
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
SeqAn An efficient, generic C++ library for sequence analysis
Andreas Döring*1, David Weese1, Tobias Rausch1,2 and Knut Reinert

Address: 1Algorithmische Bioinformatik, Institut für Informatik, Takustr. 9, 14195 Berlin, Germany and 2International Max Planck Research
School for Computational Biology and Scientific Computing, Ihnestr. 63 – 73, 14195 Berlin, Germany

Email: Andreas Döring* - doering@inf.fu-berlin.de; David Weese - weese@inf.fu-berlin.de; Tobias Rausch - rausch@inf.fu-berlin.de;
Knut Reinert - reinert@inf.fu-berlin.de

* Corresponding author

Abstract
Background: The use of novel algorithmic techniques is pivotal to many important problems in
life science. For example the sequencing of the human genome [1] would not have been possible
without advanced assembly algorithms. However, owing to the high speed of technological
progress and the urgent need for bioinformatics tools, there is a widening gap between state-of-
the-art algorithmic techniques and the actual algorithmic components of tools that are in
widespread use.

Results: To remedy this trend we propose the use of SeqAn, a library of efficient data types and
algorithms for sequence analysis in computational biology. SeqAn comprises implementations of
existing, practical state-of-the-art algorithmic components to provide a sound basis for algorithm
testing and development. In this paper we describe the design and content of SeqAn and
demonstrate its use by giving two examples. In the first example we show an application of SeqAn
as an experimental platform by comparing different exact string matching algorithms. The second
example is a simple version of the well-known MUMmer tool rewritten in SeqAn. Results indicate
that our implementation is very efficient and versatile to use.

Conclusion: We anticipate that SeqAn greatly simplifies the rapid development of new
bioinformatics tools by providing a collection of readily usable, well-designed algorithmic
components which are fundamental for the field of sequence analysis. This leverages not only the
implementation of new algorithms, but also enables a sound analysis and comparison of existing
algorithms.

Background
Biological sequence analysis is the heart of computational
biology. Many successful algorithms (e.g., Myers' bit-vec-
tor search algorithm [2], BLAST [3]) and data structures
(e.g., suffix arrays [4], q-gram based string indices,
sequence profiles) have been developed over the last
twenty years. The assemblies of large eucaryotic genomes
like Drosophila melanogaster [5], human [1], and mouse [6]

are prime examples where algorithm research was success-
fully applied to a biological problem. However, with
entire genomes at hand, large scale analysis algorithms
that require considerable computing resources are becom-
ing increasingly important (e.g., Lagan [7], MUMmer [8],
MGA [9], Mauve [10]). Although these tools use slightly
different algorithms, nearly all of them require some basic
algorithmic components, like suffix arrays, string

Published: 9 January 2008

BMC Bioinformatics 2008, 9:11 doi:10.1186/1471-2105-9-11

Received: 21 August 2007
Accepted: 9 January 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/11

© 2008 Döring et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18184432
http://www.biomedcentral.com/1471-2105/9/11
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2008, 9:11 http://www.biomedcentral.com/1471-2105/9/11
searches, alignments, or the chaining of fragments. This is
illustrated in Fig. 1 for the case of genome comparison
tools. However, it is non-trivial to obtain efficient imple-
mentations of these components. Therefore, suboptimal
data types and ad-hoc algorithms are frequently employed
in practice, or one has to resort to stringing standalone
tools together. Both approaches may be suitable at times,
but it would clearly be much more desirable to use an
integrated library of state-of-the-art components that can
be combined in various ways, either to develop new appli-
cations or to compare alternative implementations. In this
article we propose SeqAn, a novel C++ library of efficient
data types and algorithms for sequence analysis in com-
putational biology.

In other fields, software libraries have greatly advanced
the transfer of algorithmic knowledge to the tool pro-
gramming process. Two of the best known examples are
the LEDA library [11] for algorithms on graphs and effi-
cient data types and the CGAL library [12,13] for compu-
tational geometry. In bioinformatics, a comparable
library is still missing although there is a need for inte-
grated implementations of algorithms for aligning
sequences, computing substring indices in primary and
secondary memory, or filter algorithms. In addition, a
library that adheres to the principles of algorithm engi-
neering is essential as a means to test and compare exist-
ing tools as well as to evaluate the results from algorithmic
research. The lack of such a library becomes evident when
reviewing the related work of the past years.

