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Abstract
Background: The use of novel algorithmic techniques is pivotal to many important problems in
life science. For example the sequencing of the human genome [1] would not have been possible
without advanced assembly algorithms. However, owing to the high speed of technological
progress and the urgent need for bioinformatics tools, there is a widening gap between state-of-
the-art algorithmic techniques and the actual algorithmic components of tools that are in
widespread use.

Results: To remedy this trend we propose the use of SeqAn, a library of efficient data types and
algorithms for sequence analysis in computational biology. SeqAn comprises implementations of
existing, practical state-of-the-art algorithmic components to provide a sound basis for algorithm
testing and development. In this paper we describe the design and content of SeqAn and
demonstrate its use by giving two examples. In the first example we show an application of SeqAn
as an experimental platform by comparing different exact string matching algorithms. The second
example is a simple version of the well-known MUMmer tool rewritten in SeqAn. Results indicate
that our implementation is very efficient and versatile to use.

Conclusion: We anticipate that SeqAn greatly simplifies the rapid development of new
bioinformatics tools by providing a collection of readily usable, well-designed algorithmic
components which are fundamental for the field of sequence analysis. This leverages not only the
implementation of new algorithms, but also enables a sound analysis and comparison of existing
algorithms.

Background
Biological sequence analysis is the heart of computational
biology. Many successful algorithms (e.g., Myers' bit-vec-
tor search algorithm [2], BLAST [3]) and data structures
(e.g., suffix arrays [4], q-gram based string indices,
sequence profiles) have been developed over the last
twenty years. The assemblies of large eucaryotic genomes
like Drosophila melanogaster [5], human [1], and mouse [6]

are prime examples where algorithm research was success-
fully applied to a biological problem. However, with
entire genomes at hand, large scale analysis algorithms
that require considerable computing resources are becom-
ing increasingly important (e.g., Lagan [7], MUMmer [8],
MGA [9], Mauve [10]). Although these tools use slightly
different algorithms, nearly all of them require some basic
algorithmic components, like suffix arrays, string
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searches, alignments, or the chaining of fragments. This is
illustrated in Fig. 1 for the case of genome comparison
tools. However, it is non-trivial to obtain efficient imple-
mentations of these components. Therefore, suboptimal
data types and ad-hoc algorithms are frequently employed
in practice, or one has to resort to stringing standalone
tools together. Both approaches may be suitable at times,
but it would clearly be much more desirable to use an
integrated library of state-of-the-art components that can
be combined in various ways, either to develop new appli-
cations or to compare alternative implementations. In this
article we propose SeqAn, a novel C++ library of efficient
data types and algorithms for sequence analysis in com-
putational biology.

In other fields, software libraries have greatly advanced
the transfer of algorithmic knowledge to the tool pro-
gramming process. Two of the best known examples are
the LEDA library [11] for algorithms on graphs and effi-
cient data types and the CGAL library [12,13] for compu-
tational geometry. In bioinformatics, a comparable
library is still missing although there is a need for inte-
grated implementations of algorithms for aligning
sequences, computing substring indices in primary and
secondary memory, or filter algorithms. In addition, a
library that adheres to the principles of algorithm engi-
neering is essential as a means to test and compare exist-
ing tools as well as to evaluate the results from algorithmic
research. The lack of such a library becomes evident when
reviewing the related work of the past years.

A few C++ libraries with sequence analysis features have
already been developed, including Bio++ [14], Libcov
[15], the Bioinformatics Template Library (BTL) [16], the
NCBI C++ Toolkit [17], or the Sequence Class Library
(SCL) [18]. Bio++ is the most comprehensive library pro-
viding re-usable components for phylogenetics, molecu-
lar evolution, and population genetics. The sequence
analysis part is, however, limited to basic import/export
capabilities and string manipulations. In contrast to
SeqAn, which is based upon the generic programming
paradigm, Bio++ is a purely object-oriented library, favor-
ing ease of development over performance and scalability.
Libcov focusses on phylogenetics and clustering algo-
rithms. It offers only basic data structures to handle sets of
sequences. Alignment algorithms, database indices, or
scoring matrices are not provided. The BTL emphasizes
basic mathematical algorithms and data structures. It cur-
rently comprises graph classes and linear algebra algo-
rithms but only a single sequence alignment algorithm,
Needleman-Wunsch [19] with cubic running time. The
NCBI C++ Toolkit also offers, beside other things, some
sequence analysis functionality, e.g. alignment algo-
rithms. The SCL, providing some basic sequence analysis
components, is to our knowledge not activly developed
anymore.

