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Abstract

The hindered rotational states of molecules confined in crystal fields of octahedral symmetry,

and their time-dependent alignment obtained by pulsed nonresonant laser fields, are studied com-

putationally. The control over the molecular axis direction is discussed based on the evolution of

the rotational wave packet generated in the cubic crystal-field potential. The alignment degree

obtained in a cooperative case, where the alignment field is applied in a favorable crystal-field di-

rection, or in a competitive direction, where the crystal field has a saddle point, is presented. The

investigation is divided into two time regimes where the pulse duration is either ultrashort, leading

to nonadiabatic dynamics, or long with respect to period of molecular libration, which leads to

synchronous alignment due to nearly adiabatic following. The results are contrasted to existing gas

phase studies. The use of nonadiabatic alignment for interrogation of crystal-field energetics and

the use of adiabatic alignment for directional control of molecular dynamics in solids are proposed

as practical applications.
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I. INTRODUCTION

The concept of alignment of neutral gas phase molecules along the polarization directions

of laser pulses has reached a relatively mature state. Recent reviews exemplify the wide

range of experimental and theoretical activity on that topic [1, 2] showing that robust and

efficient manipulation of molecular alignment is based on the interaction of the anisotropic

molecular polarizability with intense nonresonant laser fields [3, 4, 5]. During the past few

years the original concept for linear molecules interacting with linearly polarized fields has

been generalized [6, 7]. Currently three-dimensional alignment of more general molecules

can be achieved by means of elliptically polarized laser fields [8].

When considering the time-dependent picture of molecular alignment, the underlying

photoinduced rotational dynamics lies between the following two extremes: In the adiabatic

case, which can be realized by light pulses long compared to the rotational period of the

molecule, alignment can only be achieved while the field is turned on [1]. In contrast,

field-free alignment is achieved in the nonadiabatic case, i. e., where the pulses are short

compared with the rotational time scale [2]. The rotational wave packet states formed can

be considered as coherent superpositions of field-free states and the post-pulse evolution is

dominated by quantum beats and rotational revivals, see e. g., the combined theoretical and

experimental studies of the nonadiabatic alignment of asymmetric [9] and symmetric [10] top

molecules, and the seminal work in Refs. [11, 12, 13]. Different polarizations of the field have

been exploited to further control the time-dependent alignment beyond the one-dimensional

case [2, 8, 14, 15]. Also the use of suitably tailored combinations of pulses for enhancing the

alignment has been investigated [16, 17, 18, 19, 20]. In other work, the concept is extended

to include the influence of dissipative environments that lead to decoherence [21, 22] of the

rotational densities.

For a molecule embedded in a crystalline solid, e. g., a small diatomic in a rare gas matrix

[23], the fundamental difference to the gas-phase case stems from the internal field, often

referred to as crystal field. In the absence of external fields, the densities tend to be angularly

confined along the energetically preferred directions in the solid. Hence, for increasing crystal

field, the free-rotor states become more and more hindered and are eventually transformed

into librational states which are characterized by small-amplitude vibrational motion in the

angular degrees of freedom. The corresponding energy levels arrange into near degenerate
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multiplets that we shall designate as librational manifolds. As long as the energies are lower

than the barrier heights, the dynamics within each of these manifolds is prevailed by the

tunneling effect [24]. Typically, for small diatomic molecules trapped in rare-gas matrices,

the librational and tunneling energy splittings (in units of the rotational constant B) are of

the order of 10 and 0.1, respectively [25]. Consequently, when considering thermal ensembles,

we shall distinguish three different temperature regimes in the following. For an ultra-low

temperature T ≈ 0.1 (in reduced units kB/B), only the ground state is populated despite the

small energy gap to other tunneling states. In strong crystal fields the set of tunneling states

is not separable by temperature due to the near degeneracy. In that librational limit, the

situation resembles a low-temperature case T ≈ 1, where all the states within the multiplet

are almost equally populated. Finally, for a high temperature T ≈ 10, many librational

manifolds become populated.

The goal of alignment (and orientation) of molecules confined in matrices is to manipulate

the directional properties of rotational densities with respect to crystallographic axes of the

host lattice. In our previous work, the combined effect of (internal) octahedral potential

and (external) light field on the alignment of linear molecules is investigated [26, 27]. It

has been found that the resulting degree of alignment crucially depends on the relative

orientation of the crystallographic axes and the polarization direction of the external field.

If the direction of the external field coincides with minima of the crystal field, a high (near

unity) alignment can be achieved for specific states, even for low field strengths and high

temperatures. Otherwise, high efficiency of these mechanisms is restricted to high fields and

low temperatures. The present work extends the previous studies of alignment from the

frequency/energy domain into the time domain. To this end, we investigate the rotational

dynamics by numerically solving the time-dependent Schrödinger equation for the angular

degrees of freedom of a translationally caged molecule interacting with a nonresonant laser

pulse of varying pulse length σ (FWHM in units of rotational period h/2B of the J = 0

state). In analogy to the energy and temperature scales introduced above, we shall consider

the following three cases: (1) In the (nearly sudden) limit of ultrashort pulses, σ ≈ 0.01,

a rotational wave packet is created which is a coherent superposition of several librational

manifolds. (2) For a short pulse, σ ≈ 0.1, only states within a single manifold are populated

during the pulse. The first and second case shall be termed nonadiabatic with respect to

librational and tunneling dynamics, respectively. In both these cases transient alignment
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signals, 〈cos2 θ〉, are to be analyzed. In particular, it shall be demonstrated how the quantum

beats and revival structures can be used to reveal the underlying energy-level spacings which

are inversely proportional to the temporal beatings of the field-free states comprising the

wave packet [12, 13, 28]. This allows to deduce information about the crystal field itself

which is usually not known a priori. (3) Finally, the case of long pulses, σ ≈ 1, can be

used to create a directionally anisotropic sample transiently during the pulse. Here we

show that the adiabatic alignment serves to provide a suitable precondition for controlling

subsequent photoinduced physics and chemistry in the solid. One can affect, e. g., vibrational

wave-packet dynamics induced by pump-probe electronic excitation schemes [29, 30, 31].

In the present work we concentrate on a thermal ensemble at low temperature, T = 1,

where initially only the lowest librational manifold is essentially populated. Each of the six

tunneling states in the set either end up with a coherent superposition of states (cases 1 and

2) that can be coupled by the field in multiple transition cycles, or evolve as a directional

hybrid eigenstate (case 3). Different selection rules play a crucial role in determining the

wave-packet composition.

II. COMPUTATIONAL METHOD

As a model system we consider a molecule in an electronically nondegenerate 1Σ state.

The cubic crystal field constrains its translational degrees of freedom to a site of octahedral

symmetry while its rotational motion is moderately hindered, but not completely restricted,

by the surroundings. This is often realized for diatomic impurities which are small enough to

fit in a monosubstitutional lattice site [25]. As described before in Refs. [26, 27] and justified

therein, we assume the molecular center of mass (c.m.) to be fixed at a substitutional lattice

site. Moreover, the center of interaction (c.i.) is assumed to coincide with the c.m., and

an additional eccentric motion about a separate c.i. can be accounted for by an effective

(reduced) rotational constant B = ~2/2I. Any deformations of the matrix in accommodating

the impurity and in responding to impurity motions are neglected as we concentrate solely

on the guest angular dynamics. Furthermore, we neglect any interaction between the laser

field and the surrounding matrix.

The confined molecule has polarizability components parallel (α‖) and perpendicular (α⊥)

to the molecular axis. It is subject to an intense nonresonant laser field E(t). The linear
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polarization direction of the field is along either one of the 〈100〉 or 〈110〉 crystallographic

axes. The interaction then depends on the polar angle θ between the molecular axis and the

field direction defining the laboratory frame (Ω), and on the orientation with respect to the

solid cage frame (Ω′). For the 〈100〉 direction of the field, we have coinciding axes systems

θ′ = θ, φ′ = φ whereas for 〈110〉 the relations are θ′ = θ − π/2 , φ′ = φ− π/4.