A few C++ libraries with sequence analysis features have
already been developed, including Bio++ [14], Libcov
[15], the Bioinformatics Template Library (BTL) [16], the
NCBI C++ Toolkit [17], or the Sequence Class Library
(SCL) [18]. Bio++ is the most comprehensive library pro-
viding re-usable components for phylogenetics, molecu-
lar evolution, and population genetics. The sequence
analysis part is, however, limited to basic import/export
capabilities and string manipulations. In contrast to
SeqAn, which is based upon the generic programming
paradigm, Bio++ is a purely object-oriented library, favor-
ing ease of development over performance and scalability.
Libcov focusses on phylogenetics and clustering algo-
rithms. It offers only basic data structures to handle sets of
sequences. Alignment algorithms, database indices, or
scoring matrices are not provided. The BTL emphasizes
basic mathematical algorithms and data structures. It cur-
rently comprises graph classes and linear algebra algo-
rithms but only a single sequence alignment algorithm,
Needleman-Wunsch [19] with cubic running time. The
NCBI C++ Toolkit also offers, beside other things, some
sequence analysis functionality, e.g. alignment algo-
rithms. The SCL, providing some basic sequence analysis
components, is to our knowledge not activly developed
anymore.

Besides these C++ libraries, we are aware of alternative
approaches like BioPerl [20] or BioJava [21]. The main
purpose of BioPerl is to ease the development of sequence
analysis pipelines by providing an interface to already

Genome comparison tools and their algorithmic componentsFigure 1
Genome comparison tools and their algorithmic components.
Page 2 of 9
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:11 http://www.biomedcentral.com/1471-2105/9/11
existing tools. BioJava on the other hand is suited for
developing new sequence analysis tools by providing
many relevant data structures and algorithms and as such
is from the overall goals perhaps closest to SeqAn. Some
algorithms are shared by both libraries (like Needleman-
Wunsch and Smith Waterman). A closer inspection, how-
ever, reveals that BioJava does only offer a small part of
SeqAn's functionality (no indices, no algorithms for de
novo motif search, no algorithms for multiple alignment,
etc.). Hence both libraries are in this sense complemen-
tary. In addition, we show in the result section that our
implementations are for standard alignment problems by
a factor of 6 to 350 times faster and by a factor of 600 to
1500 times more space efficient.

The exposition is structured as follows: To emphasize the
usefulness of SeqAn, this article centers around the con-
tents of the library, described in Section and the practical
application of SeqAn, exemplified in Section. In the fol-
lowing section we start by giving a brief outline of the
design principles SeqAn is based on.

Implementation
Library Design
For developing the basic design, SeqAn has gone through
an extensive conceptual phase in which we evaluated
many designs and prototypic implementations. SeqAn
has now a generic programming design that guarantees
high performance, generality, extensibility, simplicity,
and easy integration with other libraries. This design is
based on four design principles which we will describe
now.

Generic Programming
SeqAn adopts the generic programming paradigm that
proved to be a key technique for achieving high perform-
ance algorithms in the C++ standard library [22]. Generic
programming refers to a special style of programming
where concrete types are substituted by exchangeable tem-
plate types. Hence, classes and algorithms are written only
once, but can be applied to different data types.

Global Function Interfaces
SeqAn uses global functions instead of member functions
to access objects (we act here on an advice of [23], see Sec-
tion 6.10.2.). This strategy improves the flexibility and the
scalability of our library, since global functions, unlike
member functions, can be added to a program at any time
and without changing the existing code. Moreover, global
function interfaces enable us to incorporate the C++ built-
in types and handle them like user defined types. It is even
possible to adapt arbitrary interfaces, i.e. of classes that are
implemented in external libraries, to a common interface
by using small global functions called 'shims' (Chapter 20
in [24]). Algorithms that access objects only via global

functions can therefore be applied to a great variety of
types, including built-in types and external classes.

Traits
Generic algorithms usually have to know certain types
that correspond to their arguments: An algorithm on
strings may need to know which type of characters are
stored in the string, or what kind of iterator can be used to
browse it. SeqAn uses type traits [25] for that purpose. In
C++, trait classes are implemented as class templates that
map types or constants given by template arguments to
other types but also other C++ enties like constants, func-
tions, or objects at compile time. Most of the advantages
we already stated for global functions also apply to traits,
i.e. new traits and new specializations of already existing
traits can be added without changing other parts of the
library.

Template Argument Subclassing
SeqAn uses a special kind of hierarchical structure that we
call 'template argument subclassing', which means that
different specializations of a given class template are spec-
ified by template arguments. For example, String<Com-
pressed> is a subclass of String in the sense that all
functions and traits which are applicable to String can also
be applied to String<Compressed>, while it is possible to
overload some functions especially for String<Com-
pressed>. The rules of C++ overload resolution guarantee
that the compiler always applies the most specific variant
out of all existing implementations when an algorithm or
trait has been called. This approach resembles class deri-
vation in standard object-oriented programming, but it is
often faster, because it does not require a type conversion
for a subclass calling a function that is already defined for
the base class, and since the actual type of the object used
in a function is therefore already known at compile time,
it is not necessary to detect it at run time using virtual
functions. Non-virtual functions have the advantage that
C++ compilers can use function inlining to save their
overhead completely. Template argument subclassing
enables us both to specialize functions and to delegate
tasks soundly to base classes while still maintaining static
binding.