Besides these C++ libraries, we are aware of alternative
approaches like BioPerl [20] or BioJava [21]. The main
purpose of BioPerl is to ease the development of sequence
analysis pipelines by providing an interface to already

Genome comparison tools and their algorithmic componentsFigure 1
Genome comparison tools and their algorithmic components.
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existing tools. BioJava on the other hand is suited for
developing new sequence analysis tools by providing
many relevant data structures and algorithms and as such
is from the overall goals perhaps closest to SeqAn. Some
algorithms are shared by both libraries (like Needleman-
Wunsch and Smith Waterman). A closer inspection, how-
ever, reveals that BioJava does only offer a small part of
SeqAn's functionality (no indices, no algorithms for de
novo motif search, no algorithms for multiple alignment,
etc.). Hence both libraries are in this sense complemen-
tary. In addition, we show in the result section that our
implementations are for standard alignment problems by
a factor of 6 to 350 times faster and by a factor of 600 to
1500 times more space efficient.

The exposition is structured as follows: To emphasize the
usefulness of SeqAn, this article centers around the con-
tents of the library, described in Section and the practical
application of SeqAn, exemplified in Section. In the fol-
lowing section we start by giving a brief outline of the
design principles SeqAn is based on.

Implementation
Library Design
For developing the basic design, SeqAn has gone through
an extensive conceptual phase in which we evaluated
many designs and prototypic implementations. SeqAn
has now a generic programming design that guarantees
high performance, generality, extensibility, simplicity,
and easy integration with other libraries. This design is
based on four design principles which we will describe
now.

Generic Programming
SeqAn adopts the generic programming paradigm that
proved to be a key technique for achieving high perform-
ance algorithms in the C++ standard library [22]. Generic
programming refers to a special style of programming
where concrete types are substituted by exchangeable tem-
plate types. Hence, classes and algorithms are written only
once, but can be applied to different data types.

Global Function Interfaces
SeqAn uses global functions instead of member functions
to access objects (we act here on an advice of [23], see Sec-
tion 6.10.2.). This strategy improves the flexibility and the
scalability of our library, since global functions, unlike
member functions, can be added to a program at any time
and without changing the existing code. Moreover, global
function interfaces enable us to incorporate the C++ built-
in types and handle them like user defined types. It is even
possible to adapt arbitrary interfaces, i.e. of classes that are
implemented in external libraries, to a common interface
by using small global functions called 'shims' (Chapter 20
in [24]). Algorithms that access objects only via global

functions can therefore be applied to a great variety of
types, including built-in types and external classes.

Traits
Generic algorithms usually have to know certain types
that correspond to their arguments: An algorithm on
strings may need to know which type of characters are
stored in the string, or what kind of iterator can be used to
browse it. SeqAn uses type traits [25] for that purpose. In
C++, trait classes are implemented as class templates that
map types or constants given by template arguments to
other types but also other C++ enties like constants, func-
tions, or objects at compile time. Most of the advantages
we already stated for global functions also apply to traits,
i.e. new traits and new specializations of already existing
traits can be added without changing other parts of the
library.

Template Argument Subclassing
SeqAn uses a special kind of hierarchical structure that we
call 'template argument subclassing', which means that
different specializations of a given class template are spec-
ified by template arguments. For example, String<Com-
pressed> is a subclass of String in the sense that all
functions and traits which are applicable to String can also
be applied to String<Compressed>, while it is possible to
overload some functions especially for String<Com-
pressed>. The rules of C++ overload resolution guarantee
that the compiler always applies the most specific variant
out of all existing implementations when an algorithm or
trait has been called. This approach resembles class deri-
vation in standard object-oriented programming, but it is
often faster, because it does not require a type conversion
for a subclass calling a function that is already defined for
the base class, and since the actual type of the object used
in a function is therefore already known at compile time,
it is not necessary to detect it at run time using virtual
functions. Non-virtual functions have the advantage that
C++ compilers can use function inlining to save their
overhead completely. Template argument subclassing
enables us both to specialize functions and to delegate
tasks soundly to base classes while still maintaining static
binding.

