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Abstract

We present a novel method for the identification of the most important
metastable states of a system with complicated dynamical behavior from
time series information. The novel approach represents the effective dy-
namics of the full system by a Markov jump process between metastable
states, and the dynamics within each of these metastable states by rather
simple stochastic differential equations (SDEs). Its algorithmic realization
exploits the concept of Hidden Markov Models (HMMs) with output be-
havior given by SDEs. The numerical effort of the method is linear in the
length of the given time series, and quadratic in terms of the number of
metastable states. The performance of the resulting method is illustrated
by numerical tests and by application to molecular dynamics time series
of a trialanine molecule.
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1 Introduction

The macroscopic dynamics of typical biomolecular systems is mainly character-
ized by the existence of biomolecular conformations which can be understood as
metastable geometrical large scale structures, i.e., geometries which are persis-
tent for long periods of time. On the longest time scales biomolecular dynamics
is a kind of flipping process between these conformations [9, 12], while on closer
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inspection it exhibits a rich temporal multiscale structure [21]. Biophysical
research seems to indicate that typical biomolecular systems possess only few
dominant conformations that can be understood as metastable or almost invari-
ant sets in state or configuration space [26, 27]. In other words, the effective
or macroscopic dynamics is given by a Markov jump process that hops between
the metastable sets while the dynamics within these sets might be mixing on
time scales that are smaller than the typical waiting time between the hops. In
many applications this Markovian picture is an appropriate description of the
dynamics since typical correlation times in the system are sufficiently smaller
than the waiting times between hops (and thus much smaller than the timescale
the effective description is intended to cover).

The same description of the effective dynamics is true for other complex
system including, e.g., climate systems or systems from materials science.

Recently there have been several set-oriented approaches to the algorithmic
identification of metastable sets of a complex system, and to the computation
of the transition probabilities between them [26, 6, 4, 5]. These approaches
are based on the construction of a transition matrix that describes transition
probabilities between sets in the state space of the system. The identification of
metastable sets then is based on analysis of this transition matrix [27, 7, 5]. For
higher dimensional systems this always requires coarse graining of state space
into sets (a partition of state space in disjoint sets that avoids the curse of
dimensionality) that has to be designed carefully since the resulting metastable
sets are unions of the sets from the partition.

In this article we will discuss a novel approach to the problem that is no
longer purely set-oriented and is not based on (traditional) coarse graining con-
cepts. Instead, we propose to approximate the effective dynamics by stochastic
differential equations (SDEs) of the following type for the state x ∈ Rn of the
system:

dx(t) = −DxV (q(t))(x(t)) + σ(q(t)) dW (t) (1)
q(t) = Markov jump process with states 1, . . . , M,

where W (t) is denoting standard Brownian motion, Dx differentiation wrt. x,
Σ = (σ(1), . . . , σ(M)) contains noise intensities, and V = (V (1), . . . , V (M)) inter-
action potentials. The jump process q(t) is intended to mimic the hopping of the
effective dynamics from one metastable set to another metastable set such that
its hopping rates have to be related to the transition rates between the sets. It
thus can be represented by an M×M rate matrix R. The SDEs (1) then have to
approximate the (more rapidly mixing) dynamics within the metastable states,
and thus must have correlation times that are significantly smaller than the typ-
ical waiting times between hops of the jump process. Altogether, the model is
completely characterized by the tuple (R,V,Σ). In the following we will assume
that V only contains potentials V (q) from a certain family of potentials that is
given by a (not too large) tuple of parameters θ(q) (e.g., polynomial potentials)
such that V is completely determined by the parameters Θ = (θ(1), . . . , θ(M)).

Consequently, we have to find a procedure that can determine the optimal
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model λ = λ(R, Θ, Σ) for the complex system under consideration. The goal of
the algorithmic approach to be presented herein is to identify the optimal model
λ(R, Θ,Σ) from time series resulting from long-term simulation of the complex
system under consideration. Thereby, the information about which and how
many metastable sets being present in the time series is understood as being
hidden within the data. Then, metastability is identified in the following way:
we try to assign to any state from the given time series the hidden metastable
state to which it belongs. The metastable sets then are represented by aggre-
gates containing those states that are assigned to the same hidden state. We
will present a procedure that solves the assignment problem and the estima-
tion problem for the parameters (R, Θ, Σ) simultaneously and iteratively. This
procedure will result from some dynamical Bayesian network approach.

Dynamical Bayesian networks generally provide a powerful framework for de-
riving efficient algorithms to analyze time series (or other observation sequences)
that are thought to be governed by some hidden process [14] (in our case the
“hidden” sequence of metastable states). The hidden Markov model (HMM)
[14, 24] is one of the most popular representatives of a Bayesian network; its
graphical representation is shown in Fig. 1 (a) below. In HMMs, an observation
sequence is assumed to be a realization of random variables Y1, . . . , YN that
depend on a sequence of hidden states X = X1, X2, . . . , XN forming a discrete
time Markov chain. Associated with HMMs are algorithms for learning and
inference, especially the Expectation-Maximization (EM) algorithm for learn-
ing parameters of the model, and the Viterbi algorithm for inferring the most
probable hidden state space sequence.

(a)

(b)
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N32Y Y Y Y

X X X X1
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N32Y Y Y Y

Figure 1: Graphical model of dynamical Bayesian networks for (a) the hidden Markov model
and (b) HmmSde . X1, . . . , XN and Y1, . . . , YN are random variables, rectangles denote hid-
den (unobservable) random variables, circles observable ones; the arrows specify conditional
independence relations.

The approach proposed herein (called HmmSde in the following) can be
thought of as an extension of the HMM approach in the sense that the “output”
is assumed to result from stochastic differential equations. Eq. (1) describes
the process in continuous time; the Bayesian network model, however, already
reflects the situation that the observation sequence is given in discrete time.
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HmmSde has a slightly more complicated conditional independence relationship
(see Fig. 1 (b)): The SDE output behavior adds dependence between adjacent
observations in its Bayesian network representation, which in general will make
learning and inference more complicated. Yet, we will see in the following
that the EM and Viterbi algorithms for our specific model are still efficiently
computable with the same algorithmic complexity as in the HMM case.

