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The fundament of life emerges on a nanoscopic scale where biomolecules change
their conformation, aggregate and react with each other. One such process that has at-
tracted particular interest by both theorists and experimentalists is the folding process,
in which a biopolymer, such as a protein or an RNA compactifies into a relatively
well-defined three dimensional fold in which it is biologically active. Understanding
essential molecular processes such as folding is at the heart of understanding the
mechanism of the cell.

Novel experimental techniques allow the dynamics of single molecules to be
studied with nano to millisecond resolution over time periods of milliseconds to
minutes. One such technique is the single-molecule Förster resonance energy transfer
(FRET) where two dyes are attached to the molecule of interest, and a light signal is
measured that allows to make conclusions about the distance of these dyes in time.
This is done by exciting the donor dye at its absorption wavelength with an incident
laser beam. Then, by the Förster resonance, an energy transfer between the two
dyes may occur if the two dyes are close and an acceptor photon will be emitted,
otherwise a donor photon will be emitted. The FRET efficiency, i.e. the ratio of
donor photons at any time window allows to approximately compute the average
distance during that time.

While the mapping of molecular species, i.e. the binning of distances observed
in the data, and thus, e.g. estimating the probabilities of the folded and unfolded
states is relatively straightforward, the extraction of kinetic information from single
molecule FRET data is challenging. The reasons for this lies in the fact that the true
dynamics of the system is high-dimensional, and the kinetically relevant free energy
minima are only separable in high dimensions. When projecting this dynamics down
onto the single distance measured in FRET, different free-energy minima overlap and
the extraction of the number and definition of the minima and their interconversion
rates becomes a hard inverse problem.

In this work, we propose to use Hidden Markov Models combined with either
simple Gaussian output or linear stochastic differential equation (SDE) output as an
approach to this problem. When the systems dynamics is in a free energy minimum
this corresponds to a metastable state in the time series. The transition events
between these different metastable states can be modeled as a (hidden) Markov chain,
goverened by an (initially unknown) transition probability matrix. Depending on
the hidden state, FRET-efficiencies are drawn from a Gaussian distribution with
a certain mean and variance. In the SDE case, subsequent FRET-efficiencies are
related by a simple diffusion in a harmonic potential well. Thus, the model can be
described as a set of noisy harmonic oscillators coupled by a transition matrix. The
unknown parameters (transition matrix, means, variances and diffusion constants)
are estimated from the data via a maximum-likelihood method.
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The method was applied to single molecule FRET trajectories of RNA folding
collected in the laboratory of G. Ulrich Nienhaus at University of Ulm. The method
shows to be useful in exhibiting a number of previously hidden and overlapping but
kinetically separated metastable states in the data that could not be found by standard
analysis methods. Furthermore, the estimated transition matrices provide information
on the relative probabilities, and the lifetimes of the different conformations. Due to
these results, we believe that, this novel approach to the analysis of single-molecule
experimental data is destined to become a useful tool in biophysics.
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Zusammenfassung: Die Fundamente des Lebens entstehen auf nanoskopischer
Ebene, wo Biomoleküle ihre Konformationen ändern, sich aggregieren und untere-
inander reagieren. Einer dieser wesentlichen Abläufe, gleichermaßen interessant für
Theoretiker und Experimentatoren, ist der Faltungsprozess, bei dem Biopolymere
wie Proteine oder Ribonucleinsäuren eine kompakte Gestalt mit einer relativ wohl
definierten Faltungsstruktur annehmen, welche dem Molekül seine Funktionalität
verleiht. Diese grundlegenden Prozesse zu verstehen ist der Schlüssel zu einem
umfassenderen Verständnis der lebenden Zelle.

Neuartige Experimente erlauben Beobachtungen von einzelnen Molekülen mit
einer Auflösung von Nano - bis Millisekunden über einen Zeitraum, der von einigen
Millisekunden bis zu mehreren Minuten reichen kann. Eine dieser experimentellen
Techniken ist die Einzelmolekül Förster Resonanz Energie Transfer Methode (FRET),
bei der zwei molekulare Farbstoffmarker an dem untersuchten Molekül befestigt
werden, deren Lichtemissionen Rückschlüsse über den Abstand und über Abstand-
sänderungen der beiden Marker zulassen. Dies geschieht durch Erregen des Donor
Moleküls mit einer Laserquelle im Bereich des Absorptionsmaximums des Donors.
Anschließend kann Energie durch die Förster Resonanz Kopplung von dem einen
Farbstoff zum anderen für den Fall übertragen werden, dass sich die Farbstoffe
nahe beieinander befinden und ein Akzeptor Photon emittiert wird. Andernfalls
emittiert der Donor die Erregungsenergie. Die FRET Effizienz, also das Verhältnis
von Donor zu Akzeptor Photonen während eines gewissen Zeitraums, erlaubt die
Bestimmung des mittleren Abstandes von Donor und Akzeptor innerhalb dieses
Zeitraums. Während die Einteilung von Molekülunterarten, z.B. durch die in den
Daten beobachteten Donor-Akzeptor Abstände relativ unkompliziert ist, indem aus
den Häufigkeiten bestimmter Abstände auf die Wahrscheinlichkeiten von gefalteten
und ungefalteten Zuständen geschlossen wird, stellt die Gewinnung von kinetischer
Information aus Einzelmolekül FRET Daten eine Herausforderung dar. Gründe
dafür sind die hochdimensionalen Räume, in denen sich die Dynamik abspielt und
kinetisch relevante, freie Energieminima nur dort separierbar sind. Wird diese
Dynamik auf eine eindimensionale Abstands- oder FRET-Effizienz-Trajektorie pro-
jiziert, überlagern sich verschiedene Minima der freien Energielandschaft, und die
Berechnung von einzelnen Minima und ihrer Austauschraten wird zu einem schwer
lösbaren inversen Problem.

In dieser Arbeit schlagen wir für die Bewältigung dieser Aufgabe ein Hidden
Markov Modell, kombiniert mit entweder Gaußförmigem Output oder stochastischen
Differentialgleichungen vor, die den Output bestimmen. Wenn sich das System in
einem Minimum der freien Energielandschaft befindet, entspricht dies einem metasta-
bilen Zustand in der Beobachtungszeitreihe. Die Übergänge zwischen verschiedenen
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metastabilen Zuständen können mit Hilfe von (verborgenen) Markov-Ketten model-
liert werden, die durch die anfänglich unbekannte Übergangswahrscheinlichkeits-
matrix bestimmt werden. Abhängig von dem verborgenen Zustand werden FRET-
Effizienzen aus einer durch Mittelwert und Varianz bestimmten Gauß-Verteilung
gezogen. Im Falle der stochastischen Differentialgleichung werden aufeinander fol-
gende FRET-Effizienzen durch einfache Diffusion in einem harmonischen Potential
verknüpft. Das Model kann also als ein System von gekoppelten harmonischen Os-
zillatoren aufgefasst werden, deren Kopplung durch die Übergangsmatrix bestimmt
wird. Die unbekannten Parameter (Übergangsmatrix, Mittelwert, Varianz und Dif-
fusionskonstante) werden durch die Maximum-Likelihood Methode aus den Daten
geschätzt. Diese Herangehensweise wurde auf die Einzelmolekül FRET-Trajektorien
einer sich faltenden Ribonucleinsäure angewendet, welche im Labor von G. Ulrich
Nienhaus an der Universität Ulm aufgenommen wurden. Die Methode hat sich als
nützlich erwiesen, um weitere, zuvor unbekannte oder unerkennbare, metastabile
Zustände in den Daten aufzudecken, die mit den Standard - Analysemethoden nicht
zu erkennen sind. Des Weiteren liefert die Übergangsmatrix Informationen über die
relativen Wahrscheinlichkeiten und Lebensdauern von verschiedenen Konformatio-
nen. Die Ergebnisse lassen den Schluss zu, dass dieser neuartige Analyse-Ansatz
für die Auswertung experimenteller Einzelmoleküldaten zukünftig eine zunehmend
größere Rolle spielen wird.
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CHAPTER 1

Introduction

The undreamt-of breakthrough of molecular biology has made the
problem of the origin of life a greater riddle than it was before: we
have acquired new and deeper problems. — Karl R. Popper1

1.1. Outline

The purpose of this thesis is to understand and describe the folding dynamics
of a small biological molecule. A historical contemplation in the first chapter will
recollect theories and methods that lead to our current state of the art in molecular
microscopy, data processing and the description of processes evolving in living
systems as for example the cell. The experiment that collected the data of a single
molecule folding process, the molecule itself and its crucial function in living
organisms will be described in the second chapter. Theoretical principles required for
the description of molecular dynamics are probability calculus and stochastics, which
are treated in the third chapter together with the basic photo-physical principles of
the investigating process and applied to the available data for analysis in chapter
four. Difficulties in converting and interpreting the raw data are also mentioned in
the anylis chapter. Concluding remarks and an outlook are given in the last chapter.
The apendix lists the algorithmic procedures used for the analysis and a summary of
the data that has sucessfully been analyzed.

1.2. Physics and Life

Biological systems have a long tradition of being studied by physicists who
are using mathematical methods to describe biological phenomena from physical
principles. First recorded attempts reach back to antiquity and accompany the
medical development at all times (the historically interested Reader may find [1]
and the references therein useful). Nevertheless the first physical method for this
purpose based on mathematical equations was developed by Edward N. Lorenz in the
1960’s [2], which originated the chaos theory. Investigations on whole populations
of living creatures and their dynamics using computer routines were done in 1976
by Robert May who simulated a fish population P possessing the growth rate R

using the formular P(new) = R · P(old) · (1− P(old)) containing a ressource limit

1 "Reduction and the Essential Incompleteness of All Science," p 259-284, Studies in the
Philosophy of Biology, Francisco Jose Ayala and Theodosius Dobzhansky, eds. University
of California Press, 1974. p 271.

1
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through the 1− P(old) term. In spite of its simple form the formula already exhibits
nonlinear (or chaotic) effects e.g. for a start population of 2% and a a growth rate of
3.8 Individuals

Generation
or higher.

The physical view on the smallest units of life, however, made its major progress
in the last decade. Through the massive improvement of experimental design and
precisions enabled through tunable optical lasers, single photon counter, extremely
sensitive nuclear magnetic resonance spectroscopy, high performance computer
clusters, etc, we gained insights into many biological systems in a quantitative manner
and with high predictability. Despite their recent developement, new branches in
scientific research emerged globally called “Biophysics”, “Bioinformatics” or ”Life
Science” and quickly gained a diverse communitiy consisting of biologists, chemists,
physicists, physicians, mathematicians and programmers.

Facing the huge amount of data generated by new experimental techniques
covering all time scales from femto seconds to years, biophysicists often are in need
of efficient analysis methods that sufficiently reduce their data to reveal the specific
physical property of interest. A particular tool for investigations in biological cells
and their environment is the single molecule Förster Resonance Energy Transfer
(smFRET) spectroscopy, which was also used in its particular two fluorophore version
in this thesis for data acquisition described in section 2.3. Analysing the hereby
acquired collection of two-channel photon streams demands a stochastic treatment of
the time series through Hidden Markov Models (HMM. see section 3.3) or stochastic
differential equations (SDE, chapter 3.4.2). A major obstacle in the analysis of single
molecule dynamics and their measurements under biologically relevant conditions
is the separation of unwanted but inevitable effects (such as background noise,
saturation or photophysical effects as the triplet absorption (blinking) or bleaching)
from the desired signal, i.e. the photon encoded distance trajectory of two distinctive
areas of a macro molecule. The FRET spectroscopy method is available since 40
years, yet mostly applied to bulk measurements of whole molecule ensembles. It
has only been a few years ago that measurements and observations at the single
molecule level are possible . For biologically relevant conditions, experiments
require room temperaturs and aqueous solutions of the molecules, which often do
not allow further experimental reduction of noise without obscuring the outcome
of the measurement. Additionally, for obtaining a prolonged observation duration,
low-frequent observation events in turn fundamentally broaden the results by means
of Poissonian distribution (e.g. ”shot noise”) [3].

The herein investigated properties are the conformational fluctuations within and
amongst the conformational states of a single surface-immobilized, enzymatic RNA
molecule, the Diels-Alderase.
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FIG. 1.1. Early compound microscope invented by Anton van
Leeuwenhoek to look at cells, bacteria

1.3. Evolution of Microscopy

The physical fundament of the magnifying effect when looking through convexly
formed, transparent material is diffraction, which in turn is dependent on the speed
of light dependency on the optical density of the medium it is travelling through. The
refraction angle of a light beam entering a medium with different optical densities
was described by Fermat’s principle of least time in 1657 [4]and, indeed, this is
known as the first elaborate aplication of an extremal principle in physics since the
medieval times. The resulting equations were the same as discovered independently
by Willebrord van Roijen Snell (Snell’s law) and Descartes in 1618 but may have
probably first been mentioned in the "Book of Optics" by the Iraqi Muslim scientist
Ibn al-Haytham (in Europe latinized as Abu Ali Hasan Ibn Alhacen or Alhazen, see
Fig. 1.2.) in the year 1021 AD. However, 3000 years BC, the ancient Egyptians
and Mesopotamians already used and constructed lenses (referred to as "reading
stones") with the desired magnifying property, but it wasn’t until 1595 that the
first true microscopic device was made in Middelburg, Holland manufactured by
three eyeglass makers: Hans Lippershey (developer of the first real telescope), Hans
Janssen and his son Zacharias [5]. In the following 30 years, various names were
used for the magnifying device, as for example Galileo called it the "occhiolino"
or "little eye", until finally Giovanni Faber coined the name "microscope" (from
the Greek: µικρoς , mikros, "small" and σκoρειν skopein, ”to look” or ”see”,). For
further details the historically interested reader can explore the contents of the online
http://www.mikroskop-museum.de/ microscope musem.

With the first compound microscopes (see Fig. 1.1. ) at hand (since circa
1595), new insights into organic, mineral and other domains, previously having been
inaccessible to the eye, opened up whole new dimensions of investigating nature (as
evolved simultaneously in telescope-enabled astronomy), since suddenly bacteria,
blood and sperm cells, protists like amoeba, etc, could be observed, analysed or
manipulated (accordingly in astronomy, moons, rings and phases of extraterrestrial
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(a) The islamic physisics
Alhazen (965-1040)

(b) Ernst Karl Abbe
(1840-1905)

FIG. 1.2. (a) Author of the first preserved published material about
light rays in 1021: the seven volume treatise ”Book of optics”. (b)
Founder of the first mathematical foundation of microscope design
essential for the later inventions of the Carl Zeiss AG company.

planets, asteroids and nebulae were discovered). A better understanding of optics
made it possible to minimize chromatic aberration of the projection lenses and
maximize magnification and lead to a better understanding of light possessing a
finite velocity (Ole Christensen Rømer 1676), propagating as a wave ( Christian
Huygens 1678) or beeing polarizable (Augustin-Jean Fresnel, François Arago). Even
foreign domains in science were able to benefit from the new devices as for example
Robert Brown draw major conclusions while looking through a microscope in 1827
[6]. He observed the permanent movement of pollen in aqueous dispersion, which
Einstein later concluded to be clear evidence for the material existence of atoms
and molecules2 in his famous publications in 1905 [7]. The triumphal procession of
looking closer and closer into the universe, seemingly, came to an end when Ernst
Karl Abbe (see Fig. 1.2) discovered the fundamental diffraction limit for the smallest
resolvable diameter in 1872 [8]. This limit, dlimit, of visual light microscopy, is
completely determined through the wavelength of the light λ, the refraction index n

of the lens and the apterture angle α:

dlimit =
λ

2n sin α
.

Even though light diffraction is the key to magnify the world, it also causes its
downfall at the end of the magnification scale. George Airy (an astronomer in the
early 19th century) found that any light beam passing a (circular) aperture has a
minimum area at the optimal focus creating a minimum focal spot [9]: The airy
disc (see Fig. 1.3.). He found that the minimum diameter can be calculated as a
linear function of the aperture angle (ratio of lens diameter to focal length) and the

2 Philosophers like Mach and Oswald and their followers before Einstein regarded atoms as a
purly abstract concept without acutal manifestation in reality and, thereforee, had to retreat
and develop new views and perspectives after his proof of existence.
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wavelength from the intensity derived from the Fraunhofer diffration equation as

I(θ) = I0

(
2J1 (k · d sin θ)2

k · d sin θ

)
(1)

where I0= I(0) is the maximum intensity of the pattern at the center of the disc,

FIG. 1.3. Light intensity distribution of the Airy disc from a focused
point light source: left as seen with the eye, picture generated with
Eqn. 1, right the light intensity as function z(x,y)

J1 denotes the Bessel function of the first kind and order one, k = 2π/λ is the wave
number and d and θ denote the two-dimensional spherical coordinates radius and
observation angle measured from the image-perpendicular, respectively.

An infinite number of rings exists around the inner disc corresponding to the
second maximum, third and so on. The angle θ at which one finds the first intensity
minimum is the first zero of J1, hence at k · d

2
sin θ≈ 3.817, which yields the desired

linear relation between sin θ defining the resolution limit for the wavelength λ

sin θ =
3.83λ

π · d
= 1.22

λ

d
(2)

Today, the resolution limit assigned to every diffraction-limited device is the
Rayleigh criterion which can be formulated using Eqn. 1. It defines half the Airy
radius as the smallest displacement of two microscopic objects for being detectable.
Any two objects with a distance smaller than d/2 are perceived as one. One possible
way to circumvent the Abbe limit is to change the imaging technique to scanning the
media with invisible (e.g. ultra violet) light of lower wavelength or sources other
than electromagnetic waves. This, for example, is done by using charged particles
in the electron microscope which was co-invented by Ernst Ruska in 1931 (Nobel
laureate since 1986), by using needles with mono-atomic cusps to raster a surface
with an atomic force microscope, by diffraction imaging through X-rays, or by using
the quantum mechanical tunnelling effect in the scanning tunnelling microscope,
invented by Heinrich Rohrer and Gerd Binnig at the IBM research laboratory in
Rüschlikon 1981. These methods have illuminated the microscopic world to a highly
detailed view on cells and organisms. Unfortunately, their experimental conditions
do not allow living samples to be analysed (”in vitro” microscopy) because of
the high energy applied to the sample. Nevertheless, the insights gained through
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the methods mentioned before allowed crucial comprehension without which the
following inspections would not have been possible.

Another intuitive, though physically incomprehensible explanation for an optical
limit is that objects smaller than the wavelength of light (e.g. 400nm) are unable
to reflect the illuminating wave, thus appear as transparent or at least blurred. For
biophysical research, the scale of interest is the diameter of a single cell and beyond,
typically 5-10 µm for eukaryotes (cells bearing a nucleus) down to 1-2 µm for
bacteria. A visual image of a single fluorescent molecule would take 20% of a cells
size and, hence, is unsuited for obtaining structural information about its components
as i.e the eucaryotes nucleus with about one tenth of the cells size. To overcome the
diffraction limit, microscopes based on a different fundament than the conventional
”in focus” image generation process were needed and invented as, for example,
happened with the confocal microscopy techniques (see Section 1.5.1) by inverting
the usual microscope setting. This technique is no longer able to project images onto
a screen or directly into the eye and is therefore somewhat abstract, nevertheless it
allows deeper insight into the smallest compartments of living systems than optical
methods can provide.

1.4. Breaking the Diffraction Limit

Prototypes of sub diffraction microscopes have been constructed since the begin-
ning of the 20th century allowed the mechanical precision necessary for adjustment
and focussing. A prominent example is the "ultra microscope" invented by the
colloid chemist Richard Adolf Zsigmondy and the Zeiss instrument maker Henry
Siedentopf in the year 1905 [10]. It is based on the light scattering effect that parti-
cles exhibit if irradiated at a wavelength comparable to their diameter. The effect of
electromagnetic radiation emitted perpendicular to the irradiation beam is treated
in the Mie solution of Maxwelll’s equation (an analytical solution of electromag-
netic radiation of sperical particles) and is named after the discoverer John Tyndall.
The "Tyndall cone" for example produces the clearly visible laser beam observed
when the laser path traveres a gaseous suspension of collodial particles (e.g. smoke
particles or fog droplets). The special characteristics of the Mie solution are used
in the ultramicroscope to infere the position of the scattering particle at a very high
precision (about a third of the diffraction limit). It is, however, indispensable for
observation on non-collodial immersions (i.e. crystal-structures or cell-membranes)
and for even higher resolution to resort to a different imaging technique other than
light projection and intensity measurements, since Abbe’s limit is of fundamental
nature. In current research, another circumvention of the Abbe limit is discussed
by employing negative refraction index lenses (the so-called ”perfect lens” made of
customized metamaterials), but, until now, it is lacking any experimental evidence.
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In the last two decades, techniques and methods became available to experimental-
ists, which were able to obtain visual structures way beyond the Abbe limit. An
extensive exploration of state-of-the-art imaging systems is given in [11]. A few
other attempts were made to visualize cell compartments passively, as for example
the phase-contrast technique developed by the physicist Frits Zernike in 1932 [12],
but the majority of images gathered today on sub cellular scales employ an old idea,
which is somewhat similar to the one that enabled Heinrich Willhelm Waldeyer in
1888 to observe what he then coined as the chromosomes. Chromophores (colorant
particles or molecules) are the key to improved resolution: without staining (applying
the marking colorant), most cell constituents appear transparent, hence invisible to
the eye. Through a highly specific binding affinity, a molecular dye (aniline colorant
in the case of the chromosomes) binds either to a specific or unspecific component
of the cell, making it visible and distinct from its surroundings. Experimenters in
today’s laboratories as Stefan Hell, director of the Max Planck Institute for Bio-
physical Chemistry in Göttingen and developer of the STED (Stimulated Emission
Depletion-technique) [13] are equipped with a sizable catalog of dyes, laser sources,
single photon counters, precise filter sets and further optical devices enabling them
to produce beautiful images at a resolution that captures single molecule turnovers in
biochemical reactions. Other scientists have performed single step motion-capturing
of i.e. the myosin/kinesin - actin muscle mechanics or to track single viruses along
their infectious way from the cell outside membrane into its nucleus. The method of
confocal fluorescence microscopy as depicted in Fig. 1.4. will be explained in detail
in the following section.

1.5. Fluorescence microscopy

1.5.1. Confocal Microscopy. The focusing optics of a confocal microscope is,
in principle, the same as in a usual microscope, the major differences are the inverted
position of the sample and the light source, an additional beam splitter and a pinhole
at the conjugated focal spot (B1 in Fig. 1.4.). Only the fluorescent light coming from
the very small (down to femto-litre) focal volume reaches the detector (orange lines),
whereas fluorescent light from other parts (dotted lines in Fig. 1.4.) is blocked by the
second screen. Moving the focal spot across the sample generates a surface image
(XY-plane) and, additionally, changing the focal length (Z-axis) can generate a three
dimensional image as long as the exciting and fluorescent light can travel through
the fixed sample.

The so-called confocal microscopy was pioneered by Marvin Minsky in 1955
[14]. Whereas for the first cell compartment microscope images, physicians simply
had to pour their dyes into the Petri dish, dilute and mix it with the object under study
in order to stain their desired substance, the today’s task of attaching a photo-active
dye to a single molecule often determines the most expensive task (in terms of
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FIG. 1.4. Confocal microscopy: the first lens L1 disperses the Laser
light onto lens L2with a high numeric aperture. The fluorescent
light (red line) passes through the dichriotic mirror S1 and blind B2.
Fluorescent light from outside the focal spot doesn’t reach the photon
detector (dotted lines).

time, knowledge and/or money) in the imaging process. Additionally, a maximum
purification is needed to exclude excitation and fluorescence of anything else than the
dye-molecule (in the single molecule context and in the following called fluorophore).
If accomplished and the fluorohpore’s precise position at the investigated molecule
is known, one can infer from the recorded photon traces to the structure of the
object under study. The explicit inference procedure to yield spatial quantities as
e.g. the distance in nanometers heavily depends on the experimental setting which,
in return, depends on the question one is asking about the molecule. As mentioned
before, the signal obtained from confocal microscopes has to be transformed by
means of computational reconstructions that account for the laboratory conditions
and can implement noise filter and error corrections. The calculation of distance
trajectories from the measured photon stream are usually carried out by numerical
algorithms either implemented in the microscope or applied to the recorded photon
traces afterwards on a computer as in the present case.

A common principle of all techniques is that the properties of the photo-active
fluorophores (such as photon emission, absorption or polarization) are influenced
by the molecule they are attached to and change as the molecule changes. The
fluorophore (or dye) reports about the current processes in form of photon emissions.
Together with a physical model of the conformational dynamics, the analysis of
the photon stream can give direct conclusion about the molecule under study. For
example, the chronological changes in confirmation, inhibitor binding etc. can be
determined. To the current date, there are 22 types [15] of microscopes using the
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same principles for various purposes. In the case of the subunit rotation in F0F1-ATP
synthase (for details on this molecular rotary engine see [16]), it was shown that the
state changes due to fluorescence measurements enabled the authors to ultimately
decide between competing hypotheses [17].





CHAPTER 2

Experimental Setup

2.1. The Single Molecule Microscopy

In the following chapter the experiment which was employed to obtain the
time-series data will be described, and a short introduction to the sample under
investigation and it’s background in the biological context will be given. Photo-
physical processes during the experiment and their treatment towards error correction
are described thereafter and, finally, the connection between the experiment and the
desired conformational analysis will be given.

2.1.1. Microscope and Sample. Through inversion of the light-beam course,
it is possible to convert a classical microscope into a confocal one with only a few
changes in positioning lenses and the object as shown in Chapter 1, Fig 1.4 .