Design Goals
These design principles support our design goals in the
following way:

• Performance: The library produces code that is compet-
itive with manually optimized programs. Template argu-
ment subclassing makes it possible to plug in optimized
specializations for algorithms whenever needed. Our
generic programming design also speeds up the code in
avoiding unnecessary virtual function calls.
Page 3 of 9
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:11 http://www.biomedcentral.com/1471-2105/9/11
• Generality: All parts of the library are as flexible as pos-
sible. Algorithms can be applied to various data types and
new types can be added if necessary. For example, generic
alignment algorithms in SeqAn work on strings for arbi-
trary alphabets. However, specialized implementations
that make use of certain attributes of the alphabet can still
be developed using template argument subclassing.

• Integration: SeqAn components are designed to fulfill
the requirements specified in the C++ standard. In addi-
tion, SeqAn easily interacts with other libraries because
the global interface can be expanded. Hence, algorithms
and classes of other libraries are at hand.

• Extensibility: The open-closed principle ('Be open for
extension but closed for modifications!') is satisfied in so
far as it is possible to extend the library by simply adding
new code. SeqAn has this feature because it relies on
stand-alone global functions and traits that can be added
at any time without changing the existing code.

• Simplicity: While a pure object-oriented library may be
more familiar to some users, SeqAn is still simple enough
to be used even by developers with average skills in C++.

Library Contents
SeqAn is a software library that is supposed to cover all
areas of sequence analysis. Fig. 2 gives an overview of the
contents of the library in the current state.

Sequences
The storage and manipulation of sequences is essential for
all algorithms in the field of sequence analysis. In SeqAn,

sequences are represented as strings of characters over var-
ious alphabets. Multiple string classes for different settings
are available: Large sequences can be stored in secondary
memory using external strings, bit-packed strings can be
used to take advantage of small alphabets, or strings allo-
cated on the stack can be used to guarantee fast access.
String modifiers can be used to implement distinct views
on a given sequence without copying it. A string segment,
for instance, is a string modifier used to get access to an
infix, suffix, or prefix of a given sequence.

Alignments
Alignments require the insertion of gaps into sequences.
SeqAn does not actually insert these gaps directly into the
sequence but treats them separately. The benefit is two-
fold: A single sequence can be used in multiple align-
ments simultaneously and the actual alphabet of the
string must not include a special gap character. SeqAn
offers both pairwise and multiple sequence alignment
algorithms. Algorithms can be configured for different
scoring schemes and different treatments of sequence
ends (e.g, ends free-space alignments). In the pairwise
case, local and global alignment algorithm are available.
Besides the classical Needleman-Wunsch algorithm [19],
more sophisticated algorithms are available, including an
affine gap cost alignment [26] and Myer's bit vector algo-
rithm [2]. Moreover, SeqAn offers efficient algorithms to
chain alignment fragments [27,28]. We are also currently
integrating code for motif finding in multiple sequences.

Indices
The enhanced suffix array (ESA) [29] is probably the most
fundamental indexing data structure in bioinformatics

SeqAn Contents OverviewFigure 2
SeqAn Contents Overview.
Page 4 of 9
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:11 http://www.biomedcentral.com/1471-2105/9/11
with various applications, e.g., finding maximal repeats,
super maximal repeats, or maximal unique matches in
sequences. An enhanced suffix array is a normal suffix
array extended with an additional lcp table that stores the
length of the longest common prefix of adjacent suffixes
in the suffix array. SeqAn offers an ESA that can be build
up in primary or in secondary memory, depending on the
sequence size. The user has two choices to access the ESA,
either as a regular suffix array or as a suffix tree. The later
view on an ESA is realized using the concept of iterators
that simulate a tree traversal. A more space and time effi-
cient data structure for top-down traversals through only
parts of the suffix tree is the lazy suffix tree [30] which is
also implemented in SeqAn. Besides the sophisticated
ESA, simpler indices are available, including basic hash
tables like gapped- and ungapped q-gram indices (for
their use see [31-33]).

Searching
Flexible pattern matching algorithms are fundamental to
sequence analysis. Exact and approximate string matching
algorithms are provided. For the exact string matching
task, SeqAn offers the algorithms Shift-And, Shift-Or,
Horspool, Backward Oracle Matching, and Backward
Nondeterministic Dawg Machine [34]. For searching mul-
tiple patterns, SeqAn currently supports the Multiple
Shift-And, the Set Horspool, and the Aho-Corasick algo-
rithm [34]. Myer's bit vector algorithm [2] can be used for
approximate string matching. Note that SeqAn's index
data structures can naturally be used to search for strings
as well.

