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Abstract: Functionally relevant transitions between native conformations of a protein can be
complex, involving, for example, the reorganization of parts of the backbone fold, and may occur
via a multitude of pathways. Such transitions can be characterized by a transition network (TN),
in which the experimentally determined end state structures are connected by a dense network
of subtransitions via low-energy intermediates. We show here how the computation of a TN
can be achieved for a complex protein transition. First, an efficient hierarchical procedure is
used to uniformly sample the conformational subspace relevant to the transition. Then, the best
path which connects the end states is determined as well as the rate-limiting ridge on the energy
surface which separates them. Graph-theoretical algorithms permit this to be achived by
computing the barriers of only a small number out of the many subtransitions in the TN. These
barriers are computed using the Conjugate Peak Refinement method. The approach is illustrated
on the conformational switch of Ras p21. The best and the 12 next-best transition pathways,
having rate-limiting barriers within a range of 10 kcal/mol, were identified. Two main energy
ridges, which respectively involve rearrangements of the switch | and switch Il loops, show that
switch | must rearrange by threading Tyr32 underneath the protein backbone before the rate-
limiting switch Il rearrangement can occur, while the details of the switch Il rearrangement differ
significantly among the low-energy pathways.

1. Introduction involving the rearrangement of backbone segments or the
Conformational changes are critical to the function of many packing at domain interfaces. Understanding the mechanism
proteins. Well-known examples of functional transitions of these transitions is particularly challenging, because the
include the rearrangement of subunits in the hemoglobin nature and order of their subtransitions are difficult to predict

tetramer upon oxygen bindirigthe lever-arm motion in  and may, in principle, occur in different ways.
myosin during muscle contractidmand the molecular switch

in Ras p21 (see Figure 2) that signals cell divisidiBuch
functional changes in conformation are often complex,

X-ray crystallography and nuclear magnetic resonance
spectroscopy can provide atomic-detail structures for stable
end states of conformational transitions and sometimes long-
lived intermediates. However, the transitions themselves are
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iwr.urF:i-heingberg.de. @fﬂcult to gharacterlze experimentally because, although the
T Computational Molecular Biophysics. time required for a complete structural change can be
¥ Computational Biochemistry. relatively long s or longer), the transition states involved
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are very short-lived. Computer simulation can help to gain E
insight into these processes. f

Because complex conformational transitions usually occur
on long time scales, they are not accessible to unbiased
molecular dynamics (MD) simulation with presently avail-
able computing power. Consequently, alternative computa-
tional approaches must be used. Variations of molecular
dynamics have been proposed to overcome this time scale
problem. For example, multiple time-step metHoal quite
successful in certain multiple-time scale contexts. However,
they do not achieve sufficient speedup for the present
purposes$:” Other methods bias the underlying energy
potentiat or reduce the dimension of the conformational
space’. These methods face the difficulty that a good guess
of the energy surface along the whole transition must in
principle be known a priori, which is usually not possible
for complex transitions in proteins. Steered and Targeted Figure 1. Transition network on a schematic two-dimensional
Molecular Dynamic¥:* incorporate a constraint into the energy surface. The network vertices (white bullets) cor-
energy function that directs the system toward the desiredrespond to low-energy intermediates between the reactant and
product structure. While these methods are successful inpl’OdUCt end states of the transition (black buIIets).The network
cases where the reaction follows a pathway that is compatible€dges (white lines) correspond to subtransitions between the
with these constrainféthey lead to unnatural structures and Vertices and are associated with weights (white numbers),
unrealistic energy barriers in other caga.further variant ~ Which are the rate-limiting energy barriers along each sub-
is conformational flooding? which approximates the local ~ fansition.

shape of the underlying energy surface explored by an MD ,qeq o determine an associated rate constant or a mean
trajectory by computing its principal components and then ,,ssa6 time (i.e. “cost’). See Figure 1 for an illustration.
escapes the local energy minimum by adding a multivariate * 1 construction of transition networks is documented in
Gaussian function to the energy function the form of which 5 3rge number of studies which have addressed the analysis
depends on these principal components. Although this ot energy surfaces by mapping its local minima and saddle
method allows the trajectory to overcome high energy ints25-46 These stationary points can be generated by local

barriers, it is designed to explore yet unknown new states ,imization starting from conformational ensembles that are
rather than performing a transition into a predefined state. generated by high-temperature molecular dynafiigs6 2047
Pathway methods are a different approach to simulating by a mode-following guided parallel search starting from a
molecular transitions. Starting from an initial guess, the deep initial minimun#®4248or by Discrete Path Sampling
transition pathway is allowed to relax on the energy surface (DpPS)434548 The kinetics between groups of stationary
by constrained molecular dynamie® or by local minimiza-  points may be recovered using Master-Equation dynamics
tion methods’~* These methods have been applied suc- (MED),282932:36.39353810424345.4inetic Monte Carlo (KMC)'S
cessfully in cases where the transition does not involve too or, again, by Discrete Path Sampling (DP&%4° Typical
complex rearrangements of the protein, such that a numbergpplications of the above methodology are the rearrangement

of reasonable initial guesses of the pathway can easily beof atomic or molecular clustets3! and the rearrangement
formulatec?>2* This is particularly the case when the or folding of peptide¥28:3233363538404343nd of model