We write the time-dependent Hamiltonian for the embedded molecule as

Ĥ/B = (Ĵ/~)2 + V̂κ + V̂α , (1)

where Ĵ is the angular momentum operator having its origin at the c.m. of the guest molecule.

We present the static octahedral potential (crystal field) due to the solid surrounding as [27]

Vκ(θ
′, φ′; κ) = κ

[
−52

11

√
π

21
V4(θ

′, φ′) +
16

11

√
π

26
V6(θ

′, φ′)
]

, (2)

where κ is a dimensionless strength parameter (in units of B) and the angular functions

V4(θ
′, φ′) and V6(θ

′, φ′) are the two lowest nontrivial surface harmonics which transform ac-

cording to the A1g representation of the Oh point group [32, 33, 34, 35]. The time dependence

of the alignment field squared,

E2(τ) =
2I0

cε
g(τ) cos2(2πντ) , (3)

is expressed in terms of its intensity envelope function g(τ), and the constants c and ε

are the phase velocity of light and electronic permeability, respectively, in the homogeneous

medium. Note that the oscillation frequency ν is assumed far from any molecular resonances

and can be averaged out. The pulse shape is assumed to be of the form

g(τ) = exp[−4 ln(2)τ 2/σ2] .

Hence, the laser pulses are characterized by the duration σ (full width at half maximum,

FWHM) given in reduced units of time, τ = 2tB/h. The dimensionless intensity is

∆ω =
∆α

4B

2I0

cε
=

∆αE2
0

4B
,

with ∆α = α‖ − α⊥. The molecule–laser interaction leads to an effective potential of the

form

Vα(θ; ∆ω, τ) = −(∆ω cos2 θ + ω⊥)g(τ) . (4)
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The present work is divided into investigations of rotational dynamics induced by (ul-

tra)short and long pulses, according to the pulse width σ with respect to the rotational

period of the free molecule trot = h/2B, i. e., τ = 1. In the former, nonadiabatic case the

duration samples a range below trot, σ = (0.01–0.5)/π, whereas for the long pulse, adiabatic

limit we consider pulse widths σ = 0.5–4.

The time-dependent Schrödinger equation corresponding to Eq. (1) is solved in spherical

harmonics basis {YJ,M(θ, φ)} truncated at Jmax = 16. For each irreducible representation

of the point groups involved, symmetry-adapted basis functions tabulated in Refs. [35, 36]

have been used. In terms of the rotational density operator,

ρ̂(τ) =
∑

n

wnρ̂n(τ) =
∑

n

wn|Ψn(τ)〉〈Ψn(τ)| , (5)

the signal function, i. e., the time-dependent degree of alignment is represented by the

expectation value

〈〈cos2 θ〉〉(τ) = Tr{ρ̂(τ) cos2 θ} , (6)

where the double brackets indicate averaging over a thermal ensemble with Boltzmann

weights wn = exp(−En/T )/
∑

n′ exp(−En′/T ). We restrict ourselves to a case of low

reduced rotational temperature T = 1 kB/B which limits the initial population to the

lowest manifold of librational states. The conversions of several quantities to practi-

cal units are: I0[W cm−2] = ∆ωB[cm−1]/(1.055 × 10−11∆α[Å
3
]) for the field intensity,

t[ps] = 16.68τ/B[cm−1] for time, and T [K] = 1.44T B[cm−1] for temperature. Note also

that the energies En presented are always given in units of B.

III. TIME–INDEPENDENT STATES

A. Crystal–field states

We use the same form of the octahedral crystal-field potential in Eq. (2) as in Ref. [27],

where its properties were described in detail. In particular, the potential has a sixfold set

of symmetry equivalent minima in the 〈100〉 directions with energies Vκ/κ = −1. Twelve

equivalent saddle points (barriers between the minima) have zero energy, independent of

κ, in the 〈110〉 directions, and an eightfold set of maxima with Vκ/κ = 10/9 is found for

the 〈111〉 directions. In our previous work, we have characterized how the internal crystal
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field affects the angular degrees of freedom of molecules trapped in octahedral fields [26, 27].

As the crystal-field strength κ increases, the rotor states become gradually hindered and

the rotational density distribution is more and more bound to the vicinity of the preferred

crystallographic directions. Correspondingly, the rotational energies decrease below the

potential barriers (zero of the potential energy) with the energy levels arranging in manifolds

of rather high degeneracy. The lowest sixfold librational manifold of energetically close

states forms at κ & 15, composed of A1g(1), T1u(3), and Eg(2) irreducible representations

(degeneracies in parentheses). The first excited, twelvefold, librational manifold becomes

bound for κ & 55, where the energy gap to the lower set of levels is about 25. The ground and

excited sets of levels correlate to the J = 0–2 and J = 2–4 free-rotor states, respectively. The

sets of grouped states bound to small-angle libration are nominated as tunneling multiplets

[24, 27], indicating very low transition frequencies among different members.

For a ready reference, we give the energy-level spectra En(κ) with κ = 25 and κ = 50 up

to the n = 93 state in Table I. The energies are utilized also in Sec. IVB for the analysis of the

time-dependent alignment signals. For the weaker crystal-field strength, the potential yields

a tunneling splitting of ∆Et = 1.14 within the lowest librational manifold of six states (1A1g–

1Eg). For the stronger crystal field we are closer to the librational limit and the tunneling

splitting reduces to ∆Et = 0.25. The energetic gap to the first librationally excited manifold

of states is found to be 13 or 24 (1Eg–1T2g) for κ = 25 or κ = 50, respectively [27]. Only in

the latter case, another distinct librational splitting of 13 (1T1g–2A1g) can be distinguished.

The higher energy levels appear to be unstructured since much higher crystal-field strengths

would be required to form librational manifolds. For the chosen T = 1, the Boltzmann

weight factors w
g/u
n become wg

1 = 0.322, wu
2,3,4 = 0.158, and wg

5,6 = 0.103 at κ = 25, and

wg
1 = 0.196, wu

2,3,4 = 0.166, and wg
5,6 = 0.153 at κ = 50. This is in contrast to the gas phase,

where at this temperature mainly the ground (|00〉) state is populated (w0 = 0.705).

B. Light–induced alignment

To give an idea of the rotational confinement with respect to the octahedral surrounding,

we plot the rotational density of the ground (A1g) state at κ = 25 in Fig. 1. For a few

typical values of κ, we investigated in Refs. [26, 27] how the densities of the librational

states can be manipulated by applying the external alignment field selectively with respect

7



TABLE I: The crystal-field energies En(κ) scaled up by the ground-state energies, E1(κ = 25) =

−7.7 and E1(κ = 50) = −23.7. The states are labelled according to their irreducible representations

in the three point groups Oh, D4h, and D2h to facilitate relation with selection rules. Even (gerade)

states are emphasized by bold numbers.