Design Goals
These design principles support our design goals in the
following way:

• Performance: The library produces code that is compet-
itive with manually optimized programs. Template argu-
ment subclassing makes it possible to plug in optimized
specializations for algorithms whenever needed. Our
generic programming design also speeds up the code in
avoiding unnecessary virtual function calls.
Page 3 of 9
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• Generality: All parts of the library are as flexible as pos-
sible. Algorithms can be applied to various data types and
new types can be added if necessary. For example, generic
alignment algorithms in SeqAn work on strings for arbi-
trary alphabets. However, specialized implementations
that make use of certain attributes of the alphabet can still
be developed using template argument subclassing.

• Integration: SeqAn components are designed to fulfill
the requirements specified in the C++ standard. In addi-
tion, SeqAn easily interacts with other libraries because
the global interface can be expanded. Hence, algorithms
and classes of other libraries are at hand.

• Extensibility: The open-closed principle ('Be open for
extension but closed for modifications!') is satisfied in so
far as it is possible to extend the library by simply adding
new code. SeqAn has this feature because it relies on
stand-alone global functions and traits that can be added
at any time without changing the existing code.

• Simplicity: While a pure object-oriented library may be
more familiar to some users, SeqAn is still simple enough
to be used even by developers with average skills in C++.

Library Contents
SeqAn is a software library that is supposed to cover all
areas of sequence analysis. Fig. 2 gives an overview of the
contents of the library in the current state.

Sequences
The storage and manipulation of sequences is essential for
all algorithms in the field of sequence analysis. In SeqAn,

sequences are represented as strings of characters over var-
ious alphabets. Multiple string classes for different settings
are available: Large sequences can be stored in secondary
memory using external strings, bit-packed strings can be
used to take advantage of small alphabets, or strings allo-
cated on the stack can be used to guarantee fast access.
String modifiers can be used to implement distinct views
on a given sequence without copying it. A string segment,
for instance, is a string modifier used to get access to an
infix, suffix, or prefix of a given sequence.

Alignments
Alignments require the insertion of gaps into sequences.
SeqAn does not actually insert these gaps directly into the
sequence but treats them separately. The benefit is two-
fold: A single sequence can be used in multiple align-
ments simultaneously and the actual alphabet of the
string must not include a special gap character. SeqAn
offers both pairwise and multiple sequence alignment
algorithms. Algorithms can be configured for different
scoring schemes and different treatments of sequence
ends (e.g, ends free-space alignments). In the pairwise
case, local and global alignment algorithm are available.
Besides the classical Needleman-Wunsch algorithm [19],
more sophisticated algorithms are available, including an
affine gap cost alignment [26] and Myer's bit vector algo-
rithm [2]. Moreover, SeqAn offers efficient algorithms to
chain alignment fragments [27,28]. We are also currently
integrating code for motif finding in multiple sequences.

Indices
The enhanced suffix array (ESA) [29] is probably the most
fundamental indexing data structure in bioinformatics

SeqAn Contents OverviewFigure 2
SeqAn Contents Overview.
Page 4 of 9
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:11 http://www.biomedcentral.com/1471-2105/9/11
with various applications, e.g., finding maximal repeats,
super maximal repeats, or maximal unique matches in
sequences. An enhanced suffix array is a normal suffix
array extended with an additional lcp table that stores the
length of the longest common prefix of adjacent suffixes
in the suffix array. SeqAn offers an ESA that can be build
up in primary or in secondary memory, depending on the
sequence size. The user has two choices to access the ESA,
either as a regular suffix array or as a suffix tree. The later
view on an ESA is realized using the concept of iterators
that simulate a tree traversal. A more space and time effi-
cient data structure for top-down traversals through only
parts of the suffix tree is the lazy suffix tree [30] which is
also implemented in SeqAn. Besides the sophisticated
ESA, simpler indices are available, including basic hash
tables like gapped- and ungapped q-gram indices (for
their use see [31-33]).