conformational distance between the transition end states isproteins3442:50
small. In contrast, when the transition involves rearrange-  The applicability of the above approaches to complex
ments of the protein fold, a guess for the initial path is more transitions between native conformations of a protein is
difficult to make. Moreover, such transitions can follow |imited by two main difficulties. The first involves the
multiple pathways, as the energy landscape is likely to generation of the minima which serve as TN vertices: It is
include broad energy ridges with many saddle-points of a priori unclear how a conformational ensemble can be
similar energies. Therefore, the determination of a single generated that adequate|y covers the volume of conforma-
reaction pathway (even if it is the lowest-energy one) does tional space that is relevant for the transition. In particular,
not yield a comprehensive description of the transiton.  the direct manipulation of the backbone torsion angles or
To represent multiple pathways, theansition network high-temperature dynamics are likely to disrupt the native
approach may be used. Transition networks are a discretestructure, while search-based procedures may get lost in the
and simplified representation of configurational space and huge number of possibly distant low-energy minima. Discrete
encode the possible transition pathways in a network of Path Sampling is likely to be successful in identifying a
subtransitions. Each subtransition occurs between two con-connected channel between the end states, but it is unclear
formations that are relatively close in conformational space. how it can identify a collection of considerably different
Each conformation in the network can be reached and left channels. The second problem involves the computation of
through at least one, but usually several, subtransitions. Eachenergy barriers. The determination of global properties of
subtransition has an associated energy barrier that can behe network, such as the kinetics or the optimal path between
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two end state8! requires the barriers of the subtransitions
in the network to be known. Dense transition networks for
complex macromolecular transitions typically have so many
edges and the computation of each subtransition barrier is
so CPU-demanding that the computation of all subtransition
barriers cannot be afforded.

In the present contribution we address these two problems.
In section 3.1 we present a procedure for efficiently sampling
the relevant degrees of freedom of a complex transition
between two native conformations of a protein so as to yield
a representative set of low-energy conformers. Then, in
section 3.2 we present a graph-theoretical approach that
allows for determining global network properties (such as
the best transition pathway or the rate-limiting ridge dividing
the energy surface into reactant and product basins) based
on the computation of only a limited subset of all subtran-
sition barriers.

The methods introduced here are used to identify likely
pathways and the order of events in an example system, the
molecular switch of Ras p21 (section 4). This switch plays
an important role in the signal transduction pathways that
control proliferation, differentiation, and metabolistThe
conformational transition, which occurs in the GDP-bound
state, involves a complex rearrangement of the backbone fold
around the nucleotide binding site (Figure 2). The complexity
of the transition suggests that it may occur via many different
pathways, thus making it an excellent case for testing the
present transition network approach. Among the questions
that have been raised by a previous study of this conforma-
tional transitiod® and that are addressed here are as fol- Figure 2. The conformational switch in Ras p21. (A) The
lows: (1) Is the rearrangement of switch | characterized by GTP-bound and (B) GDP-bound conformers of the Ras p21
the side chain of Tyr32 threading underneath the backbonetransition. The blue regions are very similar in the crystal-
or by moving it through the solvent (see Figure 2)? (2) Is Ic_)graphlc _end states qu were kept flxe_d during the s_lmula-
there a coupling between the switch | and switch Il tions. During the transition, switch I_(reS|du_es 30—:_%5, in red)
transitions, i.e. is the relative order of events in the two switch '°a"1an9es Suc.h that Tyr32 (shown in red) is reDOS'tloned.on
regions strictly defined? (3) Is there a well-defined unfolding the opposite site of the backbone and opens the nue leotide
pathway of switch 112 binding site to prepare for thg release (?f GDP (showr? in green

The present study reports on methodological advances\lji?oﬁj;g mazlzsﬁggig):ggﬁchgﬁfledues 6171, inyellow)
which permit the generation and analysis of a comprehensive '
set of pathways for a complex conformational transition
between two native conformations of a protein. The meth- of states direct subtransitions are consideld.= (x>

Up?ree*

odology is applicable to complex conformational changes xS) gre the configuration vectors of the corresponding
in many other proteins whose functional time scale and {ansition states ang™ = (E™S E\TN§) are the associated

Uyttt

complexity precludes the use of direct simulation. transition state energies.
Each TN vertex,y, corresponds to a regioR, of the
2. Theory configurational space, containing a group of geometrically

Transition networks (TN) can in principle be used to model similar molecular configurations. What is appropriate as a
any dynamical system that can be appropriately describeddefinition of “group” depends on the application. For the
by a (possibly large) number of states and interstate transi-current work, each given vertex corresponds to an
tion rules. Here, we focus on TN for molecular systems attraction basin i.e. the set of configurations that can be
and in particular for conformational changes in proteins. A mapped to the same local minimur} on the potential
TN is a discrete model which abstracts dynamic proper- energy surfacelJ(x) by a direct minimizatio#>52 Each
ties from the full system and captures its relevant vertex,s, is associated with a state eneigy generally, the

kinetic behavior. Formally, a TN is a weighted graph= free energy of the basiR,. Depending on the complexity
(7:XSES,&XTSET), where the list of vertices;’= (1,...] 77 ), of the system used, different approximations to the free
represents the stable states of the protéin= (xf,...xf,/, ) energy may be necessary. For systems where all basins can
are the corresponding configuration vectors, &t = be mapped, it has been shown that free energies calculated