The general scheme of the experiment providing the data for this thesis is depicted
in Fig. 2.1, it was realized at the Institute of Biophysics, University of Ulm, Germany.
For a detailed description of the procedure of sample preparation and a list of all

FIG. 2.1. Confocal microscope for signal acquisition of single
molecule Förster resonance energy transfer in the sample. APD:
avalanche photo diode. The green laser light illuminates the sample
and fluorescent light is collected, directed through the filtering pinhole
and passes the dichriotic beam splitter to be focused onto the two
color detectors. Picture taken from [18].

11
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FIG. 2.2. Structure of the Diels Alderase sample: left, base pairs
with marked positions of the donor (Cy3) and acceptor (Cy5), gray
lines mark the biotin surface connection, right, tertiary structure
displaying the λ-shape of the sample, fluorophores are symbolized
as colored balls. Colors are arbitrary for better recognition. Picture
taken from [19]

devices, their manufacturers used and calibrations, please refer to Adrei Yu. Kobitski
et al [19].

2.1.2. Surface Immobilization of a Single Diels Alder Ribozyme. In contrast
to the optical setup of confocal microscopy, the preparation of single molecules is
a challenging task since it involves labeling and tracing the object heavily affected
by Brownian motion. The huge advantage of surface immobilized spectroscopy
for single molecule observations is that at a focal spot volume of a few femto-
litres (only several diameters of the ribozyme), whereas a freely diffusing molecule
would pass that volume within microseconds and would rarely be seen at all. In
the immobilized case, the continuous recording times can reach minutes or even
hours. The attachment of the molecule to the sample plate (usually a glass cover-
slip) is accomplished through biotin-streptavidin inter-linkage: the biotinylated
ribozyme (see Fig. 2.2) is flushed onto the cover-slip bearing a sparse distribution of
streptavidin ends, which the modified RNA can bind to. The cover-slip thereby gets
populated sparsely with immobilized ribozymes.

The single-molecule fluorescence emission from the immobilized molecule with
attached reporter dye (Cy3) was stimulated using the green 514.5 nm line of an
Argon/Krypton-ion laser. The acousto-optically tuned laser light illuminates the
sample plate continuously within an area of 30×30 µm2 at a resolution of 128×128
pixels, with 5 ms dwell time for each pixel, until the emission from 500 to 1000
single molecules was collected. The diffraction-limited focal spot of the exciting
laser is held stationary, whereas the sample plate is shifted using a piezoelectric
stage scanner. For automatic detection of a labeled ribozyme moving into the focal
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spot, direct excitation of the acceptor dye (Cy5) at 633 nm was provided by the
secondary He-Ne laser, though only used for calibration of the acceptor emission
intensity beforehand. The sample plate is movable in the XY-plane (as depicted in
Fig. 1.4) such that the focal spot can be centered at one molecule. For recording
a continuous stream of the donor/acceptor pair, the focal spot is moved to the next
molecule starting a new trajectory record until all immobilized molecules have been
scanned. The emission was collected through a water-immersion objective into a two-
channel single photon signal using a beam splitter at 640 nm. After passing through
separate filters optimized for donor and acceptor emission, the arriving photons were
recorded separately from two avalanche photo diodes, hence sorting all photons with
wavelengths between 555 and 610 nm into the ‘green channel’, and between 650
and 750 nm into the ‘red channel’ (see Fig. 2.1). The same areas were first scanned
for each pair with green then with red laser excitation, so that only those molecules
that contained a functional pair of labels were included in the subsequent FRET
efficiency analysis. Then, the fluorescence intensity was excited with continuous
green light and recorded with a 1 ms time resolution until photo bleaching of donor
and acceptor occurred. In the final analysis of state interchange rate coefficients, only
those time traces were included that showed single-step bleaching. The immobilized
ribozyme is continuously illuminated with the excitation laser source. Fluorophores
exposed to an ”over dose” of exciting photons is bleached temporarily or irreversibly
(photo destruction), which is causing obscuring effects. Therefore, measurements
should be done at lowest possible excitation intensities.

2.2. Exciting Processes

The process of a fluorescence measurement can coarsely be described as follows:
1. Excitation of the fluorophore through high energy laser photon (blue) absorption.
2. One of the following physical events may happen (see Fig. 2.3) :

• Immediate re-emitting of slightly lower energy photons, called green fluo-
rescence (circled number 2 in Fig. 2.3).

• Inter-system crossing from S1 to T1, or from T1 to the ground state with a
much longer life-time due to Pauli’s exclusion principle (phosphorescence,
blue wave in Fig. 2.3). Often 80% of all transfers are inter-system crossings.

• Non-fluorescence transfer of the exciting energy towards near by molecules
through non-radiative dipole-dipole resonance.

• Transfer of the exciting energy through electron transfer (quenching of
fluorescence)

• Dissipation of the exciting energy into heat or infrared radiation (leakage)

Since the fluorophore pair is covalently attached to the investigated molecule, it
changes properties as for example polarization and also the Förster radius R0 (due to
a change of extinctionεa, orientational coefficient κ2 and the refractive index n , see
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FIG. 2.3. Energy diagram for fluorescence measurements: left,
Lennard-Jones Potential with two excitation states shown (ground
state S0 and excited state S1). (1) Excitation (blue wave) elevates the
electron in the ground state to a vibrational sub-level (green dashed
lines) of the excited state. (2) Relaxation to the ground state with
an exponential decay rate and fluorescent energy emission E. right,
Typical Jablonski diagram with arbitrary x-axis and a second excited
State S2 and a triplet state T1. Transfer of exciting energy between
vibrational levels within one state are non-radiative. Inter-system
crossing T1 → S0 yields phosphorescence.

Eq. 38) as the molecule changes (e.g. its conformation). The basis for three major
detection methods employed in fluorescence analysis and listed below are Förster
resonance energy transfer (FRET) measurements which will be described in the next
section :

(1) Time-correlated fluorescence microscopy (TFM) measures the relaxation
time of the re-emitted photon. The polarization response can be measured
additionally.

(2) FRET microscopy detects the spatial change of two or multiple fluorophores
attached in a proximity radius of 10-100 to each other.

(3) Alternating Laser Excitation (ALEX)-FRET also excite the acceptor and
”check” which way the photon decided to take, hence filtering FRET fluo-
rescence from direct excitation fluorescence.

All methods rely on the dye quality as their properties (or rather knowledge about
their properties) determine the accuracy of measurement and therefore all analysis
steps that follow. Those properties can be manipulated in various ways in order to
reveal specific features of the molecule. A good fluorophore should have an emission
spectra as depicted in Fig. 3.6 on page 37 later on so that FRET occurs efficiently
(determined by the spectral overlap of the acceptors absorption with the donors
emission spectrum) to finally emit an adequate amount of lower-energy acceptor
photon emission (rad balls in Fig. 2.4).
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The process can also be seen from the point of view of exciting state lifetimes :
The intrinsic lifetime of an excited donor competes against the distance-dependent
lifetime of the donor-acceptor complex: At close proximity the latter wins and the
exciting energy is emitted via the acceptor, whereas in the distant case, the lifetime
of the complex is much longer, therefore, the energy will be re-emitted from the
donor within its decay characteristics.

2.3. Foerster Resonance Energy Transfer (FRET)

The energy transfer efficiency (sometimes also considered a transfer rate) is
defined through the ratio of acceptor photons to acceptor and donor photons within a
given discrete time window τ = tend − t0:

Eτ =
IA

IA + ID

(3)

where the intensities IA and ID are the sum of acceptor photons (A ⊂ N) and donor
photons (D ⊂ N), respectively collected in the time-widow τ at each point in time:

IA =

t0+τ∑
ti=to

A(ti) , ID =

t0+τ∑
ti=to

D(ti) (4)

The process of regaining the desired efficiency trajectory E(t) from of the single
photon traces is described in detail in Chapter 3, section 4.1.1 because it involves a
considerable numerical and methodological effort.

Let’s assume that there is an efficiency trajectory E(t) = IA(t)
IA(t)+ID(t)

present that
reflects a naive FRET situation. Theodor Förster published his book on luminescence
in 1952 presenting a formula that relates the efficiency of a donor/acceptor pair to the
distance between them [20]. At the distance where donor and acceptor are emitting
equally intense, the efficiency is 0.5 defining the system-specific Förster radius R0.
The simplest form of the Förster law (for the full formula see Chapter 3, section 3.6.1
on page on page 36) can be written as an inverse law of sixth order in distance with
the system-specific constant R0 or as ratio of the lifetimes of a single donor (τD) and
the donor-acceptor complex (τDA) at distance r :

E(r) =
1

1 +
(

r
R0

)6 = 1− τDA(r)

τD

(5)

2.4. Correction of Photon Trajectories

All measurements made with the described settings end with a special procedure
in order to determine the environmental factors for the background noise (uncorre-
lated photons from the molecule or its surroundings) and crosstalk (donor photons
that are mistakenly counted as lower-energy acceptor photons). After the active phase
of the fully functional molecule (left panel in Fig. 2.5) the acceptor-dye is bleached
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FIG. 2.4. Two exciting energy resonance scenarios: Right: high
transfer efficiency for relative distances of donor and acceptor below
10 , the acceptor will emit most of the exciting energy (blue wave) as
red photons (red balls with wave tail). Left: low transfer efficiency
when further apart, the energy will mostly be converted to green
photons (green balls) from the donor.

FIG. 2.5. Successive bleaching of the continuously excited (blue
wave) RNA sample, left: Active phase with functional donor/acceptor
pair. Middle: Acceptor (grayed out) is bleached leaving only donor
emission (green balls with wave tail) as non-thermal dissipation path.
Right: Both dyes are bleached, hence are non-fluorescent, all photons
detected are due to background noise.

by the experimenter. This closes the channel for the donor to convert his excitement
via FRET towards the acceptor (middle panel in Fig. 2.5). Therefore, an increase of
donor intensity should follow (otherwise, the system isn’t behaving accordingly and
the recorded photon stream should be disregarded). The donor, finally, is bleached
to record the pure background noise (right panel in Fig. 2.5). However, the signal
may not always exhibit the expected phases (e.g. due to impurities in the sample
solution), which is why it sometimes may not be possible to clearly distinguish the
active phases from the two bleaching phases.

2.5. RNA Folding Kinetics - Conformational Heterogeneity

The ability of a molecule to remain in a particular spatial or functional state is
often described as conformational heterogeneity. The conformations are seen as
”states” (a particular fold of the molecule as e.g in Fig. 2.6) that persist through a
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certain time-span and can be triggered or terminated through secondary processes
such as inhibitor binding or changes in ion concentration in the environment. The
conformation states however are not necessarily visible in the one-dimensional
projection that the Förster law offers. The trajectory generated from the photon
counts with the help of that equation and the procedure described before may
provide an intuitive understandable measure, but to think that these trajectories are
representative for the dynamics governing the system is by far misleading. The
states are defined in the high dimensional space of conformational arrangements
(folds) which can be described (and simulated) only with huge parameter sets, such
as dihedral angles, mean forces between each base-pair, spatial coordinates of each
base-pair, charge, polarization, and even quantum mechanical properties. The key to
identify a state is it’s dwell time compared to the overall fluctuation of the molecule.
The fluctuation on the shortest timescale are due to the thermally stimulated random
movement of each compartment of the molecule. In a homogeneous situation,
the dynamics of the molecule would completely be described by those externally
driven forces without distinguishable structures. However, measurements on the
smallest constituents of living organisms (such as proteins, enzymes, nucleic acids
etc) indicate that fundamental concepts of life are based on the opposite: only a few
out of the enormous number of geometrically possible conformations are observed
with non-random frequency, and their existence often complies with functional
relations. These sets, through their ’almost’ stable behavior are named metastable
states (for a mathematical description in terms of eigenvalues see 3.3.2)

Every possible arrangement of the molecule posses a specific amount of free-
energy from the mean Coulomb-forces that are acting between the atoms. If other
configuration yield a lower free-energy situation, the molecule will change towards
the lower-energy conformation if no energetic barriers are preventing the molecule
from getting there. Most molecules possess conformational states that are character-
ized by metastable behavior originating from free energy minima. A computational
approach as undertaken by Zhan et al. reveals the energy landscape of our enzymatic
ribozyme during the catalysis of a Diels-Alder reaction (see Fig. 2.6). To infer
this landscape given only one-dimensional efficiency trajectories is the hard inverse
problem mentioned in the abstract. A method that can achieve this or is at least able
to decide between competing model propositions is a tempting outlook we would
like to approach here.

Conformational states are not only found in large proteins or protein complexes,
in the case of the very small catalytic ribozyme (only 49 base-pairs in total, countable
in Fig. 2.2) investigated in this thesis; folded, unfolded and intermediate states have
been distinguished by Nienhaus et al. [19] with populations dependent on the
concentration of divalent magnesium ions (Mg2+). As will be shown in the analysis
section, past and recent studies only gain little insight in the kinetic behavior, meaning
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FIG. 2.6. The free-energy landscape of the Diels Alder ribozyme.
Left, X and Y-axis are the positions in Å of two selected base pairs
of the molecule. The ribozyme has to cross the saddle point for a
catalytic reaction of the reactant towards the product. Right, the two
dimensional projection with the energy color coded. Picture taken
from [21]

to assign states through their dynamic behavior (fluctuation, transitions to other states
or repeating sequential patterns of state changes) rather than assigning states by static
properties as for example mean distance or positions. The understanding of states in
a kinetic sense is the central viewpoint of this thesis and will be described further in
Chapter 4.



CHAPTER 3

Theoretical Framework

Since this work is based on numerical analysis of probabilistic processes, the
theoretical background will be described in the following. The aim is to deduce
a description of the investigated molecular system from the gathered time-series,
which has to be treated by the Inverse Problem Theory presented hereafter. A suitable
tool for the description of processes governed by stochastic behaviour are stochastic
differential equations which will be described in conjunction with the Markov Model
afterwards. A more detailed description of the resonance energy transfer will be
given through consideration of dipole-dipole interaction, and the numerical methods
employed in the analysis will be described later on.

3.1. Inverse Problems and Bayes Ansatz

Many problems in physics or scientific descriptions of measurable phenomena in
general consist of a collection of parameters called the modelM. For example, many
statistical observations can be described by Gaussian distributions fully determined
through the paramter tupel mean and variance, µ and σ respectively. The choice
of the parameter values determines a specific realisation of the model suitable for
constraints and boundary conditions of the current system under investigation. The
model does not yet give a full description of the system or its observations since the
parameters can be very abstract and do not need to be accessible for measurements.
M rather describes the overall characteristics and properties of the system, but to
reproduce the outcome of a time-evolving process, one needs the help of a function
or operator introduced in the next section.

3.1.1. The Inverse Problem. We will assume that there is a a function or opera-
tor G (e.g a set of differential equations or polynomials) that sufficiently incorporates
the fundamental physical relations of the process under study as functions of space
x = {x1, x2, ..., xn} (not necessary Euclidean) and time t. G(M(x, t)) should then
be able to predict a wide variety of outcomes if all necessary initial conditions and
boundary parameters (which can be real, complex or vector values) are known. Thus,
G relates the paramters given through the model M and the experimental output (or
measurement) D:

G(M) = D

When M and D are vectors, one refers to G as a function, whereas G is called
operator in the case of M and D being described through functions. Values of

19
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D can range from a single, real value within the interval [0, 1], up to Terabytes of
coordinates from time-series in a high-dimensional, complex space. If the calculated
data from a certain model show only low accordance to experimentally obtained data,
this can either be due to unconsidered processes which need to be incorporated in
the model, or it can be induced by inappropriately chosen parameters. A good model
should be able reproduce the observation of the investigated system and predict the
outcome of new experiments on the system.

If there are only a few parameters inherent to the model and a small set of
equations, one could achieve good correspondence to the experiment by trying out
different values, until a trend of the outcome data D is obvious where an optimum
can be conjectured. Unfortunately, this involves personal preferences and routines
that may be hard or impossible to be formalized in a rigorous way. However, the
huge number of wide-ranging parameters in molecular interactions demand for
mathematical and algorithmic treatments, whereby the model parameters become
the variables of the optimization function.

A particular property found in any real-life experiment at highest resolution is
noise. If one does not incorporate the noisiness1 of the output, it will produce a
measurable, but hopefully small discrepancy η between the calculated outcome and
the experimental measurements and the true model Mtrue that would be observed in
the absence of noise:

D= G(Mtrue) + η

The mathematical description of the process of finding the optimal parameter set
for a given model is solving the inverse problem. Generating D from the model is
termed the foreward problem and might involve solving ordinary or partial differential
equations. For basic problems, it sometimes is possible to discriminate and compute
the set of parameters that fit the observation data for a given model and it may
even be possible to show that there is one and no second set of parameters that
equally well or better fit the data. However, in most cases, the opposite is the case.
Generally, it is not possible to decide whether an optimal fitting set can be found
or not (Existence) and, if found, it is generally not possible to show that there is
no second equal or better fitting set (Uniqueness). Let us assume a local optimum
has proven good correspondence with a starting data set D0 and a slighty differing
outcome D1 with very small differences ε to the starting set, then there arises the
third crucial issue in Inverse Theory by observing the changes in the model resulting
from deconvoluting D0 ± ε (Stability, Instability): if these changes for the models
M0and M1 are dramatically high, the inverse problem is suffering from unstable
behaviour and is called ill-posed in the case of continuous systems, or ill-conditioned
for discrete linear systems.

1 Noise is advised for the foundation of chaos theory, which is precisely the unpredictable
huge change of outcome with even infinitesimally small intrinsic changes after finite time.
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3.1.2. The Bayesian Approach. A fundamental difference towards the treat-
ment of measurements that involve uncertainties is that, other than in the foreward
problem known from classical mechanics with exact solutions, here, the model is
described by random variables and yields a probability distribution f as solution
for the model parameters. Thus, a solution will never exactly describe the outcome
of one realization of the experiment, but, moreover, will assign a real number from
the intervall [0, 1], the probability, to every possible outcome with the boundary
condition for the overall probability

∞∫
−∞

P(x)dx = 1 . (6)

An agreement of experiment and theory can be obtained only by repeating the
stochastic process often enough and seek similartities between the distribution
of experimental results and a simulated outcome of the assumed model. Well-
known probability distributions as the Gaussian or Chi-squared distribution have
analytical expressions containing the parameters and can, therefore, be compared
easily. However, a variety of problems exists that doesn’t obey Gaussian or even
symmetric laws. In this work, we focus on Gaussian (normal) distributed processes
or processes that are goverend by stochastic differential equations.

The conditional probability is the probability of event A, given the occurrence
of event B. It is written P (A|B) and reads "the probability of A, given B". Joint
probabilities are the probability of two or more events in conjunction, that is, it is the
probability of both (all) incident events. The joint probability of A and B is written
P (A ∩ B) and is used for the definition of the conditional probability.

DEFINITION 3.1. Conditional Probability

The conditional probability P(A|B) of an event A assuming that B has occurred
equals

P (A|B)) =
P (A ∩B

P (B)
(7)

For statistically independent events A and B, that is P (A ∩B) = P (A) · P (B) the
conditional probability is

P (A|B) =
P (A)P (B)

P (B)
= P (A). (8)

The inverse problem in stochastic systems is characterized by finding the pa-
rameters (for distinction from the general case, in the following, M will be called
λ and referred to as paramters) introduced by the known probability distribution
functions P(x) identified now as the prior general model functions Gprior(λ), which
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reproduces the observed dataD from the model. The inverse problem in probabilistic
problems can, hence, be seen as modelling the inverse conditional probability (see
definition 3.1) of the data D beeing produced by the assumed model (P(λ)), also
known as Bayesian inference.

Thomas Bayes theorem, formulated in the 18th-century, states the following
conditional probabilities:

DEFINITION 3.2. Bayes theorem a

For the parameter set {λn} with n ∈ N and the given observation D, we have:

P (λn|D) =
P (λn)P (D|λn)

P (D)
. (9)

with P (D) =
∑
n

P (λn)P (D|λn) > 0 for the discrete case or

P (D) =
∫

allModels

P (D|λn)P (λ)dλ > 0 for the continuous case.

a In his words "The probability of any event is the ratio between the value at which an
expectation depending on the happening of the event ought to be computed, and the value
of the thing expected upon its happening".

It therefore introduces a second fundamental difference to classical deterministic
problems by allowing us to incorporate prior information about the solution that
may come from other data or prior experiences, the so-called prior distribution for λ

(sometimes ”a priori distribution” or short ”prior”) P (λ). If there is no information
available, the principle of indifference allows us to assign a uniform prior distribution
assuming that every possible state is equally probable as initial realization. In
the mathematical language, this distribution is called independent and identically
distributed (iid). The collected data combined with the prior distribution generates a
so-called posterior distribution

P(λ|D) ∝ P(λ)P(D|λ). (10)

Bayes’ theorem relates the prior distribution P(D|λ) which is computable before
performing the experiment and the posterior distribution P(λ|D) via the given model
P(λ) allowing the computation of the posterior distribution. P(λ|D) in turn can
be computed from the outcome of the experiment and will hopefully be helpfull
in understanding the system but should carefully not be mistaken as the answer
to the problem but should rather be seen as one possible and more or less likely
answer. Intuitively, one would suspect the model giving the highest posteriori value
as the ”best” model (maximum a posteriori (MAP) model) as it states that it is highly
probable to observe the data D from the system described by the model M = P (λ).
Then again under consideration of the mentioned uniqueness difficulties it isn’t safe
to say the there is any physical correspondance to model. Alternatively, the mean
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and variance of the posteriori distribution can provide helpful information in the
process of finding the optimal model.

3.2. Parameter Estimation

3.2.1. The Likelihood Function. Now we consider a second statistical P (B)

process with a known probability distribution that describes the occurrence of an
observable event B given the outcome of the first process P (A). Thus we have two
sets of events {ω} and are interested only in the overlapping region of ωi ∈ A ∩B

. The joint probability distribution can then be calculated if P (A) and P (B) are
statistically independent (see definition 3.1.) by multiplying both probabilities

P (A ∩B) = P (A) · P (B) (11)

This is, for example, often the case in medical treatment calculations given the
infection probability of a certain desease (first process, A denotes the two possibilies
infected or healthy) and the detection probability of the diagnosis (second process B

is outcome of the diagnosis: positive or negative). The definition of the conditional
probability then, for example, can compute the chance of the disease being diagnosed
(and treated) while being perfectly healthy, the so-called false positives. We can
easily generalize the joint probability for an arbitrary number of succeding processes
A1, A2, A3, ..., An

Ptotal(A1 ⊂ A2 ⊂ A3 ⊂ ... ⊂ An) =
m∏

i=1

P(Ai) (12)

If the events can be partitioned into disjoint sets governing all events as in the
case of being or not being ill and equipped with the prior distribution P(D|λ) and
the corresponding formula to compute a conditional probability, one can calculate
the probability of an arbitrarily drawn sample to belong to one of these sets or states.
The method which updates the prior probability with every newly collected data
(drawn samples) to achieve better correspondence is called Bayesian inference.

In order to employ Bayesian inference we have just discussed, their translation
into functional and programmable tools has to follow. This is carried out by the
maximum likelihood analysis. L(λ | D) is the likelihood function, a conditional,
possibly multi-variant (for the case of D consisting of vector valued observations
X = (x1, x2, ..., xn)) probability density function with the first argument held fixed,
thus, it is a function of its second argument, the parameters. It is identical to the
posterior distribution in Eq. 10 in the case of iid samples:

L(λ | D) =
N∏

i=1

Pi(Xi|λ) . (13)

3.2.2. Baysian Networks. Now we will consider several probabilities Pn, which
are connected in a way that the outcome of one realisation will be conditioning the
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FIG. 3.1. Bayesian network displayed as directed acyclic graph.
Every state from S = {s1, ..., sn} is associated with the probability
Pn describing the output of sn. Probabilities of red filled circles
are dependend on state s0 and independent from s6. Mixed colored
circled are dependend on both.

probability of the next realisation. This is called a Bayesian network. A visual
representation can be given through a directed acyclic graph as schown in Fig. 3.1. It
allows the events to have multiple pathways that they can choose to travel along but
does not allow a circular sequence at any time. This restriction is particularly usefull
as it allows the description of a joint probability distribution over all variables as a
product of conditional probabilities

P(S|λ) =
n∏

i=1

P (si |pa(si), λ) (14)

where pa(si) denotes the parents of si (in Fig. 3.1 pa(s5) = {s3, s5})
Two variables si, sj are called conditionally independent if they are independent

of a third variable’s state sk so that they can be expressed as a product of conditional
probabilities from that third variable

P(si , sj |sk) = P(si |sk)P(sj |sk) (15)

as it is for example is the case for s3 and s6. The conditional independence allows
further simplification for the calculation of the overall probability P(S|λ) in Eq. 14.

3.2.3. Maximum Likelihood Estimator. Since every probability function is
bounded to both sides, there always exists a maximum and minimum value (which
are equal for the constant case). Therefore, we can select the parameter set λ∗ that
produces the most likely outcome, hence the highest value of the likelihood function
L. A maximization of L with respect to the parameters (now regarded as latent
variables) leads to an optimal parameter set λ∗ for the given data. This is known as
the maximum likelihood principle.
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DEFINITION 3.3. Maximum Likelihood Principle

λ∗ = arg max
λ

L(λ|D). (16)

As already mentioned, it is generally not possible to find the global maximum (the
maximization then only produces a suboptimal set of parameters) nor is there a
guaranty that an analytical expression of the maximizing function can be found. If
there exists an equation that maximizes the likelihood, it is called the maximum
likelihood estimate, and it can be used to evaluate a family of probability distributions
by optimizing λ∗. This, however, can lead to the multiplication of hundredthousands
of values smaller than one and therefore to numeric difficulties caused through
the finite range number representation in every finite binary system. Since the
extreme values will remain unaffected of monotone transformation, the logarithm
of expression 13 yields a numerically comfortable expression involving only sums,
called the log-likelihood L̃(λ).