Searching
Flexible pattern matching algorithms are fundamental to
sequence analysis. Exact and approximate string matching
algorithms are provided. For the exact string matching
task, SeqAn offers the algorithms Shift-And, Shift-Or,
Horspool, Backward Oracle Matching, and Backward
Nondeterministic Dawg Machine [34]. For searching mul-
tiple patterns, SeqAn currently supports the Multiple
Shift-And, the Set Horspool, and the Aho-Corasick algo-
rithm [34]. Myer's bit vector algorithm [2] can be used for
approximate string matching. Note that SeqAn's index
data structures can naturally be used to search for strings
as well.

Graphs
Graphs are increasingly important to a number of bioin-
formatics problems. Prime examples are string matching
algorithms (e.g., Aho-Corasick, Backward Oracle Match-
ing [34]), phylogenetic algorithms (e.g., upgma, neighbor
joining tree [35]), or alignment representations [36].
Hence, we decided to include our own graph type imple-
mentation, including directed graphs, undirected graphs,
trees, automata, alignment graphs, tries, wordgraphs, and
oracles. Graph algorithms currently comprise breath-first
search, depth-first search, topological sort, strongly-con-
nected components, minimum spanning trees (e.g.,
Prim's algorithm, Kruskal's algorithm), shortest path algo-
rithms (e.g., Bellman-Ford, Dijkstra, Floyd-Warshall),
transitive closure, and the Ford-Fulkerson maximum flow
algorithm [37]. Trees are heavily used in clustering algo-
rithms and as guide trees during a progressive multiple
sequence alignment. Alignment graphs are used to imple-
ment a heuristic multiple sequence alignment algorithm,
which is similar to T-Coffee [38] but makes use of seg-
ments and a sophisticated refinement algorithm [39] to
enable large-scale sequence alignments.

Biologicals
Besides the fundamental alphabets for biological pur-
poses, like DNA or amino acids, SeqAn offers different
scoring schemes for evaluating the distance of two charac-
ters, e.g., PAM, and BLOSUM. SeqAn also supports several
file formats that are common in the field of bioinformat-
ics, e.g., FASTA, EMBL, and genbank. Is is possible the
access (e.g. to search) sequence data stored in such file for-
mats without loading the whole data into memory. The
integration of external tools (e.g., BLAST) and the parsing
of metainformation is ongoing work.

Results
We anticipate two different user groups for SeqAn. The
first group is the bioinformatics practitioner with some
programming knowledge who wants to quickly prototype
efficient tools for analyzing genomic or protein sequences
using SeqAn. The other prototypic user is the algorithmi-
cist who is proficient in programming in SeqAn and wants
to test and compare an algorithmic component for a spe-
cific well-defined algorithmic problem.

The next examples will demonstrate how things could be
done in SeqAn. We would like to point out the very good
performance of SeqAn as well as the fact that the necessary
code is small, easy to understand, generic, and greatly
profits from using an integrated algorithmic library.

Example: String Matching
We start with a small example of how SeqAn could be
used as an experimental platform to test various imple-
mentations to solve the same algorithmic problem. In Fig.
3 we show the results of a runtime comparison between
three string matching algorithms implemented in SeqAn
and the find method for strings from the standard tem-
plate library. Different pattern lengths and alphabet sizes
were used. It turned out that there is always string match-
ing routines in SeqAn that is faster than standard library
code. This demonstrates that the coding standard used in
SeqAn is competitive to a widely used STL implementa-
tion. Note that none of the tested algorithms performs the
best for all settings. A library like SeqAn makes it possible
to switch between different algorithms easily, so users can
apply the best algorithm depending on the requirements.
Moreover, SeqAn can act as an experimental platform to
compare new string matching methods with the set of
well known algorithms present in SeqAn.

Example: Global Alignments
Now we switch to a more biologically motivated example:
Computing a global alignment between two given DNA
sequences with minimal edit distance. Alignment prob-
lems are very popular in the biological context. Even
libraries with little sequence analysis content support one
or more relevant functions that are mostly based on the
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dynamic programming approach by Needleman and
Wunsch [19], which is certainly one of the most popular
algorithms in bioinformatics. Gotoh's algorithm [26]
extends it by affine gap cost models. Some libraries also
support Hirschberg's algorithm [40], another well-known
alignment method that takes only linear space.

