limiter with k = 2 in conjunction
with the piecewise parabolic scheme.

Plateau detection:
A plateau is considered detected in the vicinity of cell i if(

|uni−1 − uni−2| < ε
)

or
(
|uni+2 − uni+1| < ε

)
(101)

where the ε is a degree of freedom that we have chosen in an ad-hoc manner so far. For the results in
section 4.2.1 and below, we have used ε = 0.02

√
∆x(maxi(u)−mini(u)).

We leave a more thorough discussion for future work.

To provide an impression of the performance of the various advection schemes used in this paper, we
have advected the following distribution, including a top-hat, a triangular wedge, a smooth 1− cos( )
hump and a truncated parabola over 10 cycles in a periodic box, (see also [11] and references therein),

u(0, x) =
4∑
i=1

U (k)
(

(x− x(k))/σ
)

) (−0.5 ≤ x ≤ 0.5; σ = 0.075) (102)
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with individual shapes given by

U (1)(x) = H(1− ξ)

U (2)(x) = cos2(πξ/2)

U (3)(x) = 1− ξ

U (4)(x) = 1− ξ3

where ξ = min(1, |x|/σ) , (103)

and x(1), x(2), x(3), x(4) = σ (−4.5,−1.5, 1.5, 4.5).

Figure 6 shows results for CFL = 0.5 which, due to the directional operator splitting used in the full
implementation of the sound-proof model solvers, is the effective Courant number for the simulations
in section 4. For CFL = 0.9, the results improve for all three schemes, but the piecewise parabolic
method with plateau detection performs especially well (see Fig. 7).

A3 Advection observing a maximum principle

Here we prove that, with two modifications, the scheme presented here obeys a maximum principle for
potential temperature (or any other advected scalar) provided the following two CFL-like conditions
are satisfied,

m+

ρ̂ni
=

λ

ρ̂ni

∣∣∣(ρ̂〈u〉)n+ 1
2

i+ 1
2

∣∣∣ < 1
2

and
λ

ρ̂ni

(
(ρ̂〈u〉)n+ 1

2
i+ 1

2
− (ρ̂〈u〉)n+ 1

2
i− 1

2

)
≤ 1

2
. (104)

With each sub-step satisfying these conditions, we essentially recover u∆t/∆x ≤ 1 for a full Strang
splitting cycle as it involves two sub-steps for each coordinate direction.

The two modifications that we assume here are

1. replace (1−λuni ) and (1+λuni+1) in (56) with (1−max(0, λuni )) and (1+min(0, λuni+1)), respectively,
(see Colella and Glaz, [12])

2. use standard TVD slope limiting instead of the special construction for reconstruction near extrema
from (57).

While the scheme in this version obeys a maximum principle as will be shown shortly, it is also
considerably more dissipative.

Before we procede, we observe that the pre-factors of sn,±i in (56) now satisfy

0 ≤ (1−max(0, λuni )) ,
(
1 + min(0, λuni+1)

)
≤ 1 , (105)

provided the standard CFL condition λuni ≤ 1 is imposed. As a consequence, the spatio-temporal
reconstruction satisfies the maximum principle,

φ
n+ 1

2 ,±
i+ 1

2
∈
[
min(φni , φ

n
i+1),max(φni , φ

n
i+1)

]
, (106)

if the slope limiter is of TVD type.

The analysis now procedes in two steps. First we follow Larrouturou [29] in demonstrating that each
directional operator split step of the explicit predictor obeys the maximum principle. By the design of
the characteristics-based update to the half-time level tn+ 1

2 for flux evaluations, we are able to prove a
maximum principle even for the full second-order accurate scheme. Larrouturou, using a different half-
time predictor, could only establish the maximum principle rigorously for the spacially second-order,
but temporally first-order accurate scheme.

In the second step we prove a maximum principle for the flux corrections induced by the MAC-
projection.



Asymptotics, structure, and integration of sound-proof atmospheric flow equations 33

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6 Results for the advection of the periodic test distribution from (102) after 10 cycles, 150 grid cells,
CFL = 0.5. Top: MUSCL-scheme with van Leer’s original limiter (k = 0 in (58)), middle: sharpened van Leer’s
limiter (k = 2 in (58)), bottom: parabolic reconstruction with plateau decection.
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Fig. 7 Same as Fig. 6, but at CFL = 0.9.
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One-dimensional advection predictor

The general one-dimensional predictor sub-step from (55) when specialized for a scalar advected quan-
tity, φ, reads

(ρ̂φ)n+1
i = (ρ̂φ)ni − (m+φ+ −m−φ−) . (107)

The update for the density variable, ρ̂, is obtained for φ ≡ 1, i.e.,

ρ̂n+1
i = ρ̂ni − (m+ −m−) . (108)

where

m± = λ
(
ρ̂〈u〉

)n+ 1
2

i± 1
2

, φ± = (φupw)n+ 1
2

i± 1
2

(109)

Case 1: m+m− ≥ 0

When both mass fluxes are positive, we have

φn+1
i =

a φ∗ +m−φ−
a+m−

(110)

where
a = (ρ̂ni −m+) , (111)

and
φ∗ =

1
a

(ρ̂ni φ
n
i −m+φ+) (112)

If a ≥ 0, then (110) yields the new time level value, φn+1
i , of the advected scalar as a convex combination

of φ∗ and φ−. We will rely on this property below, so we adopt the condition a ≥ 0 as the first CFL-like
criterion under Case 1.