L̃(λ) = ln

(
N∏

i=1

P(Di|λ)

)
=

n∑
i=1

log (L(λ)) (17)

The maximum log-likelihood L̃(λ) as presented above only yields a point esti-
mate without confidential intervals. If the variables are also modeled as a probability
distributions the maximization leads to the marginal likelihood or integrated likeli-
hood. This way, one can treat naturally uncertainties as well as additional variables
which are not observed in the distribution function and avoid overfitting the data.
The joint probability vector P =(P1, P2, ..., Pn) of the data, and unobserved data
X = (x1, x2, ..., xn), P(X,λ,D), describing the process can then be expressed
with the prior distribution P(D|λ) estimated by the maximum likelihood principle
towards

P(D,λ,X) = P(X|λ)P(D|λ)P(λ) . (18)

This is known as ”learning from the data” in recognition aplications. The functions
Pi know treat the observation probabilities as well as unobserved processes inherent
to the model. Applying the sum rule of integrals to Eq. 3. we can rewrite this
equation to the posterior probability

P(X,D) =

∫
P(D, λ,X)dλ (19)

which is able to produce a predictive distribution for X if substituting Eq. 18 for
the integrand and applying the product rule for probabilities on the left-hand side
P(x,D) = P(x|D)P(D), then divided by P(D), we get
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P(X | D) =

∫
P(X|λ)P(λ|D)P(λ)dλ. (20)

It was shown that it is possible to reformulate the original (deterministic) inverse
problem into terms of the Bayesian statistical inference theory being capable of treat-
ing uncertainties and, additionally, accounts for poor or incomplete measurements.
A tool to evaluate certain models was presented, the maximum likelihood estimator
that will be applied to the models that are introduced in the following. A wel-known
maximum likelihood estimator is a Gaussian fit, which computes the tupel λ =(µ, σ)

for an one-dimensional distribution of x. It is an appropiate model for statistically
normal distributed processes. The model would then be a stochastic normal process
with the Gaussian distribution over the spatial coordinate x:

PGauss(x|σ, µ) = e−
(x−µ)2

2σ2 . (21)

and the maximum likelihood function L(σ, µ|x) given through Eq. 13. would yield
with maximization from definition 3.3. the optimal variance and mean estimation λ∗

from the data:
(σ, µ)∗ = arg maxLGauss(σ, µ|x). (22)

The maximum likelihood principle has been successfully applied throuthough
many different problems in diverse areas of biophysical research. Time-series analy-
sis as described in [22], is applicable to the method as well as structure prediction or
gene expression and regulation.

3.3. Hidden Markov Models

3.3.1. Markov property. If observed on a sufficiently large time-scale, many
processes appear "memory-less", meaning that at any time in the sequence, there is no
influence provable of any past event affecting the upcoming event. This property was
first described in a mathematically elaborate form by Andrei Andreyevich Markov at
the end of the 19th century. The definition of a Markov process reads
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DEFINITION 3.4. Markov process and Markov property

Let X(t) with t > 0 be a non-negative stochastic process defined on the state
space S = s1, ..., sm, S ⊂ Nm. This process is a Markov process if it satisfies for
all n > 0, n ∈ N time points 0 ≥ t0 < t1 < t2 < · · · < tn < tn+1 , the following
Markov property:

P (X(tn+1) = sn+1 |X(tn) = sn, X(tn−1) = sn−1, · · · , X(t0) = s0

= P (X(tn+1) = xn+1 |X(tn) = xn,

There are appliances in weather modeling, speech and pattern recognition, fi-
nancial market development and more, from which suitable examples of Markovian
systems can be constructed. A general demand for Markovianity resides in the
exponential growth of the factors in the joint probability distribution function when
adding past states to the memory kernel of the time evolution model. Of course,
difficulties may arise in displaying and judging the outcome probabilities when
estimating a system with too many parameters and dependencies. In fact, a Markov
process is the simplest stochastic process after the Poisson process, which is even
independent from its current state (e.g. the throw of a dice). These systems are
described through the positive definite probabilities Pi collected in the probability
vector

−→
P obeying the normalization

∑n
i=1 Pi = 1 equivalent to the statement that

the probability of observing any of the possible events is one, hence, guaranteed.

3.3.2. Markov Chains and Metastability. A sequence of observations starting
from the initial state si with observation X0 and the distribution vector ~π = P̃(X0 =

si) fulfilling the Markov condition above at every single event is called Markov chain.
Even in relatively small molecules, the number of atom bonds involved, combined
with their degrees of freedom, results in an extremely high-dimensional state space
Rfull of all possible configurations. Nevertheless, research in conformational analysis
of bio-molecules seems to indicate that only a fairly small number n of dominant
states persists for a longer time creating a subset Rn ⊂ Rfull. These conformations
are often identified in a biophysical context with metastable sets described by a
continuous or discrete probability distribution P. The state sequence is the sequential
trajectorie of those few states. Observations on protein systems have confirmed that
the overall dynamics of even complex interacting protein species, can be understood
and described by assigning each metastable set a specific function or sensitivity to
signals from other proteins. The sequential change of those states in an equilibrium
environment is then appropriately described by Markov chains. A Markov chain
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FIG. 3.2. A Three-state Markov model (states sI ,sII ,sIII) with in-
terchange rates ki→j between the states (i, j = 1, 2, 3, i 6= j). The
circular curves with rates ki→i denote the rates of reantrance ( staying
in the same state)

is called time-homogeneous if P(X(k + t) = si | X(k) = sj) is independent of the
choice of s with s, t > 0. The probabilites correspond to the transition rates ki→j

from state i to state j can be visualized as in the diagram shown in Fig. 3.2. Given the
sequence of a time homogeneous Markov chain, one can construct the rate matrix
T ⊂ Rn×n (23) simply by writing the transitions observed from every state si to
every other state si in the corresponding entry

Tij =



k0,0 k0,1 · · · k0,j · · ·
k1,0 k1,1 · · · k1,j · · ·

...
... . . . ... · · ·

ki,0 ki,1 · · · ki,j · · ·
...

... · · · ... . . .


. (23)

A transition matrix for stochastic processes always satisfies the condition
∑

j kij =

1 (normalization of the sum of rows, see previous section 3.3.1). A metastable system
is defined for our propose through a very high probability of the system to maintain
itscurrent state and therefore can be suitable described through the transition matrix
Tij in Eq. 23 if the diagonal elements (since they represent the probability of main-
taining the current state) are very close to 1, therefore all off-diagonal elements have
to be close to zero. This can also be seen in the eigenvalue spectrum of a metastabel
transition matrix through eigenvalues close to 1.
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3.3.3. The hidden layer: discrete hidden state, discrete output. Until now
we only considered the case that, at every time in the sequence, the state the system
occupies is known (e.g. measurable). This would mean for our present case of
molecular conformations that, for every atom, the molecule complex, its present
kinetic properties (e.g. rotational or vibrational state), and maybe even the electron
orbitals would have to be accessible for measurements. This is by far unrealistic. In
fact, we are provided with a vanishing small fraction of the just mentioned properties.
What actually can be observed under realistic circumstances is, for example, the
relative distance of two distinct regions of the molecule encoded in the FRET signal
reaching us from a donor and an acceptor placed in that regions. To account for these
massive restrictions, a second stochastic layer is introduced bearing a probability
model for the observables emitted from the unobservable, hence hidden state S . The
number of these states has to be provided, although there are attempts of automatic
determination of feasible states [23], one usually can find consistent assumptions
that restrict the number of states.

It is assumed that the n states (or conformations) s1to sn the system is able to
occupy are known from preliminary analysis. Furthermore, let there be probability
distributions P(si) known to us that describe all possible observations di that can
occure if the system is in the current state si. The system is called ergodic if there
exists a point in time tm at which all states have been emitted. This is a necessity for
the following analysis, which would, otherwise, assign a zero probability to the states
not being observed, thus it is impossible to produce any useful parameter estimates
for that state. These observations can be continuous or discrete, and may even be as
few as the three letters V,X, and Z as for example in Fig. 3.3, defining the elements
of the data set D= {d1, d2, d3}emitted from the two state system S={s1, s2}.

If considering only systems that are observable at time intervals that are much
shorter than the average time of the system to change a state, the system will emit
a characteristic string with statistical occurrences of the four letters. The string
is determined by the probabilities P(Xi|sj) connected to the rate constants ksi

Xi
(as

depicted in in Fig. 3.3) and the state interchanging probability P(si|sj) with the
correspinding interchanging rates ki→j for the transitions between every state. This
assumption isn’t necessary (see [24]), but it helps the understanding of the hidden
Markov process in the current case. Inferring the state of the system at a chosen,
single point in the string (e.g. by just knowing one letter) is per se impossible, as
long as there is a probability greater than one for every other letter to be emitted from
any state. To solve this dilemma, we have to be patient and listen to the system for a
while. After a time-span ∆t, we have collected a sufficiently long trajectory (lets say
half a million letters) for a meaningful statistics. We can now try to identify the state
sequence {st1 , st2 , ... , stn}, from the letter sequence. Thus, Hidden Markov Model
offers a way to combine the model of the measurable data with the unobservable
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FIG. 3.3. Simple hidden Markov model with two states (sI, sII) and
the three observables Xi = {X, V, Z}. ksi

Xi
are the rates of observation

emissions, ki→j are the state interchange rates .

processes underlying and generating them. By supplementing the incomplete data
set DO = {X1, ... , Xnn} with the output of the hidden model DH = {X1, ... ,Xnn}

we can build a ”complete” data set DComp =

{
DH

DO

}
. The joint density function

(or distribution in the discrete case) P(DComplete |λ) can be written as the product of
probabilities see Eq. 12 and 20

P(DComplete |λ) = P(DH | DO , λ) ·P(DO | λ) (24)

A ful characterization of the system bearing hidden states and dynamics de-
scribalble through a transition matrix T is given in the tupel M = (S,D,T,P)

of a Hidden Markov Model with the vector of probability distribution P or, in the
continuous case, the probability density function % .

There are three tasks associated with constructing a suitable Hidden Markov
Model:

• What is the likelihood function L(λ | D) of our data when given only an
initial model.

• For a given model characterized by the estimated parameter λ, what is the
resulting hidden trajectory.

• Find an optimization method for the parameters λ to compute λ* from Eq.
16.

3.3.4. Hidden Markov Models with Gaussian Output. A natural and often
reasonable assumption for the distribution within a state is a Gaussian describtion
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FIG. 3.4. The three states SI − SIII are emitting observation output
X,Z,V, described by the corresponding probabilites P1 − P 3. The
chain of state-changes aij produces a characteristic output sequence.

given by Eq. 22. This represents the situation, in which the mean is the most
probable observation outcome with a 98% chance to find observations within the
double standard deviation. The Markov switching process immediately assigns the
according mean and variance to the distributions P1, P2, P3, ...Pn at every transition
point as shown in Fig. 3.4. This still is somewhat unrealistic, since there is no ”time
to travel” from one state to the other within the system. Therefore a dynamical
enhancement is given next.

3.4. Stochastic Differential Equations

3.4.1. Langevin Dynamics. We are interested in an equation of motion for the
n-dimensional stochastic system. This was offered by Langevin through introducing
an effective potential V \ranlge that is inherent to the stochastic system described
by random variables. Furthermore, the damping constant γ together with the noise
intensity σ need to be identifyed in order to satisfy the following definition.

DEFINITION 3.5. Langevin equation

q̇ = p, ṗ = −∇V (q)− γp + σξ(t) (25)

or (26)

dq = p, dp = (−∇V (q)− γp)dt + σdW (27)

ξ(t) = Ẇ (t, w) denotes an n-dimensional Wiener process characterized by a zero
mean: 〈W 〉 = 0 and the correlation function corr (W (t)W (t)) = δ(t − t′) or
corr (ξ(t)ξ(t′)) = δ(t− t′) respectively.
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The equation considers a particle at the coordinate q being objected to a potential
V and undergoing Brownian motion. The random movement in one or three space
coordinates can be seen as produced by interactions on a very fast time-scale (unable
to be described in a deterministic fashion), whereas the effective potential function
V (q, t) models the slow dynamics that are characteristic on longer time-scales. As
it is often the case in molecular dynamics, which takes place in environments of
extremely low Reynold numbers (of the order of 10−4representing the friction) no
inertia is considered, meaning that any movement will stop instantaneous if all forces
are omitted (which of cause isn’t the case at any point due to the time-continuous
noise term). Hence, we can set ṗ = 0 and, thus, regard the simplified Langevin
equation for the high friction limit, also known as Smoluchowski equation:

∇V (q) + γp = σẆ (28)

The stochastic process induced by this equation is the Ornstein-Uhlenbeck pro-
cess. The task is now to formulate a potential function that reproduces the behavior
of the system. This could be achieved by modelling a apropriate potential landscape
(as e.g. a multi well potential as in ), where the metastability arises through the
system’s rare change within the minima (wells), if constructed appropriately.

A different approach allowing us to separate the state dynamics from the state-
change dynamics is given through combining Eq. 28 with a Markov jump process
between the n hidden states. For every state we can assign a characteristic potential
and noise intensity. In the present case we will choose V as a harmonic potentials
of the form Vi(q) = αi · (q− µ)2, thus characterizing the whole system through the
parameter-tupels (γi, σi, αi) and the transition matrix T responsible for the changes
of Si. For every state, there is an associated Ornstein-Uhlenbeck process resulting
from Eq. 28

γq̇ = 2αi (µi − q) + σẆ (29)

describing the motion of the system.

3.4.2. Hidden Markov Models with Stochastic Output. We adopt the sto-
chastic formulation of the observables to extend the Hidden Markov model with a
stochastic differential equations (SDE) formulation to produce a continuous output
over the state space. The state changes are again described by Markov jumps with
an SDE for each state S = {s1, ..., sm}. This yields an equation of motion for the
continuous observation q(t) in the following form:

q̇(t) = −∇qVsi(t)(q(t)) + σsi(t)Ẇ (i = 1...d) (30)

where si(t) is the trajectory of the state vector in the reduced state space Rd describing
the time-series of si (as shown before in Fig. 3.4.), called the Viterbi path, generated
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FIG. 3.5. The sequence of letter qi(t) ∈ {X,Y, Z} is generated from
stochastic differential equations corresponding to reach state sI−sIII

. aij is a state Markov chain as in Fig. 3.4

through a Markov jump process. It follows from the assumption of harmonic potential
functions Vi(q) that the non-linear SDE can locally be linearized towards

q̇(t) = F s(t)(q − µs(t))− σs(t)Ẇ (t) (31)

This is already formulated with upper indices to indicate its applicability for a
multivariant description 2, where F i(t)is a set of (d× d) force matrices.

An extensive description of the method used here is described in Schütte et. al.
Sequential Change Point Detection in Molecular Trajectories 25. It utilizes a hidden
Markov model jump process, where the dynamics of the molecule within the states
are described by stochastic differential equations as the Smoluchowski Eq. 28 above.

3.4.3. Multivariant Estimation. For parameter estimation of a d-dimensional
linear SDE based upon observations at equidistant time-points, an approximate
likelihood function has to be found. It is known that for fixed initial conditions, the
solution of a linear SDE is a Markov process and a time discretization of the solution
is a multivariant normal distribution. Hence, given an observation qt, the conditional
probability density of qt+1is a multivariant Gaussian with the vector valued mean
µi ∈ Rn and covariance tensor Σ ∈ Rn×n

fλ(qt+1 | qt) =
1√

| 2πR(τ) |
exp

(
−1

2
(qt+1 − µt)

TR(τ)
−1

(qt+1 − µt)

)
(32)

µt := µ + eτF (qt − µ), R(τ) =

τ∫
0

esF ΣΣ′esF ′
ds

2 In fact, it can also incorporate a higher order memory kernel if its parameter estimation
method does not rely on a Hidden Markov assumption.
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As with the Smoluchowski equation (28) we find for λ the three-tupel consisting
of the system characteristic parameters (µ, F, Σ) mean, force towards the mean and
noise intensity respectively, allowing us, in principle, the construction of a likelihood

function L(λ | q) =
T−1∏
t=1

fλ(qt+1 | qt).

With an analytic solution, the maximization process would simply be solving its
derivative set to zero, unfortunately, there is no known solution for L so we follow
the notation and idea of Meerbach et al. 26 and rewrite Eq. (32) towards

qt+1 = N (µ + eτF (qt − µ), R) = (I− eτF µ) + eτF qt +N (0, R) (33)

with the multivariant normal distributed random variable N (q ,R) and the identity
matrix I of matching size. If we consider an observation of length n generating the
observation vector q = q1 , q2 , ..., qn Eq. (33) suggests an autoregessive procedure
of the order one, which can be written in the compact version

Y = φX + ε (34)

with the following definitions

X :=

(
1 , 1, ... 1

q1, q2, ..., qT−1

)
Y := (q2, q3, ..., qT ) (35)

φ :=
(
(I−eτF )µeτF

)
ε := (N (0, R), ...,N (0, R))

the transformed parameter set λ̃ = (φ, R) is now able to be estimated through the
likelihood function

L(λ̃ | q) =

(
1√

| 2πR(τ) |

)(T−1)

e(−
1
2
tr(Y−φX)(Y−φX)′R−1) (36)

with the merit of the analytic estimators

φ̂ = Y X ′(XX ′)−1 R̂ =

(
Y − X̂φ

)(
Y − φ̂X

)′
T − 1

which are exact, but can become critical at the matrix inversion of XX ′under some
conditions. A more robust version can be used for parameter computation, when the
moment matrix

M (q) :=
T∑

i=1

(1, qi, ..., qi+p)


1

qi

...
qi+p

 =

(
XX ′ XY ′

Y X ′ Y Y ′

)
=:

(
M11 M12

M21 M22

)
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is employed which carries all statistically relevant information about the time series.
The maximum likelihood estimator in terms of the moment matrix is then able to
produce Bayes factors that can be used to identify a change of states through the
parameter behavior3.

Methods exist for dealing with those parts of the system that aren’t behaving
Markovian (or only do so on a larger time-scale), as discussed in [27] and are object
to current research.

3.5. Information-theoretical approach

Another way to look at single photon trajectories is to analyze the amount of
information they are carrying. A single-molecule experiment is characterized by the
following parts:

• a molecule in focus
• a reporter dye, emitting the fluorescent light
• the local environmental conditions

At the point where environmental side effects are of the same or even higher mag-
nitude as the desired quantity a natural question would be to ask for a ”limit” at
which no more statements can be made about the measurement, as it had been the
case in the example stochastic model, when too few observations (letters) were at
hand. However, even with an arbitrarily long sequence, it could well be that the
noise has governed the signal in a way that it is not carrying any information about
the molecule at all.

Mutual Information. The mutual information (Mi) is a scalar quantity for
measuring the mutual dependency of two variables. It can be described as the
relative entropy between the probability P(x, y) of the two variables x, y and the
product of their unconditionalized probability P(x)P(y):

Mi(x; y) = P (x, y) · log2

P(x, y)

P(x)P(y)
(37)

The calculations in [28] section D determine a minimum number of photons
necessary for model inference. No data processing can increase the amount of
information inherent to the measured system, therefore the number of photons at
a fixed time discretization yields a maximum amount of information that can be
extracted from the system. Any noise (equal to no information) sources reduces
the information in the signal. In the extreme case, the information carried by two
photons isn’t able to explain anything at the molecular level. For a typical visible
range of 400 -700 nm and an experimental duration of 100 seconds, it would take
57 bits per photon to record all the information present in the uncertainty-principle
limited stream of a two-fluorophore system. Following this calculation, depending

3 Since the results of the algorithm on data from our experimental data turned out less
significant, further elaboration is omitted.
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on the value of the background noise and crosstalk-factors, a minimum of about
1000 photons has to be acquired for inferring one transition rate.

It it also possible, as shown in [29], to extract dynamic information from the
photon stream by means of Fischer-Information Theory. However this aproach is
still very unexplored in molecular analytics and shall not be further elaborated here.

3.6. Förster Resonance Energy Transfer Efficiency

3.6.1. Dipole-Dipole Resonance. As described in the introduction, Förster res-
onance energy transfer (FRET) is a non-radiative (therefore sometimes called ”vi-
brational”) transfer of exciting energy from the externally excited and fluorescent
donor towards the acceptor molecule dye in itsground state. This, of course, is a
lossy process that is accompanied by other (e.g. radiative) transfer processes, and is
disturbed e.g. by electron transfer and triplet absorption that both cause a quenching
of the fluorescence light from either donor, acceptor or both. A detailed treatment of
these influences and error sources demands a deeper understanding of the physico-
chemical process during molecular interactions with photons and among each other.
The rate kT at which energy is transferred from the donor molecule towards the ac-
ceptor is modeled at best if both fluorophores are considered as two weakly coupled
dipoles separated by the distance r . The full equation for the distance-dependent
transfer is given in 30 chapter 13 by

kT (r) =
QDκ2

τDr6

(
9000(ln10)

128π5Nn4

) ∞∫
0

FD (λ) εa (λ) λ4dλ, (38)

where QD is the quantum yield of the donor in absence of the acceptor; n denotes the
refractive index of the medium (for bio-molecules in aqueous solution often assumed
to be 1.4); N is Avogadro’s number; τD is the lifetime of the donor in acceptor
absence; FD (λ) is the normalized4, dimensionless spectral radiant fluorescence
intensity of the donor; εa represents the wavelength-dependent molar extinction
coefficient5 of the acceptor; κ2 is the orientation factor. The integral expression
matches the spectral overlap between the donor emission and acceptor absorption
spectra, which is measured in nm6/mol and, sometimes, can be expressed analytically
or at least be measured at high precision.

J (λ) =

∞∫
0

FD (λ) εa (λ) λ4dλ (39)

As with the spectral overlap, the quantum yield and the refractive index can be
calculated or measured and are insensitive for distance changes in the Förster range

4 the area under the curve is normalized to unity
5 the extinction value for the RNA molecule under study here at the exciting wavelength of

514.5 nm was theoretically determined to be 4536001/mol·cm
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FIG. 3.6. Spectra of donor and acceptor fluorophores. Excitation
takes place at the donor emission peak, fluorescence emission is
characterized through the absorption spectrum. The overlap area is
striped and determines the efficiency of non-radiative energy transfer.

of 10-100 as the physical constants are. Then Eq. (38) can be arranged to reveal the
Förster distance

R6
0 =

9000(ln10)QD

128π5Nn4

∞∫
0

FD (λ) εa (λ) λ4dλ (40)

at which the transfer rate kT is equal to the decay rate of the donor in absence of the
acceptor kτ = 1

τD
and, therefore, exactly half the energy is converted into FRET with

the other half being dissipated into heat or other radiative or non-radiative processes.
If the wavelength is expressed in nanometers, R0 is 0.211(κ2n−4QD · J(λ))

1/6 .
Equipped with the value of R0, one has the convenient form of the Förster law

kT =
1

τD

(
R0

r

)6

(41)

enabling us to determine, whether the FRET transfer is faster (in terms of 1
kT

), in
which case the major proportion is transferred via FRET, or slower than the decay
rate of the donor, which would result in little transfer. The efficiency, accordingly, is
then expressed as

E =
kT

τ−1
D + kT

=
R6

0

R6
0 + r6

= 1− τDA

τD

= 1− FDA

FD

(42)

where in the second fraction kT was replaced with Eq. (41), the expression after
the third equality sign uses the lifetimes of the donor with acceptor present τDA and
without τD, the fourth expression uses their fluorescence FD and FDA, respectively.
Regarding the graph of the Förster law, one quickly realizes that values less than
0.2 R0 or above 2 R0 result in huge uncertainties when dealing with noise (since
changes at efficiencies of 0.99 or 0.01 are untraceable at experimental conditions).
The optimal range of measurements should be around efficiencies of 0.5 equivalently
at R0.
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FIG. 3.7. The curve with shaded integral area represents Förster
law (see Eq. 76), second curve (with peak at R0) describes the the
efficiency distribution with a half width of approximately 1

3
R0.

FIG. 3.8. Orientation of donor (violet) and acceptor (green) dipole
moment dD/A with angles φD/A measured from the line connecting
the centers (black dots)

A critical issue is the orientation factor κ, which depends on the mutual orien-
tation of both dye dipole moments. its value is determined by the electromagnetic
dipole-dipole coupling law.

3.6.2. Dipole Orientation. When dealing with dipole characteristics, one can’t
reduce the interactions to point sources of charge q, since the transition dipole
moment (in the following termed moment) p̃ = q · d̃ is the intrinsic source of the
electromagnetic dipole field which will react with any external field ~E with the
torque ~T = ~p× ~E.