Graphs
Graphs are increasingly important to a number of bioin-
formatics problems. Prime examples are string matching
algorithms (e.g., Aho-Corasick, Backward Oracle Match-
ing [34]), phylogenetic algorithms (e.g., upgma, neighbor
joining tree [35]), or alignment representations [36].
Hence, we decided to include our own graph type imple-
mentation, including directed graphs, undirected graphs,
trees, automata, alignment graphs, tries, wordgraphs, and
oracles. Graph algorithms currently comprise breath-first
search, depth-first search, topological sort, strongly-con-
nected components, minimum spanning trees (e.g.,
Prim's algorithm, Kruskal's algorithm), shortest path algo-
rithms (e.g., Bellman-Ford, Dijkstra, Floyd-Warshall),
transitive closure, and the Ford-Fulkerson maximum flow
algorithm [37]. Trees are heavily used in clustering algo-
rithms and as guide trees during a progressive multiple
sequence alignment. Alignment graphs are used to imple-
ment a heuristic multiple sequence alignment algorithm,
which is similar to T-Coffee [38] but makes use of seg-
ments and a sophisticated refinement algorithm [39] to
enable large-scale sequence alignments.

Biologicals
Besides the fundamental alphabets for biological pur-
poses, like DNA or amino acids, SeqAn offers different
scoring schemes for evaluating the distance of two charac-
ters, e.g., PAM, and BLOSUM. SeqAn also supports several
file formats that are common in the field of bioinformat-
ics, e.g., FASTA, EMBL, and genbank. Is is possible the
access (e.g. to search) sequence data stored in such file for-
mats without loading the whole data into memory. The
integration of external tools (e.g., BLAST) and the parsing
of metainformation is ongoing work.

Results
We anticipate two different user groups for SeqAn. The
first group is the bioinformatics practitioner with some
programming knowledge who wants to quickly prototype
efficient tools for analyzing genomic or protein sequences
using SeqAn. The other prototypic user is the algorithmi-
cist who is proficient in programming in SeqAn and wants
to test and compare an algorithmic component for a spe-
cific well-defined algorithmic problem.

The next examples will demonstrate how things could be
done in SeqAn. We would like to point out the very good
performance of SeqAn as well as the fact that the necessary
code is small, easy to understand, generic, and greatly
profits from using an integrated algorithmic library.

Example: String Matching
We start with a small example of how SeqAn could be
used as an experimental platform to test various imple-
mentations to solve the same algorithmic problem. In Fig.
3 we show the results of a runtime comparison between
three string matching algorithms implemented in SeqAn
and the find method for strings from the standard tem-
plate library. Different pattern lengths and alphabet sizes
were used. It turned out that there is always string match-
ing routines in SeqAn that is faster than standard library
code. This demonstrates that the coding standard used in
SeqAn is competitive to a widely used STL implementa-
tion. Note that none of the tested algorithms performs the
best for all settings. A library like SeqAn makes it possible
to switch between different algorithms easily, so users can
apply the best algorithm depending on the requirements.
Moreover, SeqAn can act as an experimental platform to
compare new string matching methods with the set of
well known algorithms present in SeqAn.

Example: Global Alignments
Now we switch to a more biologically motivated example:
Computing a global alignment between two given DNA
sequences with minimal edit distance. Alignment prob-
lems are very popular in the biological context. Even
libraries with little sequence analysis content support one
or more relevant functions that are mostly based on the
Page 5 of 9
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:11 http://www.biomedcentral.com/1471-2105/9/11
dynamic programming approach by Needleman and
Wunsch [19], which is certainly one of the most popular
algorithms in bioinformatics. Gotoh's algorithm [26]
extends it by affine gap cost models. Some libraries also
support Hirschberg's algorithm [40], another well-known
alignment method that takes only linear space.

Table 1 lists time and space requirements for aligning the
genomes of two human influenca viruses. The results
show that SeqAn can compete with other libraries regarde-
less of scoring scheme and gap cost model. In the case of
edit distance, SeqAn actually beats all competitors with a
special algorithm that combines Hirschberg's algorithm
with Myers' bitvector algorithm [2] to compute an opti-
mal alignment one order of magnitude faster than all
other programs we observed.

Example: MUMmer
In this example, we want to convince the reader that pro-
gramming using SeqAn is not difficult and that SeqAn is
simple enough to meet the needs of the first user group
while it is efficient and generic enough to allow expert
users to use SeqAn as an experimental platform for testing
algorithmic components.