n(κ = 25) En − E1 Oh D4h D2h n(κ = 50) En − E1 Oh D4h D2h

1 0.00 A1g A1g A1g 1 0.00 A1g A1g A1g

2–4 0.71 T1u A2u, Eu B2u, B1u, B3u 2–4 0.16 T1u A2u, Eu B2u, B1u, B3u

5,6 1.14 Eg A1g , B1g A1g , B2g 5,6 0.25 Eg A1g , B1g A1g , B2g

7–9 14.4 T2g B2g , Eg A1g , B1g , B3g 7–9 23.8 T2g B2g , Eg A1g , B1g , B3g

10–12 16.4 T1u A2u, Eu B2u, B1u, B3u 10–12 24.9 T1u A2u, Eu B2u, B1u, B3u

13–15 17.1 T2u B2u, Eu A1u, B1u, B3u 13–15 25.0 T2u B2u, Eu A1u, B1u, B3u

16–18 21.0 T1g A2g , Eg B2g , B1g , B3g 16–18 26.5 T1g A2g , Eg B2g , B1g , B3g

19 25.0 A1g A1g A1g 19 39.1 A1g A1g A1g

20,21 25.8 Eg A1g , B1g A1g , B2g 20,21 39.5 Eg A1g , B1g A1g , B2g

22 30.3 A2u B1u B1u 22–24 43.7 T1u A2u, Eu B2u, B1u, B3u

23–25 32.5 T1u A2u, Eu B2u, B1u, B3u 25–27 43.7 T2u B2u, Eu A1u, B1u, B3u

26–28 32.7 T2u B2u, Eu A1u, B1u, B3u 28 50.0 A2u B1u B1u

29–31 34.9 T2g B2g , Eg A1g , B1g , B3g 29 51.5 A2g B1g B1g

32,33 40.5 Eu A1u, B1u A1u, B2u 30,31 51.8 Eg A1g , B1g A1g , B2g

34 43.3 A2g B1g B1g 32–34 52.5 T2g B2g , Eg A1g , B1g , B3g

35,36 43.5 Eg A1g , B1g A1g , B2g 35,36 54.4 Eu A1u, B1u A1u, B2u

37–39 44.0 T2g B2g , Eg A1g , B1g , B3g 37–39 55.3 T2g B2g , Eg A1g , B1g , B3g

40–42 45.6 T1u A2u, Eu B2u, B1u, B3u 40–42 66.2 T2u B2u, Eu A1u, B1u, B3u

43–45 53.0 T2g B2g , Eg A1g , B1g , B3g 43–45 66.3 T1u A2u, Eu B2u, B1u, B3u

46–48 55.0 T1g A2g , Eg B2g , B1g , B3g 46–48 68.6 T1u A2u, Eu B2u, B1u, B3u

49–51 57.0 T2u B2u, Eu A1u, B1u, B3u 49–51 72.3 T2g B2g , Eg A1g , B1g , B3g

52–54 57.2 T1u A2u, Eu B2u, B1u, B3u 52–54 74.8 T1g A2g , Eg B2g , B1g , B3g

55 59.4 A1g A1g A1g 55–57 81.0 T1g A2g , Eg B2g , B1g , B3g

56 65.8 A2u B1u B1u 58,59 81.3 Eg A1g , B1g A1g , B2g

57–59 66.1 T2u B2u, Eu A1u, B1u, B3u 60 81.5 A1g A1g A1g

60,61 67.4 Eu A1u, B1u A1u, B2u 61–63 82.2 T2u B2u, Eu A1u, B1u, B3u

62–64 71.2 T1u A2u, Eu B2u, B1u, B3u 64 84.4 A2u B1u B1u

65,66 72.6 Eg A1g , B1g A1g , B2g 65 87.2 A1g A1g A1g

67–69 72.6 T1g A2g , Eg B2g , B1g , B3g 66,67 87.4 Eu A1u, B1u A1u, B2u

70 72.8 A1g A1g A1g 68–70 96.1 T1u A2u, Eu B2u, B1u, B3u

71–73 81.2 T2g B2g , Eg A1g , B1g , B3g 71–73 97.7 T2g B2g , Eg A1g , B1g , B3g

74–76 81.6 T1g A2g , Eg B2g , B1g , B3g 74–76 98.3 T2u B2u, Eu A1u, B1u, B3u

77,78 85.5 Eg A1g , B1g A1g , B2g 77–79 98.5 T1u A2u, Eu B2u, B1u, B3u

79–81 86.5 T2g B2g , Eg A1g , B1g , B3g 80–82 98.6 T1g A2g , Eg B2g , B1g , B3g

82–84 90.2 T2u B2u, Eu A1u, B1u, B3u 83,84 107.0 Eg A1g , B1g A1g , B2g

85–87 90.3 T1u A2u, Eu B2u, B1u, B3u 85–87 111.4 T2g B2g , Eg A1g , B1g , B3g

88,89 98.5 Eu A1u, B1u A1u, B2u 88,89 114.0 Eu A1u, B1u A1u, B2u

90 98.5 A1u A1u A1u 90 114.1 A1u A1u A1u

91–93 98.5 T1u A2u, Eu B2u, B1u, B3u 91–93 114.5 T1u A2u, Eu B2u, B1u, B3u
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FIG. 1: (Color online) Rotational density of the ground librational (A1g) state in the octahedral

crystal potential at κ = 25. The lobes of the densities point towards the 〈100〉 crystallographic

directions, i. e., towards the corners of the octahedron drawn around the density plot. The arrows

represent the 〈100〉 and 〈110〉 polarization directions of the external alignment field. This reduces

the total symmetry to D4h or D2h, respectively.

to the crystallographic directions. The vertical (〈100〉) and horizontal (〈110〉) two-headed

arrows in Fig. 1 depict the applied directions of the alignment laser field. Correspondingly,

the octahedral symmetry is reduced to that of the D4h or D2h point group, respectively. In

the following, we shall use the nominations cooperative or competitive for situations where

the polarization direction of the alignment field coincides with a crystal field minimum or

a saddle point, respectively. High degrees of alignment can be achieved only for specific

states and if the fields are cooperative. Otherwise, high efficiency of alignment mechanism

is restricted to high field strengths and low temperatures [27].

We presented the dependence of the energy level spectra on the polarization direction

and on the field strength ∆ω in Refs. [26, 27] by solving the time-independent Schrödinger

equation. The adiabatic eigenproperties of the total Hamiltonian were shown to result from

direct and indirect alignment effects. In the former case, the field mixes suitable high-lying

|JM〉 states into the state vector under consideration which becomes gradually squeezed

along the field direction. In the latter case, perpendicular states are insensitive to the field

but inherit alignment from higher parallel states of the same symmetry when they undergo

an avoided crossing at relatively high values of ∆ω. The main features are reproduced in
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Fig. 2. The crystal-field energy levels En(κ) and the formation of librational multiplets (n

= 1–6 and n = 7–18) is presented in panel (a). The small panel below (a) depicts the

rotational density of ground A1g state at κ = 50 in the spherical coordinates. Shown in the

right-hand side of Fig. 2 are the energies En(∆ω; κ = 50) for A1g states when the cooperative

field (D4h) is applied. The inserted density plots depict the light-induced alignment changes

at the avoided crossing of 2A1g and 3A1g levels emphasized with circular symbols. The

eigenenergy curves pertaining to Fig. 2 form the basis for the present time-dependent study,

where a ∆ω range is swept by a pulse. Our treatment includes the explicit time dependence

of the alignment field intensity, and depending on the sweep rate, i. e., the pulse duration,

the populations follow the eigenstates of the total Hamiltonian adiabatically or not, i. e., a

rotational wave packet is formed. Following the usual separation made in gas phase reports,

we divide our study of time-dependent alignment into nonadiabatic (Sec. IV) and adiabatic

(Sec. V) cases.

IV. NONADIABATIC ALIGNMENT OF LIBRATIONAL STATES

A. Time–domain analysis

As a reference for our later work and to emphasize the importance of crystal-field effects,

we first consider the case of gas phase molecules. To this end, time-dependent alignment with

∆ω = 100 for the coupling strength and T = 1 for the temperature is studied. Figure 3 (left

panel) shows the time-dependent alignment cosine 〈〈cos2 θ〉〉(τ) in the regime of ultrashort

alignment pulses with τ = 0 corresponding to the center of the pulse. The FWHM is only a

fraction of the time-scale unit trot, and within the chosen σ range (0.01–0.5)/π, a rotationally

broad wave packet is created and strongly nonadiabatic effects are observed. In particular,

temporal oscillations of the post-pulse alignment are clearly present as alternation of dark

and light regions. Note that alignment cosine values below the isotropic 1/3 are given white

color, see the lower half of the color bar.