The coupling strength of two dipoles, arranged as shown in Fig. 3.8 is given
through the multi-pole expansion containing the spherical harmonics, which are a
good approximation if the dipole-dipole interactions are dominant (hence neglecting
higher orders of the expansion). It is given through

νdipole =
1

4πε0

κ2φDφD

r3
(43)

with the distance between the center of the dipoles r, the free space dielectric function
ε0 and the orientation factor κ. The latter is a measure that describes the alignment of
the dipoles, which can yield a maximum value of 2 for the co-linear and parallel cases
and 1 for only parallel dipoles. A change of κ2 in Eq. (38) over this range results in
a 26% change in r, whereas an anti-parallel alignment with κ2 = 0 seriously affects



3.6. FÖRSTER RESONANCE ENERGY TRANSFER EFFICIENCY 39

FIG. 3.9. Orientation of the donor and acceptor dipole in three
dimension. Two planes intersecting at an angle ΦT are constructed
as shown. The dipole moment dD projected from the dD × r plane
(orange) onto the plane wherein dA lays is used for calculating the
oriental factor κ (Eq. 44) .

the distance calculation. The most common assumption of isotropic distribution is
characterized by a orientation factor of 2

3
, deviations of κ2 can alter the distance r

within a maximal range of 35%. If constraints are known so that one can determine
the orientation factor through the orientations as in Fig. 3.9, it is computable through

κ2 = (cos ΦT − 3 cos ΦD cos ΦD)2 = (sin ΦD sin ΦA cos Θ− 2 cos ΦD cos ΦD)

(44)
Given the dipole coupling νdipole for the system, the energy transfer given in Eq.

(41) can be formulated as

kT =
2π

~
|νdipole|2

∞∫
0

FD (λ) εa (λ) λ4dλ (45)

The decay rate of the excited donor is inverse proportional to its lifetime τD. In a
FRET setting, the rate is further modified through the inverse proportionality of the
sixth order to the distance r of the acceptor.

3.6.3. Light Intensity versus Discrete Photons. Whereas the Förster law is
formulated in continuous time and continuous intensities, here, it is applied to a
discrete time trajectory (which is due to the sample time-window and binary storage)
and discrete intensity values (the photon counts). Most of the time one can transform
the integral equations into summation over discrete time and intensities values as
follows.

3.6.3.1. Window method. The most intuitive and still predominant method in
many laboratories is to define the averaging window length τ and write the sum of all
photons within

{
tAi | t− τ

2
< tAi < t + τ

2

}
⊂ A with A being the acceptor counts,

as intensity IAwin(ti), and all photons within
{
tDi | t− τ

2
< tDi < t + τ

2

}
⊂ D as inten-

sity IDwin(ti) at the time-stamp ti of the new trajectory vector Iwin(t) =
{
IAwin(ti),I

D
win(ti)

}
.

The window-based method then yields the intensities
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IAwin(ti) =

i+ τ
2∑

i− τ
2

δ
(
tAi
)

(46)

IDwin(ti) =

i+ τ
2∑

i− τ
2

δ
(
tDi
)

(47)

and efficiency

Eτ (t) =
|IAwin(ti)|

|IAwin(ti)|+|IDwin(ti)|
=
|IAwin(ti)|
|Iwin(t)|

(48)

which then is applicable to the Förster law.

Eτ (t) =
1

1 +
(

r(t)
R0

)6 (49)

This method relies on a sufficient number of photons in each time window, which
otherwise produces significant uncertainties due to shot noise. It therefore implies a
trade off between the error bounds and the time resolution (window length), which is
chosen rather arbitrarily for the individual case. Furthermore, this method saliently
assumes a uniform a priori distribution of the FRET intensities rather than for the
distance, which is incommensurate with the strong non-linearity of their connection.
The distance distribution p(r) can be calculated through the derivative of Eq. (49)
yielding the non-uniform distribution depicted in Fig. (3.7):

p(r) =

(
r

R0

)5

[
1 +

(
r

R0

)6
]2

with a half width of about 1
3
R0 implying a preferred residence at distances close to

R0.
Hidden Markov Model for intensity values. As already mentioned it is advisable

to treat all measurements and their resultant quantities as driven by stochastic pro-
cesses. If done so, one can use, in contrast to the time window method, the history
at a given point in the time-series and its future (if recorded) for inference. If we
want to consider the efficiency outcome of the FRET process E(t) as a probabilistic
variable, we can rewrite Eq. (48) towards the probability

E(t) =
pA(t)

pA(t) + γpD(t)

of a certain efficiency value when observing the photon pattern with pA(t) and pD(t)

as probability distributions at the time t for the chance of detecting an acceptor
photon or donor photon, respectively. γ incorporates the ratio of donor/acceptor
quantum yield Qa

QD
as well as the differing detection efficiencies ηA/D in the measuring
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instrument (avalanche photo diodes in our case) for donor and acceptor photon
detection.

γ =
ηA

ηD

QA

QD

As mentioned in the previous subsection, a uniform distribution of distances
is unjustified, therefore leaving the possibility to only treat efficiencies, which in
turn isn’t as informative for understanding the folding process as the distances are.
A probabilistic approach towards estimating the distance trajectory from photon
records is desired. To that aim we will follow the article [22] by considering a
statistical ensemble of distance trajectories {r(t)} and compute each conditional
probability P

[
r(t)|{tA

i , tD
i }
]

that r is realized for the captured photon arrival times
{tA

i , tD
i }. The probability is given by Bayesian statistics (see (3.1.2))

P
[
r(t)|{tA

i , tD
i }
]
∝ P [r(t)] P

[{
tDi , tAi

}
|r(t)

]
(50)

The time discretization 4T
N

is chosen such that during an observation interval 4T at
most one photon is found in any of the N time bins [τi−1, τi]with, i = 1, ..., N (for a
continuous limit N → ∞ can be considered). For the discrete distance trajectory
r1, ..., rN the conditional probability to observe the photon pattern E1, ..., EN is

P [E1 , ...,EN |r1 , ..., rN ] = τnA+nD

N∏
i=1

fi (51)

where fi denote the probability densities according to which of the three events
”donor photon is recorded” (D), ”acceptor photon is recorded” (A), or ”no photon is
recorded” (0) occurs during [τj−1, τj], calculated through

fi =


ID(rj) [1− τIA(rj)] for D

IA(rj) [1− τID(rj)] for A

[1− τID(rj)] [1− τIA(rj)] for 0

. (52)

The recorded total photon number I0 = IA(t) + ID(t) = 1
4T

(nA + nD) is used
in Eq. 51 to transform the probability densities into probabilities. Regarding the
over-damped opening and closing of the molecule on the millisecond time-scale, the
Langevin equation of movement transforms into a Fokker-Planck equation, where the
a priori probability P [r(t)] ∝ limN→∞ P (r1, ..., rN), r(t) can be assumed to result
from a one-dimensional diffusion process with effective diffusion coefficient D. We
can now write for the discretized distance transition probabilities the random walk
(free diffusion) probabilities

gi+1|j ∝
1√

4πDτ
e−

(rj+1−rj)
2

4Dτ . (53)

If knowledge about the energy landscape of the molecule is available, it can be
incorporated in g in a Smoluchowski-type generalization, otherwise this approach
assigns equal a priori probabilities to every distance ri, which is the model-free
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approach. Eq. (51) now reads

P
[
r1 , ...,rN|{tA

i , tD
i }
]
∝ f1

N∏
j=2

gj|j−1fj (54)

From here, we can calculate the probability distribution of one chosen distance rk at
times τk−1+τk

2
through integration over all other distances

P
[
rk|{tA

i , tD
i }
]
∝
∫

. . .

∫
P
[
r1, . . . , rN |{tA

i , tD
i }
]
dr1 . . . drk−1drk+1 . . . drN

(55)
Using Eq. (54), we can rearrange integrals to obtain

P
[
rk|{tA

i , tD
i }
]
∝ LkfkRk (56)

with

Lk =

∫
gk|k−1fk−1drk−1

∫
gk−1|k−2fk−2drk−2 . . .

∫
g2|1f1dr1

Rk =

∫
gk|k+1fk+1drk+1

∫
gk+1|k+2fk+2drk+2 . . .

∫
gN |N−1fNdrN

which also can be expressed as the following iteration

Lk =

∫
gk|k−1fk−1drk−1Lk−1

Rk =

∫
gk|k+1fk+1drk+1Rk+1 (57)

which transform into forward/backward Schrödinger-type equations for the contin-
uum limit τ → 0 reassembling the generalized diffusion equations for Lk → L(r, t)

and Rk → R(r, t). With fk − 1 = τF (r, t) (to ensure convergence), the recur-
sion Eq. (57) now reads as differential formulation, using the relation ∂τgk|k−1 =

D∂2
rk−1

gk|k−1 = D∂2
rk

gk|k−1 from the diffusion formula (53) :

∂tR(r, t) = lim
τ→0

{
∂2

r [(1 + τFτ (r, t)) R(r, t)] + [Fτ (r, t) + τ∂τFτ (r, t)L(r, t)]
}

∂tL(r, t) = lim
τ→0

{
∂2

r [(1 + τFτ (r, t)) L(r, t)] + [Fτ (r, t) + τ∂τFτ (r, t)L(r, t)]
}

Solving and normalizing the above equations yields the desired probability
distribution to find the distance r at time t

P
(
r, t|

{
tA
i , tD

i

})
∝ L(r, t) [1 + τFτ (r, t)] R(r, t)

Equation (52) expressed as a Gaussian limit representation for the δ-function
δ(t−t′) = limτ→0 h(t−t′) with the Gauss-function hτ (t−t′) = (2πτ)−

1/2 exp
(
− (t−t′)2

2τ2

)
and neglecting higher orders of τ , one finds the probability density

Fτ (r, t) = [ID(r)− 1]

nD∑
j=1

hτ (t− tDj ) + [IA(r)− 1]

nA∑
j=1

hτ (t− tAj )− I0 (58)
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which can be plugged into Eq. (57). For convenience, only the solution for the third
event ”no photon recorded” shall be displayed (for ∂tL(r, t) in the full version see
[22]) with solutions propagating in time for t > t′ and t < t′ respectively given by

L(r, t) = e−I0(t′−t)

∫
L(r′, t′)e

− (r−r′)2

4D(t−t′) dr′ (59)

R(r, t) = e−I0(t′−t)

∫
R(r′, t′)e

− (r−r′)2

4D(t−t′) dr′ (60)

Nprobe method. Given the photon trajectory from donor/acceptor of length N

(time-steps in ms) as a two-dimensional vector p = {D, A}with D =
{
tD
1 , ..., tD

N

}
and

A =
{
tA
1 , ..., tA

N

}
with at most one photon arriving for all ti, we can treat the photon

observation as random variable q(t) with

g(t) =

0 t ∈ D

1 t ∈ A
, (61)

the efficiency as expectation value of q is then of the form:

Eτ (t) =
1

|P (t)|

|P (t)|∑
i=1

q(P (t)i) = E(q(t))t− τ
2
...t+ τ

2
(62)

with the expected mean square difference for time τ

E
[
(E(t)− E(t + τ))2] ≈ E

[
(q(t)− q(t + τ))2] (63)

We assume that the true FRET efficiency is constant, E(t) = E = const, and
we observe the system with an intensity I0 at the time step ∆t over the period T ,
the collecting time window (not to be confused with the averaging time window
of method 3.6.3.1). Hence, we are given the efficiencies through pA(t) = E and
pD(t) = 1− E.

The probability of observing a given window pattern Iwin(t) is:

P(Iwin(t)|E(t) = E) =

|A(t)|∏
i=1

E

|D(t)|∏
i=1

(1− E) = E|A(t)|(1− E)|D(t)| . (64)

The expectation value of the observed window efficiency for the window length
w = τ

4t
is:

E(Eτ (t)|E(t) = E) = E (65)
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The standard deviation of this expectation follows as

σE =
σq√

Iwin(t)

=

√
< q2 >− < q >2

√
I0w

=

√
< E2 > − < E >2

√
I0w

=

√
E − E2

√
I0w

=

√
E − E2

√
I0

w− 1
2

We, thus, expect a power law behavior with an exponent of -0.5 of the standard
deviation versus window length with a pre-factor depending on E.

Let E(t) be distributed normally,N (E, µ, σ) with mean µ and standard deviation
σ. Let’s also assume that E(t) is sufficiently smooth such that it allows a detection
of at least 2 successive photon probes with the approximately constant E. We can
probe E(t) n times successively (and optimally with maximum possible or feasible
collection time window) assuming that during the n probes E(t) is constant. Each
probe then yields either an acceptor or donor photon. The probability for an acceptor
photon is given by:

P(a, t) =

(
n

a

)
E(t)a(1− E(t))n−a (66)

We now compute the mean number of acceptor photons for each probe through

E(a) =
1

n

n∑
a=1

a

(
n

a

)
E(t)a =

1

n

n∑
a=1

n
(n− 1)!

k!(n− k)!
E(t)a(1− E(t))n−a) = nE

(67)
and thus the mean efficiency:

E
(a

n

)
=

1

n
E(a) = E (68)

and the mean square difference to nµ:

E
(
(a− nµ)2) =

n∑
a=0

(a− nµ)2P(E(t))

=
n∑

a=0

a2P(E(t))− 2nµ

n∑
a=0

aP(E(t)) + n2µ2

n∑
a=0

P(E(t))

= E
(
a2
)
− 2nµE(a) + n2µ2

= V ar(a) + [E (a)]2 − nµE (a) + n2µ2

= nE(t)(1− E(t)) + n2 [E(t)]2 − 2n2µE(t) + n2µ2

= (n2 − n)(E(t))2 + (n− 2n2)E(t) + n2µ2

= n2
[
(E(t))2 − 2µE(t) + µ2

]
+ nE(t)− (E(t))2 (69)
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For the mean square difference of the efficiency we find:

E
((a

n
− µ

)2
)

=
1

n2
E((a− nµ)2) =

(n− 1) (E(t))2 + (1− 2nµ) E(t) + nµ2

n
.

(70)
Now we are able to compute the standard deviation of the measurements for Gaussian
behavior N (E, σ, µ) :

σo =

∫
N (E, σ, µ)

∑
a

n!

k!(n− k)!
Ea(1− E)n−adE (71)

leading us to the expectation of a:

E(a) =

∫
N (E, σ, µ) nE dE (72)

= nµ (73)

and its variance:

E
[
(a− E(a))2

]
=

∫
N (E, σ, µ)

∑(a

n
− µ2

) n!

k!(n− k)!
Ea(1− E)n−adE

=

∫
N (E, σ, µ)

(n− 1) (E(t))2 + (1− 2nµ) E(t) + nµ2

n
dE

=
n− 1

n

∫
N (E, σ, µ) [E(t)]2 dE +

1− 2nµ

n

∫
N (E, σ, µ) E(t)dE

+µ2

∫
N (E, σ, µ) dE

=
n− 1

n
E
[
E(t)2

]
dE +

1− 2nµ

n
E (E(t)) + µ2

=
n− 1

n

[
V ar(E(t)) + µ2

]
+

1− 2nµ

n
µ + µ2

=
n− 1

n

(
σ2 + µ2

)
+

µ− 2nµ2

n
+ µ2

=
µ− µ2

n
+

n− 1

n
σ2.

For the particular case of 2 successive photons ,we find

E
[
(a− E(a))2

]
=

µ− µ2

n
+

1

2
σ2 = d2 (74)

hence, the estimation of the standard deviation of the original distribution is given
by:

σNP =
√

2d2 − µ + µ2. (75)

With increasing number of Nprobes, the trajectories generated by the NProbe
method become shorter, since longer intervals within the original time-series will be
averaged for the estimated efficiency value.





CHAPTER 4

Data Analysis

4.1. Trajectory Estimation

4.1.1. From Photons to Intensities. For the application of the Förster-law to
the inter-dye distance r

E(r(t)) =
IA(t)

IA(t) + ID(t)
=

R6
0

R6
0 + r(t)6

(76)

data conversion from the experimentally obtained two-channel photon stream {(tDi ,tAi )}
of donor and acceptor into one-dimensional efficiency trajectories {E(ti)} needs
to be carried out. Whereas at ensemble measurements, where large amounts of
photoluminescent molecules are excited and emit intense photon-streams IA and ID

(e.g. measurements at the large chlorophyll-antenna complex in the photosynthetic
subunit of algae [31]), which then directly yield intensity values (Id, Ia) for each
channel, the situation is substantially different for single molecule spectroscopy.
In the experiment considered here, the emitting source is a single molecular dye,
which quickly undergoes photo destruction if excited heavily and over a long period,
therefore, only a few photons are emitted within the sampling rate of 1 ms from the
signaling dye. Fortunately, the confocal microscopy techniques gathers most of the
dye-photons so that for longest possible observation durations, it is possible to reduce
the excitation power of the high frequency laser to a minimum, hence, minimize
the photo-reactivity of the signaling dyes, causing saturation, triplet quenching or
reversible and irreversible bleaching. The resulting signal of each dye contains an
average of one photon event (not necessarily only one single photon, in rare cases 5
to 7 photons hit the detector at once, that is within the sampling rate) every 50-150
µs, which can, in terms of intensity interpretation, be thought as a step function
with intensity value 1 within the time window of photon detection. The efficiency-
computation using the definition 4 to compute IA

IA+ID
, therefore, would provoke a

division by zero in most of the cases and give values of zero most of the times and
infinity or one in the few other cases if done for every time step ∆t.

Thus, a summation over a fixed time-window length traditionally has been used
to generate a mean value centered at the half length τΣ

2
(thus summing at each point tj

over the last τΣ
2

and coming τΣ
2

time-steps as formulated in chapter 3, section 3.6.3.1)
with the cost of information-loss about effects on the short end of the timescale, that
is within [tj − τΣ

2
, tj + τΣ

2
]. The averaging frame generates a mean at every time

step, thereby producing an intensity trajectory with its smoothness depending on

47
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FIG. 4.1. Circles are photon counts, lines are intensities of acceptor
(red) and donor (green), respectively. The bottom blue line is the
efficiency of the intensities above.

the choice of the window length (10, 20, 50 and 100 time steps for comparison in
the present case) depicted for an example trajectory in Fig. 4.2 clearly showing
the loss of dynamic information. The intensities generated with the time-window
method are applicable for efficiency computation via E(t) = IA(t)

IA(t)+ID(t)
, but further

analysis will suffer from the mentioned loss of information on short timescales and
is therefor not used for the variance computation. It is, however, essential for the
visual impression and calibration, such as recognition of state changes and bleaching
phases (see section 4.2.1).

4.1.2. Limitations of Histogram Interpretation. A traditional method for de-
riving quantities such as population distribution or occurrences of certain species
is the histogram graph as shown in Fig. 4.3. It has been employed by biologists
and bio-physicists, silently dropping all dynamic information: the histogram simply
counts the number of occurrences of discretized y-values (efficiency or distance in
our case) during the time-series along the x-axis into bins. Besides the inability of
this method to analyze temporal dynamics within the time-series (caused through
the reordering of the sequential information), it is furthermore dependent on the
somewhat arbitrary choice of the histogram bin size which is the range of trajectory



4.1. TRAJECTORY ESTIMATION 49

FIG. 4.2. The topmost efficiency trajectory is generated from a 20
ms averaging window τ . τ increases for the following trajectories
until 10 sec for the lowest trajectory

FIG. 4.3. Upper efficiency trajectory is generated from 20 ms bin-
ning. Below the corresponding histogram of the efficiency value
occurrences.

z-values, equivalently histogram x-values [xj − bin
2

, xj + bin
2

] counted as the same
value xj , or roughly speaking the width of the histogram bars.

As an example of the time-window length choice dependency Fig. 4.4 shows the
various outcomes of histogram plots for five chosen τΣ on the entire collection of
173 efficiency trajectories. Note that the expected delta distribution would only arise
for a single trajectory histogram, when τΣ reaches the total trajectory length Tj .



50 4. DATA ANALYSIS

0.2 0.4 0.6 0.8 1
0

5

10
x 10

4

Time window = 50 ms

0.2 0.4 0.6 0.8 1
0

5

10

x 10
4

Time window = 100 ms

0.2 0.4 0.6 0.8 1
0

1

2

3
x 10

5

Time window = 10 ms

0.2 0.4 0.6 0.8 1
0

1

2
x 10

5

Time window = 1000 ms

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

5

Time window = 10000 ms

FIG. 4.4. Effects on the histogram during change of averaging time
window. With increasing window length (downwards) the shape
changes significantly.

4.2. Error Correction

Having developed an intensity trajectory {IA(t), ID(t)}, the foundation for effi-
ciency analysis is laid out. A critical task in the adaption of the idealized model is to
incorporate inevitable side effects and distortions: Nothing at room temperature is
totally dark if measured at the single photon level. Background photons of matching
color are unintentionally counted as either donor or acceptor signals, thus the true
efficiency without background is given in the background correction supplemented
version of Eq. 76:

Ibg
A (t) = IA(t)− αA (77)

Ibg
D (t) = ID(t)− αD (78)

which assumes that the background noise intensities αA/D are time end efficiency
independent.

Furthermore donor-emitted photons are sometimes of such a high wavelength
that they are counted as acceptor emitted, the so-called cross-talk. The reverse
direction is sometimes also considered, in the present case of largely separated
emission spectra, there is almost no leaking of the acceptors emission into the donors
absorption spectrum and the acceptor-donor crosstalk is set to zero. For the crosstalk
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corrected FRET efficiency Eq. 76 with cross-talk factor χ would therefore read:

Iχ = IA(t)− χID (79)

Iχ
D = ID (80)

Finally the simple expression for the efficiency E(IA(r), ID(r)) is assuming equal
intensities for IA(r) and ID(r) if directly excited, implying an equally intense photon
stream in both, donor and acceptor channels at the Förster radius R0. This, for reasons
explained hereafter, is generally not true in molecular photo-physics and is accounted
for by introducing the Gamma-factor γ (sometimes also termed G-factor) defined
either theoretically through the ratio of the quantum yield of donor and acceptor φA,
φA respectively times the ratio of the detection efficiency for the donor channel at
donor excitation ηA

A∗and detection efficiency ηD
D∗ of the acceptor channel at acceptor

emission:

γ =
φAηA

A∗
φdηD

D∗
(81)

For the computation of the theoretical value one must know the following properties
of the molecular and measuring system defined before or in section 3.6 of chapter 2:

• spectral Overlap J

• detections Efficiency η

• rotational Anisotropy κ

• reflective index n

The fully corrected version of formula 76 now reads:

Ecor(r) =
IA(t)− χ (ID(t)− αD)− αA

IA(t)− αA + γ (ID(t)− αD)
. (82)

The correction factors for background and crosstalk in our case can be determined
quantitatively fairly easy from the Data as shown in the next section. However there
are various approaches in estimating or calculating the Gamma factor (for reference
see [32, 33]), ranging from intuitive reasoning a suitable range and distribution from
empirical knowledge over analytical determination using the theory of quantum
electrodynamics to sophisticated measurements (for example ALEXA-FRET mea-
surements [34]) of direct excitation emission of both, donor and acceptor. The latter
method was employed for cy5-cy3 fluorophore pair and found to have a mean value
of γ = 1.0 with a rather broad distribution of ±0.4.
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4.2.1. Determination of the correction factors. The raw data are given in a
two column vector with the length of the trajectory i = 1, ..., T and δ

(
tAi , tDi

)
being

the detector counts (number of photons) at each point in the time-series. Corrections
are obtained through analyzing the mean intensities 〈ID(t)〉 and 〈IA(t)〉 generated
from the time-window length method 3.6.3.1 during the two bleaching sequences
following the productive phase of length Tp after time-stamp tp:

First Phase (acceptor is bleached for duration Ta∗ until ta∗)

• ĨA :=
∑ta∗

i=tp
δ
(
tAi
)
,

• ĨD :=
∑ta∗

i=tp
δ
(
tDi
)

Second Phase (donor is bleached for Tbg until the end of the trajectory tn)

• Ibg
A :=

∑tn
i=ta∗

δ
(
tAi
)
,

• Ibg
D :=

∑tn
i=ta∗

δ
(
tDi
)
,
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FIG. 4.5. Bleaching phases for determination of the error correction
factors, mean intensities 〈ĨA〉, 〈ĨD〉 for the computing χ , 〈Ibg

A 〉, 〈I
bg
D 〉

for computation of α through Eq. 83 and 90

4.2.2. Background correction factor. From Ibg
A and Ibg

D we can compute the
background correction factor by normalizing (thus computing the mean 〈.〉):

αA =
Ibg
A

Tbg

:= 〈Ibg
A 〉, αD =

Ibg
D

Tbg

:= 〈Ibg
D 〉 (83)

and defining the background corrected intensities (generated from the time-window
method) as

ÎD(t) : = ID(t)− αD (84)

ÎA(t) : = IA(t)− αA (85)

The collection of all individual background correction factors of the 56 trajecto-
ries selected for the single state analysis (those showing correct bleaching behavior)
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are spread around the mean values

µbg
A =

∑56
i=1 αi

A

56
= 0.14 (86)

µbg
D =

∑56
i=1 αi

D

56
= 0.23 (87)

with the standard deviations of

σbg
A =

1

55

56∑
i=1

(
αi

A − µbg
A

)2

= 0.02 (88)

σbg
D =

1

55

56∑
i=1

(
αi

D − µbg
D

)2

= 0.04 (89)

4.2.3. Crosstalk correction factor. We proceed with the background corrected
values ÎD(t) and ÎA(t) and calculate via

χ =
ĨA(t)

Ta∗
− αA = 〈ĨA(t)〉 − 〈Ibg

A 〉 (90)

the background and one-way crosstalk corrected values

Icor
A (t) = ÎA(t)− χ

Icor
D (t) = ÎD

which yield a mean value and standard deviation of

µcross = 0.11 (91)

σcross = 0.13 (92)

4.2.4. Gamma factor. The gamma factor, as mentioned before, can be deter-
mined theoretically or measured directly, however, for the latter measurements of
acceptor excitation at the wavelength of the acceptors absorption-spectrum peak of
633nm would be necessary after each measurement which aren’t available here. For
a theoretical determination the known properties of the dye (as depicted in Fig. 4.7)
knowledge of properties of the ribozyme-fluorophore complex would be required
which isn’t available either. Therefor a coarse estimation can be done by compar-
ing the sum of donor and acceptor intensities before and after acceptor bleaching
as shown in Fig. 4.5. The ratio of the two sum then gives the fraction of donor
fluorescence that would cause the same quantum yield of donor and acceptor, hence

γ =
ĨA + ĨD
IΣA + IΣD

Ta

Tp

(93)
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FIG. 4.6. Sample trajectory with short, therefore unsignificant, first
bleaching phase as an example for high uncertainties in the correction
factors due to a very short first bleaching phase (between the two
arrows).