We choose as an example the well-known MUMmer [8]
tool and show in the listing (see Additional File 1) an
implementation of a (simplified) version of the tool
which reads a number of sequences and computes all
maximal unique matches (MUMs) of length at least 20.

Runtimes of String Matching AlgorithmsFigure 3
Runtimes of String Matching Algorithms. We compared three exact string matching algorithms from SeqAn with the
member function basic_string::find of the standard library, as it was implemented for Microsoft Visual C++. The left figure
shows the runtimes (in ms) for searching a DNA sequence (human chromosome 21), the right figure for searching a proteine
database. The search pattern was taken randomly from the sequence. The figures show the average time needed to find all
occurrences of patterns of a given length.

Table 1: Runtimes and internal space requirements for
computing sequence alignments. The table shows average time
and space requirements for aligning the genomes of two human
influenca viruses, each of length about 15.6 kbp. Runtimes
printed in bold face show for each library the time of the fastest
algorithm for computing an alignment using edit distance.

linear gap costs affine gap costs
time (s) space (MB) time (s) space (MB)

SeqAn
Needleman-Wunsch 3.3 236 6.3 236
Hirschberg 14.7 4
Myers-Hirschberg 0.2 3

NCBI C++ toolkit
Needleman-Wunsch 4.0 245
Hirschberg 6.6 14

Bio++ 13.4 2100 28.0 ≈6000
BTL 96162 933
BioJava 76 2000 93 ≈6000
Page 6 of 9
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:11 http://www.biomedcentral.com/1471-2105/9/11
For the sake of exposition we only show code pieces that
are illustrative for SeqAn.

A MUM of a set of sequences is a subsequence that occurs
exactly once in each sequence and that is not part of any
longer such subsequence. To find MUMs MUMmer builds
a suffix tree [41] of a reference sequence and streams one
or more query sequences against it. The downside of des-
ignating one sequence as the reference is that matches are
only unique in the reference sequence but not necessarily
in the query sequence. To guarantee the uniqueness of a
match in all sequences it is necessary to construct a gener-
alized suffix tree. A generalized suffx tree is a suffix tree of
the concatenated sequences seperated by unique charac-
ters [42]. It is the primary index data structure in SeqAn
and based on an enhanced suffix array [43]. In the first
part of the example (Additional File 1: Listing 1) we build
a string index for a set of strings consisting of characters
from the Dna5 alphabet, which is an extension of the Dna
alphabet including the 'N' character. SeqAn supports a
number of different alphabets of biological relevance
(e.g., Dna, Amino Acid, or compressed amino acid alpha-
bets). All these alphabets enable us to store sequences effi-
ciently because of the reduced number of characters
compared to normal text. The index is first resized to the
appropriate number of sequences. Subsequently, the
sequences are imported using the Fasta read function and
simultaneously, these sequences are added to the index,
which is our enhanced suffix array.

SeqAn provides iterators that make it possible to traverse
the enhanced suffix array like a suffix tree in a bottom-up
fashion. This is illustrated in Additional File 1: Listing 2.
The iterator it visits each node u in the generalized suffix
tree. To find a MUM u, it suffices to test whether u occurs
exactly 2 times (line 16), at most once in each sequence
(line 18), and cannot be extended to the left (line 19) (see
Chapt. 3.4, [43]). If the length of the representative string
of u is also at least 20 (line 17) we report the position and
length of the MUM u (lines 26–31). Assuming a compu-
tational biologist is not all too interested in these algorith-
mic details but in performance and a simple interface,
SeqAn provides specialized iterators to get all MUMs
(Additional File 1: Listing 3), maximal or supermaximal
repeats, or MultiMEMs [43]). Since performance is a cru-
cial issue in any kind of sequence analysis task, we com-
pared our code example with the latest MUMmer release
[8] and Multimat of the MGA distribution [9]. To the best
of our knowledge these are the only tools to find MUMs.
None of the libraries introduced in chapter support gener-
alized suffix trees or even algorithms on suffix trees, like
those to find MUMs. Our testset consisted of various bac-
teria strains and vertebrate chromosomes.

Table 2 readily reveals that MUMmer is about twice as fast
as SeqAn on the 2 sequence datasets and that it uses only
half of the space. This is, however, not suprising because
MUMmer's index represents only one sequence whereas
the generalized suffix tree implemented in SeqAn builds

Table 2: Runtimes and internal space requirements for finding MUMs. We compared MUMmer 3.19 [8], MGA [9], and SeqAn for
different DNA sequences on a 3.2 GHz Intel Xeon computer with 3 GB of internal memory running Linux. Because MUMmer finds
MUMs of not more than two sequences, its results on the Chlamydia and Escherichia coli strains are left empty. For the last dataset,
we used SeqAn's external memory data strutures to limit the internal memory consumption.