The alignment pattern presented in the στ -plane shows division into alternating high

and low-contrast regions of σ. For example, cuts through σ = 0.06, 0.09, or 0.14 exhibit

rather weak signal modulation as compared to cuts in between them. The trend strongly

correlates with the wave-packet compositions created. Guided by the right panel of Fig. 3,

10



0 25

−20

−10

0

10

20

E
n
(κ

;∆
ω

=0
)

0 50 100
−50

−40

−30

−20

−10

0

10

20

∆ω

E
n
(∆

ω
;κ

=5
0)

θ [deg]

φ 
[d

eg
]

0 90 180
0

180

360

a b

n=1−6

n=7−18

2A
1g

3A
1g

|Ψ(θ,φ)|2

κ

FIG. 2: (Color online) Energy level spectra pertaining to crystal-field states and light-induced

alignment along a cooperative direction. (a) Correlation of the crystal-field energies between free

rotor (κ = 0) and librational limits. Blue and red curves mark the gerade and ungerade states,

respectively, and the grouping of states n into two librational manifolds is indicated. The contour

plot below the panel displays the rotational density of the ground A1g state at κ = 50, ∆ω = 0. (b)

Dependence of the energy levels of A1g(D4h) symmetry on the alignment-field strength ∆ω. The

2A1g and 3A1g curves undergoing an avoided crossing are emphasized by circular symbols for the

data points. Inserted in the panel, the corresponding densities are connected to the data points by

lines: The 2A1g density is given at ∆ω = 55,60,65 and the 3A1g density is displayed for ∆ω = 60.

which exemplifies the degree of excitation in terms of expectation value 〈J2〉 after the pulse,

we concentrate on the 0.01 < σ < 0.05 part in discussing the alignment in the following.

The first peak with high alignment of the angular density along the polarization axis of the

external field is found close to τ = 0, i. e., while the pulse is still on but slightly retarded with
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FIG. 3: (Color online) Dependence of time-dependent alignment cosine and wave-packet properties

on the pulse width σ (FWHM) at T = 1 in the gas phase. Left panel: Alignment cosine 〈〈cos2 θ〉〉(τ)

for ∆ω = 100, see lower half of the split color bar. Middle panel: Buildup of the wave packet for

∆ω = 100 in terms of occupation numbers
∑

n wn|C(n)
JM |2 of free-rotor states |J,M〉, see upper half

of the color bar. Right panel: Expectation value of the square of the angular momentum operator

representing the degree of rotational excitation at ∆ω = 100 (solid) and ∆ω = 200 (dashed).

respect to the peak of the pulse. Values up to 〈〈cos2 θ〉〉 ≈ 0.8 are reached within this σ range.

After the laser pulse, the molecule is left in a coherent superposition of rotational states,

and the time evolution of the wave packet exhibits recurrences in alignment. In particular,

after trot (τ = 1) the wave packet is again spatially aligned due to complete phase matching

of the rotational components and the initial alignment peak is regained. In addition, a

free molecule exhibits fractional rotational revivals as well. Half of the revival time, trot/2

(τ = 1/2), after the (retarded) first peak, the density is delocalized in perpendicular plane

(〈〈cos2 θ〉〉 ≈ 0.2) with respect to the polarization of the field. This anti-alignment with tight

angular width [13] is surrounded by two peaks with high parallel alignment (for σ = 0.016

even exceeding that of near τ = 0), and the whole pattern is repeated at 3trot/2 as the

coherence is maintained. Further oscillations in alignment signal function become washed

out in thermal ensembles of gas-phase molecules [12, 13, 28] due to complex quantum beating

and interference among the rotational wave packet. In summary, the simple relation for the

spacing of the free-rotor energy levels of a linear gas-phase molecule (multiples of 2) leads to
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the observation of the (fractional) revival intervals. However, this feature based on simple

phase-matching condition is distorted as soon as spherical symmetry is violated, i. e., for

nonlinear molecules [2].

The composition of the created post-pulse rotational density in terms of free-rotor states

|J,M〉 at τ = τf ,

|Ψn(σ, τf )〉gas =
∑
JM

C
(n)
JM(σ, τf )|J,M〉 , (7)

is given in terms of thermally averaged populations
∑

n wn|C(n)
JM |2 in the middle panel of

Fig. 3. Here τf denotes a time (τ ≥ 2σ) at which the field has decayed (g(τf ) ≤ 2−16) and the

time evolution is determined by the energy phases of the |J,M〉 states solely. A logarithmic

contour-level spacing has been used to resolve for low populations also (
∑

n wn|C(n)
JM |2 >

0.015), see upper half of the color bar. In addition, the state label n = (J + 1)2 − J + M is

plotted in log-scale to emphasize the population of low-energy states. The ∆J = ±2, ∆M =

0 selection rule for the second order molecule–light interaction of Eq. (4) determines the

allowed transition routes from the initially dominant |0, 0〉 state. Hence, high populations

are found for |0, 0〉(n = 1), |2, 0〉(n = 7), |4, 0〉(n = 21), and |6, 0〉(n = 43) states while odd

J states are considerably less populated because of the lower initial population of the |1,M〉
states for the low temperature, T = 1, considered here. For the shortest pulses applied,

σ < 0.01, the low-amplitude alignment modulation shows only a single frequency with a

period of trot/3, corresponding to the energy difference of J = 0 and J = 2 states [(71–63)%

of population resides on these states for σ=(0.01–0.03)/π, respectively]. The curves in the

right panel of Fig. 3 show that the excitation degree is limited by the interaction time and

the intensity of the pulse. The peak of this measure is found at σ = 0.10/π for ∆ω = 100

and at σ = 0.07/π for ∆ω = 200. In the former case, the occupation order is |6, 0〉, |2, 0〉,
|4, 0〉, |8, 0〉, |3,±1〉, and |5,±1〉, followed by the initial and other odd |J, 0〉 states. Minima

of rotational excitation coincide with those σ values where most of the post-pulse population

has remained in the |0, 0〉 state (see middle panel of Fig. 3) and where the alignment signal

modulation is suppressed the most (see the left panel).

For a ready overview of time-dependent alignment of molecules trapped in a solid, we

select four cases. Both the case of the polarization coinciding with minima of the crystal

field (cooperative, D4h) and saddle points of the crystal field (competitive, D2h) are studied

for two different crystal-field strengths κ = 25 and κ = 50. The ratio of the external and
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FIG. 4: Dependence of the time-dependent alignment cosine 〈〈cos2 θ〉〉(τ) on the pulse width σ

(FWHM) at T = 1 for molecules trapped in octahedral fields. Results are shown for cooperative

(a,c) and competitive (b,d) polarization directions with D4h and D2h symmetries, respectively.

The (∆ω, κ) parameters of the external and internal fields are (100,25) in the left panels (a,b) and

(200,50) in the right panels (c,d). The alignment curves attached on top or below of the panels

display the result for σ = 0.032 in each of the cases.

internal field strengths is kept constant at ∆ω/κ = 4, so that the excitation-field strength

exceeds the barrier heights similarly in both cases. Each of the four 〈〈cos2 θ〉〉(σ, τ) panels in

Fig. 4 show similar graphical representations of the results as used above for the gas phase.

In particular, panels (a,b) with ∆ω = 100 are directly comparable to the left panel in Fig. 3.

Post-pulse oscillations are present in all of the four cases considered here. As analyzed later

on, this manifests the evolution of a rotational wave packet composed of crystal-field states,

rather than free rotor states in the gas phase case. Adjacent to panels (a–d), we also plot

representative cuts for the alignment at σ = 0.1/π.