The reader may think that the dimension n of (each state in) the observation
sequence has to be identical to the (eventually high) dimension of the state space
X of the complex system under investigation. Yet this is not necessary in most
cases, in fact we will be able to have n ¿ dim(X). The main requirement is that
the observation sequence contains time series of appropriate observables of the
system. Here “appropriate” means that the combined information contained in
the observation somehow “encodes” the metastability in the system (even if this
may be a very cryptic code). For example, it often is possible to identify the
main metastable states of a biomolecular system from the observation of some
of its torsion or backbone angles. We will illustrate such a procedure in Sect. 3.

We will proceed as follows: First, we will give an outline of the approach
together with remarks comparing it to other approaches to related problems.
Then, we will present the construction of the identification algorithm, and show
how to determine the optimal number of metastable sets. In the last section,
we will first illustrate the application of this novel technique to metastable time
series from suitable numerical experiments, and finally discuss the applicability
of the resulting concept to realistic molecular dynamics problems.

Concept and Commentary

1.1 Concept

Our goal is to identify optimal parameters for our model (1) for given observation
data (Ot)t=t0,...,tN . That is, the states Otj , the system is in at times tj , are
known already, and we have to define the functional with respect to which we
then will have to determine the optimal parameters λ. This will be done by
means of the maximum likelihood principle, i.e., the functional will be given by
a likelihood function L that will be constructed in the following way: For given
parameters λ, the likelihood L(λ|Ot, qt) has to be the probability of output
x(tj) = Otj , j = 1, . . . , N , and the associated sequence of metastable states
(qt) (the state sequence of the Markov jump process at times tj , j = 1, . . . , N).
Thus, in order to construct L appropriately, we have to know the probability
of output of state x(tj) under the condition of being in metastable state qtj

for given parameters λ. We will see that we can determine this probability by
considering the propagation of probability densities by the SDE associated with
metastable state qtj .

For the rest of this article let us assume that the potentials V (q) are of
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harmonic form:

V (q)(x) =
1
2
D(q)(x− µ(q))2 + V

(q)
0 . (2)

This assumption simplifies the derivation of the parametrization algorithms sig-
nificantly. Furthermore, and also for the sake of simplicity, we will present the
derivation for a one-dimensional state space. As we will point out later, both
assumptions are not necessary.

Propagation of probability density. Let us first assume that the jump
process in the HmmSde model (1) is fixed to one state, say q(t) = q for the times
t considered. Considering a statistical density function ρ(x, t) of an ensemble
of SDE solutions (1) for different realizations of the stochastic process W , we
get an equivalent representation of the dynamics in terms of the Fokker-Planck
operator:

∂tρ = 4xV (q)(x)ρ +∇xV (q)(x) · ∇xρ + B(q)4xρ, (3)

where B(q) = (σ(q))2 ∈ R1 denotes the variance of the white noise (for Rd it is
a positive definite selfadjoint matrix). In the case of harmonic potentials this
partial differential equation can be solved analytically whenever the initial den-
sity function can be represented as a superposition of Gaussian distributions:
the solution of the Fokker-Planck equation (3) remains to be a sum of Gaus-
sians whenever the initial probability function ρ(·, t = 0) is. Therefore, let us
apply the variational principle (Dirac-Frenkel-MacLachlan principle [10]) to (3)
restricted to functions ρ of the form

ρ(x, t) = A(t) exp
(−(x− x(t))T Σ(t)(x− x(t))T

)
.

This leads to the solution of the system of ordinary differential equations

ẋ = −D(q)(x− µ(q)),
Σ̇ = −2B(q) Σ2 + 2D(q)Σ,

Ȧ =
(
D(q) −B(q)Σl

)
A, (4)

for the time–dependent parameters {x, Σ, A}. The explicit solution of this sys-
tem of equations on the time-interval (t, t + τ) where the hidden jump process
q(t) is fixed in the state q is:

x(t + τ) = µ(q) + exp
(
−D(q)τ

)
(x(t)− µ(q)),

Σ(t + τ) =
(
D(q)−1

B(q) − exp
(
−2D(q)τ

)(
D(q)−1

B(q) − Σ(t)−1
))−1

,

A(t + τ) =
1√
π

Σ(t + τ)1/2, (5)

In case of initial states that are sums of Gaussians, each Gaussian would move
independently according to (5) and we would get the solution of (3) by super-
position.
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However, in the case considered herein, we are interested in the probability
of output O(tj+1) in metastable state qtj+1 under the condition that the system
has been in state Otj

at time tj . For this, we can now use (5) with x(tj) = Otj

and Σ(tj)−1 = 0. Therefore, the output probability distribution results to be

ρ(Otj+1 |qtj , Otj ) = A(tj+1) exp
(−(Otj+1 − x(tj+1))Σ(tj+1)(Otj+1 − x(tj+1))T

)
,

with

x(tj+1) = µ(q) + exp
(
−D(q)τ

)
(O(tj)− µ(q)),

Σ(tj+1) =
(
D(q)−1

B(q) − exp
(
−2D(q)τ

)
D(q)−1

B(q)
)−1

=
(
1− exp

(
−2D(q)τ

))−1

D(q)B(q)−1
,

A(tj+1) =
1√
π

Σ(tj+1)1/2, (6)

for metastable state q = qtj+1 and with τ = tj+1 − tj .

Likelihood function. Whenever we assume the potential to be harmonic
the model is characterized by the parameter tuple λ = (v, R, x, Σ, A), where v
denotes the initial distribution of the Markov Chain, R its transition matrix, and
x, Σ, A the parameters of the output distributions due to (6). Suppose that the
observed data (Ot) is given with constant time stepping τ , i.e., tk = tk−1 +τ for
all k = 1, . . . , N . Setting t0 = 0 we have tk = kτ and especially T = tN = Nτ .
For the sake of simplicity of notation we thus may simply write t = 0, ..., T .
In addition to the observation sequence O = (Ot) we also have the sequence
of hidden metastable states q = (qt)t=0,...,T which herein are given by the M
possible states of the Markov jump process, i.e., we have qt ∈ {1, . . . , M}.

Let R be the rate matrix of jumps between the hidden states. Then the
transition probability between hidden states within two consecutive steps of the
observations, i.e., the transition probability from hidden state i to hidden state
j after time τ under the condition to be in i at time t = 0, is given by the ij-th
entry of the transition matrix

T = exp(τR).