Species MUMer MGA SeqAn
size (Mbp) time (m:s) space (MB) time (m:s) space (MB) time (m:s) space (MB)

C. trachomatis D/UW-3/CX 1.043
C. muridarum Nigg 1.073 - - 0:06 33.8 0:04 31.6
C. trachomatis A/HAR-13 1.044

E. coli K12 4.640
E. coli O157:H7 str. Sakai 5.498
E. coli CFT073 5.231 - - 105:40 353.5 0:58 304.6
E. coli UTI89 5.066
E. coli 536 4.939
E. coli APEC O1 5.082

H. sapiens (chr. 21) 46.94 2:25 568 4:44 1188 4:06 1307
M. musculus (chr. 16) 98.25

H. sapiens (chr. 16) 98.25 2:55 1362 18:48 1500 5:38 1627
P. troglodytes (chr. 16) 88.83

external string

H. sapiens (chr. 1) 247.2 insufficient memory insufficient memory 66:20 510
M. musculus (chr. 1) 197.1
Page 7 of 9
(page number not for citation purposes)

BMC Bioinformatics 2008, 9:11 http://www.biomedcentral.com/1471-2105/9/11
an index over all sequences. But in contrast to SeqAn and
MGA, MUMmer is not able to find real MUMs between
more than 2 sequences. Similar to SeqAn, MGA also con-
structs a generalized suffix tree of all sequences and its
memory consumption is approximately equal to SeqAn's.
However, SeqAn outperforms MGA on all datasets and
surprisingly, MGA even takes more than 1 hour on the E.
coli strains.

Index data structures of whole genomes easily reach 10–
30 GB, so they must rely on external memory. SeqAn pro-
vides such data structures. They can be used by simply
exchanging the standard string of SeqAn by an external
memory string in order to construct the generalized suffix
tree in external memory. We did this for the last row of
Table 1 and simply replaced Dna5String by String<Dna5,
External<>> in the code example. This reduces the main
memory space requirements of the algorithm at the
expense of speed. However, this makes it possible to con-
struct generalized suffix trees for sequences of nearly arbi-
trary length. As can be seen in Table 1, these external
strings enable SeqAn to handle long sequences where
MUMmer and MGA simply run out of memory.

Conclusion
We presented a new software library with an efficient and
generic design that addresses a wide range of problems in
sequence analysis. SeqAn is under active development
and we hope that it will become one of the standard plat-
forms for algorithmic engineering at the interface of strin-
gology, algorithm design and computational biology.
Besides the planned extensions mentioned in Section, we
are working on integrating external libraries and plan to
intensify our collaborations with other research groups.

Availability and requirements
SeqAn is freely distributed under the GNU Lesser General
Public Licence (LGPL), both for academic and non-aca-
demic use. The library and its documentation can be
downloaded from http://www.seqan.de. All parts of the
library are tested on Windows with Microsoft Visual Stu-
dio 2003 and 2005 and on Linux with G++ compilers ver-
sion 3.0 and above.

Competing interests
The author(s) declares that there are no competing inter-
ests.

Authors' contributions
AD worked out the overall design of the library and imple-
mented a large part of the kernel functionality. DW took
responsibility mainly for the index data structures and the
pipelining in SeqAn. The work of TR includes everything
in the library that has to do with graphs. Programming
SeqAn was team work, so all three programmers (AD,

DW, and TR) left tracks in almost every part of the library.
KR supervised the project. All authors participated equally
in composing this manuscript.

Additional material

Acknowledgements
We would like to acknowledge all students of the BSc and MSc program in
bioinformatics at the FU Berlin who have contributed to SeqAn so far.
Amongst others those are most notably Stephan Aiche, Anne-Katrin Emde,
Ji-Hyun Lim, and Henrik Wöhrle.

References
1. Venter JC, Reinert K, et al.: The Sequence of the Human

Genome. Science 2001, 291:1145-1434.
2. Myers EW: A fast bit-vector algorithm for approximate string

matching based on dynamic programming. Journal of the ACM
1999, 46(3):395-415.

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. Journal of Molecular Biology 1990,
215:403-410.

4. Manber U, Myers E: Suffix arrays: a new method for on-line
string searches. In SODA'90: Proceedings of the first annual ACM-
SIAM symposium on Discrete algorithms Society for Industrial and
Applied Mathematics; 1990:319-327.

5. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ,
Kravitz SA, Mobarry CM, Reinert KHJ, Remington KA, Anson EL,
Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley
EM, Brandon RC, Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan
M, Zhang Q, Zheng X, Rubin GM, Adams MD, Venter JC: A Whole-
Genome Assembly of Drosophila. Science 2000, 287:2196-2204.