(Ef,..., Els,/T) are corresponding state energies. The list of from harmonic approximations to the potential in each basin
edges& = ((u, v),...,w, y)), specifies between which pairs are able to reproduce thermodynamic properfiés.
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The TN edges represent subtransitions between pairs of((v1, v2),...,Zm-1, vm)), the best path is defined as that which
neighboring vertices. To any given edge ¢), there is an minimizes the cumulative edge costs
associated transition state configuratioﬂf. The energy
EIUS associated with the edge is generally the free energy of B
the transition state. C(P) = ZWUkUk+1 6)
The absolute height of the vertex and edge energies can =
be shifted by subtracting an arbitrary constant vake
without affecting the results. To avoid numerical problems
when using exponentials &>, it is desirable to choosg,

m—1

This definition of a best path is similar to the previously
proposed notion of the continuous pathway with “maximum
) bl flux” or “minimum resistance™>% To determine the best
in such a way as to keef,,’ small. _ ~ path in practice, the edge energy vedi# is transformed
Figure 1 shows a schematic representation of a transitionjnig a cost-vectomw using eq 5% has size & | and assigns
network. a costi, to each edgeu( v) in &. Subsequently, the Dijkstra

2.1. Best PathsGiven the weighted graply; one can  4jqorithnf! is used to identify a best path between the two
search for the “best” path connecting two particular vertices onq states through the weighted network defined Bys(

vr andup (e.g. corresponding to experimenta]ly determined W). This path minimizes the path coS(P) given in eq 6.
‘reactant” and “product” structures). For this, consider a 'Thjs pest path furnishes a preliminary understanding of
subtransition along one esdge be%veen two vertioes; v, the transition’3 and it may be used as a guess for a reaction
with associated energidﬁl andE,. We can express the  cqoordinate for free energy calculatiéfer as a starting point
flux fro_m Statel_J |n_t0 state v, kuy_, as a product of the o discrete path sampliny. However, it dominates the
probability of being in state, pu, with the rate constant for  transition only if the barriers of alternative pathways are

the transitionu — v, k;,,:%® considerably higher. To obtain an idea of the number of
o 1 different accessible pathways and their associated structures,
Kuy = Pk @) it is useful to determine the set &f different pathways,

. . . . (P1, Pa,..., Py with costs C; < C; < ... = Cy), whereP; is
Using free energies for vertices and edges, the probability ¢, path with the lowest cos€s, P; is the path with the
pu at equilibrium is given by the ratio of the partition  ocond-lowest costC,, etc. This so-called K best path
functions foru and the full phase space: problem” is well-known in graph theo/. To precisely
define it, one must define in which way two paths must differ

S
_ exp(—E;/kgT) in order to be treated as different. In a transition network, it
Pu = 11 @ is clearly not very meaningful to distinguish two pathways
ZeXp(_E\i/kBT) Whieh differ only in two low-energy, non—rete—limiting _
= barriers. Therefore, two paths are treated as different only if

their rate-limiting steps (i.e. their highest-energy edges) do
Using the phenomenological form of transition state not coincide. Thek best paths are determined knsteps:
theory?* and assuming that all subtransitions have a similar The second best path is found by using the Dijkstra algorithm
dynamic prefactory, the rate constant can be expressed as after “blocking” the edgel(, ») associated with the highest
energy barrier in the previously found best path (by setting
, —(E>—E) its E,> = ). The third best path is found by blocking the
K =7 x kT ©) highest edges of the best and second best paths, etc.
2.2. Energy Ridge.The collection of rate-liming transition
wherekg is Boltzmann's constant, antis the temperature. ~ States from all different (as defined above) paths from a

Substituting egs 2 and 3 into eq 1, we see that the equilibrium defined reactant to a defined product belongs tdel)-
flux for the transitionu — v is proportional to the Boltzmann ~ dimensional transition surface that divides Bxelimensional

weight of ET% conformation space into a reactant and a product side. In
terms of topography, this transition surface corresponds to

ETS anenergy ridgeas illustrated in Figure 3. On a geographical
k,, O ex;{— kBu”) 4) landscape, it is analogous to a water-shed, i.e. the mountain

ridge that separates water flows toward distinct oceans. The
. . particular interest of the energy ridge is that it allows for a
The mean tlm_e between two _subsequent transition eVemsfeeling to be quickly obtained for how degenerate the
frf)lm uto v, 7, is given by th_e inverse of the fluxe,, = transition is, i.e., how many significantly different paths are
k- We take theedge costWy, as proportional tor., likely to be accessible. For instance, if one transition state
setting the proportionality factor to unity: in the ridge has a significantly lower energy than the other

s transition states in the ridge, then the transition mechanism
I Eu is dominated by a well-defined bottleneck. In contrast, if the
W, = ex (5) ) . . " L
ks T ridge contains many different transition states with similar

energies, the transition mechanism is not well defined.
For a path connecting vertices = vg andvm = vp Via a In graph-theoretical terms, an energy ridge isua The
series oimvertices,P = (v1, v,..., um), travelling over edges  name “cut” stems from the fact that deletion of its edges
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lower kyyo than the cut of the topographic ridge, because
the many individual fluxes across the broad topographic ridge
add up to a larger total flux. In the current context, however,
this theoretical difference is not of importance.