FIG. 4.7. Left: Emission spectrum of cy5-donor (red) and cy3-
acceptor (yellow) right: their absorption spectrum in green and yel-
low, respectively.

where IΣA and IΣD are the sum of all acceptor and donor photons during the active
phase, Ta

Tp
is the normalizing factor. The distribution of all calculated gamma factors

is centered at the mean

µγ = 0.84 (94)

σγ = 0.25 (95)

Unfortunately the quality of the extracted correction factors strongly depends on
the duration of the two bleaching phases. If either of the two is too short the value
will have a wide uncertainty range. For the first phase is determining the cross-talk,
it over or under-estimates χ if as short as shown in the Fig. 4.5 below, or even
worse, it can be missing at all. Under these restrictions about half the trajectories
couldn’t be included in further analysis which sadly reduced the overall quantity of
individual trajectory, and hence, the significance of statistical methods. However,
in recent publications as few as 20-50 trajectories are used for statistical inference
such as the error correction but also for kinetic analysis yielding transition rates from
cross-correlation analysis [35]. The calculation on 36 full trajectories were carried
out with custom written Matlab scripts (see Appendix).
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FIG. 4.8. Efficiencies generated from intensity values (middle) and
photon counts (bottom). Top, the donor / acceptor intensities from
time window averaging.

4.2.5. Variance versus Mean. Whereas in systems with well separated states
the recognition process can be automated using threshold values this turned out
to be inapplicable here since efficiency fluctuations of the states often overlapped.
Nevertheless it is possible to choose states visually recognizable through looking at
the efficiency behavior. Those manually selected states can be analyzed using the
NProbe (see 3.6.3.1) generated mean value and variance for each state, representing
the conformational flexibility rather rather than fluctuations originated through the
measurement . The scattered plot depicted in 4.10 of all states then gives an overview
about the system dynamic behavior.
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FIG. 4.9. Outcome of differing Nprobe parameter (see 3.6.3.1) and
collection time-windows on an example trajectory. The variance
(brown) and mean (green) show a plateau starting at 20 NProbes.
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FIG. 4.10. Every circle represents a state. Left: Distribution of
variance and mean calculated from method 3.6.3.1. Right: Coloring
according to the duration of each state.

The method works fine for 2 to 40 Nprobes at small window sizes (10-100
counts) and produces a stable variance and mean within that range (see Fig. 4.9). A
data representation for a collection of NProbe and time-window parameters from the
stable region in Fig. 4.9. was calculated for all of the manually selected single states.
The distribution in Fig. 4.10. showed a stable behavior (data not shown) within that
range not degenerate for increasing collection time-windows as would occur with a
naive variance / mean
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The diagram 4.10 does not reveal clearly distinguishable states, but nevertheless
can be interpreted in the way that there is a high occupancy of the middle region
which could consist of many overlapping states, separated by their dwell time within
that state (color in Fig. 4.10 b) ) or their transition probability to other states. The
amount of data does not allow to draw more direct conclusions from the plot so only
coarse estimations are taken into the next analysis section. A possible clustering
would be to look for dense aggregations of circles as done in Fig. 4.11below.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Mean

V
ar

ia
n

cf
e

FIG. 4.11. Possible clustering of states according to visually recog-
nizable accumulation of circles and used for initial state assignment
for parameter estimation.
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4.3. Distance Estimation

So far, we have regarded the trajectory in terms of efficiency values exclusively.
There are two approaches that can produce the distance of the reporter dyes in
nanometers that is of high importance for molecular biology. The first approach uses
knowledge about the RNA structure, the second one uses the Förster law to infer the
distance from the FRET efficiencies via Förster law (see Eq. 48).

4.3.1. Gaussian Chain of Nucleotides. From a geometric model that describes
the molecule as an idealized chain of n stiff and interlinked rods (representing the
49 ribonucleic acids) building up a worm-like chain with F = 3n− 2gN degrees of
freedom (gNis the number of interlinks, thus gN =48). One can calculate the proba-
bility distribution of possible arrangements of the 49 elements from the empirically
determined contour length of a single nucleotide (6.3 Å) through the Gaussian chain
model. The maximum (and very improbable) value is defined through the stretched
out molecule contour length, 49× 6.3 Å= 309 Å.

For comparison of the experimentally determined distance values a worm like
chain with the measured persistence length lp = (10− 21) Åas introduced for
ribonucleic enzymes in [36] was employed by Nienhaus et al. yielding identical
results. Therefore the Förster radius of 53 Ådetermined in this experiment can be
regarded as the correct scaling factor for distance trajectory from the efficiency
trajectory via Försters law.

4.4. Conformation Analysis

4.4.1. Identifying States. As discussed at the beginning of this chapter the
traditional histogram method is not suitable for a kinetic investigation of the time-
series. We therefore will employ a Hidden Markov Models for the unknown state
trajectory to be revealed. States are no longer determined exclusively by their
efficiency values but additionally taking their flexibility into account by calculating
their variances.

This of cause can’t be done naively using the definition of variance for the
random variable X:

V ar(X) := 〈〈X − µ〉2〉 = 〈X2〉 − 〈X〉2. (96)

Every measurement done at finite time resolution and discrete variables suffers
from shot noise due to the Poissonian distribution of the observed events within
the window length τ . We would like to separate the variance due to photonic
shot noise (induced by the avalanche photon detectors) from the ”true” variance
of the molecules current conformation. Therefore we will use the NProbe method
introduced in Chapter 2 which is able to generate an efficiency trajectory free of
shot noise by employing a slightly modified background correction: Instead of
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FIG. 4.12. Two distinct states: a) An unfolded situation where parts
of the molecules (marked with the fluorophores D and A) can fluctuate
widely. b) At the same mean distance the markers in the structurally
different complex now have less mobility.

subtracting the background intensity from time-window based trajectories we delete
a photon by chance at each point at the raw trajectory. The chances are determined
by comparing the pseudo-random variable X generated by the computer and drawn
from the uniform distributed interval [0, 1] with the background values computed
from 4.2.2 above:

PA
bg(t

A
i 6= 0) =

tAi − 1 for X < αA

tAi else

PD
bg (tDi 6= 0) =

tDi − 1 for X < αD

tDi else

and similarly the crosstalk and gamma factor can be treated in a probabilistic way by
changing an acceptor photon into a donor photon by chance

PXtalk(
{
tDi , tAi 6= 0

}
=


{
tDi + 1, tAi − 1

}
for X < αA{

tDi , tAi
}

else
(97)

Pγ(
{
tAi 6= 0

}
=


{
tDi + 1, tAi

}
for X > γ{

tDi , tAi
}

else
(98)
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The correction were applied to all available trajectories with proper bleaching
phases.

4.4.2. State Estimation using a Hidden Markov Model. Now the reason we
chose a Hidden Markov Model for the state interchanging dynamics becomes obvious
when we would like to extract the optimal parameter of the currently assumed model
from the experimental data bearing hidden states. The auto-regressive method
introduced in chapter 2, section 3.4.2 yields an analytic expression for the likelihood
function applicable to observational data bearing some hidden states. The method
was implemented into the Java software library Metamacs and can be initialized by
either providing a transition matrix or, as in the case employed here, through the
Viterbi-path.

The Java-class HMMVAR (Hidden Markov models for multivariant processes)
estimates the parameters for Gaussian behavior as well as dynamics described
through stochastic differential equations. In fact the Gaussian estimation is a special
case of general method. The parameters estimated are, as presented in the theory
chapter, mean µ, variance σ2 and the force F = ∇U resulting from the harmonic
potential U(x) = ax2 , a ∈ R for every state.

4.4.3. Expectation maximization (EM). The idea of applying the EM algo-
rithm is to maximize posterior probability (hence finding a maximum likelihood
estimate) of our parameters λ responsible for the state changing behavior through
alternation between estimating the unknown variables DH that would have most
likely come from the parameter distribution P(λ) and maximizing the parameters λ

given the estimated, hidden data.

ALGORITHM 4.1 (EM Algorithm).

• Expectation-Step (E-Step): Evaluate the expectation value Q(λ, λk) =

E[log P (DComplete|λ)|DO, λk] given the parameter estimates λk.
• Maximization-Step (M-Step): Define a new parameter set λk+1 by maxi-

mizing the expectation:

λk+1 = arg max
λ

Q(λ, λk). (99)

The basic idea was first formulated by Hartley in 1958 and has become refined
until a proof of convergence has been accomplished by Dempser, Laird an Rubin
in 1977. In our case, the hidden sequence is the conformational state sequence.
Whereas the EM method is a description of finding only the maximum likelihood
of the parameters λ, we find that ,in the case of the hidden data being generated
through Markov Jumps,one can use the EM algorithm for additionally estimating the
posterior distribution. For a detailed description please refer to [37].
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4.5. Results

A complete corrected efficiency trajectory was composed by appending the pre-
viously selected single state efficiency trajectories, generated form 500 ms averaged
intensity values (46). The complete time series duration is 827000 time steps and is
used for the following analysis methods.

4.5.1. Hidden Markov Estimation with Gaussian Output. At first appliance
of the HMMVAR method the first iteration step of the EM algorithm already stalled
and wrote ”NaN” (Not a Number) to the console output. This can happen if the
forward and backward probabilities are extremely close to zero, thereby running out
of the range representable numbers defined through the 32 bit range. This can be
caused through states defined in the Viterbi path that are not visited often enough. In
fact, after excluding states below a length of 1 sec and dividing one trajectory of 43
sec duration (which wasn’t exhibiting any visually detectable state changes) into 4
pieces the iterating started properly until the iterating limit or the precision threshold
was reached.

Three State Model with Initial Mean Clustering. The 122 states were grouped
into three cluster according to their mean generated from the NProbe method (with
NP=5 and collecting window of 25, see 3.6.3.1) and a Viterbi path based on this
clustering was generated.

sµ
1 = {µNP} ⊂ µNP ≤ 0.5

sµ
2 = {µNP} ⊂ 0.5 < µNP ≤ 0.7 (100)

sµ
3 = {µNP} ⊂ 0.7 < µNP ≤ 1

After the EM algorithm finished the following (µ, σ) parameters emerged after
calling the getRegressionMatrices and getCovariances method of HMMVAR:

µ(sµ
1) = 0.3798 , σ(sµ

1) = 0.0108

µ(sµ
2) = 0.6122 , σ(sµ

2) = 0.0022 (101)

µ(sµ
3) = 0.5178 , σ(sµ

3) = 0.0005
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FIG. 4.13. HMM-Gauss estimated efficiency distribution of the
three-state model with initial mean clustering (shaded curves) the
unshaded curve is the unnormalized sum of the three Gaussians.

The estimated transition Matrix of the full efficiency trajectoreis after initial-
ization with the Viterbi path from the mean clustering and 500 EM iteration steps
yielded:

T ij
1 =

0.99858 0.00005 0.00137

0.00006 0.99826 0.00168

0.00080 0.01308 0.99789

(102)

The eigenvalues ε of this matrix are representative for the timescales governing
the interchange rates between the states. ε1

1 = 1, ε1
2 = 0, 9984 ε1

3 = 0, 9963.
Interpreting these values is only sensible if there are substantial reasons that the
estimated system has physical relevance. The eigenvalues lead to the timescales τi

via:

τi = log(εi)
−1 (103)

which can also be done for the diagonal transition matrix entries T ii in order to get
the lifetime of the metastable states. For T ij

1 the calculation of τi with i = 1, 2, 3

yields

τ 1
1 = 131 sec

τ 1
2 = ∞ sec (104)

τ 1
3 = 622918 sec

This shows that one has to be very carefully with those estimations. Since the
whole length of the input trajectory is shorter than the estimated timescale of the
third state, this value is unlikely to have any relevance. A value of infinity also is
senseless for a metastable state.

Three State Model with Initial Variance Clustering. The same procedure
was done for a variance based clustering:
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sσ
1 = {σNP} ⊂ σ2

NP ≤ 0.04

sσ
2 = {σNP} ⊂ 0.04 < σ2

NP ≤ 0.08 (105)

sσ
3 = {σNP} ⊂ 0.08 < σ2

NP ≤ 0.1

yielding the state parameters

µ(sσ
1 ) = 0.4557 , σ(sσ

1 ) = 0.0058

µ(sσ
2 ) = 0.5190 , σ(sσ

2 ) = 0.0119 (106)

µ(sσ
3 ) = 0.5267 , σ(sσ

3 ) = 0.0007
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FIG. 4.14. HMM-Gauss estimated efficiency distribution of the
three-state model with initial variance clustering

with the corresponding transition Matrix

T ij
2 =

0.99987 0.00013 0

0.00006 0.99999 0.00168

0 0.00053 0.997947

(107)

The matrix estimated here shows almost non-ergodic behavior because of the
probability for the S2 → S2 of value is extremely close to 1. This implies that as
soon as the system enters state 2 it will stay there for a very long time until the
0.0001 % chance of leaving eventuates. Furthermore the zero probability for the
S1 
 S3 interchanges give rise to a possible sub-partitioning of the system. The
eigenvalues ε1

1 = 1, ε1
2 = 0, 9999 ε1

3 = 0, 9995 yield millions of seconds and are
therefore uninteresting and omitted.

Six State Model With Initial Mean Clustering. An advantage of HMM anal-
ysis is the possibility of concluding the number of states inherent to the investigated
system though initial overestimation. The eigenvalues spectrum of the transition
matrix states that are not metastable are separated through a spectral gap and indicate
the number of states before the gab are sufficient for the metastable behavior whereas
the remaining states can be disregarded.
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For the initial clustering the following thresholds were used:

s̃µ
1 = {µNP} ⊂ µNP ≤ 0.3 (108)

s̃µ
2 = {µNP} ⊂ 0.3 < µNP ≤ 0.45 (109)

s̃µ
3 = {µNP} ⊂ 0.45 < µNP ≤ 0.55 (110)

s̃µ
4 = {µNP} ⊂ 0.55 < µNP ≤ 0.65 (111)

s̃µ
5 = {µNP} ⊂ 0.65 < µNP ≤ 0.7 (112)

s̃µ
6 = {µNP} ⊂ 0.7 < µNP ≤ 1 (113)

resulting in the estimation

µ(s̃µ
1) = 0.4902 , σ(s̃µ

1) = 0.0002

µ(s̃µ
2) = 0.1976 , σ(s̃µ

2) = 0.0012

µ(s̃µ
3) = 0.5277 , σ(s̃µ

3) = 0.0001

µ(s̃µ
4) = 0.6389 , σ(s̃µ

4) = 0.0019 (114)

µ(s̃µ
5) = 0.4216 , σ(s̃µ

5) = 0.0010

µ(s̃µ
6) = 0.5652 , σ(s̃µ

6) = 0.0002

The estimated transition Matrix after initialization and 100 EM iteration steps
yielded:

T µν
3 =

0.99396 0, 00001 0, 00467 0, 00003 0, 00134 0

0, 00008 0.99962 0, 00006 0, 00021 0 0, 0002

0, 00548 0, 00001 0.99131 0, 00318 0, 00002 0

0, 00002 0, 00002 0, 00001 0.99502 0, 00007 0, 0048

0 0, 00007 0, 00151 0 0.99841 0

0 0 0, 00356 0, 00177 0 0.99467

(115)

The corresponding eigenvalues ε3 are

ε3
1 = 0, 9885, ε3

2 = 0.9908 ε3
3 = 0, 9957 ε3

4 = 0, 9985 ε3
5 = 1.0 ε3

6 = 0, 9996 (116)

with the timescales computed from Eq. 103

τ 3
1 = 8678 sec τ 3

2 = 10867 sec τ 3
3 = 23625 sec τ 3

4 = 57706 sec τ 3
5 = 4.5·1018 sec τ 3

6 = 2, 5·106

(117)
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FIG. 4.15. HMM-Gauss estimated efficiency distribution (y-Axis)
of the three-state model with initial mean clustering.

Six State Model with Initial Variance Clustering.

s̃σ
1 = {σNP} ⊂ σ2

NP ≤ 0.04

s̃σ
2 = {σNP} ⊂ 0.04 < σ2

NP ≤ 0.08

s̃σ
3 = {σNP} ⊂ 0.08 < σ2

NP ≤ 0.1 (118)

s̃σ
4 = {σNP} ⊂ σ2

NP ≤ 0.04

s̃σ
5 = {σNP} ⊂ 0.04 < σ2

NP ≤ 0.08

s̃σ
6 = {σNP} ⊂ 0.08 < σ2

NP ≤ 0.1

resulting in the mean and variance estimation

µ(s̃σ
1 ) = 0.4334 , σ(s̃σ

1 ) = 0.0007

µ(s̃σ
2 ) = 0.4954 , σ(s̃σ

2 ) = 0.0002

µ(s̃σ
3 ) = 0.3662 , σ(s̃σ

3 ) = 0.0504

µ(s̃σ
4 ) = 0.6256 , σ(s̃σ

4 ) = 0.0006

µ(s̃σ
5 ) = 0.5647 , σ(s̃σ

5 ) = 0.0002

µ(s̃σ
6 ) = 0.5297 , σ(s̃σ

6 ) = 0.0001 (119)

The estimated transition Matrix after initialization and 100 EM iteration steps
yielded:

T µν
4 =

0.99717 0, 00238 0, 00042 0, 00002 0 0

0, 00216 0.98716 0, 000017 0, 00003 0, 00285 0, 00778

0, 00073 0, 00008 0.99868 0, 00047 0, 00004 0

0, 00002 0, 00002 0, 000281 0.99793 0, 00175 0

0 0, 00829 0, 00151 0, 001836 0.99501 0

0 0 0 0 0 0.99171
(120)
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FIG. 4.16. HMM-SDE estimated distribution of the three-state
model with initial mean clustering.

with the corresponding eigenvalues ε4

ε4
1 = 0, 9805, ε4

2 = 0.9938 ε4
3 = 0, 9964 ε4

4 = 1, 0 ε4
5 = 0.9983 ε4

6 = 0, 9987

and their timescales from Eq. 103

τ 3
1 = 5, 1·104 sec τ 3

2 = 1.6·105 sec τ 3
3 = 2.7·106 sec τ 3

4 = 2.2·1018 sec τ 3
5 = 6.2·106 sec τ 3

6 = 7, 4·105 sec

(121)

4.5.2. Hidden Markov Estimation with Stochastic Differential Equations.
The same procedure was done for the SDE parameter estimation (see 3.4.3) providing
us with the additional mean force parameter F and a modified variance Σ. The
variance clustering was changed since a minimum number of assignments of every
state is necessary for the initialization of the metamacs HMMVAR algorithm.

Three State Model with Initial Mean Clustering. Using the same mean groups
to assign initial states we find after applying the EM algorithm:

µ(sµ
1) = 0.525256

µ(sµ
2) = 0, 364889

µ(sµ
3) = 0, 505443

Σ(sµ
1) = 3, 9 · 10−6

Σ(sµ
2) = 1, 5 · 10−6

Σ(sµ
3) = 0, 006517

F (sµ
1) = −7, 6348

F (sµ
2) = −11, 1737

F (sµ
3) = −0, 4474

(122)



4.5. RESULTS 67

0 0.25 0.5 0.75 1

0.5

1

1.5

2

1

2

3

FIG. 4.17. HMM-SDE estimated distribution of the three-state
model with initial mean clustering

we also get the transition matrix

T µν
5 =

0,9919 0.0075 0, 00060

0.0097 0,9901 0, 00018

0, 8341 0.1659 4 · 10−57

(123)

which clearly is degenerated in the last entry (3,3). This can mean that there are only
two states. The eigenvalues ε5 also represent this situation:

ε5
1 = −0, 0005, ε5

2 = 1 ε5
3 = 0, 9825 (124)

τ 5
1 = 2.2 · 1018 sec

τ 5
2 = 8, 2 · 106 sec (125)

τ 5
3 = 3, 1 · 106 sec

Three State Model With Initial Variance Clustering. As mentioned before
a slightly modified variance grouping had to be employed in order to utilize the
HMMVAR estimation:

sσ
1 = {σNP} ⊂ σ2

NP ≤ 0.04

sσ
2 = {σNP} ⊂ 0.04 < σ2

NP ≤ 0.06 (126)

sσ
3 = {σNP} ⊂ 0.06 < σ2

NP ≤ 0.1

giving us the state parameter

µ(sσ
1 ) = 0, 506491

µ(sσ
2 ) = 0, 525336

µ(sσ
3 ) = 0, 358468

Σ(Sσ
1 ) = 0, 006441

Σ(Sσ
2 ) = 3, 8 · 10−6

Σ(Sσ
3 ) = 1, 5 · 10−6

F (sσ
1 ) = −0, 4551

F (sσ
2 ) = −7, 6212

F (sσ
3 ) = −11, 2019

(127)
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FIG. 4.18. HMM-SDE estimated distribution of the three-state
model with initial variance clustering

and transition matrix

T µν
6 =

2 · 10−56 0, 8361 0, 1639

0, 0006 0, 9925 0, 00168

0, 0002 0, 0089 0, 9909

(128)

with eigenvalues ε6

ε6
1 = −0, 0005, ε6

2 = 1 ε6
3 = 0, 9841

and timescales from Eq. 103

τ 6
1 = 4.5 · 1018 sec

τ 6
2 = 7, 0 · 106 sec (129)

τ 6
3 = 1, 9 · 106 sec

Six State Model With Initial Mean Clustering.

µ(sµ
1) = 0, 527441

µ(sµ
2) = 0, 475339

µ(sµ
3) = 0, 496208

µ(sµ
4) = 0, 527329

µ(sµ
5) = 0, 469561

µ(sµ
6) = 0, 496797

Σ(sµ
1) = 6, 7 · 10−6

Σ(sµ
2) = 2, 8 · 10−6

Σ(sµ
3) = 0, 8 · 10−6

Σ(sµ
4) = 1, 7 · 10−6

Σ(sµ
5) = 1, 5 · 10−6

Σ(sµ
6) = 0, 014688

F (sµ
1) = −6, 5851

F (sµ
2) = −7, 3067

F (sµ
3) = −10, 2744 + πi

F (sµ
4) = −8, 0501

F (sµ
5) = −4, 4394 + πi

F (sµ
6) = −0, 2087

(130)
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FIG. 4.19. HMM-Gauss estimated efficiency distribution of the six-
state model with initial mean clustering



4.5. RESULTS 69

FIG. 4.20. Eigenvalues of the transition matrix T µν
7

the complex values above are due to negative entries in the regression matrix from
which the force F is computed via the logarithm. There is no physical interpretation
of these complex values. The transition matrix for the six states above is

T µν
7 =

0.51998 1 · 10−11 2 · 10−7 0, 48002 9 · 10−12 0

6 · 10−11 0,69823 0, 30076 0, 00063 0 0, 00037

5 · 10−7 0, 17971 0.79822 0, 00002 0, 02205 0

0, 31873 0, 00008 2 · 10−6 0.68073 0, 00020 0, 00026

0 7 · 10−6 0, 88127 0 0.11873 0

0 0 0, 32595 0, 64785 0 0.02620

(131)

with corresponding eigenvalues ε7in descending order

ε7
1 = 1, 0, ε7

2 = 0.9994 ε7
3 = 0, 5280 ε7

4 = 0, 2014 ε7
5 = 0, 0875 ε7

6 = 0.0258

yielding the timescales from Eq. 103

τ 7
1 = 2, 3 · 1018 sec τ 7

2 = 1.86 · 106 sec τ 7
3 = 1.6 · 103 (132)

sec τ 7
4 = 624 sec τ 7

5 = 273 sec τ 7
6 = 410 sec

Six State Model With Initial Variance Clustering. The SDE estimation for
the six-state model initially grouped by the state mean value is

µ(sσ
3 ) = 0, 480040

µ(sσ
3 ) = 0, 542539

µ(sσ
3 ) = 0, 541512

µ(sσ
3 ) = 0, 482903

µ(sσ
3 ) = 0, 285305

µ(sσ
3 ) = 0, 485318

Σ(sσ
3 ) = 7, 2 · 10−6

Σ(sσ
3 ) = 2, 5 · 10−6

Σ(sσ
3 ) = 4, 1 · 10−6

Σ(sσ
3 ) = 1, 5 · 10−6

Σ(sσ
3 ) = 0, 7 · 10−6

Σ(sσ
3 ) = 0, 016191

F (sσ
3 ) = −7, 5464

F (sσ
3 ) = −10, 3157

µ(sσ
3 ) = −5, 8526

µ(sσ
3 ) = −9, 2420

µ(sσ
3 ) = −10, 7970

µ(sσ
3 ) = −0, 3813

(133)

with the corresponding matrix
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FIG. 4.22. Eigenvalues of the transition matrix T µν
8

T µν
8 =

0.3601 0, 0014 0, 0786 0, 5599 0 0

0, 0011 0,8099 03 · 10−6 6 · 10−8 0, 1882 0, 00076

0, 1118 2 · 10−6 0.8880 0, 00016 2 · 10−19 0

0, 3291 9 · 10−6 0, 0014 0.6695 7 · 10−17 0

0 0, 1918 2 · 10−16 2 · 10−16 0.8082 0

0 1 0 0 0 2 · 10−21

(134)
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FIG. 4.21. HMM-SDE estimated efficiency distribution of the six-
state model with initial variance clustering

giving us the eigenvalues ε8

ε8
1 = 1, 0 ε8

2 = 0.9991 ε8
3 = 0, 8664 ε8

4 = 0, 61960 ε8
5 = 0, 0516 ε8

6 = −0, 0009

and timescales

τ 8
1 = 337 sec τ 8

2 = 119 sec τ 8
3 = 6973 sec (135)

τ 8
4 = 1.3 · 1018 sec τ 8

5 = 1.03 sec · 106 τ = 2089 sec
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line helices labelled with the same dyes (Fig. 1). Polyproline provides
a rigid spacer between donor and acceptor6–8, which means that the
interdye distance is independent of denaturant concentration,
whereas all other parameters are expected to vary in the same way
that they do in the protein.
Figure 2a and b shows parts of two typical data sets for the

polyproline control. For (Pro)6, the bursts of counts (that is, the
detected photons) above background resulting from diffusion of
single molecules into the illuminated volume comemostly from the
red fluorescing acceptor dye, which shows that FRET is occurring
(Fig. 2a). In (Pro)20 there is a larger separation between the dyes
(Fig. 1) and, on average, comparable numbers of green and red
counts are observed in each burst (Fig. 2b). The apparent FRET
efficiency (E app) for each burst is calculated as the ratio of acceptor
counts to the sum of acceptor plus donor counts. Figure 2c and d
shows the E app distributions for (Pro)6 and (Pro)20 as a function of
the concentration of guanidinium chloride (GdmCl). For (Pro)20,
the distribution of E app peaks near 50%. This E app is higher than
might be expected from the 6.2-nm polyproline helix, considering
that R0 (the distance at which our dye pair is expected to exhibit
50% transfer) is 5.4 nm. It results from the long flexible linkers of the
dyes (Fig. 1), which allow the dyes to approach each other during
the fluorescence lifetime of the donor. The additional maximum at
E app < 0 arises from (Pro)20 molecules in which the acceptor dye
has been chemically altered by photodestruction, or from (Pro)20
molecules labelled only with the donor dye that were not completely

removed during preparation.
For CspTm, three subpopulations are clearly resolved in the

histograms of E app (Fig. 2e), corresponding to folded molecules
with large E app, unfolded molecules with intermediate E app, and
molecules with E app < 0 owing to a missing or inactive acceptor, as
found for (Pro)20. The finding of only folded and unfolded
populations, whose relative proportions change with increasing
GdmCl concentration, is exactly what is expected for this protein,
which, like unlabelled CspTm5,9, shows two-state behaviour in
ensemble equilibrium and kinetic measurements (Supplementary
Information). Similarly, two populations have been resolved in
single-molecule FRETmeasurements4 of chymotrypsin inhibitor 2
(CI2), which is also known to show two-state behaviour from
ensemble measurements10.