In the solid, a maximal value of ≈ 0.7 for the alignment cosine is reached, see the color
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bar in Fig. 4. Comparing with the gas phase result it is ≈ 10% lower due to different

statistical weighting of the contributing states. Again, high peak of alignment occurs in

all cases near the peak of the pulse. The alignment oscillations, resulting as the created

superpositions of crystal-field states evolve after the pulse, are clearly distinct from the gas

phase. In particular, the characteristic revival times for the gas phase are absent. Instead,

the persistent interference pattern is the outcome of the highly irregular energy-level scheme

of the trapped molecule, see Table I for En, and the initial populations (n = 1–6 occupied)

in the thermal ensemble. The rapid modulation of the alignment measure in the crystal field

thus substantially differs from the gas-phase result. Unexpectedly, the maximal alignment

is higher in the competitive cases (b,d) than in the cooperative cases (a,c), especially for

σ < 0.05. Noteworthy is also the different shape of the first alignment peak. For σ > 0.05

the competitive cases already resemble the adiabatic following, i. e., the alignment peak

becomes symmetric, only slightly retarded with respect to τ = 0, and the oscillation after

the pulse is suppressed to a rather weak modulation. In the cooperative cases, the first

peak is narrower and not so distinct from the further high-frequency oscillations that ride

on a background leading to time-averaged alignment well above 1/3. As explained below,

qualitatively different excitation mechanisms govern the competitive cases (b) and (d) due

to different selection rules. Most distinctly in Fig. 4, the time-averaged alignment values

remain considerably lower than in the cooperative cases.

The direction dependent composition of the created post-pulse wave-packet state of

crystal-field states |n′〉 at τ = τf ,

|Ψn(σ, τf )〉solid =
∑

n′
C

(n)
n′ (σ, τf )|n′〉 , (8)

is given in Fig. 5, again in terms of thermally averaged populations
∑

n wn|C(n)
n′ |2, for the

same range of pulse widths σ as used in Fig. 4. We represent the colored contour level

diagrams of
∑

n wn|C(n)
n′ |2 in a similar way as for the gas-phase result, see the middle panel

of Fig. 3. On top of the panels (a–d) for populations, we also plot the corresponding crystal-

field energies En to show the energy content of the excitation.

An understanding of the rotational excitation schemes and the resulting alignment can

be achieved in terms of symmetry and selection rules. Upon interaction with the external

laser field, the octahedral (Oh) symmetry of the internal (crystal) field is reduced to D4h and

D2h, depending on the relative directions of external and internal fields, and only transitions
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FIG. 5: (Color online) Crystal-field energies En(κ = 25, 50) and corresponding post-pulse wave-

packet populations: |Cn|2 of the occupied crystal-field states |n〉 for pulse widths in the range σ =

(0.01–0.50)/π. Labelling (a–d) as in Fig. 4. For a→b and c→d, the direction of the alignment-field

polarization changes from cooperative to competitive. This leads to different occupations of the

same crystal-field states.

within each of the irreducible representations of the subgroups are allowed. In particular,

this also implies that the nonresonant alignment field conserves parity. For example, from

the initially occupied states n = 1 and n = 5–6 transitions can only occur to gerade states,

whereas states n = 2–4 can only mix with other ungerade states of the same symmetry. In

the thermal average, both g-g and u-u combinations contribute to the observed alignment

oscillations. Figure 5 represents the effect of selection rules in creating the wave packet.

Differences in transition schemes for the same crystal field but for different polarizations can

be seen by comparing the pairs (a) and (b) or (c) and (d). For example, the n = 7 state,

which is the lowest state within the first librationally excited manifold, gains occupation from

the initially occupied gerade states only in the competitive D2h cases. This is because the

state decomposes to T2g|B2g, Eg|A1g, B1g, B3g irreducible representations in the symmetry

groups Oh|D4h|D2h, respectively. Using this notation, the relevant initial states (states n
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= 2–4 are ungerade) are A1g|A1g|A1g for n = 1 and Eg|A1g, B1g|A1g, B2g for n = 5, 6. The

allowed transitions take place among the A1g states in D2h. We note that for both field

directions there is also a significant coupling between the initially occupied n = 1 and n = 6

states corresponding to excitation of different tunneling states within the lowest librational

multiplet.

Starting from the post-pulse wave packet of Eq. (8), the field-free evolution of the align-

ment signal S(τ) = 〈〈cos2 θ〉〉(τ) in terms of the crystal-field states is given by

S(τ) = Tr

{∑
n

wnρ̂n(τ) cos2 θ

}

=
∑

n,n′′′
wn〈n′′′|Ψn(τ)〉〈Ψn(τ)| cos2 θ|n′′′〉

=
∑

n,n′′′
wn〈n′′′|

∑

n′
C

(n)
n′ (τ)|n′〉

∑

n′′
C

(n)∗
n′′ (τ)〈n′′| cos2 θ|n′′′〉

=
∑

n,n′,n′′
wnC

(n)
n′ (τf )C

(n)∗
n′′ (τf )〈n′′| cos2 θ|n′〉e−iπ(En′−En′′ )(τ−τf )

=
∑

n′
An′(τf ) +

∑

n′>n′′
2An′n′′(τf ) cos[π∆En′n′′(τ − τf )] , (9)

where An′ =
∑

n wn|C(n)
n′ (τf )|2〈n′| cos2 θ|n′〉 expresses the time-independent part separated

from the oscillating signal, with An′n′′ =
∑

n wnC
(n)
n′ (τf )C

(n)∗
n′′ (τf )〈n′′| cos2 θ|n′〉 containing

the coefficients and matrix elements corresponding to coupled pairs of states. The signal

components oscillating at the energy differences ∆En′n′′ interfere and a beating pattern

results with time scales inversely proportional to the energy level differences. In particular,

two components evolve to a common phase π∆Enn′τ = π∆Emm′τ ± 2πp with a period

τp = 2p/∆Enn′,mm′ , where ∆Enn′,mm′ = ∆Enn′ −∆Emm′ and p is an integer. For example,

a free-rotor wave packet of M = 0, J = 0, 1, 2, 3, 4, 5 states would have (J, J)′ couplings

(0, 2), (2, 4), (1, 3), and (3, 5) with transition energies 6, 14, 10, and 18, respectively. Then

for the adjacent gerade–ungerade (J, J ′) pairs (0, 2)− (1, 3), (1, 3)− (2, 4), and (2, 4)− (3, 5)

the τp equals 2p/4, i. e., τp = trot/2× p including the half and full revivals discussed above.

For the second nearest g–g or u–u pairs (0, 2) − (2, 4) or (1, 3) − (3, 5), the condition is

τp = 2p/8 = trot/4 × p, which includes the half and full revivals for even p. For the third

nearest pair (0, 2)− (3, 5), the condition τp = 2p/12 prevails and the trot/2 is met at p = 3.

In other words, at half and full revivals all the free-rotor components are guaranteed to be

in phase.
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Similarly as in the gas phase case (see Fig. 3), the level of excitation becomes limited

for long pulses, and high n(J) levels corresponding to fast oscillations are found in the

wave packet only up to σ ≈ 0.05. In case (a) of Fig. 4 the rapid alignment oscillations are

superimposed on a long-period (≈ 2trot) background, which can be seen in the horizontal

cut for σ = 0.032. This indicates the presence of a small splitting ∆Enn′ . Instead of

∆Enn′ = 2 of the free molecules, the smallest splitting here corresponds to the tunneling

splitting within the initially populated librational manifold. One can expect dominant long

periods in alignment recurrences especially for wave packets composed of low-n(J) levels.