Table 1 lists time and space requirements for aligning the
genomes of two human influenca viruses. The results
show that SeqAn can compete with other libraries regarde-
less of scoring scheme and gap cost model. In the case of
edit distance, SeqAn actually beats all competitors with a
special algorithm that combines Hirschberg's algorithm
with Myers' bitvector algorithm [2] to compute an opti-
mal alignment one order of magnitude faster than all
other programs we observed.

Example: MUMmer
In this example, we want to convince the reader that pro-
gramming using SeqAn is not difficult and that SeqAn is
simple enough to meet the needs of the first user group
while it is efficient and generic enough to allow expert
users to use SeqAn as an experimental platform for testing
algorithmic components.

We choose as an example the well-known MUMmer [8]
tool and show in the listing (see Additional File 1) an
implementation of a (simplified) version of the tool
which reads a number of sequences and computes all
maximal unique matches (MUMs) of length at least 20.

Runtimes of String Matching AlgorithmsFigure 3
Runtimes of String Matching Algorithms. We compared three exact string matching algorithms from SeqAn with the 
member function basic_string::find of the standard library, as it was implemented for Microsoft Visual C++. The left figure 
shows the runtimes (in ms) for searching a DNA sequence (human chromosome 21), the right figure for searching a proteine 
database. The search pattern was taken randomly from the sequence. The figures show the average time needed to find all 
occurrences of patterns of a given length.

Table 1: Runtimes and internal space requirements for 
computing sequence alignments. The table shows average time 
and space requirements for aligning the genomes of two human 
influenca viruses, each of length about 15.6 kbp. Runtimes 
printed in bold face show for each library the time of the fastest 
algorithm for computing an alignment using edit distance.

linear gap costs affine gap costs
time (s) space (MB) time (s) space (MB)

SeqAn
Needleman-Wunsch 3.3 236 6.3 236
Hirschberg 14.7 4
Myers-Hirschberg 0.2 3

NCBI C++ toolkit
Needleman-Wunsch 4.0 245
Hirschberg 6.6 14

Bio++ 13.4 2100 28.0 ≈6000
BTL 96162 933
BioJava 76 2000 93 ≈6000
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For the sake of exposition we only show code pieces that
are illustrative for SeqAn.

A MUM of a set of sequences is a subsequence that occurs
exactly once in each sequence and that is not part of any
longer such subsequence. To find MUMs MUMmer builds
a suffix tree [41] of a reference sequence and streams one
or more query sequences against it. The downside of des-
ignating one sequence as the reference is that matches are
only unique in the reference sequence but not necessarily
in the query sequence. To guarantee the uniqueness of a
match in all sequences it is necessary to construct a gener-
alized suffix tree. A generalized suffx tree is a suffix tree of
the concatenated sequences seperated by unique charac-
ters [42]. It is the primary index data structure in SeqAn
and based on an enhanced suffix array [43]. In the first
part of the example (Additional File 1: Listing 1) we build
a string index for a set of strings consisting of characters
from the Dna5 alphabet, which is an extension of the Dna
alphabet including the 'N' character. SeqAn supports a
number of different alphabets of biological relevance
(e.g., Dna, Amino Acid, or compressed amino acid alpha-
bets). All these alphabets enable us to store sequences effi-
ciently because of the reduced number of characters
compared to normal text. The index is first resized to the
appropriate number of sequences. Subsequently, the
sequences are imported using the Fasta read function and
simultaneously, these sequences are added to the index,
which is our enhanced suffix array.