Each E app distribution for CspTm was fit with a sum of one
gaussian and two lognormal functions, for the unfolded, folded and
donor-only protein peaks, respectively. Figure 3 shows how the
means and widths of the E app distributions for (Pro)20 compare
with those of the protein. As pointed out previously4, resolving the
FRET efficiencies for the folded and unfolded subpopulations can
expose changes in kE appl for the unfolded protein that cannot be
extracted from equilibrium ensemble measurements. For unfolded
CspTm, kE appl clearly increases between 3 and 0MGdmCl (Fig. 3b).
Solvent effects on the dyes can be excluded as a source of the
increased FRET efficiency for the unfolded protein, because kE appl
for (Pro)20 shows almost no change over this range of GdmCl

Figure 1 Schematic structures of protein and polyproline helices labelled with donor
(Alexa 488) and acceptor (Alexa 594) dyes (using the program MOL/MOL). a, Folded
CspTm, a 66-residue, five-stranded b-barrel protein (Protein Data Bank accession code

1G6P)31; b, unfolded CspTm; c, (Pro)6; and d, (Pro)20. A blue laser excites the green-

emitting donor dye, which can transfer excitation energy to the red-emitting acceptor dye

at a rate that depends on the inverse sixth power of the interdye distance1,8. In each case,

the functional form of the FRET efficiency E versus distance (blue curve) is shown, as well

as a representation of the probability distribution of distances between donor and acceptor

dyes, P (red curve).
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FIG. 4.23. a) The folded molecule bears the two fluorophores (col-
ored balls) at a close distance, therefor a high FRET efficiency (peak
of the red curve) is measured. b) at distant location the FRET effi-
ciency (blue line in the insets) is low, additionally the structure of the
molecule between donor (green) and acceptor (red) determines the
variance as depicted in the inset. c) A situation similar to the molecule
studied here with only few base pairs between the fluorophores c)
the fully stretched out molecule has a low FRET value but a narrow
distribution. Picture taken from [38]

4.5.3. Simulated Data from Transition Matrix. For a comparison of the model
A simulated we can generate a sample trajectory from our parameter-set λ and tran-
sition matrix Tij with i, j = 1, .., n number of states. First we generate the hidden
state trajectory by comparing the outcome of a uniform distributed random variable
(normalized to unity) with the row entries of Tij for the corresponding state, i.e.
if the system is in state s = 3 at t0, T3j = (T31, ..., T3n). The values of this row
vector now determine the probability distribution for the system to be found in the
next time-step. For meta-stable, stochastic matrices the diagonal entries are close
to one, therefore the highest probability for t1is to stay in state 3. In rare cases the
pseudo-random variable gives a number that falls into the small fraction of values
that cause a jump of the system into the next state.

The resulting trajectory then is either generated by drawing random variables
from the normal distribution corresponding to the current state in case of a HMM
or regression of the SDE with corresponding parameters (µn, Fn, Σn). A simulated
efficiency trajectory from a Hidden Markov Model with SDE output and its estimated
states is shown in Fig. 4.25. The state changes are as rapid as in the estimation. A
more infromative result would be a state changing behaviour that meets the visual
impression which could not be achieved here.
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FIG. 4.24. Simulated Viterbi-path for a random 4 state-series gener-
ated from the Transition Matrix displayed as inset. Only three states
have been visited during the very simulation of 80 time steps.

FIG. 4.25. Simulated efficiency trajectory from a SDE for a similar
Viterbi-path as in Fig. 4.24 at much longer duration (ca 23000 time
steps). The SDE parameter slope and noise for each state are shown
in the inset.

FIG. 4.26. Example efficiency trajectory with a possible state change
with similar mean values suggesting a scenario as in Fig. 4.12.

If there are states characterized by a similar mean but differing in their flexibility,
a problem arises in visual identification as Fig. 4.26 below suggests. This is the great
advantage of the employed algorithm.
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FIG. 4.27. A) Estimated Viterbi path (orange lines) of the 6-state
model with initial mean clustering from the efficiency trajectory (blue
trajectory). The states (purple dots) represent a state characterized by
either only the mean efficiency value (A and B) from Eq. 119. or the
SDE parameters (C and D) in Eq. 133.

4.5.4. Comparison: Simulation and Reality. The simulated trajectory in Fig.
4.25 visually meets the experimental outcome quite well. A quantitative comparison
should rather look at the interchange rates that have been determined by other meth-
ods as well. The Viterbi path (Fig. 4.27) should reassemble the visual impression of
state changes. However this is very hard to achieve and goes beyond the scope of
this thesis.

If the estimated results are reliable, meaning reproducible and are relevant for
understanding the dynamics of the molecular system, the parameter characterizing the
states can give insight into the properties of the system (see Fig. 4.23). Unfortunately
this could not be accomplished in the analysis shown here but would probably be
possible with further work on data filtering and processing.





CHAPTER 5

Conclusion

5.1. A Novel Kinetic Intepretation

It has been shown that the folding behavior of the small Diels-Alder ribozyme
exhibits metastable behavior and that the states corresponding to the metastable sets
can be determined without the use of traditional methods as e.g. the correlation func-
tion used widely in the analysis of inter system conversion rates. This was facilitated
through the use of Hidden Markov Models for the description of the conformational
dynamics of the molecule. The model offers the novel avenue of computing repre-
sentative parameters using the information of the complete trajectory. Though the
power of those model has long been known and implemented in speech recognition
or weather prediction, it still has little influence towards the interpretations of data
from biological systems acquired by experimental physicists today. We have applied
a modeling of the three state system proposed by Nienhaus et al for the catalytic
ribozyme Diels Alderase to the efficiency trajectories of the individual molecule pro-
viding a different view on the system 1st in terms efficiency analysis E(t) rather than
analyzing the distance r(t) and secondly by redefining the states as characterized
by their conformational fluctuation. We furthermore constructed an extended model
having six states and were able to affirm the first 3 states as well as discovering
further states indicating a complex structure of the folding path. As an novel result
we were able to identify the dwell time τ of a folded state at an efficiency value
of E = 0.19 at τ =118 s. The criteria defining the states in our investigation were
the mean Förster resonance energy transfer efficiency and its variance, which are
especially applicable for the representation of bio-molecular processes as discussed
in 2.3. As an additional advantage, the probabilistic approach in 4.1.1 enabled us to
separate the signal noise from the molecular fluctuations preparing the ground for
further analysis. The method enables unbiased detection of conformational states
and is becoming more important since the number of states treated in the model can
be much higher than three or six, therefore a Markovian modeling could potentially
treat complex systems of interacting molecules.

5.1.1. Ambiguous Results. The interpretation is a hard task since a visual
correspondence can’t always be seen as the Fig. 4.27. confirms. Depending on
the choice of averaging time window lengths, the outcome can be very ambiguous,
demanding a solid initialization of the Markov Model. Further research may be able
to construct a framework, which is able to treat experimental data in a robust way,
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making it accessible to experimentalist as a standard tool. Further investigations
have to be undertaken in both, the physical system of interacting molecules, and the
algorithmic procedure of analyzing the date.

Insight to the cause and course of molecular processes fundamental for the
emergence of life have been enriched through the considerable growth of computa-
tional power and mathematical laws and principles that are able to describe complex
systems and reveal further details [21] . Still, a detailed understanding of the cat-
alytic activity observed in even the smallest ribo nucleic acids, able to accelerate
the formation of a new carbon-carbon bound between two reactant molecules, is
missing. This may originate from traditional methods lacking an account for the
kinetic parameters inherent to the system. The parameters from the model used in
this work reflect the conformational situation of the molecule and are adapted to
the recorded data, therefore allowing us in principle to detect heterogeneity in many
molecular system dynamics between single molecules. As proposed by [39] the
presence of both, fast folding paths that are visiting a diversity of hundreds of states
at a sub-microsecond scale as well as long persistent conformations are necessary
for the successful catalyzation of the Diels-Alder reaction by a ribozyme. We can
emphasize this view and provide a tool for kinetic analysis applicable for a wide
range of systems governed by probabilistic processes, which are determined through
conformational states inaccessible for direct measurement.

5.2. Outlook

So far we have shown that a good foundation for algorithmic treatment of
experimental data can be achieved if the following preliminaries are fulfilled:

• Discrimination of adequate observational data conform to the model
• Correction (or model incorporation) of distorting artifacts in the measure-

ment such as blinking
• Separation of detection noise and intrinsic fluctuations (i.e. shot-noise and

conformational flexibility)

Essential for successful analysis of experimental data is the first point, which is
already a growing subject in research, providing the ground for a close cooperation
of experimentalists and theoretical scientists. The second point can, in principle, be
incorporated in the estimation process rather than applied in beforehand. Mastering
the third point will ultimately uncloud the view on conformation analysis in many
life-science areas.
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Apendix A - Data and Algorithms

Data. The following diagrams list all trajectories that where used for analy-
sis in this thesis. The histograms on the right represent the distribution of FRET
values within that one Trajectory. The plots were generated with the tenPlotsDAEn-
hanced2.m Matlab script (see source code appendix).

-
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FRET trajectories with appropriate bleaching phases and obvious state changes
marked with red arrows.

/home/cocktail/luedge/DiplomarbeitTorsten/Plots/TrajectorySummary/corrected/goodFRET3.pdf





Algorithms

Baum-Welch Algorithm. Also known as the Forward-Backward algorithm this
generalized EM (Expectation Maximization) version features a guaranteed conver-
gence. The algorithm can reveal the local maximum of the maximum likelihood
estimator for hidden Markov models through iteration along the time-series alternat-
ing between the following two steps (responsible for the name EM):

Expectation: Evaluate the expectation value for the hidden sequence S given the
parameter set λi

Maximization: Refine the previous parameters λi towards λi+1 by maximization
of

λi+1 = arg max
λ

S (λ, λi)

The algorithm guarantees that L(λi+1) ≥ L(λi).
Applied to a Hidden Markov model this algorithm is named after Leonard E.

Baum and Lloyd R. Welch. It utilizes the forward algorithm which computes the
probability of ending up in a state i at time t with the partial sequence d1, . . . , dt

being emitted is given by:

αi(t) = P (D1 = d1, . . . , dt,S(t) = si|λ).

With the stochastic vector π = (π1, ..., πn) as initial state distribution one can
define αi(t) recursively as:

αi(1) = πPi(d1)

αj(t + 1) =
∑N

i=1(αi(t)ai,j)Pj(dt+1)

P (D|λ) =
∑N

i=1 αi(T ). That is the probability of the observation of the sequence
s1, . . . , sT under given parameter λ. It is given by summation over all αi at fixed
time T .

The backward procedure is similar. The probability of finding a partial sequence
st+1, . . . , sT given that we started at state i at time t is:

βi(t) = P (dt+1 = dt+1, . . . , dT = dT |S(t) = si, λ).

Accordingly the variable βi(t) is called the backward variable and defined analogue
βi(t):

βi(T ) = 1

βi(t) =
∑N

j=1 ai,jPj(dt+1)βj(t + 1)

P (D|λ) =
∑N

i=1 βi(1)πiPi(d1)
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We proceed and compute the probability γi(t) of being in state si at time t for
the state sequence S by

γi(t) = P (S(t) = si|D, λ)

expressed with the use of the forward- and backward-variables we can write

P (S(t) = i|D, λ) =
P (D,S(t) = si|λ)

P (D|λ)
=

P (D,S(t) = si|λ)∑N
j=1 P (S,S(t) = sj|λ)

.

Furthermore because of the conditional independence it is:

αi(t)βi(t) = P (d1, . . . , dt,S(t) = si|λ)P (dt+1, . . . , dT |S(t) = si, λ) = P (D,S(t) = si|λ)

thus γi(t) in terms of αi(t) and βi(t) reads:

γi(t) =
αi(t)βi(t)∑N

j=1 αj(t)βj(t)

The probability of being in state i at time t and being in state j at time t + 1 is given
as

ξi,j(t) =
P (S(t) = si, S(t + 1) = sj, D|λ)

P (D|λ)
=

αi(t) · ai,jPj(dt+1)β(t + 1)∑N
i=1

∑N
j=1 αi(t) · ai,jPi(dt+1)β(t + 1)

.

Through the summation over all time steps t one obtains the expected total number
of transitions away from state i for D :

T∑
t=1

γi(t).

With the same assumptions one obtains for the transitions from state si to state sj for
the data D :

T−1∑
t=1

ξi,j(t).

For the estimation of HMM we obtain for the relative frequency spent in state si at
time 1:

πi = γi(1).

The quantity aij,which is an entry of the transition matrix, is the expected number of
transition from state i to state j relative to the expected total number of transition
away from state i.

ai,j =

∑T−1
t=1 ξi,j(t)∑T−1
t=1 γi(t)

ad in the discrete case

bi(k) =

∑T−1
t=1 δdt,,vk

γi(t)∑T−1
t=1 γi(t)
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is the expected number of times the output observations have been equal to vkwhile
in state i relative to the expected total number of times in state i.





Apendix B - Java Source-Code

The following listing lists all employed Java programs. Their task is mainly to
prepare the data for evaluation as well as to start the iterating process, initialize the
model and read out the results of the HMMVAR estimation.

1 import java.util.Random;

2

3 import biocomp.moltools.util.Arguments;

4 import biocomp.moltools.util.FileTools;

5 import biocomp.moltools.util.IntArrays;

6

7 public class RandomSequenceGenerator {

8

9 private int sequenceLength;

10

11 private int state;

12 private boolean useRandomSeed;

13

14 /** Transition Matrix */

15 private double[][] transitionMatrix;

16 private double[][] cumulatedTransitionMatrix;

17

18 /**

19 * Constructor

20 * @param sequenceLength is the length of the sequence

21 * @param t is the transition matrix

22 * @param useRandomSeed whether to initialize with random

seed,

23 * if false the seed 0 is used

24 */

25 public RandomSequenceGenerator(int sequenceLength, double

[][] t,

26 boolean useRandomSeed) {

27 this.sequenceLength = sequenceLength;

28 this.state = 0;

29 this.transitionMatrix = t;

30 this.useRandomSeed = useRandomSeed;

31

32 int dim = t.length; // assumption: quadratic

matrix t

33

99
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34 cumulatedTransitionMatrix = new double[dim][];

35 for (int row = 0; row < dim; row++) {

36 cumulatedTransitionMatrix[row] = new

double[dim];

37 }

38

39 this.cumulateTransactionMatrix(dim);

40 }

41

42 /**

43 * Generate a new random sequence based on the transition

matrix given in the constructor

44 */

45 public int[] generateSequence() {

46

47 int[] sequence = new int[sequenceLength];

48

49 Random random;

50 if (useRandomSeed) {

51 random = new Random();

52 } else {

53 random = new Random(0);

54 }

55

56 for (int j = 0; j < sequenceLength; j++) {

57 double nextRandom = random.nextDouble();

58

59 int i = 0;

60 while (nextRandom >

cumulatedTransitionMatrix[state][i]) {

61 i++;

62 }

63 state = i;

64 sequence[j] = state;

65 }

66 return sequence;

67 }

68

69 /**

70 * Sums up probabilities of transition matrix.

71 * One row of the matrix will have entries

72 * p1 p2 p3 => p1 p1+p2 p1+p2+p3

73 * @param dimensions is the dimension of the stochastic

matrix

74 */

75 protected void cumulateTransactionMatrix(int dimensions) {

76 for (int row = 0; row < dimensions; row++) {



APENDIX B - JAVA SOURCE-CODE 101

77 double sum = 0.0;

78 for (int column = 0; column < dimensions;

column++) {

79 sum += transitionMatrix[row][

column];

80 cumulatedTransitionMatrix[row][

column] = sum;

81 }

82 }

83 }

84

85 /**

86 *

87 * @param args

88 */

89 public static void main(String[] args) {

90 if (args == null) {

91 System.out.println("

RandomSequenceGenerator " +

92 "-t <transitionmatrix-file

> " +

93 "-ts <time steps> " +

94 "-output [<save file>]" );

95 System.exit(1);

96 } else {

97 Arguments arg = new Arguments(args);

98 int ts = arg.getIntArgument("ts");

99 String basepath = "../data/";

100

101 MatrixFileReader transitionMatrixReader =

new MatrixFileReader( basepath + arg.

getArgument( "t" ));

102 double[][] transitionMatrix =

transitionMatrixReader.getMatrix();

103

104 RandomSequenceGenerator timeSpaceGenerator

= new RandomSequenceGenerator( ts,

transitionMatrix, true );

105 int[] timeSpace = timeSpaceGenerator.

generateSequence();

106

107 int noOfoutputArguments = arg.

getNArguments("output");

108 if ( noOfoutputArguments == 1 ) {

109 String outputFilename = arg.

getArgument("output", 0 ); //

get first argument of output
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110

111 StringBuffer sb = new StringBuffer

();

112 for (int i=0; i<timeSpace.length;i

++) {

113 sb.append( timeSpace[i] + "\n" );

114 }

115

116 FileTools.writeString( outputFilename, sb.

toString() );

117 } else if (noOfoutputArguments == 0) {

118 // output to console

119 System.out.println(IntArrays.

toString(timeSpace));

120 } else {

121 System.out.println("Too many

arguments for output");

122 }

123 }

124 }

125 }

1 import cern.colt.list.*;

2 public class Nprobe

3 {

4 public static double[] probe(int[] acc, int[] don, int nprobes,

int w)

5 {

6 DoubleArrayList res = new DoubleArrayList();

7 double inc = 1.0 / (double)nprobes;

8 for (int i=0; i<acc.length-w+1; i++)

9 {

10 int nA = 0, nD = 0;

11 for (int j=i; j<i+w; j++)

12 {

13 int nacc = acc[j];

14 int ndon = don[j];

15 for (int k=0; k<(nacc+ndon); k++)

16 {

17 if (Math.random() < (double)nacc/((double)(nacc+ndon)))

18 {

19 nA ++;

20 nacc --;

21 }

22 else

23 {

24 nD ++;
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25 ndon --;

26 }

27 if (nA+nD == nprobes)

28 break;

29 }

30 }

31 if (nA+nD == nprobes)

32 res.add((double)(nA) * inc);

33 }

34 res.trimToSize();

35 double[] ret = res.elements();

36 return(ret);

37 }

38 public static void main(String[] args)

39 {

40 if (args.length == 0)

41 {

42 System.out.println("IncreasingWindow <file> <maxwin>");

43 System.exit(0);

44 }

45 int[] acc = FileLineReader.readIntColumn(args[0],1);

46 int[] don = FileLineReader.readIntColumn(args[0],2);

47 //int[] accref = FileLineReader.readIntColumn(args[1],1);

48 //int[] donref = FileLineReader.readIntColumn(args[1],2);

49 int maxwin = StringTools.toInt(args[1]);

50 for (int i=2; i<10; i++)

51 {

52 double[] p = probe(acc, don, i, maxwin);

53 double mean = DoubleArrays.mean(p);

54 double var = DoubleArrays.variance(p);

55 double stddev = Math.sqrt(var);

56 double varest = 2*var-mean-mean*mean;

57 System.out.println(i+"\t"+p.length+"\t"+mean+"\t"+stddev+"\t"+var+

"\t"+varest);

58 }

59 }

60 }

1 i m p o r t j a v a . u t i l . Random ;
2

3 i m p o r t biocomp . m o l t o o l s . u t i l . Arguments ;
4 i m p o r t biocomp . m o l t o o l s . u t i l . F i l e T o o l s ;
5 i m p o r t biocomp . m o l t o o l s . u t i l . I n t A r r a y s ;
6

7 p u b l i c c l a s s RandomSequenceGenera tor {
8

9 p r i v a t e i n t s e q u e n c e L e n g t h ;
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10

11 p r i v a t e i n t s t a t e ;
12 p r i v a t e b o o l e a n useRandomSeed ;
13

14 /∗ ∗ T r a n s i t i o n Ma t r i x ∗ /
15 p r i v a t e do ub l e [ ] [ ] t r a n s i t i o n M a t r i x ;
16 p r i v a t e do ub l e [ ] [ ] c u m u l a t e d T r a n s i t i o n M a t r i x ;
17

18 /∗ ∗
19 ∗ C o n s t r u c t o r
20 ∗ @param s e q u e n c e L e n g t h i s t h e l e n g t h o f t h e s e q u e n c e
21 ∗ @param t i s t h e t r a n s i t i o n m a t r i x
22 ∗ @param useRandomSeed whe the r t o i n i t i a l i z e wi th random

seed ,
23 ∗ i f f a l s e t h e seed 0 i s used
24 ∗ /
25 p u b l i c RandomSequenceGenera tor ( i n t sequenceLeng th , do ub l e

[ ] [ ] t ,
26 b o o l e a n useRandomSeed ) {
27 t h i s . s e q u e n c e L e n g t h = s e q u e n c e L e n g t h ;
28 t h i s . s t a t e = 0 ;
29 t h i s . t r a n s i t i o n M a t r i x = t ;
30 t h i s . useRandomSeed = useRandomSeed ;
31

32 i n t dim = t . l e n g t h ; / / a s s u m p t i o n : q u a d r a t i c
m a t r i x t

33

34 c u m u l a t e d T r a n s i t i o n M a t r i x = new do ub le [ dim ] [ ] ;
35 f o r ( i n t row = 0 ; row < dim ; row ++) {
36 c u m u l a t e d T r a n s i t i o n M a t r i x [ row ] = new

do ub le [ dim ] ;
37 }
38

39 t h i s . c u m u l a t e T r a n s a c t i o n M a t r i x ( dim ) ;
40 }
41

42 /∗ ∗
43 ∗ G e n e r a t e a new random s e q u e n c e based on t h e t r a n s i t i o n

m a t r i x g i v e n i n t h e c o n s t r u c t o r
44 ∗ /
45 p u b l i c i n t [ ] g e n e r a t e S e q u e n c e ( ) {
46

47 i n t [ ] s e q u e n c e = new i n t [ s e q u e n c e L e n g t h ] ;
48

49 Random random ;
50 i f ( useRandomSeed ) {
51 random = new Random ( ) ;
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52 } e l s e {
53 random = new Random ( 0 ) ;
54 }
55

56 f o r ( i n t j = 0 ; j < s e q u e n c e L e n g t h ; j ++) {
57 do ub l e nextRandom = random . nex tDoub le ( ) ;
58