This is indeed observed for the case presented in Fig. 4(a) in the impulsive region σ ≤ 0.02

(the single-oscillation-frequency region in the gas phase), where the wave packet mainly

consists of initial states with induced mixing between n = 1 and n = 6 (both A1g). The

same applies in principle for the competitive case (b) also, although the lower coupling

strength by a factor of ten suppresses the effect. In case (c), the fields are twice as high

and the tunneling splitting is about five times smaller. The corresponding period is even

longer (not visible in the range of τ shown here) and therefore the time average of the

presented alignment is high. A very long observation time is needed to resolve the effect

in (d), where both the coupling strength and tunneling splitting are small. Vertical cuts

through the alignment plots in Fig. 4 exhibit modulation at a given time elapsed, which

reflects a different buildup of the wave packet. In particular, the broadness and the center

of the wave packet shift upon lengthening the pulse as will be shown below.

B. Energy–domain analysis

In this section we present an analysis of the time-dependent alignment in the en-

ergy/frequency domain. To this end, we perform Fourier transforms of the time series

presented above. The power spectrum of the signal expression can be written as

P (E) ∝
∣∣∣∣∣
∑

n′>n′′
An′n′′

∫ τmax

τf

e−iπEτ cos[π∆En′n′′(τ − τf )] dτ

∣∣∣∣∣

2

. (10)

In the limit of τmax → ∞ this yields a set of delta distributions, located at the transition

frequencies π∆Enn′ present in the wave packet. Obviously, this spectrum can be used to

learn the energies and corresponding intensities of transitions between the crystal-field states

occupied by the pulse. Hence, the energy-level scheme of librational states in a crystal field
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FIG. 6: Fourier transform power spectra of the time-dependent alignment signals of Fig. 4, for a

short alignment pulse, σ = 0.032. Arrangement of panels (a–d) is adapted from Fig. 4 with negative

sign (dashed lines) for competitive field directions in (b) and (d). The peaks can be assigned to

energy differences ∆E among the states comprising the rotational wave packets evolving in the

two crystal fields: κ = 25 for the upper panel and κ = 50 for the lower. The parity of the pairs of

states involved in the transitions are indicated by g or u labels, respectively.

can be deduced to a certain extent from the observed modulation of a time-dependent

alignment signal. This is manifest in Fig. 6, where we present the FFT power spectrum

in energy scale ∆E for a single value of the pulse width, σ = 0.032 and for τmax = 1.25.

The cooperative (D4h) and competitive (D2h) pairs (a,b) and (c,d) from Fig. 4 are mirrored

against each other to demonstrate the dependence on directionality of the alignment along

the 〈100〉 and 〈110〉 crystallographic axes, respectively. With the help of the tabulated

energy levels in Table I we can assign the peaks occurring in the Fourier transforms. This

is alleviated by an inspection of the post-pulse wave function. Similarly as in Fig. 5, the

significantly populated librational states are shown in Fig. 7 (here in linear scale).

Three main peaks are found in panel (a) of Fig. 6 for the cooperative case (D4h). The

most intense one of these at ∆E = 1.5 and the one at 29.3 belong to gerade states, whereas

the middle peak at ∆E = 24.5 and the two satellites at 31.8 and 33.8 belong to ungerade

states. From the tabulation of En in Table I we deduce the following assignments. Transition

energies between states n ↔ n′ = (34, 35, 36) ↔ (65, 66, 70) cause the peak at ∆E = 29.3.
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FIG. 7: Components of the post-pulse wave packet excited by an alignment pulse with σ = 0.032.

Beatings between occupied levels of same symmetry generate the peaks found in frequency-domain

representation of alignment signals. The arrows with g-u symbols indicate some of the assignments

made in Fig. 6 with the help of energies En given in Table I. Panel labelling (a–d) as before.

The state n = 35 has the highest population after the initial states 1–6 as seen in Fig. 7, as

well as in Fig. 5 for σ = 0.032. The equally intense, ungerade ∆E = 24.5 peak can be traced

back to the energy separation of levels (24, 25, 27, 28) ↔ (49, 50, 52, 53). The tunneling

splitting (labelled as t) between n = 1 and n = 6 manifests itself in the low-frequency peak

at ∆E ≈ 1 corresponding to a period of 2trot. Upon extending the integration range to

τmax = 3, the tunneling peak becomes narrower and shifts from 1.5 to 1.1. We assign the

lower-intensity satellites to transitions (2–4)↔(23–25) for ∆E = 31.8, and to transitions

(49, 50, 52, 53) ↔(83–87) for ∆E = 33.8.

The competitive case (D2h) in this crystal field, panel (b) of Fig. 6, shows two main

peaks at ∆E = 15.8 and 24.6. Both belong to the ungerade progression, the latter being

due to the same transition energies as in (a). As indicated in Fig. 7, the new peak at 15.8 is

due to (2–4)↔(10–12) couplings. Another difference to panel (a) is the presence of T2g|Oh

components, especially intense for n = 7 and n = 38. Accordingly, the coupling 38 ↔ 21

with ∆E = 18.2 corresponds to the most intense gerade peak in the power spectrum, and

also the coupling 7 ↔ 19 with ∆E = 10.6 is clearly visible. Only the longer simulation time

can resolve a small feature close to ∆E = 1 corresponding to tunneling.

Panel (c) of Fig. 6 contains the main peak g1 at ∆E = 38.1. We assign this to
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(1,5,6)↔(19–21) transition energies. The other gerade peak g2 at ∆E = 29.7 originates more

clearly from (29–31)↔(58–60) transitions. In addition, there is a 1 ↔ 30 peak at ∆E = 51.8

(outside the plot range). The ungerade peaks arise from the sequence: (2–4)↔(23,24,26,27)

↔(40,41,43,44)↔(78,79,81,82), for u1(43.4), u3(34.6), and u2(22.7), respectively. Due to the

limited simulation time, the low-frequency peak indicative of tunneling splitting appears blue

shifted. For longer simulation times this feature narrows and shifts toward zero: to 0.45 with

τmax = 3 and to 0.28 with τmax = 8, which is necessary in order to cover the whole period.

Longer simulation times also confirm the assignments of the broad peaks above as they split

into narrow components, e. g., g1 exhibits separated 1 ↔ 19 and 1 ↔ 20 transitions. Un-

fortunately, both gerade and ungerade states contribute to the low-frequency peak t (0.28

peak maximum and 0.44 peak shoulder, respectively), which excludes the assignment to

pure ground state tunneling. A low-frequency modulation can occur accidentally from other

closely separated states, such as those within the excited librational manifold, as well.

The first gerade peak g1 in panel (d) at ∆E = 15.8 originates from 7 ↔ (19, 21) transi-

tions, whereas the broad structure with ∆E = 25.2 and 26.2 consists of 5 ↔ 18 and 39 ↔ 60

transitions, respectively. The largest ungerade contribution u1 at ∆E = 18.8 is due to

(11–14)↔(22–24,25,27) transitions. The other peak u2 has the same origin as u3 in panel

(c).

In summary, notable qualitative differences have been found for cases (a–d). First of all,

the different level spacings En for the two crystal fields with κ = 25 (a,b) and κ = 50 (c,d)

lead to significant variations in the time-dependent signals and, hence, in the corresponding

power spectra. In addition, upon changing the symmetry, e. g., from D4h (a,c) to D2h

(b,d), by changing the polarization direction of the external field, complementary parts of

the same librational spectrum become visible due to different selection rules. In addition,

the composition of the post-pulse wave packet can be manipulated by the pulse duration.

These aspects suggest a novel approach to the experimental determination of tunneling and

librational energy levels of molecules in an octahedral field: By detecting the time-dependent,

thermally averaged alignment signals 〈〈cos2 θ〉〉(τ) followed by a Fourier transform, transition

energies can be resolved. In combination with model calculations such as those presented

here, various models for the interaction with the internal field and/or their parameters (here

the strength κ) can be distinguished. In particular for the shorter pulses investigated here,

we have found that a very wide range of transitions becomes available by the nonresonant,
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nonadiabatic pulses. Hence, time-dependent spectroscopy can be used to study spectral

regions which would be hard to access otherwise, e. g., by conventional (CW) spectroscopy

due to the inconvenient wavelengths [25]. In addition, the ultrafast alignment concept has

recently been shown to provide a method for direct interrogation of dynamics and coherence

spectroscopy in dissipative media [21, 22].