Therefore for given model λ = (v, T , x, Σ, A) we have the following joint
probability distribution for the observation and hidden state sequences:

p(O, q|λ) = v(q0)ρ(O0|q0)
T∏

t=1

T (qt−1, qt)ρ(Ot|qt, Ot−1), (7)

wherein the probability distributions ρ have the form

ρ(Ot|qt, Ot−1) = A(qt)(t) exp
(
−(Ot − x(qt)(t))Σ(qt)(t)(Ot − x(qt)(t))T

)
,
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where the superindex refers to the hidden state qt of the system at time t, and
x, Σ and A have to be computed from (6).

Therefore, the joint Likelihood function for the model given the complete
data reads:

L(λ) = L(λ|O, q) = p(O, q|λ).

Algorithmic Realization. Our next task will be to construct algorithms
that

(1) determine optimal parameters (T , µq, Dq, Bq)q=1,...,M by maximizing the
likelihood L(λ|O, q); this is a nonlinear global optimization problem,

(2) determine an optimal sequence of hidden metastable states (qt) for given
optimal parameters, and

(3) determine the number of important metastable states; up to now we as-
sumed that the number M of hidden states is a priori given - how can we
determine an appropriate number?

In Section 2 we will see how to construct appropriate algorithms for problems
(1) and (2) based on specifications of the Expectation-Maximization (EM) and
Viterbi algorithms.

Determining the number of metastable states. Problem (3) of identify-
ing the number of dominant metastable states can be formulated as the problem
of aggregating states Ot from the time series into metastable states (i.e., cluster-
ing states that belongs to the same metastable state). The identification of an
optimal aggregation from observation of the dynamical behavior is an important
algorithmic problem. Optimal aggregates can be identified via the dominant
eigenmodes of a so-called transfer or transition matrix, which describes the over-
all transition probabilities between all states of the system under consideration.
The identification is possible by considering the largest eigenvalues of the tran-
sition matrix and by exploiting an intriguing property of dominant eigenmodes:
they exhibit significant jumps between different metastable aggregates, while
varying only slowly within them [4, 26]. This has led to the construction of an
aggregation technique called “Perron Cluster Cluster Analysis” (PCCA) [6, 7].

We will use PCCA within the HmmSde framework as follows: In the setup
of HmmSde for a given observation sequence one is confronted with the task
to select in advance the number M of hidden states. There are no general
solutions to this problem, and the best way to handle this problem often is
a mixture of insight and preliminary analysis. However, since our goal is to
identify metastable states we can proceed as suggested in [11]: Start the EM
algorithm with some sufficient number of hidden states, say M , that should be
greater than the expected number of metastable states. After termination of
the EM algorithm, take the resulting transition matrix A and aggregate the
M hidden states into Mmeta ≤ M metastable states by means of PCCA. The
resulting conformation states will then allow an interpretation of the results in
terms of metastable states.
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Complexity and Convergence. How does the numerical effort of the al-
gorithmic realization scale with the size of the problem, i.e., with the length
of the observation sequence T , its dimension n, and the number M of hidden
states? The literature on the application of EM and Viterbi algorithms to the
parametrization of HMMs demonstrates that one step of EM and the entire
Viterbi algorithm scale linearly in T and quadratically in M ; as we will see
below this is still true for the specific HmmSde procedure. The PCCA pro-
cedure required to determine the number of dominant metastable states scales
like O(M3). The scaling wrt. n is not so obvious; it depends mainly on the
number of parameters entering the potential. Whenever the potential is har-
monic, the scaling will be O(n2). Carefully putting all terms together one finds
an asymptotic estimate of the form (for harmonic potentials) [8]

O
(
(n2M + M2)T + n3

)
· number of EM iterations + O(M3).

Here, the necessary number of iteration of the EM procedure should be deter-
mined by a certain accuracy requirement on the error of the underlying opti-
mization problem, i.e., the maximum likelihood problem. There is a variety of
results on the convergence of the EM algorithm [32, 33]. In this article conver-
gence is controlled by the following termination criterion: When the increase in
likelihood in the last EM iteration does not exceed a certain preset threshold
level, the iteration is stopped.

The accuracy of the results will also critically depend on the length of the
observation sequence. More precisely, it is known quite generally that for SDEs
like the ones considered herein the precise estimation of drift parameters (or
the parameters in the potential) requires rather long observation sequences (cf.
Sec. 1.1 of [30]). In the context of the problems considered herein this means
that we will have to have “enough” time steps in each of the metastable states.
In the following we will call time series with this property “statistically rich
enough”. Whether this is the case or not will depend on the time series but also
on the details of the algorithmic scheme under consideration. We will herein
not address this problem theoretically (see [16] for details) but will give some
examples in Sect. 3.

Generalizations. In this article we introduce the HmmSde approach for one-
dimensional observations, therefore one-dimensional SDEs, and harmonic poten-
tials. All these preconditions can be significantly generalized: On the one hand,
the proposed algorithm can easily be generalized to higher dimensional obser-
vation sequences (this is mainly due to the fact that the above derivation of the
solution of the Fokker-Planck equation can be generalized to higher dimensions,
at least for harmonic potentials), see our forthcoming article [15]. On the other
hand, we can allow for a larger class of potentials. For example, the entire
derivation presented herein analogously goes through if the potential is a linear
functional of its parameters. This, for example, is true for polynomial potentials;
for this case one can even find parameter estimation procedures in the litera-
ture [29]. However, it is important to emphasize that the algorithmic concept
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advocated herein tries to realize the so-to-say simplest reduced dynamical model
for metastable complex systems: Markov jump processes and stochastic diffu-
sion governed by harmonic potentials within each metastable state. As we will
illustrate below, the potential dynamical substructure within each metastable
state can hierarchically be represented in this setting such that the use of non-
harmonic potentials may be obsolete. Furthermore, the use of nonharmonic
(especially polynomial) potentials may lead to a drastic increase in the number
of required parameters; this would lead to a very undesirable explosion in the
dimension of the nonlinear parameter optimization problem.

1.2 Commentary

In this section will comment on the similarities and differences between the
approach advocated herein and alternative approaches.

Hidden Markov Models. The algorithmic concept has some similarities
with the other approaches based on the concept of HMMs or hidden Markov
processes, in particular the approaches presented in [11, 13]. However, the fun-
damental difference is that the HmmSde approach suggested herein combines
some discrete hidden process with in general continuous SDE output. That is,
the concept behind HmmSde can be expressed shortly in the following way:

HmmSde = SDE parametrization + HMM metastability analysis, (8)

while [11] is concerned with HMM-based metastability analysis but with station-
ary output behavior only, and [13], e.g., considers global SDE models with hid-
den data (without discrete metastable states). In comparison to (and apart from
the general “stationary” versus “dynamical” contrast) HMM-based metastabil-
ity analysis, HmmSde should have at least one obvious additional feature: it
can capture dynamical relaxation behavior within each metastable state.