59 i n t i = 0 ;
60 w h i l e ( nextRandom >

c u m u l a t e d T r a n s i t i o n M a t r i x [ s t a t e ] [ i ] ) {
61 i ++;
62 }
63 s t a t e = i ;
64 s e q u e n c e [ j ] = s t a t e ;
65 }
66 r e t u r n s e q u e n c e ;
67 }
68

69 /∗ ∗
70 ∗ Sums up p r o b a b i l i t i e s o f t r a n s i t i o n m a t r i x .
71 ∗ One row of t h e m a t r i x w i l l have e n t r i e s
72 ∗ p1 p2 p3 => p1 p1+p2 p1+p2+p3
73 ∗ @param d i m e n s i o n s i s t h e d imens ion of t h e s t o c h a s t i c

m a t r i x
74 ∗ /
75 p r o t e c t e d vo id c u m u l a t e T r a n s a c t i o n M a t r i x ( i n t d i m e n s i o n s ) {
76 f o r ( i n t row = 0 ; row < d i m e n s i o n s ; row ++) {
77 do ub l e sum = 0 . 0 ;
78 f o r ( i n t column = 0 ; column < d i m e n s i o n s ;

column ++) {
79 sum += t r a n s i t i o n M a t r i x [ row ] [

column ] ;
80 c u m u l a t e d T r a n s i t i o n M a t r i x [ row ] [

column ] = sum ;
81 }
82 }
83 }
84

85 /∗ ∗
86 ∗
87 ∗ @param a r g s
88 ∗ /
89 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
90 i f ( a r g s == n u l l ) {
91 System . o u t . p r i n t l n ( "

RandomSequenceGenera tor " +
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92 "− t < t r a n s i t i o n m a t r i x −f i l e
> " +

93 "− t s < t ime s t e p s > " +
94 "−o u t p u t [ < save f i l e >] " ) ;
95 System . e x i t ( 1 ) ;
96 } e l s e {
97 Arguments a r g = new Arguments ( a r g s ) ;
98 i n t t s = a r g . g e t I n t A r g u m e n t ( " t s " ) ;
99 S t r i n g b a s e p a t h = " . . / d a t a / " ;

100

101 M a t r i x F i l e R e a d e r t r a n s i t i o n M a t r i x R e a d e r =
new M a t r i x F i l e R e a d e r ( b a s e p a t h + a r g .
ge tArgument ( " t " ) ) ;

102 do ub l e [ ] [ ] t r a n s i t i o n M a t r i x =
t r a n s i t i o n M a t r i x R e a d e r . g e t M a t r i x ( ) ;

103

104 RandomSequenceGenera tor t i m e S p a c e G e n e r a t o r
= new RandomSequenceGenera tor ( t s ,

t r a n s i t i o n M a t r i x , t r u e ) ;
105 i n t [ ] t imeSpace = t i m e S p a c e G e n e r a t o r .

g e n e r a t e S e q u e n c e ( ) ;
106

107 i n t noOfou tpu tArguments = a r g .
getNArguments ( " o u t p u t " ) ;

108 i f ( noOfou tpu tArguments == 1 ) {
109 S t r i n g o u t p u t F i l e n a m e = a r g .

ge tArgument ( " o u t p u t " , 0 ) ; / /
g e t f i r s t a rgument o f o u t p u t

110

111 S t r i n g B u f f e r sb = new S t r i n g B u f f e r
( ) ;

112 f o r ( i n t i =0 ; i < t imeSpace . l e n g t h ; i
++) {

113 sb . append ( t imeSpace [ i ] + " \ n " ) ;
114 }
115

116 F i l e T o o l s . w r i t e S t r i n g ( o u t p u t F i l e n a m e , sb .
t o S t r i n g ( ) ) ;

117 } e l s e i f ( noOfou tpu tArguments == 0) {
118 / / o u t p u t t o c o n s o l e
119 System . o u t . p r i n t l n ( I n t A r r a y s .

t o S t r i n g ( t imeSpace ) ) ;
120 } e l s e {
121 System . o u t . p r i n t l n ( " Too many

a rgumen t s f o r o u t p u t " ) ;
122 }
123 }
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124 }
125 }

1 import java.util.Random;

2 /**

3 *

4 * @author luedge

5 */

6 public class GeneratorSDE {

7 private double dt;

8 private double[] k;

9 private double[] D;

10 private Random rnd = new Random();

11

12

13 public GeneratorSDE(double dt, double[] k, double[] D) {

14 this.dt = dt;

15 this.k = k;

16 this.D = D;

17 }

18

19

20 /**

21 * Generate a SDE trajectory based on the hiddenStateSequence

and given parametrization

22 * @param hiddenStateSequence

23 * @param x_0 is the inital value of the generated sequence

24 * @return the sequence based on SDEs

25 */

26 public double[] generateSDETrajectory( int[]

hiddenStateSequence, double x_0 ) {

27 double[] sdeSequence = new double[ hiddenStateSequence.

length ];

28 sdeSequence[0] = x_0;

29 for (int i = 1; i < hiddenStateSequence.length; i++ ) {

30 sdeSequence[i] = generateSDEStep( sdeSequence[i-1],

hiddenStateSequence[i-1] );

31 }

32 return sdeSequence;

33 }

34

35 /**

36 *

37 * @param x

38 * @param hiddenState

39 * @return

40 */
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41 private double generateSDEStep( double x, int hiddenState ) {

42 return x + (

43 (- 2 * k[hiddenState] * x * D[hiddenState])

+

44 ( Math.sqrt( 2 * D[hiddenState] ) * rnd.

nextGaussian() )

45 ) * dt;

46 }

47 }

1 import biocomp.metamacs.hmm.newImplementation.HMMVAR;

2 import biocomp.moltools.util.DoubleArrays;

3 import biocomp.moltools.util.FileLineReader;

4 import biocomp.moltools.util.IntArrays;

5

6 public class Estimator {

7

8 public static void main( String[] args ) {

9 // =======================

10 // input params - do by arguments later

11 // =======================

12

13 String basepath = "../data/";

14 String transitionMatrixFilename = basepath + "test3matrix.

txt";

15 String sdeParamsFilename = basepath + "testV3param.txt";

16 String realDataFile = basepath + "DAse1.dat";

17 int sequenceLength;

18 double dt = 0.2;

19 double x_0 = 0.5;

20 int numberOfStates;

21

22 // =======================

23 // start of main routine

24 // =======================

25

26 // get transition matrix

27 MatrixFileReader matrixFileReader = new MatrixFileReader(

transitionMatrixFilename );

28 double[][] transitionMatrix = matrixFileReader.getMatrix()

;

29 numberOfStates = transitionMatrix.length;

30

31 // get real Data from file

32 FileLineReader readRealSequence = new FileLineReader(

realDataFile );

33 sequenceLength = ( int ) readRealSequence.getNLines();
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34

35 System.out.println( "Sequence length of Real Data: " +

sequenceLength );

36

37 // generate viterbi path based on transition matrix and

length of real Data

38 RandomSequenceGenerator rndSeqGenerator = new

RandomSequenceGenerator( sequenceLength,

transitionMatrix, true );

39 int[] initPath = rndSeqGenerator.generateSequence();

40

41 System.out.println( IntArrays.toString( initPath ) );

42

43 // read sde potentials from file

44 MatrixFileReader potentialReader = new MatrixFileReader(

sdeParamsFilename );

45 double[][] sdeParams = potentialReader.getMatrix();

46

47 GeneratorSDE sdeGenerator = new GeneratorSDE( initPath,

sdeParams, dt );

48 double[] trajectory = sdeGenerator.generateSequence( x_0 )

;

49

50 // convert trajectory from <code>double[]<\code> to <code>

double[][]<\code> for use in Metamacs

51

52 double[][] SimulatedPath =

convertObservationFromOneDimensionalInput( trajectory

);

53 double[][] RealPath =

convertObservationFromOneDimensionalInput(

readRealSequence.readDoubleColumn( 0 ));

54

55 // start hmm-sde for simulated and real data

56 HMMVAR hmmreal = new HMMVAR( RealPath, numberOfStates, 1,

null );

57 HMMVAR hmmsim = new HMMVAR( SimulatedPath, numberOfStates,

1, null);

58 // Initialize model

59 hmmsim.initializeModel( initPath );

60 hmmreal.initializeModel( initPath );

61 //start EM algorithm

62 double realmaxLikelihood = hmmreal.EMcorrect(1000, 10e-5,

true);

63 double simmaxiLikelihood = hmmsim.EMcorrect(1000, 10e-5,

true);
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64 System.out.println("Maximum likelihood after HMM of

simulated Data has converged:\n " + realmaxLikelihood

);

65

66 printHmmParameters( hmmsim );

67

68 System.out.println("Maximum likelihood after HMM of real

Data has converged:\n " + simmaxiLikelihood );

69

70 printHmmParameters( hmmreal);

71 }

72

73 /**

74 * One dimensional conversion to multi-dimesnional

75 * {1, 2, 5, 4} => {{1}, {2}, {5}, {4}}

76 *

77 * @param input is one dimensional array

78 * @return observation suitable for HMMVAR

79 */

80 public static double[][]

convertObservationFromOneDimensionalInput( double[] input

) {

81 double[][] output = new double[ input.length ][1];

82 for ( int i = 0; i < input.length; i++ ) {

83 output[i][0] = input[i];

84 }

85 return output;

86 }

87

88 /**

89 * Print estimated parameters of hmm

90 * @param hmm is the HMMVAR whose estimations are printed

91 */

92 public static void printHmmParameters( HMMVAR hmm ) {

93 double[][][] regressionMatrices = hmm.

getRegressionMatrices();

94 double[][][] covarianceMatrices = hmm.getCovariances();

95 double[][] transitionMatrix = hmm.getTransitionMatrix();

96 double[] initialDistribution = hmm.getInitialDistribution

();

97 int[] v = hmm.computeViterbiPath();

98

99 System.out.println("Estimated transition matrix: \n" +

DoubleArrays.toString( transitionMatrix ));

100 System.out.println("Estimated initial distribution: \n" +

DoubleArrays.toString( initialDistribution ));

101 for ( int i = 0; i < regressionMatrices.length; i++ ) {
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102 System.out.println("Hidden state " + i +": ");

103 System.out.println(" Estimated regression matrix: \n"

+ DoubleArrays.toString( regressionMatrices[i] ))

;

104 System.out.println(" Estimated covariance matrix: \n"

+ DoubleArrays.toString( covarianceMatrices[i] ))

;

105 }

106 }

107 }

1 import biocomp.moltools.util.FileLineReader;

2

3 /**

4 * Read matrix from file

5 * @author luedge

6 *

7 */

8 public class MatrixFileReader

9 extends Object {

10

11 private FileLineReader matrixReader;

12 private double[][] matrix;

13 private int[] column;

14

15 public MatrixFileReader( String fileName ) {

16 matrixReader = new FileLineReader( fileName );

17 }

18

19 /**

20 *

21 * @return matrix as double array

22 */

23 public double[][] getMatrix() {

24 matrix = matrixReader.readDoubleTable();

25 return matrix;

26 }

27

28 public int[] getIntColumn() {

29 column = matrixReader.readIntColumn( 0 );

30 return column;

31 }

32 }





CHAPTER 6

Apendix C - Matlab Source Code

The first listing lists the use of the following scripts to reproduce the analysis and
plots shown and employed in this thesis. It starts with importing the ASCII data at
hand and will call the HMMVAR estimation at last.

1 %% Data Analysis

2

3 % Get Photon streams through import function

4 FRET=stimporter(fileindex)

5

6 %% Discretazation if neccessary

7 photonizer %Automatic

8 %or

9 FNorm = normalize(odata) %with Manual selected threshold

10 %% Error correction

11 %Select FRET measurements that are suitabel (goodFRET)

12 % calculate background and crosstalk correction factors through

bleaching markers

13

14 goodCFRET=errorcalc(goodCFRET)

15

16 % apply correction factors to trajectory

17

18 goodFRET=errorcorr(goodCFRET)

19

20 % sort for convenience in order of trajectorie length

21 for i=1:length(goodCFRET)

22 sortTime(i)=length(goodCFRET(1,i).counts)

23 end

24 [sortedTime Xperm]=sort(sortTime)

25 for j=1:length(goodCFRET)

26 goodSCFRET(:,j)=goodCFRET(:,Xperm(j));

27 end

28 %

29 for i=1:length(goodSCFRET)

30 sortTime2(i)=goodSCFRET(1,i).A_bleached;

31 end

32 [sortedTime2 Xperm2]=sort(sortTime2)

33 for j=1:length(goodSCFRET)

34 goodTSCFRET(:,j)=goodSCFRET(:,Xperm2(j))

35 end

113
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36

37 %% State recognition through naive efficiency trajectory

38 tsInt = timewindow(tsin,n)

39 effiT = effer(tsInt)

40

41 for i=1:length(CSingleStates)

42 CSingleStates(1,i).ints10=timewindow(CSingleStates(1,i).counts,10)

;

43 CSingleStates(1,i).ints20=timewindow(CSingleStates(1,i).counts,20)

;

44 CSingleStates(1,i).ints50=timewindow(CSingleStates(1,i).counts,50)

;

45 CSingleStates(1,i).ints100=timewindow(CSingleStates(1,i).counts

,100);

46 end

47

48 for i=1:length(CSingleStates)

49 CSingleStates(1,i).eff10=effer(CSingleStates(1,i).ints10);

50 CSingleStates(1,i).eff20=effer(CSingleStates(1,i).ints20);

51 CSingleStates(1,i).eff50=effer(CSingleStates(1,i).ints50);

52 CSingleStates(1,i).eff100=effer(CSingleStates(1,i).ints100);

53 end

54

55 %% for many states per trajectorie use

56 SortedStateChanges=Statelizer(state_INFO)

57 %reorder $SortedStateChanges to $SChange

58 SingleStates=Singelizer(nuFRET, visualStates, SChange)

59

60 %% for trajectories staying in one state

61

62 for i=1:13

63 CSingleStates(i).counts=goodTSCFRET(3,i).counts(1:goodTSCFRET(1,i)

.A_bleached,1:2);

64 CSingleStates(i).names=goodTSCFRET(3,i).names;

65 CSingleStates(i).part=’1/1’;

66 end

67

68 %% Converting to single photon trajectory

69 for i=1:length(CSingleStates)

70 CSingleStates(1,i).maxPhoton=max(max(CSingleStates(1,i).counts));

71 CSingleStates(3,i).monocounts=SinglePhotonizer(CSingleStates(1,i).

counts);

72 end

73

74

75 % Enhancement: HMM for efficiency estimation

76 multifret(exp_data,tw1,tw2,tw3,start,time)
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77 fret_filter

78

79

80

81 %% Photon Analysis

82 % NProbe Efficiency

83

84 for i=1:length(CSingleStates)

85 CSingleStates(3,i).NPmaxPeff=NPanalyse(CSingleStates(3,i).

monocounts,CSingleStates(1,i).maxPhoton,10);

86 end

87

88 for i=1:length(CSingleStates)

89 CSingleStates(3,i).NPmaxmax=NPanalyse(CSingleStates(3,i).

monocounts,CSingleStates(1,i).maxPhoton,2*CSingleStates(1,i).

maxPhoton);

90 end

91

92 for i=1:length(CSingleStates)

93 CSingleStates(3,i).NPmaxmax=NPanalyse(CSingleStates(3,i).

monocounts,CSingleStates(1,i).maxPhoton,2*CSingleStates(1,i).

maxPhoton);

94 end

95 for i=1:length(CSingleStates)

96 CSingleStates(3,i).NPmaxund2=NPanalyse(CSingleStates(3,i).

monocounts,CSingleStates(1,i).maxPhoton,CSingleStates(1,i).

maxPhoton+2);

97 end

98

99

100 % State recognition through efficiency Analysis

101 %TransitionMatrix from Trajectory

102 TransM=TransitionMatrixFromTraj(conIn, samples, stepsize,

countmode)

103

104 % Divide Trajectories into

105 % I) Visual recognized

106 % and/or

107 % II) automatic clustered States.

108 % For uncorrected Photonstreams the bleaching startingpoint is set

as end of trajectory.

109 % Make a list of trajectories showing state changes.

110

111 visualStates = [] ;

112

113 SortedStateChanges=Statelizer(state_INFO)

114 SingleStates=Singelizer(nuFRET, visualStates, SChange)
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115 % Visual States are imported through marking every change point

with the

116 % DataTip tool, export the cursor_info structure of all

trajectories to create $StateChange

117

118 StateChange=Statelizer(cursor_info);

119

120 SingleStates = Singelizer(oxyFRET, visualStates, SChange );

121 StateAnalysis=SingleStateAnalyser(struct SingleStates)

122

123 %% HMM Analysis

124 % random Viterbi path

125 RandVitPath=VPGenerate(length,TransitionMatrix)

126

127 % Viterbipath from Transition Matrix

128 TMviterbiPfad=randViterbi(States,length)

129

130 %% NProbe Analysis

131 NPAnalysis=Npanalyse(Np, tw)

1 function DAeffR = effer(tsInt)

2 %% Calcuates efficiency for each two values in the the row-vector

$tsInt(:,1:2)

3 length = uint32(size(tsInt,1));

4

5 for i=1:length

6 DAeffR(i,1) = tsInt(i,2)/(tsInt(i,1)+tsInt(i,2));

7 end

1 function Est=Estimate(trajec, dimHmm, previterbi, steps, G_SDE)

2 %% Estimates the input trajectorie $trajec with the HMM Variants

class of %% the Metamacs Package (change javaclasspath to your

metamacs lib)

3 % * Eike Meeerbach et al.: Sequential change point detection in

molecular dynamics trajectories, % * submitted to the Journal

of multivariate Analysis (2008).

4 % $dimHmm is the number of States, % Â§steps is the aboirt

criterioin for the EM algorithm

5 javaclasspath({ ’/home/cocktail/luedge/NetBeansProjects/

Metamacs/lib/colt.jar’... ’/home/cocktail/luedge/

NetBeansProjects/Metamacs/lib/concurrent.jar’... ’/home/

cocktail/luedge/NetBeansProjects/Metamacs/netbeans_project/

build/classes/’... ’/home/cocktail/luedge/NetBeansProjects/

Metamacs/netbeans_project/dist’,...

6 });

7 import biocomp.metamacs.hmm.newImplementation.HMMVAR; precision

=1.0000e-04;
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8 %% -------- Create random Viterbipath if not given (poor results)

% if previterbi==0; previterbi=randViterbi(dimHmm,size(trajec

,1)); Est.preVit=previterbi; else end

9 %% - Estimate Maximum Likelihood of HMMSDE - Model with

HMMVAR( , , 1, ) - hmm=HMMVAR(trajec, dimHmm, G_SDE, []);

hmm.initializeModel(previterbi) Est.hmm=hmm; % Est.MLH = hmm.

EMcorrect(steps, precision, true); Est.MLH = hmm.EM(steps,

precision, true);

10 %% --------------------Get-estimated parameter------------ Est.

TransitionMatrix=hmm.getTransitionMatrix(); % Est.ObsProb =

hmm.getObservationProbabilities(); Est.FwBw = hmm.

getForwardBackwardVariables();

11 CovM=hmm.getCovariances(); Phi=hmm.getRegressionMatrices;

12 Est.Phi=Phi; Est.RegM = squeeze(Phi(1,:,:)); if G_SDE==1 for i=1:

size(Phi,1) Cov(i)=squeeze(CovM(i,:,:)); %#ok<AGROW> S(:,i)=

squeeze(Est.Phi(i,:,:)); %#ok<AGROW> mu(i)=S(1,i)/(1-S(2,i));

%#ok<AGROW> % muM=inv(eye(size(S))-S)*Phi(1,:); end Est.

expTauF=S; Est.mu=mu; Est.Cov=Cov; else

13 % Est.muM=muM; Est.CovM=CovM;

14 end

15 %% - final Viterbi-path as initial distribution - Est

.viterbi=hmm.computeViterbiPath(); Est.InitDist= hmm.

getInitialDistribution();
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1 function NPAnalysis=NPanalyse(singleFRET, Np, tw)

2 javaclasspath({ ’/home/cocktail/meerbach/Netbeans_projects/

Metamacs/dist/lib/colt.jar’... ’/home/cocktail/meerbach/

javawerkstatt/Metamacs/lib/concurrent.jar’... ’/home/

cocktail/meerbach/Netbeans_projects/Metamacs/build/classes/’

... ’/home/cocktail/luedge/code/mbtoolkit/torsten/

FRETanalyser/netbeans_project/build/classes’... ’/home/

cocktail/luedge/code/mbtoolkit/torsten/FRETanalyser/NProbe/

build/classes’... ’/home/cocktail/luedge/NetBeansProjects/

Metamacs/build/classes/biocomp/metamacs/hmm/newImplementation’

... }); if isstruct(singleFRET)==1; NPAnalysis=

singleFRET; for i=1:length(singleFRET) Np=2; tw

=20; aFRET=Nprobe.probe(singleFRET(1,i).counts(:,2),

singleFRET(1,i).counts(:,1),Np,tw); end NPmean=

mean(aFRET); NPvar=var(aFRET); NPAnalysis

(1,i).NPeff=aFRET; NPAnalysis(1,i).NPmean=NPmean;

NPAnalysis(1,i).NPvar=NPvar; NPAnalysis(1,i).

NPstd=sqrt(NPvar); NPAnalysis(1,i).NPvarest1=2*NPvar-

NPmean-NPmean*NPmean; NPAnalysis(1,i).NPvarest1=2*

NPvar-NPmean+NPmean*NPmean;

3 else NPAnalysis=Nprobe.probe(singleFRET(:,2),singleFRET(:,1),

Np,tw); end

1 function NPAnalysis=NPanalyse(singleFRET, Np, tw)

2 javaclasspath({ ’/home/cocktail/meerbach/Netbeans_projects/

Metamacs/dist/lib/colt.jar’... ’/home/cocktail/meerbach/

javawerkstatt/Metamacs/lib/concurrent.jar’... ’/home/

cocktail/meerbach/Netbeans_projects/Metamacs/build/classes/’

... ’/home/cocktail/luedge/code/mbtoolkit/torsten/

FRETanalyser/netbeans_project/build/classes’... ’/home/

cocktail/luedge/code/mbtoolkit/torsten/FRETanalyser/NProbe/

build/classes’... ’/home/cocktail/luedge/NetBeansProjects/

Metamacs/build/classes/biocomp/metamacs/hmm/newImplementation’

... }); if isstruct(singleFRET)==1; NPAnalysis=

singleFRET; for i=1:length(singleFRET) Np=2; tw

=20; aFRET=Nprobe.probe(singleFRET(1,i).counts(:,2),

singleFRET(1,i).counts(:,1),Np,tw); end NPmean=

mean(aFRET); NPvar=var(aFRET); NPAnalysis

(1,i).NPeff=aFRET; NPAnalysis(1,i).NPmean=NPmean;

NPAnalysis(1,i).NPvar=NPvar; NPAnalysis(1,i).

NPstd=sqrt(NPvar); NPAnalysis(1,i).NPvarest1=2*NPvar-

NPmean-NPmean*NPmean; NPAnalysis(1,i).NPvarest1=2*

NPvar-NPmean+NPmean*NPmean;

3 else NPAnalysis=Nprobe.probe(singleFRET(:,2),singleFRET(:,1),

Np,tw); end
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1 function SortedStateChanges=Statelizer(state_INFO) %% Creates a

Trajectory/State Matrix containing statechange points (cols)

%% for every trajectory (rows)

2 k=1; l=1; DataTips=length(state_INFO);

3 for i=1:DataTips current_trajectory=state_INFO(1,DataTips+1-i)

.Target; StateChanges(k,l)=state_INFO(1,DataTips+1-i).

Position(1,1); l=l+1; if i==DataTips &&

state_INFO(1,2).Target==current_trajectory %

StateChanges(k,l)=state_INFO(1,DataTips+1-i).DataIndex;

elseif i==DataTips && state_INFO(1,2).Target~=

current_trajectory StateChanges(k,1)=state_INFO(1,1).

Position(1,1);

4 elseif state_INFO(1,DataTips-i).Target==

current_trajectory StateChanges(k,l)=

state_INFO(1,DataTips+1-i).Position(1,1);

elseif state_INFO(1,DataTips-i).Target

~= current_trajectory l=1; k=k+1;

StateChanges(k,l)=state_INFO(1,DataTips+1-i).