The rate-limiting cut can be found by defining the vector
of weightsw = (w,,...,w,, ), where for each edgei(v) in
the networkw,, = exp(—EtU_/kB'D, and using the algorithm
of Nagamochi and Ibarakf. However, this algorithm is
computationally expensive (scaling &%| 7/|°) or O(] 7|2
+ |71|& | log| 77 ]), depending on the implementation).
Since the computation of the cut has to be repeated many
times (see section 3.3.2), we used the topographical energy-

Path Coordinate, 1-dim. ridge cut rather than the rate-limiting cut.
C The topographical energy-ridge cut is determined by an
Energy . h .
algorithm that can be likened to flooding the energy
/\/\/\ landscape by stepwise filling up its basins. The ridge that
. A &\ last divides the reactant and product “lakes” before they
Tow become connected is the energy ridge. In the network, the
e s Cooenets, ARSI ki edges which define the energy ridge are identified iteratively,
Figure 3. Schematic representation of the graph-theoretical starting from an edgeless network, consisting only of the
concepts introduced in sections 2 and 3.3. (A) The best path vertices, 7. In each iteration, a new edges ¢ is added to
(white line) connecting the transition end states (black bullets) the network in order of increasing edge energy. At each
and the energy ridge (black line) separating them. (B) Profile iteration, the topology of¢ allows the identification of
of vertex and edge energies along the best path through the connected subgraphs (i.e. sets of vertices in which each
network. The best path is requested to be correct in all edges vertex has at least one link to another vertex in the set). Each
with energies in the range [Epeax — AEsure, Epea] (indicated vertex is assigned an identifier that is unique for the
by squares). (C) Profile of the energy ridge cutting the TN connected subgraph it belongs to. The subgraph containing
into two conformational regions. The energy ridge is guaran- the reactant vertex is always assigned the identifier ‘0’, while
teed to be correct in all edges with energies in the range [Eiow, the subgraph containing the product vertex is always assigned

Eiow + Asure]- ‘1’. Whenever an edge would be added that connects two

dissociates the network into two disconnected subnetworks.Vertices with identifiers ‘0" and ‘1', this edge is not added
Formally, the cuC is a set oM edgesC = { (uy, v1),...,{Uw, but marked as part of the energy ridge. The full ridge is
um)} with the property that each vertax belongs to one  determined when all edges have been iterated.

set,U (e.g. “reactant side”), each vertexbelongs to another

set,V (e.g. “product side”), andy, V) partition the set of 3. Methods

all vertices (i.,e.U UV = 77andU N V = ).

When the best and all next-best paths each have a
dominant (rate-limiting) step, the energy ridge is identical
to the cut whose total flukyy across it is minimalkyy is
given by the sum of all localized fluxds,, in the direction
u — v across edgesy( v in the cut

3.1. Efficient Sampling Procedure for Complex Confor-
mational Changes in Proteinsin this section, a method is
described for generating a representative sample of low-
energy minima covering the conformational (sub)space
relevant to a conformational transition. The method consists
mainly of two stages: (1) generation of a sample of low-
kyy = K,, ) energy minima that are sparsely distributed over a large
wmec conformational subspace and (2) finding new low-energy
minima between the minima found in (1) so as to densely
wherek,,, is the equilibrium flux from eq 4. By dismissing  map out the low-energy regions of conformational space.
the proportionality constant, we obtain the normalized total In the first stage, the sampling can be limited to conforma-

flux, kuve: tions that are likely to be relevant to the transition, thus
ETS avoiding sampling of the full conformational space (which
Koyo = exd — 4 ®) would include, for example, mostly unfolded structures of
V.0 (ugec ke T the protein). For most transitions between native protein
" conformations, a good estimation can be made as to which
Note that the cut that minimizes,yo (the rate-limiting structural regions are likely to require significant sampling.

cuf) and the cut associated with the topographic energy ridge Small deformations in the remaining domains, which are
are not always identical. For example, consider a case wherestructurally similar in the two end states, are then sampled
the topographic ridge is very broad, its cut containing many by a simple interpolation between the end states. This
edges of similar energy, whereas another cut contains onlypartitioning and sampling procedure is described in sections
a single edge of slightly lower energy than those of the 3.1.1-3.1.3 and is illustrated in Figure 4. Section 3.1.4

topographic ridge. Then the cut with the single edge has adescribes strategies for finding a uniformly dense set of low-
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Figure 4. lllustration of the sampling procedure. (A) Some
intermediate conformations are generated by interpolating the
positions of a subset of protein atoms (the I-region) between
their end state positions “R” and “P” (here 3 intermediate
structures are generated, shown in circles). From each Define TN edges
structure along the interpolation, a large set of conformations : betw ohb

is generated by sampling the torsional angles of the S-region € e , ' gy cen nelgh ors
of the protein. The full set of conformations is defined by all
combinations of the five (including both end states) conforma-
tions for the I-region with each sample of the S-region. (B)
The interpolation (I) and sampling (S) regions in Ras p21.
Left: The atoms of the I-region are interpolated between the

C Cmpute barriers

transition end states (shown in white and dark blue), here along selected edges
producing three intermediates (shown in shades of blue).

Right: The single-bond torsion angles of the S-region (switch Figure 5. Overview of the steps in generating a transition
lin red, switch Il in yellow) are sampled uniformly (examples network (TN). (a) The potential energy surface and the
of several S conformations are overlaid). The S region minimized reactant and product end states of the transition.
encompasses switch | (residues 30—35) and switch Il (resi- (b) Conformers (white bullets) are uniformly spread over the
dues 61—70). part of conformational space that is relevant to the transition

(see Figure 4 and section 3.1.3). (c) Structures without steric
energy minima. Figure 5 gives a schematic overview of all clashes are accepted (see Appendix A) and energy-minimized
the steps involved in the generation of the TN. (see section 3.1.4). Interpolation between pairs of available