Next, we rewrite φ∗ as
φ∗ = φni +

m+

a
(φni − φ+) , (113)

and require that
m+

a
< 1 , (114)

which (i) guarantees a > 0 making (110) a convex combination, and (ii) amounts to the first CFL-like
condition from (104)

m+

ρ̂ni
=
λ
(
ρ̂〈u〉

)n+ 1
2

i+ 1
2

ρ̂ni
<

1
2
. (115)

We recall from (56) that, in the present Case 1,

φni − φ+ = −∆x
2
(
1−max(0, λuni )

)
sni (116)

with
sni =

(
∂lim
x φ

)n
i
, (117)

and conclude from (105) and (113), (114) that

φ∗ ∈
[
min

(
φni , φ

n
i −

∆x

2
sni

)
,max

(
φni , φ

n
i −

∆x

2
sni

)]
. (118)

But since sni is a TVD-limited slope it follows that

φ∗ ∈
[
min

(
φni , φ

n
i−1

)
,max

(
φni , φ

n
i−1

)]
. (119)
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According to (106) φ− belongs to the same interval, and so will φn+1
i , being a convex combination

of φ∗ and φ−. This establishes the maximum principle for scalar advection under the CFL condition
(114) when the mass fluxes across the adjacent cell interfaces are either both positive or both negative.

The analysis for the case of negative m+ and m− is proceeds analogously.

Case 2: m+ < 0; m− > 0

In that case,

φn+1
i =

ρ̂ni φ
n
i + |m+|φ+ + |m−|φ−
ρ̂ni + |m+|+ |m−|

(120)

is immediately identified as a convex combination of scalar values which, by design of the spatio-
temporal reconstruction, lie within the range of [min(φni−1, φ

n
i , φ

n
i+1),max(φni−1, φ

n
i , φ

n
i+1)].

This establishes the maximum principle for Case 2.

Case 3: m+ > 0; m− < 0

The argument here is similar to that for Case 1. We first write

φn+1
i =

ρ̂ni φ
n
i − |m+|φ+ − |m−|φ−
ρ̂ni − |m+| − |m−|

(121)

Next we require that
ρ̂n+1
i

ρ̂ni
≥ 1

2
(122)

which is effectively the second of the CFL-like conditions on the mass flux divergence from (104)
because, due to the signs of m± in the present Case 3, it implies

|m+|+ |m−|
ρ̂n+1
i

≤ 1 and
λ

ρ̂ni

(
(ρ̂〈u〉)n+ 1

2
i+ 1

2
− (ρ̂〈u〉)n+ 1

2
i− 1

2

)
≤ 1

2
. (123)

Rewriting (121) as

φn+1
i = φni +

1
ρ̂n+1
i

(|m+| [φni − φ+] + |m−| [φni − φ−]) (124)

and noticing that, due to the upwinding procedure at the cell interfaces,

φni − φ− =
∆x

2
(
1 + min(0, λuni )

)
sni

φni − φ+ =
∆x

2
(
−1 + max(0, λuni )

)
sni

(125)

we can cast the (124) into

φn+1
i = φni + ξ

∆x

2
sni (126)

where

ξ =
|m+|+ |m−|

ρ̂n+1
i

(
|m+|

|m+|+ |m−|
(
1 + min(0, λuni )

)
+

|m−|
|m+|+ |m−|

(
−1 + max(0, λuni )

))
. (127)

According to (123), the first factor in this defintion is less than or equal to unity, whereas the bracket
contains a convex combination of two numbers from the interval [−1, 1]. It follows that

ξ ∈ [−1, 1] . (128)

Furthermore, with sni being a TVD-limited slope we conclude from (126) that

φn+1
i ∈

[
min(φni−1, φ

n
i , φ

n
i+1),max(φni−1, φ

n
i , φ

n
i+1)

]
. (129)

This establishes the maximum principle for Case 3.
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MAC projection

In the first projection, all advective fluxes are determined from the mass flux corrections via first-order
upwinding. For an advected scalar, φ, the MAC correction from (74) may be written as

φn+1
i,j =

aφn+1,∗
i,j +

∑
mν<0

|mν |φn+1,∗
i+µ,j+ν

a +
∑

mν<0
|mν |

(130)

Here
a = ρ̂n+1,∗

i,j −
∑
mν≥0

mν , (131)

ν = (µ, ν) ∈
{

(−1, 0), (0,−1), (1, 0), (0, 1)
}

is a multi-index, and

mν =
(∆t)2

2

±F
MAC
i± 1

2 ,j
for ν = (±, 0)

±GMAC
i,j± 1

2
for ν = (0,±)

. (132)

As long as a ≥ 0, the update in (130) for φn+1
i,j is a convex combination of φn+1,∗

i,j and the neighboring
values φn+1,∗

i+ν,j+µ, so that the maximum principle is observed.

The positivity condition on a is another CFL-type constraint to be observed in addition to the ones
discussed in the last paragraph. In practice, this latter condition should be less constraining than the
previous ones for the explicit predictor, because due to the facts that the predictor step (i) always
starts with a divergence-free field, and (ii) includes the effect of the old-time level pressure gradient,
the divergence corrections in the MAC-projection are merely of order O((∆t)2) for smooth flows.
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