Position(1,1);

5 end end

6 PreSorted=sort(StateChanges,2,’ascend’); T=size(StateChanges,1);

for i=1:T row=find(PreSorted(i,:)); e=length(row);

SortedStateChanges(i,1:e)=PreSorted(i,row(1):row(end));

end

1 function stemplots(inFRET,n) figure; stem (inFRET(1,n).counts

(:,1), ’Marker’, ’p’, ’MarkerSize’,4,’Linestyle’ , ’:’); stem

(inFRET(1,n).counts(:,2), ’MarkerSize’, 2 , ’Linestyle’ , ’--

’);

2 figure; stem (inFRET(2,n).counts(:,1), ’DisplayName’, ’corrected’,

’Linestyle’ , ’:’); stem (inFRET(2,n).counts(:,2), ’

DisplayName’, ’corrected’, ’Linestyle’ , ’--’);

3 h = stem(inFRET(1,n).counts(:,1:2), ’DisplayName’, ’oxy 0272 D

8460ms’, ’fill’); set(h(1),’LineWidth’, 0.2 , ’Marker’, ’p’, ’

MarkerSize’,4,’Linestyle’ , ’:’) set(h(2),’LineWidth’, 0.1 , ’

MarkerSize’,4,’Linestyle’ , ’--’)

1 function tenPlotsDAEnhanced2(uFRET,uc,savePDF,part,fromto) %%

MultiPlot % corrected for $uc=2 (uncorrected $uc=1) %

saves .pdf of every plot for $savePDF=1, if not set = 0 %

pages $fromto for specific pages if nargin<5 fromto(1,1)

=1/10; fromto(1,2)=ceil(size(uFRET,2)/10); t=1; end if

nargin<4 Tstart(1,1)=1; part=0; end

2 if nargin<3 savePDF=0; end

3 if nargin<2 uc=1; end
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4 if part==0 pt=1; elseif part==1 pt=2; Tstart(1,1)=1;

elseif part==2 pt=3; end t=fromto(1,1)*10; for s=

fromto(1,1)*10:fromto(1,2)*10 figure(s) for

p1=1:10

5 ende(1,1)=size(uFRET(uc,t).eff100,1); ende(2,1)=

uFRET(1,t).A_bleached; ende(3,1)=size(uFRET(uc

,t).eff100,1); xTix=[0,round(ende(pt)/4),ende(

pt)-round(ende(pt)/4),ende(pt)]; xTix(end)=

ende(pt); xTixL=round(xTix/1000); yMax

=max(max(uFRET(uc,t).ints100)); xDbleach=uFRET

(1,t).D_bleached; yDbleach=uFRET(1,t).eff100(

uFRET(1,t).D_bleached,1); xAbleach=uFRET(1,t).

A_bleached; yAbleach=uFRET(1,t).eff100(uFRET

(1,t).A_bleached,1); Tstart(1,1)=1

Tstart(3,1)=xAbleach-250; Tstart(2,1)=1;

subplot(10,4,4*p1-3:4*p1-1)

plotI=line(Tstart(pt,1):ende(pt),uFRET(uc,

t).ints100(Tstart(pt,1):ende(pt),1:2));

text(xAbleach,yAbleach,’\

bf{A} bleached \rightarrow’,’Rotation’,33,’Fontsize’

,8, ’HorizontalAlignment’,’right’);

text(xDbleach,yDbleach,’\bf{D}

bleached \rightarrow’,’Rotation’,33,’Fontsize’,8, ’

HorizontalAlignment’,’right’); set(

plotI(1),’Color’,[0.431 0.612 0.522]); set(

plotI(2),’Color’,[0.894 0.525 0.612]);

ax1 = gca; xyPos=get(ax1,’

Position’)-[0.09 0 -0.1 0]; set(ax1, ’

Position’,xyPos,... ’YColor’,’b’,’

YAxisLocation’,’left’,... ’Color’,

’none’,’xtick’,[],... ’XLim’,[

Tstart(pt,1),ende(pt)],’YLim’,[0,yMax]); if

strcmp(uFRET(uc,t).names(1),’r’)==1; set(

get(ax1,’XLabel’),’String’,... [’time

in sec #’,num2str(t),’ - ’,uFRET(uc,t).names(7:9),

uFRET(uc,t).names(17:20)]) else

set(get(ax1,’XLabel’),’String’,... [’

time in sec #’,num2str(t),’ - ’,uFRET(uc,t).names

(1:2),uFRET(uc,t).names(11:14)]) end
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6 if (uc==2) ylabel(ax1,’Intensities (cor)’);

else ylabel(ax1,’Intensities (uc)’

); end ax2 =

axes(’Position’,get(ax1,’Position’)+[0.05 0 0.08

0],... ’YAxisLocation’,’right’,...

’Color’,’none’,’XColor’,’k’,’YColor’,’k’

,... ’xtick’, xTix, ’XTickLabel’, xTixL, ’

XLim’,[Tstart(pt,1),ende(pt)],... ’YLim’

,[0,1.0],’YTick’,[0,0.5,1],’YTickLabel’,{’0’;’50%’;’

100%’});

7 line(1:ende(pt),uFRET(uc,t).eff100(1:ende(pt)),’Color’,’k’

,’Parent’,ax2); ylabel(ax2,’Efficiency’)

set(ax2,’Position’,get(ax1,’Position’));

8 subplot(10,4,4*p1)

9 hist(uFRET(uc,t).eff100(Tstart(pt,1):ende(pt)),100,’

EdgeColor’,[0.55 0.17 0.08]);

10 ax3=gca; xyhPos=get(ax3,’Position’);

xyhPos(1)=0.76; xyhPos(3)=0.2; xyhPos

(4)=0.065; set(ax3, ’Position’, xyhPos,...

’YAxisLocation’,’right’,’XAxisLocation’,’

bottom’,... ’xtick’, [], ’XTickLabel’,’’,’

YLimMode’,’auto’,... ’YColor’,[0.04 0.1

0.5],... ’Color’,’none’,’YColor’,’k’,’Box’

,’off’,... ’CameraUpVector’, [-1,1,0],’

XDir’,’reverse’) axis tight maxCounts=

get(ax3,’YLim’); if p1==10

ylabel(ax3,’counts’,’Rotation’,[0],’Position’,[-0.02,

maxCounts(1,2),1],’fontweight’,’demi’); %#ok<NBRAK>

%newCamera=get(gca,’CameraPosition’)*[1 0 0;0

1 0;0 0 -1] ...’CameraPosition’,newCamera, ;

end t=t+1;

11 end maximize if savePDF==1 if (uc==2)

save2pdf([’CorFRET’,num2str(s)],gcf,600)

else save2pdf([’UncorFRET’,num2str(s)],gcf

,600) end else end end end

1 function out01=SinglePhotonizer(inN) %% generates a photonstream

with max photons 1 per count from multiple %% counting streams

through assuming identical distributed arrivaltimes maxN=max(

max(inN)); out01=zeros(maxN*length(inN),2);

2 % length(inN) % length(out01) % inN=a; % i=5 % maxN=max(max(a)); %

out01=zeros(maxN*length(a),2);

3 k=1;

4 for i=1:length(inN)
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5 if inN(i,1:2)==[0 0]; k=k+maxN ; else

photonsupplyD(:,1)=[ones(1,inN(i,1)),zeros(1,maxN-inN(i,1)

)]; out01(k:k+maxN-1,1)=photonsupplyD(randperm(maxN))

’; photonsupplyA(:,1)=[ones(1,inN(i,2)),zeros

(1,maxN-inN(i,2))]; out01(k:k+maxN-1,2)=photonsupplyA

(randperm(maxN))’; k=k+maxN; end end

1 function SingleStates=Singelizer(inFRET, SortedStateChanges, from

) %% Creates the structured array $SingleStates of all

Trajectories (row) and States (col) % Trajectories $from are

pointer to Data collection structure nuFRET which % to be

statelized % visually defined states in $Schange are divided

into $SingleStates

2 nstreams = size(SortedStateChanges,1); last=zeros(nstreams+1,1);

for i=1:nstreams last(i+1,1)=find(SortedStateChanges(i

,:)==0,1); if isfield(inFRET, ’A_bleached’)==0 out

=length(inFRET(1,from(1,i)).counts); else out=inFRET

(1,from(1,i)).A_bleached; end SortedStateChanges(i,

last(i+1,1))=out; anf=1; SingleStates=struct([]);

from(1,i)

3 for l=1:last(i+1) k=l+sum(last(1:i));

SingleStates(1,k).names=inFRET(1,from(1,i)).names;

SingleStates(1,k).part=[num2str(l),’/’,num2str(last(i+1,1))

]; ende=SortedStateChanges(i,l)-20;

SingleStates(1,k).counts(:,1:2)=inFRET(1,from(1,i)).counts(

anf:ende,1:2) ; % SingleStates(1,k).monocounts

(:,1:2)=inFRET(1,from(1,i)).monocounts(anf:ende,1:2) ;

anf=ende+40; end end

1 function viterbipfad=randViterbi(States,length) viterbipfad=zeros

(1:length,1); a=0:1:States-1; R = rand(length,1);

2 for i=1:States viterbipfad(find(R<(i*(1/States))&R>(i-1)*(1/

States)),1)=a(i); end
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1 function NPAnalysis=NPanalyse(singleFRET, Np, tw)

2 javaclasspath({ ’/home/cocktail/meerbach/Netbeans_projects/

Metamacs/dist/lib/colt.jar’... ’/home/cocktail/meerbach/

javawerkstatt/Metamacs/lib/concurrent.jar’... ’/home/

cocktail/meerbach/Netbeans_projects/Metamacs/build/classes/’

... ’/home/cocktail/luedge/code/mbtoolkit/torsten/

FRETanalyser/netbeans_project/build/classes’... ’/home/

cocktail/luedge/code/mbtoolkit/torsten/FRETanalyser/NProbe/

build/classes’... ’/home/cocktail/luedge/NetBeansProjects/

Metamacs/build/classes/biocomp/metamacs/hmm/newImplementation’

... }); if isstruct(singleFRET)==1; NPAnalysis=

singleFRET; for i=1:length(singleFRET) Np=2; tw

=20; aFRET=Nprobe.probe(singleFRET(1,i).counts(:,2),

singleFRET(1,i).counts(:,1),Np,tw); end NPmean=

mean(aFRET); NPvar=var(aFRET); NPAnalysis

(1,i).NPeff=aFRET; NPAnalysis(1,i).NPmean=NPmean;

NPAnalysis(1,i).NPvar=NPvar; NPAnalysis(1,i).

NPstd=sqrt(NPvar); NPAnalysis(1,i).NPvarest1=2*NPvar-

NPmean-NPmean*NPmean; NPAnalysis(1,i).NPvarest1=2*

NPvar-NPmean+NPmean*NPmean;

3 else NPAnalysis=Nprobe.probe(singleFRET(:,2),singleFRET(:,1),

Np,tw); end

1 function FNorm = normalize(odata) % entfernt das Rauschen und

ersetzt die Intensiï¿1
2ten mit ganzen % Photonenanzahlen

2 total_rows = uint32(size(odata,1)) z1 = input(’Rauschschwelle des

Akzeptor Kanals: ’); a1 = input(’Gernzwert einzelnes Akzeptor

Photonen: ’); b1 = input(’Grenzwert von hï¿1
2chstens 2 Akzeptor

Photonen: ’); z2 = input(’Rauschschwelle des Donator Kanals:

’); a2 = input(’Gernzwert einzelnes Donator Photonen: ’); b2 =

input(’Grenzwert von hï¿1
2chstens 2 Donator Photonen: ’); %

alles darï¿1
2ber sind erstmal 3 Photonen a=a1 b=b1 z=z1 tic;

for m = 1:2 for n = 1:total_rows if odata(n,m) <

z FNorm(n,m) = z; elseif odata(n,m) < a

FNorm(n,m) = 1; elseif odata(n,

m) < b FNorm(n,m) = 2; else

FNorm(n,m) = 3; end end a=a2 b

=b2 z=z2 end; toc t=toc;

3 %schneller mit odata(odata<z1=0); odata(odata>a1=1...)

1 function viterbipfad=multiViterbi(tlength, TransM, init) %%

generates Vierbipath from transition Matrix, or if given a

positiv %% integer it generates a iid random stateseries

viterbipfad=zeros(1:tlength,1); R = rand(tlength,1); if nargin

< 3 init=ceil(length(TransM)*rand(1,1)); end
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2 if max(size(TransM))==1 States=TransM; a=0:1:States-1;

for i=1:States viterbipfad(find(R<(i*(1/States))&R>(i-1)

*(1/States)),1)=a(i); %#ok<FNDSB> end

3 else States=size(TransM,2); viterbipfad(1)=init;

cTransM=zeros(States); cTransM(:,States)=1; for i=1:

States for m=1:States-1 cTransM(i,m)=sum(

TransM(i,1:m)); end end

4 for t=1:tlength viterbipfad(t+1)=find(cTransM(

viterbipfad(t),:)>R(t),1); end

5 end

1 function TSout=makeOneTrajvar(inFRET,vars,tw)

2 anf=1; for i=1:length(inFRET) eff=effer(timewindow(inFRET(1,i

).counts,tw)); ende=length(eff); OutStates(i,1)=find

(vars>inFRET(1,i).NPvarmeans(1,1),1)-1; TSout(anf:anf-1+ende

,1:2)=[eff,i*ones(ende,1)-1]; anf=anf+ende; end for i=1:length

(vars)-1 FoundStates=find(OutStates(:,1)==i); for k=1:length(

FoundStates) TSout(TSout(:,2)==FoundStates(k),3)=(i-1)*ones;

end clear FoundStates end

1 function outFRET=gammacor(inFRET) %% corrects discrete photon

streams for background and crosstalk given in %% the $unFRET

structure in .bg and .cross outFRET=inFRET; frets=size(inFRET

,2); for i=1:frets outFRET(3,i).counts(:,1:2)=inFRET(3,i).

counts; %% find nonzero values nonZD=find(inFRET

(3,i).counts(:,1)); %% caluclate probabilities

for bg and x-talk photons to occur

Dchances_pseudoG=rand(length(nonZD),1);

2 del_pseudoG_D=Dchances_pseudoG>inFRET(1,i).gamma2(1,1);

3 toDelD_pseudoG=nonZD(del_pseudoG_D); lD_g

=length(toDelD_pseudoG); outFRET(1,i)

.del_Gamma=zeros(lD_g,1);

4 %% delete photons from timeseries (and store deleted positions)

5 outFRET(1,i).del_Gamma(1:lD_g,1)=toDelD_pseudoG;

outFRET(3,i).counts(toDelD_pseudoG,1)=

inFRET(3,i).counts(toDelD_pseudoG,1)-1;

outFRET(3,i).counts(:,2)=inFRET(3,i).counts(1:end,2);

end

1 function outFRET=gammacalc(inFRET,where) if nargin<2 where=1

else end outFRET=inFRET; for k=1:length(inFRET)

2 tA=inFRET(1,k).A_bleached; tD=inFRET(1,k).D_bleached; t_Dsolo=tD-

tA;

3 ID_Dsolo=sum(inFRET(where,k).counts(tA:tD,1)); IA_Dsolo=sum(inFRET

(where,k).counts(tA:tD,2));
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4 pseudo_gamma1=((ID_Dsolo+IA_Dsolo)/t_Dsolo)/(sum(sum(inFRET(where,

k).counts(1:tA,1:2)))/tA); pseudo_gamma2=((ID_Dsolo+IA_Dsolo)/

t_Dsolo)/(sum(sum(inFRET(where,k).counts(tA-500:tA,1:2)))/500)

; outFRET(1,k).psG1=pseudo_gamma1; outFRET(1,k).psG2=

pseudo_gamma2; end

1 function flucTraj=fluctuator(Viterbipath, flucVersion, params) %%

set $flucVersion to 0 for gaussian noise, 1 for random walk

adn 2 for %% stochastic differential equations %%

2 dur=length(Viterbipath); if flucVersion==0 for i=1:dur

flucTraj(i,1)=Viterbipath(i)+params(Viterbipath(i))*randn;

end elseif=flucVersion==1 flucTraj(i,1)=

Viterbipath(1) for i=2:dur flucTraj(i,1)=flucTraj(i

-1,1)+params(Viterbipath(i))*rand end elseif=

flucVersion==2 flucTraj(i,1)=Viterbipath(1) for i=2:

dur flucTraj(i,1)=flucTraj(i-1,1)+flucTraj(i-1,1)*

params(Viterbipath(i))*rand end else error(’usage: "

flucTraj=fluctuator(Viterbipath, flucVersion, params)", see

mfile for versions’) end

1 function corFRET=errorcorr(unFRET) %% corrects discrete photon

streams for background and crosstalk given in %% the $unFRET

structure in .bg and .cross frets=length(unFRET);

2 corFRET=unFRET; for i=1:frets corFRET(3,i).counts=unFRET(1,i).

counts; %% find nonzero values nonZD=find(

unFRET(1,i).counts(:,1)); nonZA=find(unFRET(1,i).

counts(:,2)); %% caluclate probabilities for bg and x

-talk photons to occur DchancesBG=

rand(length(nonZD),1); AchancesBG=rand(length(nonZA)

,1); % there is assumend to be no crosstalk to the

Donor channel! AchancesCROSS=rand(length(nonZA),1);

del_bg_D=DchancesBG<unFRET(1,i).bg(1,1);

del_bg_A=AchancesBG<unFRET(1,i).bg(1,2);

del_cross_A=AchancesCROSS<unFRET(1,i).cross;

toDelA_cross=nonZA(del_cross_A);

toDelD_bg=nonZD(del_bg_D); toDelA_bg=nonZA(del_bg_A);

lA_bg=length(toDelA_bg); lD_bg=length(

toDelD_bg); lA_cross=length(toDelA_cross);

winner_bg=max(lA_bg,lD_bg); %

corFRET(1,i).Del_BGphotons(:,1:2)=zeros(winner_bg,2);

corFRET(1,i).Del_CROSSphotons=zeros(lA_cross,1);

3 %% delete photons from timeseries (and store deleted positions)

4 corFRET(1,i).Del_BGphotons(1:lD_bg,1)=toDelD_bg;

corFRET(1,i).Del_BGphotons(1:lA_bg,2)=toDelA_bg;
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5 corFRET(1,i).Del_CROSSphotons(1:lA_cross,2)=toDelA_cross;

corFRET(3,i).counts(toDelD_bg,1)=

unFRET(1,i).counts(toDelD_bg,1)-1; corFRET(3,i

).counts(toDelA_bg,2)=unFRET(1,i).counts(toDelA_bg,2)

-1; corFRET(3,i).counts(toDelA_cross

,2)=unFRET(1,i).counts(toDelA_cross,2)-1;

corFRET(3,i).counts(toDelA_cross,1)=unFRET(1,i).counts

(toDelA_cross,1)+1; end

6 %% %corFRET(1,i).counts(nonZA(find(del_bg_A)),2)=unFRET(1,i).

counts(nonZA(find(del_bg_A)),2)-1; %corFRET(1,i).counts(nonZD(

find(del_bg_D)),1)=unFRET(1,i).counts(nonZD(find(del_bg_D)),1)

-1;

1 function cfFRET=errorcalc(nuFRET) cfFRET=nuFRET; %% Reads

structured Array with bleaching markers (A_bleached,D_bleached

) %% and calculates background, crosstalk and no gamma

correction for k=1:length(nuFRET) tA=nuFRET(1,k).A_bleached;

tD=nuFRET(1,k).D_bleached; t_Dsolo=tD-tA;

2 ID_Dsolo=sum(nuFRET(1,k).counts(tA:tD,1)); IA_Dsolo=sum(nuFRET(1,k

).counts(tA:tD,2)); duration=size(nuFRET(1,k).counts,1); tdark

=duration-tD; cfFRET(1,k).bgsum=sum(nuFRET(1,k).counts(tD:end

,:)); bg=cfFRET(1,k).bgsum/tdark;

3 cfFRET(1,k).bg=bg; cfFRET(1,k).cross=(IA_Dsolo-bg(1,2)*t_Dsolo)/

t_Dsolo; cfFRET(1,k).machine_gamma=1; clear tA tD IDsolo

IAsolo duration tdark bg

4 end

1 function DAeffR = effiR(tsInt1, tsInt2, tsInt3)

2 length = uint32(size(tsInt,1)); %einlesen der Parameter

R0 = input(’FÃ¶rster Radius ’);

n1 = input(’Zetimittel 1 ’); n2 = input(’

Zetimittel 2 ’); n3 = input(’Zetimittel 3 ’); row = input(’

EinfÃ1
4gen ab Spalte’); %erstellen der Effizienz & Radius

Matrix DAeffR=zeros(length,5+row) %Errechnen und

Positionieren der Effizienzen for i=1:length-n1

DAeffR(i,row) = tsInt(i,2)/(tsInt(i,1)+tsInt(i,2));

DAeffR(i,row+1) = (R0.^6/DAeffR(i,1)-R0.^6).^(1/6); end;

for i=1:length-n2 DAeffR(i,row+2) = tsInt(i

,6)/(tsInt(i,5)+tsInt(i,6)); DAeffR(i,row+3) = (R0.^6/

DAeffR(i,3)-R0.^6).^(1/6); end; for i=1:length-n3

DAeffR(i,row+4) = tsInt(i,10)/(tsInt(i,9)+tsInt(i,10));

DAeffR(i,row+5) = (R0.^6/DAeffR(i,5)-R0.^6).^(1/6);

end;
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1 function tenPlotsDAEnhanced2(uFRET,uc,savePDF,part,fromto) %%

MultiPlot % corrected for $uc=2 (uncorrected $uc=1) %

saves .pdf of every plot for $savePDF=1, if not set = 0 %

pages $fromto for specific pages if nargin<5 fromto(1,1)

=1/10; fromto(1,2)=ceil(size(uFRET,2)/10); t=1; end if

nargin<4 Tstart(1,1)=1; part=0; end

2 if nargin<3 savePDF=0; end

3 if nargin<2 uc=1; end

4 if part==0 pt=1; elseif part==1 pt=2; Tstart(1,1)=1;

elseif part==2 pt=3; end t=fromto(1,1)*10; for s=

fromto(1,1)*10:fromto(1,2)*10 figure(s) for

p1=1:10

5 ende(1,1)=size(uFRET(uc,t).eff100,1); ende(2,1)=

uFRET(1,t).A_bleached; ende(3,1)=size(uFRET(uc

,t).eff100,1); xTix=[0,round(ende(pt)/4),ende(

pt)-round(ende(pt)/4),ende(pt)]; xTix(end)=

ende(pt); xTixL=round(xTix/1000); yMax

=max(max(uFRET(uc,t).ints100)); xDbleach=uFRET

(1,t).D_bleached; yDbleach=uFRET(1,t).eff100(

uFRET(1,t).D_bleached,1); xAbleach=uFRET(1,t).

A_bleached; yAbleach=uFRET(1,t).eff100(uFRET

(1,t).A_bleached,1); Tstart(1,1)=1

Tstart(3,1)=xAbleach-250; Tstart(2,1)=1;

subplot(10,4,4*p1-3:4*p1-1)

plotI=line(Tstart(pt,1):ende(pt),uFRET(uc,

t).ints100(Tstart(pt,1):ende(pt),1:2));

text(xAbleach,yAbleach,’\

bf{A} bleached \rightarrow’,’Rotation’,33,’Fontsize’

,8, ’HorizontalAlignment’,’right’);

text(xDbleach,yDbleach,’\bf{D}

bleached \rightarrow’,’Rotation’,33,’Fontsize’,8, ’

HorizontalAlignment’,’right’); set(

plotI(1),’Color’,[0.431 0.612 0.522]); set(

plotI(2),’Color’,[0.894 0.525 0.612]);

ax1 = gca; xyPos=get(ax1,’

Position’)-[0.09 0 -0.1 0]; set(ax1, ’

Position’,xyPos,... ’YColor’,’b’,’

YAxisLocation’,’left’,... ’Color’,

’none’,’xtick’,[],... ’XLim’,[

Tstart(pt,1),ende(pt)],’YLim’,[0,yMax]); if

strcmp(uFRET(uc,t).names(1),’r’)==1; set(

get(ax1,’XLabel’),’String’,... [’time

in sec #’,num2str(t),’ - ’,uFRET(uc,t).names(7:9),

uFRET(uc,t).names(17:20)]) else

set(get(ax1,’XLabel’),’String’,... [’

time in sec #’,num2str(t),’ - ’,uFRET(uc,t).names

(1:2),uFRET(uc,t).names(11:14)]) end
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6 if (uc==2) ylabel(ax1,’Intensities (cor)’);

else ylabel(ax1,’Intensities (uc)’

); end ax2 =

axes(’Position’,get(ax1,’Position’)+[0.05 0 0.08

0],... ’YAxisLocation’,’right’,...

’Color’,’none’,’XColor’,’k’,’YColor’,’k’

,... ’xtick’, xTix, ’XTickLabel’, xTixL, ’

XLim’,[Tstart(pt,1),ende(pt)],... ’YLim’

,[0,1.0],’YTick’,[0,0.5,1],’YTickLabel’,{’0’;’50%’;’

100%’});

7 line(1:ende(pt),uFRET(uc,t).eff100(1:ende(pt)),’Color’,’k’

,’Parent’,ax2); ylabel(ax2,’Efficiency’)

set(ax2,’Position’,get(ax1,’Position’));

8 subplot(10,4,4*p1)

9 hist(uFRET(uc,t).eff100(Tstart(pt,1):ende(pt)),100,’

EdgeColor’,[0.55 0.17 0.08]);

10 ax3=gca; xyhPos=get(ax3,’Position’);

xyhPos(1)=0.76; xyhPos(3)=0.2; xyhPos

(4)=0.065; set(ax3, ’Position’, xyhPos,...

’YAxisLocation’,’right’,’XAxisLocation’,’

bottom’,... ’xtick’, [], ’XTickLabel’,’’,’

YLimMode’,’auto’,... ’YColor’,[0.04 0.1

0.5],... ’Color’,’none’,’YColor’,’k’,’Box’

,’off’,... ’CameraUpVector’, [-1,1,0],’

XDir’,’reverse’) axis tight maxCounts=

get(ax3,’YLim’); if p1==10

ylabel(ax3,’counts’,’Rotation’,[0],’Position’,[-0.02,

maxCounts(1,2),1],’fontweight’,’demi’); %#ok<NBRAK>

%newCamera=get(gca,’CameraPosition’)*[1 0 0;0

1 0;0 0 -1] ...’CameraPosition’,newCamera, ;

end t=t+1;

11 end maximize if savePDF==1 if (uc==2)

save2pdf([’CorFRET’,num2str(s)],gcf,600)

else save2pdf([’UncorFRET’,num2str(s)],gcf

,600) end else end end end
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