3.1.1. The Sampling (S) and Interpolation (I) Regions. conformers is used to explore nearby low-energy regions
Functionally relevant conformational changes in proteins are (dashed line). (d) The minimized interpolation intermediates
usually relatively local in the sense that most native contacts (Plack bullets) increase the density of low-energy minima (see
are preserved. While there might be complex rearrangement$ection 3.1.4). These minima form the TN vertices. (€) Pairs
in certain regions, involving sometimes even refolding of of neughbonng_mnnlma are associated, forming the TN edges.
parts of the backbone (such as in Ras p21), the remainderT.he TSUbtrans't'or?S .O.f selected edggs are computed by CPR,
of the protein only deforms flexibly. This allows a sampling Zgﬂg‘g ;hg)rate'"m'tmg energy barriers for the TN edges (see
subspace with a considerably reduced dimensionality to be e
defined. Thus, the protein can be partitioned into interpolation
(I and sampling $) regions. The changes in theatoms an illustration). For each such interpolated structure, the
are sampled by simply interpolating between the atomic rotable torsion angles of th&region (including backbone
positions in the two transition end states (see Figure 4a for ¢/y torsions and single-bond side-chain torsions) are sampled



846 J. Chem. Theory Comput., Vol. 2, No. 3, 2006 Nog et al.

uniformly (Figure 4b). Finally, all degrees of freedom are Initialize set of backbone samples, S, with
locally relaxed during the energy minimizations that follow conformars fror inkjal intarpolation.

this combined /S sampling procedure.

3.1.2. Interpolation of I-Atoms. To obtain a smooth
variation of the positions of atoms in theregion near the
boundary to thé& region, the coordinates of thaegion are
generated by interpolating between the end states of the
transition. For this, a combined interpolation procedure is
used: First, so as to preserve the backbone fold, the backbone
atoms are interpolated in Cartesian coordinates, and then the
side-chain atoms are built onto the interpolated backbone,
using internal coordinate values that are interpolated between
the internal coordinates of the end states. This interpolation
method has been shown to produce less distorted structures
than Cartesian or internal coordinate interpolation aféne.

For practical convenience, the combined interpolation is
done for all atoms of the protein (including the atoms of the
S region). Because th& region has by definition very o
different conformations in the end states, the interpolated
structures involve distorted internal coordinates inStpart
of the backbone. To start the sampling with reasonable
values of the internal coordinates of tl&region, each i
interpolated structure is energy minimized with positional (Section 3.1.3).
harmonic constraints on tHeatoms (force constant 1 kcal
molA-1). In the example treated hemBpemo = 3 inter- A backbone conformer is considered “valid” if it does not
polated structures of Ras p21 were generated in this way,produce steric collisions. For this, it is checked whether the
yielding 5 structures along the interpolation including the resulting backbone atoms and atoms whose positions are
end states. directly dependent on the backbone configuration (i.e.,

3.1.3. Conformational Sampling of the S RegionFor backbone O and H, f2and proline side chains) can be placed
each of the structures along the interpolation between thewithout collision among themselves and with theegion
two end states, many conformers of tl&region are of the protein. Since a large number ®iconformers have
generated (Figure 5b). Sampling of tReegion is performed  to be tested for collisions, an efficient strategy is used to
uniformly in the space of flexible torsion angles, comprising perform these collision checks (see Appendix A).
the ¢/ backbone and single-bond side-chain angles. The To obtain a conformational sample that is approximately
stiff internal degrees of freedom (i.e. bond lengths, valence uniform, conformers that are valid (i.e., have no collisions)
angles and backbone angles) were not sampled here. The are “accepted” (i.e., added to a “conformational repository”)
flowchart in Figure 6 summarizes the following algorithm only if they significantly differ from already-accepted
for sampling backbone conformations. conformers as measured by e dihedral RMS difference,

If the sampling region is located at one of the termini of Which must exceed a chosen valuk, (see Table 2 for
the polypeptide chain, there are no closure constraints onSuggested parameter values). The choicé.adetermines
the backbone, allowing th@'y angles to be sampled directly —the density of sampling. Itis set according to how finely the
by setting them to random values. However, when the details of the transition should be probed. Backbone con-
sampling region is within the polypeptide chain (as is the formers are generated until the sampling density defined by
case for the switch | and switch Il loops in Ras p21), this 9s has been reached. The criterion used here for this is that
“free” sampling is not possible, as it would involve violation NO “valid” structures are “accepted” anymore for a number
of the backbone closure (i,esome backbone bond lengths Of Niect SUCCESSIVE attempts. This yields a numbenBf
and angles would not be preserved) or disruption of the native backbone conformations for each interpolation stép e
fold of the protein. Therefore, random backbone conforma- {0.,1,...Ninterpol + 1}, Wherei = 0 andi = Niperpor + 1 are
tions are generated using a variant of the so-called window associated with the end states and Miyepo are the
method®6° This procedure allows backbone variation of a interpolated intemediates).
series ofr > 3 consecutive residues (the “window”) while To obtain a complete conformation, the side chains of the

preserving the position and orientation of the backbone at S regibonk are built onto a randomly picked backbone out of
the boundaries of that window. Out of the windows’ 2 the n’*™ generated backbones, using randomly chosen

torsion angles# and), 2r — 6 can be freely chosen and single-bond torsion angles. The resulting conformer is
rotated randomly. The remaining six torsion angle values accepted if it does not involve atom collisions (see Appendix
are determined by the window method (see ref 59 for a A), giving for each interpolation stepa numbern' of
detailed description). In each sampling step, the location andsterically valid conformations of thé region. n*' =
length of the window in th& region and the rotated torsion  ks@n®* whereksi¢e is the desired average number of side

angles are randomly chosen. chain conformers per backbone conformer. An efficient

N|
»>

| Pick random conformation ¢ from S I

|Generate ' through a random window move on c|

¢’ involves steric collisions

no

Is there any
conformation s in S with
distance(s,c*)<5.?