SeqAn provides iterators that make it possible to traverse
the enhanced suffix array like a suffix tree in a bottom-up
fashion. This is illustrated in Additional File 1: Listing 2.
The iterator it visits each node u in the generalized suffix
tree. To find a MUM u, it suffices to test whether u occurs
exactly 2 times (line 16), at most once in each sequence
(line 18), and cannot be extended to the left (line 19) (see
Chapt. 3.4, [43]). If the length of the representative string
of u is also at least 20 (line 17) we report the position and
length of the MUM u (lines 26–31). Assuming a compu-
tational biologist is not all too interested in these algorith-
mic details but in performance and a simple interface,
SeqAn provides specialized iterators to get all MUMs
(Additional File 1: Listing 3), maximal or supermaximal
repeats, or MultiMEMs [43]). Since performance is a cru-
cial issue in any kind of sequence analysis task, we com-
pared our code example with the latest MUMmer release
[8] and Multimat of the MGA distribution [9]. To the best
of our knowledge these are the only tools to find MUMs.
None of the libraries introduced in chapter support gener-
alized suffix trees or even algorithms on suffix trees, like
those to find MUMs. Our testset consisted of various bac-
teria strains and vertebrate chromosomes.

Table 2 readily reveals that MUMmer is about twice as fast
as SeqAn on the 2 sequence datasets and that it uses only
half of the space. This is, however, not suprising because
MUMmer's index represents only one sequence whereas
the generalized suffix tree implemented in SeqAn builds

Table 2: Runtimes and internal space requirements for finding MUMs. We compared MUMmer 3.19 [8], MGA [9], and SeqAn for 
different DNA sequences on a 3.2 GHz Intel Xeon computer with 3 GB of internal memory running Linux. Because MUMmer finds 
MUMs of not more than two sequences, its results on the Chlamydia and Escherichia coli strains are left empty. For the last dataset, 
we used SeqAn's external memory data strutures to limit the internal memory consumption.

Species MUMer MGA SeqAn
size (Mbp) time (m:s) space (MB) time (m:s) space (MB) time (m:s) space (MB)

C. trachomatis D/UW-3/CX 1.043
C. muridarum Nigg 1.073 - - 0:06 33.8 0:04 31.6
C. trachomatis A/HAR-13 1.044

E. coli K12 4.640
E. coli O157:H7 str. Sakai 5.498
E. coli CFT073 5.231 - - 105:40 353.5 0:58 304.6
E. coli UTI89 5.066
E. coli 536 4.939
E. coli APEC O1 5.082

H. sapiens (chr. 21) 46.94 2:25 568 4:44 1188 4:06 1307
M. musculus (chr. 16) 98.25

H. sapiens (chr. 16) 98.25 2:55 1362 18:48 1500 5:38 1627
P. troglodytes (chr. 16) 88.83

external string

H. sapiens (chr. 1) 247.2 insufficient memory insufficient memory 66:20 510
M. musculus (chr. 1) 197.1
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an index over all sequences. But in contrast to SeqAn and
MGA, MUMmer is not able to find real MUMs between
more than 2 sequences. Similar to SeqAn, MGA also con-
structs a generalized suffix tree of all sequences and its
memory consumption is approximately equal to SeqAn's.
However, SeqAn outperforms MGA on all datasets and
surprisingly, MGA even takes more than 1 hour on the E.
coli strains.

Index data structures of whole genomes easily reach 10–
30 GB, so they must rely on external memory. SeqAn pro-
vides such data structures. They can be used by simply
exchanging the standard string of SeqAn by an external
memory string in order to construct the generalized suffix
tree in external memory. We did this for the last row of
Table 1 and simply replaced Dna5String by String<Dna5,
External<>> in the code example. This reduces the main
memory space requirements of the algorithm at the
expense of speed. However, this makes it possible to con-
struct generalized suffix trees for sequences of nearly arbi-
trary length. As can be seen in Table 1, these external
strings enable SeqAn to handle long sequences where
MUMmer and MGA simply run out of memory.

Conclusion
We presented a new software library with an efficient and
generic design that addresses a wide range of problems in
sequence analysis. SeqAn is under active development
and we hope that it will become one of the standard plat-
forms for algorithmic engineering at the interface of strin-
gology, algorithm design and computational biology.
Besides the planned extensions mentioned in Section, we
are working on integrating external libraries and plan to
intensify our collaborations with other research groups.

Availability and requirements
SeqAn is freely distributed under the GNU Lesser General
Public Licence (LGPL), both for academic and non-aca-
demic use. The library and its documentation can be
downloaded from http://www.seqan.de. All parts of the
library are tested on Windows with Microsoft Visual Stu-
dio 2003 and 2005 and on Linux with G++ compilers ver-
sion 3.0 and above.
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