6. Mural RJ, Adams MD, Myers GW, Reinert K, et al.: A Comparison
of Whole-Genome Shotgun-Derived Mouse Chromosome
16 and the Human Genome. Science 2002, 296:1661-1671.

7. Brudno M, Do C, Cooper GM, Kim MF, Davydov E, Program NCS,
Green ED, Sidow A, Batzoglou S: LAGAN and Multi-LAGAN:
Efficient Tools for Large-Scale Multiple Alignment of
Genomic DNA. Genome Research 2003, 13(4):721-731.

8. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu
C, Salzberg SL: Versatile and open software for comparing
large genomes. Genome Biology 2004, 5(2):R12.

9. Höhl M, Kurtz S, Ohlebusch E: Efficient multiple genome align-
ment. ISMB (Supplement of Bioinformatics) 2002:312-320.

10. Darling A, Mau B, Blattner F, Perna N: Mauve: Multiple Alignment
of Conserved Genomic Sequence with Rearrangements.
Genome Research 2004, 14:1394-1403.

11. Mehlhorn K, Näher S: The LEDA Platform of Combinatorial and Geomet-
ric Computing Cambridge University Press; 1999.

12. Overmars MH: Designing the Computational Geometry Algo-
rithms Library CGAL. Proceedings Workshop on Applied Computa-
tional Geometry 1996.

13. Fabri A, Giezeman GJ, Kettner L, Schirra S, Schönherr S: The CGAL
Kernel: A Basis for Geometric Computation. WACG: 1st Work-
shop on Applied Computational Geometry: Towards Geometric Engineering,
WACG 1996 [http://citeseer.ist.psu.edu/fabri96cgal.html]. LNCS

14. Dutheil J, Gaillard S, Bazin E, Glemin S, Ranwez V, Galtier N, Belkhir
K: Bio++: a set of C++ libraries for sequence analysis, phylo-
genetics, molecular evolution and population genetics. BMC
Bioinformatics 2006, 7:188.

Additional file 1
Listings. The listings show C++ code that uses SeqAn to implement a sim-
plified version of the well-known MUMmer tool [8].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-11-S1.PDF]
Page 8 of 9
(page number not for citation purposes)

http://www.seqan.de
http://www.biomedcentral.com/content/supplementary/1471-2105-9-11-S1.PDF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10731133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12040188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12040188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12040188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14759262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14759262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231754
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15231754
http://citeseer.ist.psu.edu/fabri96cgal.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16594991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16594991

BMC Bioinformatics 2008, 9:11 http://www.biomedcentral.com/1471-2105/9/11
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

15. Butt D, Roger AJ, Blouin C: libcov: A C++ bioinformatic library
to manipulate protein structures, sequence alignments and
phylogeny. BMC Bioinformatics 2005, 6:138.

16. Pitt WR, Williams MA, Steven M, Sweeney B, Bleasby AJ, Moss DS:
The Bioinformatics Template Library – generic components
for biocomputing. Bioinformatics 2001, 17(8):729-737.

17. Vakatov D, Siyan K, Ostell J, editors: The NCBI C++ Toolkit [Internet]
2003 [http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit].
National Library of Medicine, National Center for Biotechnology
Information, Bethesda (MD)

18. Vahrson W, Hermann K, Kleffe J, Wittig B: Object-oriented
sequence analysis: SCL-a C++ class library. Bioinformatics 1996,
12(2):119-127.

19. Needleman SB, Wunsch CD: A general method applicable to
the search for similarities in the amino acid sequence of two
proteins. J Molecular Biol 1970, 48:443-453.

20. Stajich J, Block D, Boulez K, Brenner S, Chervitz S, Dagdigian C, Fuel-
len G, Gilbert J, Korf I, Lapp H, Lehvaslaiho H, Matsalla C, Mungall C,
Osborne B, Pocock M, Schattner P, Senger M, Stein L, Stupka E,
Wilkinson M, Birney E: The Bioperl toolkit: Perl modules for
the life sciences. 2002.

21. Pocock M, Down T, Hubbard T: BioJava: Open Source Compo-
nents for Bioinformatics. ACM SIGBIO Newsletter 2000,
20(2):10-12.

22. Austern MH: Generic Programming and the STL Addison Wesley; 1998.
23. Czarnecki K, Eisenecker UW: Generative Programming. Methods, Tools,

and Applications Addison Wesley; 2000.
24. Wilson M: Imperfect C++. Practical Solutions for Real-Life Programming

Addison Wesley; 2004.
25. Vandevoorde D, Josuttis NM: C++ Templates. The Complete Guide

Addison Wesley; 2003.
26. Gotoh O: An improved algorithm for matching biological

sequences. J Mol Biol 1982, 162(3):705-708.
27. Abouelhoda M, Ohlebusch E: Chaining methods revisited. Pro-

ceedings of the 14th Annual Symposium on Combinatorial pattern match-
ing (CPM) 2003 2003:1-16.