Figure 6. Flowchart for the backbone sampling procedure
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Table 1: Frequently Used Symbols
symbol meaning
U(x) energy function
7= (1,...1 7 ) list of vertices in network; | 7’| is the number of vertices
XS = (xf,...,x‘sﬂ) conformers corresponding to vertices (here: minima on U(x))
Eo energy of the minimized reactant structure (see section 3.4)

ES= (Ef,..., E\Sf/q)
&= (U1, W1, Y )

— (v TS TS
XT8 = (Xulvlv"'v u“,‘v‘(,,,‘)

— TS s
E™S= (Eulvlr"'rEu“ v“,)

&= (7)XSES,&XTS,ETS)

vertex energies (here: E; = U(x;) — Eg)

list of edges in the network, each edge connecting two vertices of V;
|& | is the number of edges

for each edge in &, highest saddle point on minimum-energy path
connecting the conformers x;, x;

edge (i.e. saddle-point) energies: E,> = U(x ;) — Eo

transition network composed of vertices 7’connected by edges &

TS,min — TS,min TS,min
E - (Eulv1 ""'Eu“ VM)

TS,max — TS,max TS, max
ETSmax = (B S, EL )

w= (Wulvly---y Wu v, ‘)

~min — (/nin
Wt = (W,

)

Tmax — (p7/Max —max
w (W‘z‘/l""’ Mﬂw\‘/\u\)

lower bounds to the (yet unknown) edge energies
upper bounds to the (yet unknown) edge energies
Boltzmann weights of the edge energies: wyy, = exp(—E;S/kBD

VV

inverse Boltzmann weights of the edge energies: wy,, = exp(E;ﬁ/kBD
inverse Boltzmann weights of the lower edge energy bounds:

Wy = exp(E;ﬁm'”/kBD
same as w™n, for upper bounds

Table 2: Parameters for the Sampling Algorithm

parameter meaning value
Minterpol number of steps along the interpolation between the transition end states, including the end states 5
(Minterpol = 2)
Os shortest permitted RMS distance between two accepted backbone conformers 50°
(here: in ¢/y torsion angle space)
Nreject sampling has converged when neject Newly generated conformers are successively rejected 1000
because they are closer than ds to already-accepted conformers
kside average number of side chain conformers per backbone conformer. 10
Etol largest permitted interaction energy between each atom-pair, for a structure to be considered valid 20 kcal/mol
Miin number of structures drawn from the conf. repository for minimization 15000
Eiow largest permitted energy difference above minimized reactant structure to accept a conformer 40 kcal/mol
ointerpol shortest and longest permitted RMS distance between a pair of minima to generate additional omtereel = 0,75 A
oimerpol conformers by interpolation between them omervol — 2 A
ogomneet shortest permitted RMS distance between any pair of minima x;, x;, to avoid redundancy in the TN 0.75 A
ogomnect longest permitted RMS distance between any pair of minima x3, x5, to form an edge (v, V) in the TN 15A

connect

vy maximum number of neighbors for each vertex

20

protocol for building side chains on largé regions is
described in Appendix B.

For Ras p21, the switch | and 8 regions were sampled
independently, usings = 50° and nyeject = 1000. For each
interpolation stepj (i €{0....,4), this yieldedn™*' ~ 30
backbone conformers for switch | am®*? ~ 10* back-
bone conformers for switch Il. An averagel@fe = 10 side-

low-energy minima, a number af,, conformers is drawn
randomly from the conformational repository and energy-
minimized on the potential(x) (see Figure 5c). Only
minima which reach a low-energy region defined B{x)

< Eew are accepted, wherg,,, is a predefined constant.
Minimization of many conformers is expensive, so it is
desirable to reject structures early which are not likely to

chain conformations per backbone conformer were generatedfall into low-energy minima. An efficient method to do this

yielding n™" ~ 300 andn™"? ~ 10F collision-free confor-

is proposed in Appendix C. For Ras p2iy», =15 000

mations of switch | and Il, respectively. Combining pairs of conformers were randomly retrieved from the conformational

these switch | and Il conformers yielded310’ fully built
protein structures for each interpolation stephus, the total

repository. Out of these, 189 reached the desired low-energy
region belowE,., which was taken here as 40 kcal/mol

number of collision-free and significantly different structures above the energy of the minimized reactant structure
isnful =1.5x 108, forming a large conformational repository ~ (obtained by quenched molecular dynamics, see section 3.4).
from which structures can be drawn and further energy These were minimized to a gradient RMS of 1@cal mol™
optimized. The conformations in this repository are distrib- A~ They form a sparse set of low-energy conformations
uted uniformly within the sterically accessible regions of the in the desired region of conformational space (see Table 4).
conformational subspace spanned by the torsional coordinates The density of conformers in the low-energy regions can,
of S and the interpolation coordinate bf in principle, be increased by minimizing more structures from
3.1.4. Constructing a Uniformly Dense Set of Low- the conformational repository. Given the low yield of this
Energy Minima. To obtain a representative collection of approach (see above: 189/15 0801.25%), this is com-
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Table 3: Sampling of the S Regions in Ras P21
meaning (see section 3.1.3)

symbol

ppackl number of backbone conformers (residues 30—35), ~30
! for each interpolation step i (i €{0.,...,4})