Other SDE parametrizations. There is a huge variety of methods for para-
metrizing SDEs based on low-dimensional experimental or observation data,
e.g., in (Kalman) filtering, image processing, and other aspects of time series
analysis. However, the authors are not aware of approaches that are in depth
comparable to the one suggested herein (i.e., mixing discrete and continuous
descriptions in the sense of “formula” (8)). Furthermore, typical alternative
methods of SDE modelling try to parametrize a single (hence “global”) SDE
(with or without hidden components) to the entire time series, cf. [13, 29, 28],
or the literature on Kalman filtering for examples.

The application of “global” SDE parametrization techniques to the problem
of identifying metastable states will in general be troublesome. To understand
the reasons for this we have to distinguish two cases: (1) the observation se-
quence is as highly dimensional as the system under consideration, or (2) the
observation sequence is low-dimensional compared to the system’s state space.
In case (1), the metastable states will be clearly separated from each other
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Figure 2: Time series of an intramolecular distance between the end-groups of a trialanine
molecule (cf. Fig. 9 below) resulting from a molecular dynamics simulation (see Sect. 3 for
further details). Note that the time series clearly indicates the presence of two overlapping
metastable states (indicated by dark and light grey coloring of the time series graph).

(in this case they in fact are given by disjoint metastable sets, see [27]) but
the complexity of the parametrization process and the statistical requirements
on the time series (i.e. on its length) will be enormous. Furthermore, state-
dependent noise intensities may be required (since the noise process may differ
between the metastable sets). In case (2), due to the nature of low-dimensional
projections, different metastable states in general will not be separated clearly
but will “overlap”, see Fig. 2. This means that their identification within the
framework of fitting a single global SDE will be problematic. In this direction
a combination of statistical model reduction techniques (like those in [17, 25])
with local SDE approximations seems to be desirable.

Set-oriented techniques and related approaches. Available set-oriented
techniques for the identification of metastable states are based on the assump-
tion that the metastable states are identified as disjoint metastable sets in state
space [26, 7, 4, 5, 23]. Therefore, if applied to low-dimensional observations of
a high-dimensional system, these techniques face the very same problem that
was explained in the last paragraph (overlapping metastable states). The same
is true for other related approaches [18, 22].

2 Parameter Estimation

We now construct algorithms that compute (approximate) solutions to the prob-
lems (1) and (2) from page 7.

Optimal parameters. To solve problem (1) we will use the Expectation-
Maximization (EM) algorithm. The EM algorithm is a learning algorithm:
it alternately iterates two steps, the expectation step and the maximization
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step. Starting with some initial parameter set λ0 the steps iteratively refine
the parameter set, i.e., in step k the present parameter set λk is refined to
λk+1. We will work out the details of the EM algorithm for the problem under
investigation by following the general framework given in [2, 14]:

The key object of the EM algorithm is the expectation

Q(λ, λk) = E
(

log p(O, q|λ) |O, λk

)
(9)

of the complete-data likelihood L(λ|O, q) = p(O, q|λ) (in our case given by
(7)) wrt. the hidden sequence q given the observation sequence and the current
parameter estimate λk. One step of the EM algorithm then realizes the following
two steps:

• Expectation-step: This step evaluates the expectation value Q based on
the given parameter estimate λk.

• Maximization-step: This step determines the refined parameter set λk+1

by maximizing the expectation:

λk+1 = argmax
λ

Q(λ, λk). (10)

The maximization guarantees that L(λk+1) ≥ L(λk).

While the realization of the E-step for the problem under consideration re-
quires the application of standard techniques only, the M-step requires a detailed
analysis which will be performed subsequently.

Optimal sequence of hidden states. Problem (2) from Page 7 can be solved
by applying the parameter set obtained from the EM algorithm to the standard
Viterbi algorithm [31]. For given λ and O this algorithm computes the most
probable hidden path q∗ = (q∗1 , . . . , q∗T ). This path is called the Viterbi path.
For an efficient computation we define the highest probability along a single
path, for the first t observations, ending in the hidden state i at time t,

δt(i) = max
q0,q1,...qt−1

P (q0, q1 . . . qt = i, O0, O1 . . . Ot|λ).

This quantity is given by induction as

δt(j) = max
1≤i≤M

[δt−1(i)T (i, j)]ρ(Ot|qt, Ot−1). (11)

In addition, the argument i that maximizes (11) is stored in ψ in order to
actually retrieve the hidden state sequence. These quantities are calculated for
each t and j, and then the Viterbi path will be given by the sequence of the
arguments in ψ obtained from backtracking. For more details see [24].
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Further Simplification. The formula (6) for the parameters of the output
distribution can be further simplified by the assumption that we do only want
to know about the evolution of the system within a short time interval [t, t+ τ).
We then can apply an Euler discretization resulting in

x(t + τ) = Ot −D(q)(Ot − µ(q))τ (12)

Σ(t + τ) =
1
2τ

B(q)−1
(13)

A(t + τ) =
1√
π

Σ1/2(t + τ), (14)

which is not necessary but simplifies the following steps significantly.
Therefore, for given model parameters λ we have the following joint proba-

bility distribution for the observation and hidden state sequences:

p(O, q|λ) = v(q0)ρ(O0|q0)
T∏

t=1

T (qt−1, qt)ρ(Ot|qt, Ot−1)

= v(q0)A(q0)(t) exp
(
−(O0 − x(q0)(0))Σ(q0)(0)(O0 − x(q0)(0))T

)

T∏
t=1

T (qt−1, qt)A(qt)(t) exp
(
−(Ot − x(qt)(t))Σ(qt)(t)(Ot − x(qt)(t))T

)
.

Due to (12) and (13) the Gaussian observation likelihood reduces to

ρ(Ot|qt, Ot−1, ..., O1) = ρ(Ot|qt, Ot−1) =
1

(4πτ2)1/4
B(qt)

−1/2
exp

(
−(Ot − x(qt))

1
2τ

B(qt)
−1

(Ot − x(qt))T )
)

, (15)

with
x(qt) = (Ot−1 −D(qt)(Ot−1 − µ(qt))τ),

and the parameter-tuple is λ = (v, T , µ, D,B).