28. Myers G, Miller W: Chaining Multiple-Alignment Fragments in
Sub-Quadratic Time. SODA: ACM-SIAM Symposium on Discrete
Algorithms (A Conference on Theoretical and Experimental Analysis of Dis-
crete Algorithms) 1995 [http://citeseer.ist.psu.edu/
miller95chaining.html].

29. Abouelhoda MI, Ohlebusch E, Kurtz S: Optimal Exact String
Matching Based on Suffix Arrays. Proceedings of the Ninth Inter-
national Symposium on String Processing and Information Retrieval, Lecture
Notes in Computer Science 2476 2002:31-43 [http://www.zbh.uni-ham
burg.de/staff/kurtz/papers/AboOhlKur2002.pdf]. Springer-Verlag

30. Giegerich R, Kurtz S, Stoye J: Efficient Implementation of Lazy
Suffix Trees. Software: Practice and Experience 2003,
33(11):1035-1049.

31. Burkhardt S, Crauser A, Ferragina P, Lenhof HP, Rivals E, Vingron M:
q-gram based database searching using suffix arrays. Proceed-
ings of the third Annual International Conference on Computational Molec-
ular Biology (RECOMB-99) 1999:77-83.

32. Burkhardt S, Kärkkäinen J: Better Filtering with Gapped q-
grams. In CPM'01: Proceedings of the 12th Annual Symposium on Com-
binatorial Pattern Matching London, UK: Springer-Verlag; 2001:73-85.

33. Li M, Ma B, Kisman D, Tromp J: PatternHunter II: Highly sensi-
tive and fast homology search. Genome Informatics 2003,
14:164-175.

34. Navarro G, Raffinot M: Flexible Pattern Matching in Strings CUP; 2002.
35. Saitou N, Nei M: The Neighbor-Joining method: a new

method, for reconstructing phylogenetic trees. Mol Biol Evol
1987, 4:406-425.

36. Kececioglu J: The maximum weight trace problem in multiple
sequence alignment. In Proc 4-th Symp Combinatorial Pattern Match-
ing, no 684 in Lecture Notes in Computer Science Springer-Verlag;
1993:106-119.

37. Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to Algo-
rithms Cambridge, MA: MIT Press; 2001.

38. Notredame C, Higgins D, Heringa J: T-Coffee: A Novel Method
for Fast and Accurate Multiple Sequence Alignment. Journal
of Molecular Biology 2000, 302:205-217.

39. Halpern A, Huson D, Reinert K: Segment Match refinment and
applications. Proceedings of the 2nd Workshop on Algorithms Bioinfor-
matics (WABI-02) 2002:126-139.

40. Hirschberg DS: A linear space algorithm for computing maxi-
mal common subsequences. Volume 18. Issue 6 ACM Press;
1975:341-343.

41. Weiner P: Linear pattern matching algorithms. Proceedings of
the 14th IEEE Symposium on Switching and Automata Theory 1973:1-11.

42. Bieganski P, Riedl J, Carlis J: Generalized Suffix Trees for Biolog-
ical Sequence Data: Applications and Implementation. Twen-
tyseventh Annual Hawaii International Conference on System Sciences
1994.

43. Abouelhoda M, Kurtz S, Ohlebusch E: Replacing Suffix Trees with
Enhanced Suffix Arrays. Journal of Discrete Algorithms 2004,
2:53-86 [http://www.zbh.uni-hamburg.de/staff/kurtz/papers/
AboKurOhl2004.pdf].
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15938750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524374
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7166760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7166760
http://citeseer.ist.psu.edu/miller95chaining.html
http://citeseer.ist.psu.edu/miller95chaining.html
http://www.zbh.uni-hamburg.de/staff/kurtz/papers/AboOhlKur2002.pdf
http://www.zbh.uni-hamburg.de/staff/kurtz/papers/AboOhlKur2002.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15706531
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10964570
http://www.zbh.uni-hamburg.de/staff/kurtz/papers/AboKurOhl2004.pdf
http://www.zbh.uni-hamburg.de/staff/kurtz/papers/AboKurOhl2004.pdf
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Library Design
	Generic Programming
	Global Function Interfaces
	Traits
	Template Argument Subclassing
	Design Goals

	Library Contents
	Sequences
	Alignments
	Indices
	Searching
	Graphs
	Biologicals

	Results
	Example: String Matching
	Example: Global Alignments
	Example: MUMmer

	Conclusion
	Availability and requirements
	Competing interests

	Authors' contributions
	Additional material
	Acknowledgements
	References