2% same as n™**, for residues 61—70 ~10*
pful number of fully built conformers with side chains ~300

! (residues 30—35), for interpolation step 7
" same as N, for residues 61—70 ~10°
nful total size of the conformational repository 1.5-108

Table 4: Size and Density of the Network during
Sampling

minima?@  accepted®  neighbors®
after first sampling? 15002 189 3
after increasing density® 35836 10831 267

TN vertices’ n/a 6242 117

2 The total number of generated energy-minima. ? The number of
accepted minima with energy below Ejow. ¢ The average number of
neighbors around accepted minima within a distance-range from
oLrmeet 1o geonteet d After the sampling of the | and S regions

(sections 3.1.2 and 3.1.3). @ After increasing the density of low-energy

Noe et al.
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Figure 7. Dependence of energies of minima on the distance
from the crystallographic end states. For each minimum, the
distance to the reactant or product structure (whichever is
closer) is calculated. The minima with distances between 1
and 4.5 A were grouped according to their distances, each
group being 0.1 A wide. The lowest energy of the minima
within each group is plotted versus the distance of that group.
The plot shows that the energies increase considerably with
increasing distance from the crystallographic end states,
indicating that the relevant portions of conformational space
have been sampled.

minima (section 3.1.4). f After removing redundancy by not allowing
neighbors closer than 657" (section 3.2).

is how sensitive the analyses are to the density of minima.

putationally inefficient. Instead, additional conformers are |n the present study, density variation, within reason, has
built by interpolation between the already-found low-energy |ittle effect as the CPR path calculations used to compute
conformers. This can be done in various ways. The strategythe edge energies ensure that no important intervening
used here was to select each pair of low-energy conformersparriers are missed (see section 3.2). Moreover, the purpose
separated by a distance in the ranfis™ = 0.75 A and  of the present calculations is to generate a coarse-grained
OmeP = 2 A (measured as Cartesian RMSD of the C  model of the Ras p21 energy function which is analyzed in
atoms in theS region) and to generate an interpolation the Results section based on qualitative properties of large
pathway between them using the method described in sectiorsets of pathways. Local features of the network do not play
3.1.2. Two structures were generated, one-third and two-a role in this analysis, and therefore the density of minima
thirds of the way along each interpolation, respectively, and was not further increased.
energy minimized as described in section 3.1.4 (see Figure A more critical question is whether there are important
5d). This procedure was efficient in finding low-energy parts of the conformational space that are not sampled at
minima, increasing the number of conformers belB, all. A logical check of this is to examine whether any low-
from 189 to 10 831 (see Table 4). This considerably energy minima exist in regions of conformational space
increased the average number of neighbors for each minimumeontinguous with regions already explored. If so, energeti-
from 3 to 267 (“neighborhood” being defined by a cutoff cally accessible pathways might exist that lead out of the
distanced;on, * see section 3.2). available set of minima into other regions of the conforma-

During minimization, it is possible that some conformers tional space which were not included in the initial sampling.
end up in similar minima. This produces conformational This can be checked by calculating the lowest-energy minima
redundancy, which was subsequently removed. For this, within shells that are increasingly distant from the reactant
minima were considered in the order of increasing energy, and product vertices and ensuring that the found set of
accepting only those minima whose nearest-neighbor distanceminima defines an energetic basin that is unlikely to be left.
to any already-accepted minimum was at led$f"* = To examine this, we have analyzed all 35 836 minima that
0.75 A. This led to a final number df7’| = 6242 diverse  were generated (see Table 4) and computed their distances
minima. to the reactant or product structure (whichever of the two

3.1.5. Verification of the Set of Minima. The available  was closer). For each distance-window between 1 and 4.5
set of minima is approximately uniformly distributed in a A, the lowest energy of all minima within that window was
conformational subspace which depends on the original recorded. The result, which is shown in Figure 7, shows that
definitions of S and|. There are two questions regarding there is a strong increase in energy with increasing distance,
the adequacy of this set of minima: (1) is the set dense reaching about 150 kcal/mol abotg at 4.5 A. This result
enough and (2) are relevant parts of conformational spaceshows that the existence of low-energy exit pathways from
sampled. the initial set of minima is unlikely, and therefore a sufficient

The density of the set may be increased by reducing thevolume of conformational space has been sampled.
parameterdson"®® and conducting further interpolations. 3.2. Construction of the Ras p21 Transition Network.
Clearly, there is a tradeoff between the density of minima The final number of 7’| = 6242 diverse minima served as
and the computational requirements. The important questionthe vertices of the transition network (see Table 4).
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Due to the large number of possible conformations of the The strategy relies on the introduction of lower and upper
system studied in this article, it is possible to map only a boundsE'S™", ET'S™ on each edge energy, which bracket
subset of the dynamically accessible minima, so that the the (yet unknown) true edge enerds/;>.

computation of meaningful free energies is not feasible. Here, The “safe” lower bound for the edge energyEE™" =

the contributions from local vibrations around the minima max{ Efy Ef}y because the energy of each barrier is at least

are neglecteg, and the potential energx,) is used 4 high as the highest of the two minima it connects. The
directly for E;. Nevertheless, the important free energy gafe upper bound ETSMaX — o put for numerical reasons