Optimal parameters via the Maximum Likelihood Principle. We aim
to estimate the parameters that maximize the expectation Q of the log-likelihood
logL(O, q|λ) of the complete data wrt. the hidden sequence q. According to [2]
(Chap. 4.2) the expectation value Q as defined in (9) can be rewritten as

Q(λ|λk) =
∑

q=(qt)∈ST+1

p(O, q|λk) log (p(O, q|λ)) , (16)

where S denotes the state space of the hidden states. As we will see below this
form will allow us to find very efficient maximizers. Due to Baum et al. [1]
the function Q(·|λk) exhibits a unique maximum such that the new parameter
iterate λk+1 is uniquely determined by (10). To simplify notation we will use the
notation λ = (v, T , µ, D,B) = λk and λ̂ = λk+1 for the old and new parameter
iterate, respectively.
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In order to identify λ̂ = (v̂, T̂ , µ̂, D̂, B̂) we have to find the zeros of the partial
derivatives of Q wrt. v̂, T̂ , µ̂, D̂, and B̂. Calculations and representation of these
derivatives is made much easier by introducing the so-called forward-backward
variables αt, βt [1, 24]:

αt(i) = P (O0, ..., Ot, qt = i|λ̄),
βt(i) = P (Ot+1, ..., OT |qt = i, Ot, λ̄).

These variables are recursively computable with numerical effort growing lin-
early in T and allow to compute the derivatives in compact form (see Appendix).
Given these, we find λ̂ = argmax Q(·|λ) to be uniquely given by

v̂i =
α1(i)β1(i)∑M
i=1 α1(i)β1(i)

, (17)

T̂ij =
∑T−1

t=0 αt(i)T̄ (i, j)ρ(Ot|qt, Ot−1, λ̄)βt+1(j)∑T−1
t=0 αt(i)βt(i)

(18)

and

µ̂(i) =
X1X2 −X3X4

X1X4 −X3X5
, (19)

D̂(i) =
∑T

t=2 αt(i)βt(i)(Ot −Ot−1)(Ot−1 − µ̂(i))

−τ
∑T

t=2 αt(i)βt(i)(Ot−1 − µ̂(i))2
, (20)

B̂(i) =
∑T

t=2 αt(i)βt(i)(−Ot + Ot−1 −Di(Ot−1 − µ̂(i))τ)2

τ
∑T

t=0 αt(i)βt(i)
(21)

with

X1 =
∑T

t=1 αt(i)βt(i)(Ot −Ot−1), X2 =
∑T

t=1 αt(i)βt(i)O2
t−1,

X3 =
∑T

t=1 αt(i)βt(i)(Ot −Ot−1)Ot−1, X4 =
∑T

t=1 αt(i)βt(i)Ot−1,

X5 =
∑T

t=1 αt(i)βt(i).

These formulas are applicable iteratively to approximate a maximum (not
necessarily global) of L(O, q|λ). A detailed derivation of the formulas for v̂i and
T̂ij are to be found in [20]. The remainder is given in the Appendix.

Remark: The further simplification by means of Euler discretization is not
necessary. It leads to the previous explicit formula for the maximizing parame-
ters. When omitting it, we would have to solve some low-dimensional algebraic
equations. This is possible without significant numerical effort; details will be
published elsewhere [16].
Furthermore, we could also use alternative methods [28] for the parametriza-
tion of the SDEs in question; this may speed-up convergence of the parameter
estimation and thus reduce the requirements on the length of the time series.
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3 Results and Discussion

In this section we first want to illustrate the fundamental features and perfor-
mance of the algorithm, its nice properties and problematic scenarios. Then,
we will demonstrate how it can be applied to time series derived from molecular
dynamics simulations of trialanine.

3.1 Illustrative Examples

In order to generate data sets for illustrative means, we generated time series
from direct realizations of given models. For the first two test cases we used
direct realizations of models of type (1) (parameters (v, T , µ,D, B) known).
Based on the output sequence of such realizations we will try to re-identify the
parameters by application of the HmmSde identification algorithm based on
the results of the last section. For the third test case we used a realization of a
diffusive motion in a multi-well potential. Again, we will try to identify optimal
parameters for systems of type (1).

In all numerical experiments the initial parameter guesses were based on
the same procedure: The initial M ×M transition matrix was chosen to be a
stochastic matrix with off-diagonal entries 0.001 and identical diagonal entries.
The model parameters were obtained by the re-estimation formulas (17)-(21),
where αt(i) and βt(i) were computed via the forward-backward algorithm based
on randomized determination of the probabilities P (Ot|qt, Ot−1) (they were cho-
sen uniformly distributed on [0, 1]).

Case 1: Two coupled metastable sets. For the first test case we compute
a realization of (1) for M = 2 states of the jump process with transition matrix

R =
(

0.997 0.003
0.003 0.997

)
.

The parameters (µ(q), D(q), σ(q) =
√

B(q)) of the two associated SDEs can be
found in Table 1 in the column entitled ”model”. The time series resulted
from discretization of the SDEs by the Euler-Maruyama scheme with stepsize
dt = 0.1; each 10th step entered the time series (τ = 1.0).

This table also displays the results of the re-estimation procedure for output
sequences of length N = 1.000 and N = 10.000. We also included error esti-
mates for the estimated parameters. These error estimates are computed by the
following procedure: we simply repeat the re-estimation procedure L = 1.000
times (every time with new realizations of the observation sequence) and com-
pute the means and standard deviation of the resulting ensemble of estimated
parameters. The results nicely demonstrate that the re-estimation procedure
converges to the correct values and that the error decays with the length of the
available observation sequence. The estimated transition matrix comes out to
be:

RN=104 =
(

0.9968 0.003
0.003 0.9969

)
±

(
3 1
1 2

)
· 10−4.

14



First SDE model T = 103 T = 104

µ(1) 1 0.99± 0.18 1.0± 0.03
D(1) 0.01 0.03± 0.025 0.01± 0.003
σ(1) 0.02 0.025± 0.01 0.02± 2 · 10−4

Second SDE model
µ(2) 1.1 1.11± 0.03 1.094± 0.008
D(2) 0.1 0.1± 0.07 0.1± 0.005
σ(2) 0.05 0.04± 0.01 0.05± 4 · 10−4

Table 1: Parameters of the SDEs for test case 1: original data (”model”) and re-estimated
data (last two columns). Re-estimation was based on observation sequences of length 1.000
(middle) and 10.000 (right). The computation of the error of the re-estimation results are
explained in the text below.
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Figure 3: Realization of HmmSde model for two metastable sets with two different D(1) =
0.01, D(2) = 0.1 (left) against time and the comparison of the exact path of the jump process
(dashed) with the result of the Viterbi algorithm (solid, right).