V. ADIABATIC ALIGNMENT CONTROL IN CRYSTAL FIELDS

In our previous reports [26, 27] we presented energy levels, wave functions, and (thermally

averaged) expectation values of alignment (and orientation) for different field parameters.

In particular, the latter were shown to depend not only on the field strength but also on the

relative directions of internal (crystal) and external (laser) fields. Both in the cooperative and

competitive case, intriguing flips of rotational density from horizontal (essentially unaligned)

states to vertical (highly aligned) states were observed upon increasing the field strengths.

They could be assigned to avoided crossings of energy levels En(κ; ∆ω) of same symmetry

states. Since those studies were conducted in a time-independent fashion, a dynamical

interpretation of the behavior at these crossings had to be restricted to the adiabatic limit

of infinitely long pulses.

In this section we address the case of pulses that are finite but long compared with typical

time scales of the dynamical processes under investigation. For molecular alignment in the

gas phase, the adiabatic regime is met when the pulse width is of the order of the rotational

period and above. Assuming that the ratio of Rabi coupling and rotational energy determines

the alignment degree during the pulse, Seideman [28] has found 〈cos2 θ〉max → 1−
√

1/∆ω

for light molecules at low temperatures. A nontrivial question is the change of these aspects

for rotational dynamics in a crystalline environment. First of all, we need to reformulate the

adiabatic condition with respect to librational motion and tunneling. For the crystal-field

strength κ = 25 chosen here, the tunneling frequency νt = ∆Et/h is roughly half the gas

phase rotational frequency, see Table I. Hence, it is expected that twice as long pulses are

needed to achieve fully adiabatic alignment. Since the tunneling frequency decreases as the

crystal-field strength κ increases, even longer pulses are required to reach the adiabatic limit

for κ = 50 with respect to tunneling dynamics. On the other hand, the opposite trend for

the κ–dependence of the crystal-field splitting between librational manifolds suggests that
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shorter pulses should suffice for an adiabatic condition with respect to libration, i. e., the

hybridization of crystal-field states into an eigenstate of the total alignment Hamiltonian.

We compare the long-pulse alignment of a gas-phase molecule to the D4h and D2h sym-

metric solid-state cases in Fig. 8. The topmost panel for the gas phase reproduces the known

result, that the pulse duration needs to satisfy the σ & 1 condition for completely adiabatic

evolution with only the |0, 0〉 state populated at the end of the pulse [37], and compares

well with Seideman’s formula given above. For shorter pulses, σ = 0.5, also the |2, 0〉 state

becomes populated and the post-pulse evolution is governed by oscillations with a period of

τp = 1/3. The lower panels in Fig. 8 show that the pulse widths applied for the gas phase, σ

= 0.5, 1, and 1.5, are too short to achieve adiabatic alignment in a crystal field with κ = 25.

Even for σ = 2, the thermally averaged alignment degree exhibits large-amplitude post-pulse

oscillation with a period of 1.75trot, see the D4h panel (b). This is due to coherently coupled

states |1〉 and |6〉 (τp = 2/∆E1,6 = 2/1.14 = 1.75) that are populated in nonthermal manner

at the end of the pulse. Hence, the rotational dynamics induced by a pulse with σ = 2 is

adiabatic with respect to librational excitation but nonadiabatic with respect to transitions

between the different tunneling states within a multiplet. Furthermore, inability to obtain

fully adiabatic evolution manifests itself in the signal by the lack of symmetry with respect

to τ = 0. However, the post-pulse populations approach the thermal Boltzmann factors wn

as σ increases. For instance, in the D2h panel (c) they are |C1|2 = 0.2501, 0.2970, 0.3093,

0.3158, 0.3206, and 0.3214 for σ = 0.5, 1, 1.5, 2, 3, and 4, respectively, for the lowest state

(w1 = 0.3216).

The remaining long-term modulation of the alignment signal is difficult to overcome,

although smoother curves can be achieved for longer pulses as seen in Fig. 8 for σ = 2–4. The

details, however, are not of main interest here. Actually, in a realistic experimental situation

dissipation and/or dephasing due to contact with the surrounding crystal should serve to

quench the remaining wave-packet coherence and corresponding oscillations in the signals.

Therefore, in the following, we concentrate on the question of reaching high alignment during

the pulse, which mainly depends on the intensity and polarization direction of the external

field. Another feature of gas phase adiabatic alignment is that the maximum degree is

achieved at the center of the pulse (τ = 0). This property is also found for the case

of matrix-isolated molecules, regardless of the pulse widths in the range of σ investigated

here. Other significant differences between gas phase and octahedrally trapped molecules are
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FIG. 8: (Color online) Near-adiabatic alignment 〈〈cos2 θ〉〉(τ) with ∆ω = 100 at T = 1 for (a) gas-

phase molecule, (b) in the D4h crystal field, and (c) in the D2h alignment field. For the solid-state

cases (b) and (c), κ = 25 and the pulse widths are (black) σ = 0.5 (solid), 1 (dashed), and 1.5

(dotted), and (blue) σ = 2 (solid), 3 (dashed), and 4 (dotted). For the gas phase (a), only σ =

0.5, 1, and 1.5 are applied.

apparent, however, depending on the alignment field direction with respect to the crystal. In

panel (b) of Fig. 8, the alignment cosine increases in a stepwise manner. The same feature,

although less markedly, is observed also in panel (c) for the D2h case. These originate from

the avoided crossings of the rotational energy levels in the combined (internal and external)

fields, as will be analyzed below.
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A. Cooperative fields

In this section we investigate the mechanism causing the stepwise progression of molecular

alignment in octahedral fields during the first half of the pulse. To this end, we compare

the signal in the cooperative case (D4h) with stationary dressed-state energies En(∆ω) of

Ref. [27]. Figure 9 presents a synopsis of the field intensity ∆ω = 0–100, avoided crossings

of the energy levels En, and transient plateaus of the alignment degree 〈〈cos2 θ〉〉 preceding

the peak of the pulse. As indicated by the arrows in that figure, there are essentially three

steps of enhancement: (1) The onset of alignment follows the initial mixing of |1〉 and |6〉
crystal-field states at ∆ω . 5 (τ . −2) resulting in the formation of the 1A1g-1A2u pair of

aligned states [27]. After this, the alignment is not enhanced but is subject to rather weak

Stueckelberg oscillations which are a characteristic feature of population dynamics following

nonadiabatic transitions. When the pulse intensity reaches the first avoided crossing at

∆ω ≈ 25 (2), two of the remaining four perpendicular states (the doubly degenerate 1Eu

state) flip along the field direction, and a shoulder feature is observed in the averaged signal.

The mechanism consists of mixing the (|3〉, |4〉) crystal-field states (Eu) with librationally

excited ones. The final increment (3) takes place after the pulse envelope has risen to the

half-maximum at ∆ω ≈ 50 (τ ≈ −1), i. e., exceeding the next avoided crossing region.

There, the last two states of the (initially populated) ground librational manifold, 2A1g and

1B1g, have turned into alignment, see also the inserted density plots of A1g states in Fig. 2.