Figure 3 shows the realization itself: we observe that from the given data
one cannot directly see metastability. It also displays the original (hidden) path
of the Markov jump process and the one computed via the Viterbi algorithm.
Although the jumps between metastable sets are not clear from the observation
sequence the algorithm almost perfectly identified the hidden path.

Case 2: Three coupled states with two metastable subsets. Next we
want to check whether the approach is able to detect a hierarchy of metastable
states of different importance. Therefore we will analyse the case where the jump
process has more states than metastable aggregates. To this end we compute a
realization of (1) for M = 3 states of the jump process with transition matrix

R =




0.995 0.005 0
0 0.8 0.2

0.01 0.19 0.8


 .
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This jump process obviously has 2 metastable aggregates: Ag1 = state 1, and
Ag2 = states 2+3. The parameters (µ(q), D(q), σ(q) =

√
B(q)) of the three

associated SDEs can be found in Table 2. The time series again resulted from
discretization of the SDEs by the Euler-Maruyama scheme with stepsize dt =
0.1; again each 10th step entered the time series (τ = 1.0).

First SDE model T = 104 T = 5 · 104

µ(1) 1 0.99± 0.1 1.0± 0.001
D(1) 0.05 0.05± 0.01 0.05± 0.005
σ(1) 0.03 0.03± 0.008 0.03± 4 · 10−3

Second SDE model
µ(2) 1.2 1.2± 0.002 1.2± 0.001
D(2) 0.08 0.08± 0.01 0.08± 1 · 10−3

σ(2) 0.005 0.005± 0.7 · 10−3 0.005± 3 · 10−5

Third SDE model
µ(3) 1.4 1.4± 0.01 1.4± 0.008
D(3) 0.1 0.1± 0.002 0.1± 8 · 10−4

σ(3) 0.005 0.005± 0.7 · 10−3 0.005± 2 · 10−5

Table 2: Parameters of the SDEs for test case 2: original data (”model”) and reestimated
data (last two columns). Re-estimation was based on observation sequences of length 10.000
(middle) and 50.000 (right). The error estimates are computed as described above.

This table also displays the results of the re-estimation procedure for output
sequences of length T = 10.000 and T = 50.000. We again included error
estimates for the estimated parameters. The results again show that the re-
estimation procedure converges to the correct values and that the error decays
with increasing length of the available observation sequence. The estimated
transition matrix comes out to be:

RN=104 =




0.985± 0.02 0.004± 0.0001 0.01± 0.01
0.02± 0.02 0.8± 0.05 0.17± 0.02

0.01± 0.0004 0.15± 0.05 0.84± 0.05


 .

Figure 4 shows the original realization itself and displays the original (hid-
den) path of the Markov jump process aggregated wrt. Ag1 and Ag2 and the
one computed via the Viterbi algorithm. Again, the algorithm almost perfectly
identified the hidden path.

Case 3: Diffusive motion in multi-well potential. In this case we produce
the output sequence by a realization of the diffusive motion given by

dx = −DxV (x) dt + ηdW, (22)
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Figure 4: Realization of HmmSde model with three coupled SDEs with two metastable aggre-
gates Ag1 and Ag2 (left) versus time, and the comparison of the exact path of the Markov
jump process between its metastable components (i.e., aggregates wrt. Ag1 and Ag2; dashed)
with the result of the Viterbi algorithm (also aggregated; solid, right).

with potential

V (x) = p(x) + α sin(βx),

p(x) =
11∑

k=0

akxk

a = (0.300, 0.000, 5.187,−7.194,−25.507, 23.585,

59.049,−15.538,−63.822,−10.904, 24.794, 10.050)
(α, β) = (0.020, 50.000)

This system will exhibit metastability between its wells whenever the noise
amplitude η is small enough; see the illustration of the potential in Fig. 5. We
will use η = 0.85 which clearly leads to metastable behavior, as we can see from
the typical realization of the dynamics illustrated in Figure 5. Throughout this
example the observation sequence comes from numerical simulation of (22) with
the Euler-Maruyama scheme with discretization time step dt = 0.005; every
second step entered the observation sequence, so the observation time step is
τ = 0.01.

We used this time series to train our HmmSde model, and considered three
cases with M = 2, 3, 4 hidden states for the jump process. In order to judge the
quality of the results we may visit Figs. 6 and 7 that illustrate the harmonic
potentials resulting from the optimal parametrization. We observe that for
M = 2 the algorithm identifies the two most important metastable states (left
and right of the main energy barrier). For M = 3 the algorithm further resolves
the internal structure of the right metastable states; it identifies the deepest well
on the RHS of the main barrier and approximates the middle part appropriately.
For M = 4 the algorithm further decomposes the middle state into its slightly
metastable parts. Fig. 7 moreover illustrates how the quality of the identification
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Figure 5: Right: Multi-well potential V = V (x) as defined in the text. Left: Typical realiza-
tion of the dynamics given by the SDE (22) with noise intensity η = 0.85. The time series is
generated as described in the text, has length 6.000 and is plotted against time.

results deteriorates with decreasing length of the observation time series.
In order to demonstrate the quality of the transition matrix approximation

by means of the HmmSde model wrt. metastable behavior we calculate the first
five eigenvalues λHMMSDE of the transition matrix for M = 7. We compare them
with the corresponding five first eigenvalues λbox of the HmmSde transition
matrix resulting from box-discretization into 50 equidistant boxes of the transfer
operator Pt = exp(tA), A = η2

2 ∆ −DV (x) ·Dx associated with the SDE (22)
(see [27] for details).

λbox =




1.000
0.997
0.986
0.943
0.883




, λHMMSDE =




1.000
0.997
0.982
0.938
0.890



±




0
0.001
0.004
0.006
0.007




. (23)

where the standard variation of the eigenvalues results from 100 realizations of
the HmmSde procedure.