The maximum degree of alignment increases with the pulse duration σ. The values are

between 0.78 and 0.88 for σ = 0.5–4, which is similar to the corresponding gas phase where

〈〈cos2 θ〉〉 = 0.88 for σ = 2. While only the |0, 0〉 state is significantly populated in the gas

phase at T = 1, in the crystal (κ = 25) all six states in the lowest librational manifold

contribute. Remembering that the alignment is generally reduced at higher temperatures

with wider population distributions [4, 9, 28, 37], 〈〈cos2 θ〉〉 ≈ 1−
√

πT /∆ω(3/T + 4)/8 for

T À 1 in the gas phase [28], the high degree of alignment here manifests the cooperative

nature of the interactions in the solid. While monotonic advancement of the alignment

degree is tantamount to adiabatic alignment in the gas phase, here it is shown to proceed

in a nonmonotonic way along the adiabatic states/levels. The remaining ripples around the

peak of the pulse that result from the near-adiabatic condition do not significantly alter the

alignment degree. High alignment (> 70%) pertains during a period of 2trot, that is, during
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FIG. 9: (Color online) Left panel: Turn-on of the alignment in the crystal (solid curve) and in the

gas phase (dotted curve) for σ = 2 pulse duration (dashed). Right panel: Adiabatic energy levels

(from Ref. [27], and scaled as in Table I) for 1–3A1g (circles), 1A2u (triangles), 1,2Eu (diamonds),

and 1,2B1g (squares) states in the D4h symmetry. The instantaneous pulse intensity should be

read from the right panel’s ∆ω axis. The enumerated arrows indicate the stepwise enhancement

of alignment and its connection to the field-induced avoided crossings.

33 ps for a B = 1 cm−1 molecule.

B. Competitive fields

Next, we investigate the alignment control for a competitive arrangement of the two

fields (D2h symmetry). Here the target direction is along a 〈110〉 axis which corresponds

to saddle points of the octahedral potential. Hence, the potential well induced by the laser

field must be large compared to the static crystal field. We know from Ref. [27] that the

required condition to turn the six populated states at T = 1 into alignment is ∆ω/κ & 2,

as the avoided crossings occur at ∆ω = 25–30 (for 2A1g) and ∆ω = 35–40 (for B2u) in the

κ = 25 crystal field. The other four states exhibit rotational density lobes 45◦ off the target

direction, and gradually become squeezed along the field direction as the pulse intensity

rises. With only two out of six states undergoing avoided crossings, there are no visible

plateaus but only slope changes in the rising alignment signal.

The effect of peak intensity on the alignment degree for the competitive (D2h) case and for
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TABLE II: Intensity dependence of the peak alignment degree 〈〈cos2 θ〉〉(τ = 0) for σ = 2 pulse

duration in the competitive (D2h symmetry) and cooperative case (D4h). Maximum degree of

alignment (τ 6= 0) is given in parentheses.

∆ω Gas phase D4h D2h

κ = 25 κ = 25 κ = 50

20 0.46 (0.46)

30 0.51 (0.51)

40 0.60 (0.60)

50 0.83 0.74 (0.76) 0.64 (0.66) 0.43 (0.43)

60 0.68 (0.70)

80 0.77 (0.77)

100 0.88 0.81 (0.87) 0.79 (0.81) 0.58 (0.59)

200 0.91 0.87 (0.90) 0.86 (0.88) 0.77 (0.80)

σ = 2 is presented in the last two columns of Table II. The pulses exceed the above-mentioned

condition of reaching the avoided crossings to a different degree. We apply the peak inten-

sities ∆ω = 20, 30, 40, 50, 60, 80, 100, and 200 in the crystal field with κ = 25. In addition,

we compute the alignment in a κ = 50 crystal for ∆ω = 50, 100, and 200 intensities. The

alignment degrees are comparable for (∆ω, κ) pairs (20,25)↔(50,50), (40,25)↔(100,50), and

(100,25)↔(200,50) as the ratios of the field strengths are approximately equal. The degree of

alignment reflects the intensity-dependent weighting of insensitive states against those prone

to alignment. All the components must be transformed, directly or via avoided crossings,

parallel to the field direction in order to achieve high alignment values. Equivalently, the

field-induced potential (Vα) must deform the crystal field (Vκ) such that no barrier exists in

the total potential with respect to reorientation of the density along the target direction.

Because the pulses with σ = 2 are not yet fully in the adiabatic limit, the remaining

nonadiabaticity gives rise to slight oscillations, and the maximum alignment can be instan-

taneously slightly larger than the value at τ = 0. In the κ = 25, D2h case, for example, the

maximum of 〈〈cos2 θ〉〉(∆ω = 200) is 0.88 instead of the peak value of 0.86. For the different

∆ω values 50, 100, and 200, the stronger crystal field reduces the alignment by 33%, 27%,

and 10% with respect to the weaker one. Comparison to the values in the cooperative (D4h)
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and gas-phase cases also included in Table II further clarifies the competitive effect. The

directional differences between the κ = 25 cases are 14%, 2%, and 1% for the same ∆ω’s

as above. The reduction with respect to the gas phase amounts to 23%, 10%, and 5%,

respectively. Thus the crystal-field effect is more pronounced for the low alignment-field

strengths.

VI. CONCLUSIONS

We have numerically investigated the alignment of a linear molecule in a cubic crystal,

where the trapping site of the molecule exhibits octahedral symmetry. This study serves to

complement the previous reports [26, 27], where we have assessed the problem without ex-

plicit treatment of the time dependence and explained the solid-state effects using adiabatic

field-dressed energy levels and corresponding librational wave functions only. Here, the align-

ment is obtained by intense nonresonant laser pulses which add an effective, time-dependent

anisotropic potential to the molecule–solid system. In order to distinguish whether nonadi-

abatic or adiabatic progression of alignment prevails, the pulse duration has to be related

to the time scales for tunneling and librational dynamics of the matrix-isolated molecules.

Long pulses approaching the adiabatic limit were used for obtaining high alignment degree

during the pulse. A sufficient condition for control purposes is σ = 1, i. e., the pulse width

is the rotational period of the free ground-state molecule. The corresponding alignment is

relatively stable, although it does not originate from strictly adiabatic progression due to

interfering tunneling states. By varying the polarization direction of the pulse with respect

to the crystallographic axes, we can switch between cooperative and competitive effects of

the superposed internal and external potentials. The alignment proceeds more gradually

in the competitive case, since the avoided crossings in the thermal average are of lower

importance. For both of the directions studied here, high alignment degrees close to the

gas-phase results can be achieved.

In contrast to the adiabatic case, pulses, that are short with respect to oscillation periods

of the lowest librational states, can be used to create nonstationary wave packets in the post-

pulse regime. This gives rise to highly oscillating alignment signals which can be understood

in terms of quantum beating of librational and other hindered-rotor states comprising the

wave packet. Therefore, we propose to perform Fourier transforms of the observed alignment
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modulation to analyze the energy level structure of a trapped molecule in a solid. To

access various regions of the spectrum, different compositions of the wave packet can be

controlled by varying the pulse parameters. The intensity and duration dictate to a large

extent the transition cycles leading to the final wave packet. Furthermore, the polarization

direction brings about different selection rules for the excitations, which can be used to select

completely different states with otherwise identical pulses.

We note that throughout this work the ensemble average is calculated using the parti-

tion function from the field-free energies, i. e., the Boltzmann weight factors are computed

from the crystal-field energies only. This is equivalent to assuming very long rotational

re-equilibration times of the ensemble. However, as the energy gaps between aligned and

perpendicular states become large in the external field, a thermalization during the pulse

would lead to a sharper rise of alignment than presented here, since it is no more dictated

by the avoided crossings. In addition, since the lattice is fixed against rearrangements of the

constituent atoms, the tabulated threshold intensity values in pursuing adiabatic alignment

should be considered as upper limits. While in the fixed lattice the time scales are a direct

result of the energy level structure of the molecule in the solid, thermal effects of the envi-

ronment need to be taken into account in the liquid phase. In computational studies it was

found that the time needed to achieve alignment was in the order of rotational diffusion,

as also stochastic rotational torque was generated by continuous collisions with the solvent

[38]. This time scale can be much shorter than what is required for adiabatic alignment in

the gas phase. However, fluctuations are much less important in cryogenic solids studied

here. Intrigued by the recent dense media applications reported [21, 22], it will be interesting

in our future work to proceed with molecules embedded in He droplets or bulk superfluid
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