In order to be able to judge the quality of the assignment of states to the
metastable states we compare the “true” hopping behavior of the original dy-
namics between the two main metastable states with that one identified by
means of the Viterbi algorithm after HmmSde parametrization with M = 2,
see Fig. 8. We observe that the agreement is pretty good; small deviations be-
tween the two paths result from very short recrossing events of the barrier (cf.
the graph of the time series in Fig. 5 and compare, e.g., the behavior around
time t = 28).

3.2 Application to Molecular Data

Time series from molecular dynamics and Metropolis Monte Carlo simulations
of biomolecules are often analyzed in terms of some essential torsion angles.
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Figure 6: Multi-well potential (light grey, dashed), and harmonic potentials (solid) resulting
from HmmSde parametrization with M = 2 (left) and M = 3 (right) hidden states based on
the observation sequence of length 30.000 (see text). Remark: The energy at the minimum
of the harmonic potentials is a free parameter (only the derivative of the potential enters the
SDEs) and has been set to V = 0.
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Figure 7: Multi-well potential (light grey, dashed), and harmonic potentials (solid) resulting
from HmmSde parametrization with M = 4 hidden states based on observation time series of
length 3.000 (left) and 30.000 (right). One observes that the identification based on the longer
sequence results in very good approximations while the results of the identification based on
the shorter sequence exhibit significant deviation from the expected outcome.
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Figure 8: Jumps between the two dominant metastable states (indicated 1 and 2) versus time
t ∈ [0, 60] wrt. the time series (length 60.000) shown in Fig. 5. Left: As computed from the
original time series (state 1 = (x < x0), state 2 =(x ≥ x0), where x0 = −0.5 is the position
of the energy barrier separating the two states). Right: Viterbi path as computed based on
HmmSde parametrization for M = 2.

ALA2ALA1 ALA3
0 0

Figure 9: Illustration of the trialanine molecule and indication of the three alanine groups the
molecule is composed of.

We illustrate that distances between the mass centers of functional groups also
contain the information about metastable sets and can be used in conforma-
tional analysis of molecular dynamics data. In the following we will present
the application of the proposed HmmSde algorithm to trialanine, a small pep-
tide composed of three alanine amino acid residues. We will consider observa-
tion sequences of the one-dimensional distance between mass centers of the two
amino-acid end-groups.

For the simulation of trialanine we used the Gromacs implementation of the
Gromacs force field [19], in which trialanine is represented by 21 extended atoms.
The structural and dynamical properties of this molecule normally are mainly
determined by two central peptide backbone angles Φ0 and Ψ0 (see Fig. 9).
In addition, at very high temperatures the other (otherwise planar) peptide
bond angles (especially the Ω angles) may also undergo some conformational
transition.

The time series of 544555 steps has been generated by means of Hybrid
Monte Carlo (HMC) [3] at a temperature of 750K. Each sub-trajectory for a
HMC proposal step has a length of 0.1 ps and was computed with the Verlet
integration scheme based on 1 fs time steps. This yielded an acceptance rate of
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Figure 10: Illustration of the trialanine molecule and indication of the six torsion angles used
for PCCA analysis as described in the text.

about 99 per cent.
By analysis of the time series of the six main torsion/peptide angles (see

Fig. 10) using PCCA [6, 7] and some fine grid discretization we found three
metastable states.

In order to get a useful illustration of the power of the HmmSde approach, we
further reduced the information that is given to the algorithm: we constructed a
one-dimensional observation sequence by simply computing the modulus of the
distance vector between the centers of mass of the ALA1 and ALA3 end-groups
(see Fig. 9). This observation time series is shown in Fig. 11. As illustrated in
this figure the HmmSde approach (for M = 4) also identifies three (partially
overlapping) metastable states. Figure 11 also contains information on the
three SDEs within each single metastable state resulting from the HmmSde
procedure; the resulting parameters are collected in Table 3 below. Comparison
of the spread of the distance data within each of the metastable states with the
distributions generated by the SDEs shows good agreement.

state j µ(j) D(j) B(j) = σ(j)2

j = 1 0.384 0.93 0.0003
j = 2 0.409 0.96 0.0003
j = 3 0.419 0.98 0.0003

Table 3: Parameters of the SDEs from the HmmSde fitting of the ALA1-ALA3 distance in
trialanine; the invariant distributions of the SDEs resulting from these values are illustrated
in Fig. 11.

The resulting Viterbi path is illustrated in Fig. 12 (left) in comparison to
the jump process between metastable states identified from the PCCA analy-
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Figure 11: Left: Time series of the intramolecular ALA1-ALA3 distance in trialanine as
introduced in the text. Different colorings (indicated by dark and light grey coloring of
the time series graph) of phases of the time series according to the three metastable states
determined by HmmSde . Right: Invariant distributions of the three one-dimensional SDEs
resulting from the HmmSde algorithm versus the distance (y-axis).

sis of the full torsion angle time series (right). The agreement in fact is very
convincing.

Conclusion

We introduced a novel approach to the identification of metastable states and
the stochastic dynamics within each state for a complex (eventually highly di-
mensional) system from low-dimensional time series. The approach combines
Hidden Markov models with optimally parametrized SDE output within each
hidden state (to cope with temporal correlations within the states); its novelty
mainly lies in the fact that it can serve as a tool for automated model reduction.
We gave a detailed derivation for the case of one-dimensional time series, and
demonstrated the successful application to different test cases.

However, we considered the one-dimensional case only. While the multi-
dimensional generalization of the technique essentially poses no problem [15],
we will have to ask whether the time series is “statistically rich enough” (cf. dis-
cussion on page 8) to reliably identify all the parameters of the multi-dimensional
potentials (the more details the SDEs within each metastable state are supposed
to represent correctly, the more data will in general be necessary to reliably
parametrize). This problem will be investigated in a forth-coming paper [15].
However, we are interested in an approach that allows to identify metastability
based on low -dimensional observations such that the problem of dimensionality
might not be that problematic. In addition, in the fields of application like
molecular dynamics or climate theory time series usually are extremely rich.

Furthermore, we herein assumed that the observation stepsize τ is small
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Figure 12: Jumps between the three dominant metastable states (indicated 1, 2 and 3) versus
time wrt. the time series (length 544555 steps) shown in Fig. 11. Right: As computed from
PCCA decomposition of the full six-dimensional torsion angle state space. Left: Viterbi path
as computed based on HmmSde parametrization for the one-dimensional distance observation
sequence for M = 4.

compared to the typical waiting time between hops of the jump process such
that the sequence of hidden states will contain long subsequences in which that
state does not change. In this case, the time series should in general be statis-
tically rich enough to allow for a reliable parameter fit for the SDE parameters.
Whether the proposed method is also able to successfully handle time series for
which this assumption is not valid (e.g., the hops between the hidden states are
frequent but the length of the time within each hidden state still is long enough)
will also have to be discussed in later works; it will definitely be necessary to
avoid the Euler discretization used herein (see [16]).
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invariant aggregates in reversible nearly uncoupled Markov chains. Lin. Alg.
Appl., 315:39–59, 2000.

[7] P. Deuflhard and M. Weber. Robust Perron cluster analysis in conformation
dynamics. ZIB-Report 03-19, Zuse Institute Berlin, 2003.

[8] E. Dittmer. Projizierte Hidden-Markov-Modelle in der Metastabilitätsanalyse
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Appendix

Forward-Backward Variables

The forward-backward variables are defined via

αt(i) = P (O0, ..., Ot, qt = i)

βt(i) = P (Ot+1, ..., OT |qt = i, Ot)

Together with
T (i, j) = P (qt = j|qt−1 = i)

we get the following recursion

αt(i) =

MX
j=1

αt−1(j)T (j, i)P (Ot|qt = i, Ot−1)

In order to derive this recursion, use the independencies on the far past (Ot depends
on Ot−1 only) to see that

P (Ot|O0, q0, ..., Ot−1, qt−1, qt = i) = P (Ot|Ot−1, qt) (24)

P (qt = i|O0, q0, ...Ot−1, qt−1) = P (qt = i|qt−1), (25)
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and directly compute:

αt(i) = P (O0, ..., Ot, qt = i)

=
X

q0,...,qt−1

P (q0, O0, ..., qt−1, Ot−1, qt = i, Ot)

=
X

q0,...,qt−1

P (q0, O0, ..., qt−1, Ot−1, qt = i)P (Ot|O0, q0, ..., Ot−1, qt−1, qt = i)

=(24)
X

q0,...,qt−1

P (q0, O0, ..., qt−1, Ot−1)P (qt = i|q0, O0, ..., qt−1, Ot−1)P (Ot|Ot−1, qt)

=(25)
X

q0,...,qt−1

P (q0, O0, ..., qt−1, Ot−1)P (qt = i|qt−1)P (Ot|Ot−1, qt−1)

=
X

q0,...,qt−2

MX
j=1

P (q0, O0, ..., qt−1 = j, Ot−1)P (qt = i|qt−1 = j)P (Ot|Ot−1, qt−1 = j)

=

MX
j=1

P (O0, ..., Ot−1, qt−1 = j)T (i, j)P (Ot|qt = j, Ot−1)

=

MX
j=1

αt−1(j)T (i, j)P (Ot|qt = j, Ot−1),

For β we get similarly

βt(i) = P (Ot+1, ..., OT |qt = i, Ot)

=
X

qt+1,...,qT

P (qt+1, Ot+1, ..., qT , OT |qt = i, Ot)

=
X

qt+1,...,qT

P (Ot+1|qt+1, Ot)P (qt+1|qt = i)P (qt+2, Ot+2, ..., qT , OT |qt+1, Ot+1)

=
X

qt+2,...,qT

MX
j=1

P (Ot+1|qt+1 = j, Ot)P (qt+1 = j|qt = i)P (qt+2, Ot+2, ..., qT , OT |qt+1 = j, Ot+1)

=

MX
j=1

T (i, j)P (Ot+1|qt = j, Ot)βt+1(j).

Derivatives of Likelihood Q

We derive partial derivatives of the likelihood Q defined in (16), which then are used
to compute the unique maximum of Q(·, λ̄).
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Using the forward-backward variables defined above, direct calculations yield:

∂Q

∂µ(i)
=

X

q∈ST

L(λ̄|O, q)

 
TX

t=1,qt=i

(Ot −Ot−1 + Di(Ot−1 − µi)τ)B(i)−1
Di/2

!

=

TX
t=1

X

q∈ST

L(λ̄|O, q0, ..., qt = i, ..., qT )

| {z }
=αt(i)βt(i)

(Ot −Ot−1 + Di(Ot−1 − µi)τ)B(i)−1
Di/2

∂Q

∂D(i)
=

TX
t=1

αt(i)βt(i)(−Ot + Ot−1 −Di(Ot−1 − µi)τ)B(i)−1
(Ot−1 − µ(i))/2

∂Q

∂B(i)
=

1

2

h TX
t=0

−αt(i)βt(i)B
(i)−1

+

TX
t=1

αt(i)βt(i)(−Ot + Ot−1 −Di(Ot−1 − µi)τ)2/τ
i

The maximum is computed via the zeros of this derivatives as follows:

∂Q

∂µ(i)
= 0

⇔ µi =

PT
t=1 αt(i)βt(i)(Ot −Ot−1 + DiOt−1τ)

Diτ
PT

t=1 αt(i)βt(i)
, (26)

∂Q

∂D(i)
= 0

⇔ Di =

PT
t=1 αt(i)βt(i)(Ot −Ot−1)(Ot−1 − µ(i))

−τ
PT

t=1 αt(i)βt(i)(Ot−1 − µ(i))2
, (27)

∂Q

∂B(i)
= 0

⇔ B(i) =

PT
t=1 αt(i)βt(i)

τ
PT

t=0 αt(i)βt(i)
(−Ot + Ot−1 −D(i)(Ot−1 − µ(i))τ)2.

The parameters µ(i) and D(i) are independent of B(i). Hence we have to solve (26)
and (27):

⇒(26),(27)

PT
t=1 αt(i)βt(i)(Ot −Ot−1)(Ot−1 − µ(i))

−τ
PT

t=1 αt(i)βt(i)(Ot−1 − µ(i))2
=

PT
t=1 αt(i)βt(i)(Ot −Ot−1)

τ
PT

t=1 αt(i)βt(i)(Ot−1 − µ(i))

⇔ µi =
X1X2 −X3X4

X1X4 −X3X5

with

X1 =
PT

t=1 αt(i)βt(i)(Ot −Ot−1), X2 =
PT

t=1 αt(i)βt(i)(O
2
t−1),

X3 =
PT

t=1 αt(i)βt(i)(Ot −Ot−1)Ot−1, X4 =
PT

t=1 αt(i)βt(i)Ot−1,

X5 =
PT

t=1 αt(i)βt(i).
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