. . . Uy .
contributions from bulk solvent are accounted for in the i is taken aQEIUSmax: E'meln + M, whereM is a large but

calcylation ofu(x) through a continuum solvent method (see  nite number (here)1=100 kcal/mol). A tighter upper bound
section 3.4). _ . could also be obtained by performing a very short (i.e.
The absolute height of the vertex can be shifted by unconverged) CPR path refinement on the edge) and
subtracting an arbitrary constant valdewithout affecting using the highest energy along the resulting patEIégmx
- S, _ '
the results. Thus, we defir asE;: = U(x;) — Eo. Here,  ap alternative method to both the lower and upper bounds,

E, is chosen as the minimized reaqtant energy. based on statistical estimates, is used here (see Appendix
The “reactant” and “product” vertices were redefined by D).

selecting the lowest energy minima within the vicinity of
the crystallographic reactant and product structures after
quenched MD (see section 3.4). The “vicinity” was defined
here to be within both &/1-RMSD of 50 and a Cartesian
RMSD of 1.5 A for the G-atoms of the switch regions. The
resulting Cartesian RMSD over all,Gtoms between the
crystal structures and the so-chosen reactant and produc
conformers was 1.4 and 1.5 A, respectively.

Given the complete set of verticeg, the edges of the
transition network are generated by defining connections

according to distance-based criteria. Each vertex is connecte
connect

To implement lower and upper bounds, two graphs are
defined, which have the same topology as the actual
transition network: one using the lower bounds for the edge
energiesgmn = (7/XSES,&,ETSMN and the other using the
with upper bounds for the edge energies" =
tW,XS,ES,L?,ETSmaﬁ. The best paths (and energy ridges)
hrough 4Mn and 4™ can be computed, using the corre-
sponding inverse Boltzmann weight vectorg)" wm and
Boltzmann weight vectorsy™",w™m This is addressed in
Jhe next sections.

3.3.1. Best PathsThe flowchart in Figure 8 summarizes

to up ton,,,  of its nearest neighbors that are within a -
distanceéfno;x”ec‘(see Figure 5¢). For Ras p Co;xnea: 15 the procedure for finding the best path. The best path through

the transition network is found iteratively as follows: In each
iteration, the best path through the grapft", Piie, =
(vRy--., vp), is determined as described in section 2.1. The

edge with the highest unknown energy ald?@gt (u, v), is

A (measured as RMS distance between thea®ms of the

S region), andn®"* = 20 were used. The resulting

max
transition network hadd® | = 47 404 edges and was fully
connected (i.e. any given pair of vertices is connected by . . . TS:
some pathway). identified, and its true enerdy,,’is computed by CPR. The

To determine the energy barrier associated with a given ”erworkﬁ";“” s upqlated_ by settin Ivsmin o the true gdge
edge, @, v), a Minimum Energy Path (MEP) between the energy E,,’ (the weightsv™" are also updated accordingly).

tWo minima xﬁ and X;Q' corresponding to that edge was This procedure is repeated until all edge energies along the

computed using the Conjugate Peak Refinement (CPR) resulting best path have been computed, yielding the true
method!® An initial guess for the path was generated by best path.

interpolation between the edge end structures, using the A preliminary estimate of the energy barrier of the best
procedure described in section 3.1.2. Starting from this guess Path can be easily obtained. For this, in each iteration of the
CPR identifies all the first-order saddle points that are local @Pove algorithm, the best path is calculated on both graphs
energy maxima along the Minimum Energy Path. Here, the <™ and 9" yielding best path$’.;, and Py, respec-
CPR calculation was stopped as soon as the highest (i.e. ratetively. The rate-limiting barrier of the true best path is
limiting) of these saddle points along the edge was deter- bounded by those oPpiy and PRy, During successive
mined. Its structure is assigned f the corresponding  iterations, these bounds converge to the true value (see Figure

edge energy is taken &°> = U(x'9) — E, (see section 2).  9)-
3.3. Efficient Determination of Best Paths and Energy Often, one is not interested in the details of how the best

Ridges. Even though the subtransition pathways are short path travels in the low-energy regions, since it is the highest-
compared with a whole pathway between the transition end energy edges along the whole path that are rate determining.
states, finding the highest saddle-point along an edge canComputation time can thus be saved if only the high-energy
still be very CPU intensive (here, the average time on a single edges of the best path, i.e., those with barrier energies within
3 MHz CPU was abadw2 h per subtransition). Therefore, it a rangeAEsy. of the highest-energy barrier along the path,
is computationally infeasible to do this for all edges in the Epeax are required to be correct (see Figure 3b). To achieve
network. The problem thus arises that global properties of this, the computation proceeds as above until the energy of
the network (such as the best path or the dividing energy the rate-limiting barrierEyeax is identified. This is the case
ridge) must be determined using incomplete information on whenP™" andP™*have the same value f@hea« After that,

the barriers. We solve this problem by devising a strategy whenever a barrier is computed whose eneE{fyis below
such that only a small number of edge energies need to bethe thresholdEyeax — AEsue the transition networks are

computed to determine the best path and the energy ridgeupdated by setting >™" = E3™* = max¥ E,, E,}, i.e., as
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Given: G™n - Transition Network with lower energy bounds E™in
and G with upper energy bounds Emex,

Compute inverse Boltzmann weights w-1.mn from Emin, w-1.max from Emax
N
v

Compute best path P™ = (v,..., v,,)
on G™n ysing w'mn as edge weights

and best path P™ = (u,,..., U,,)

on Gma ysing wmax as edge weights

l

Be Epeakmin gnd Ereakmax the maximum energies of PMn and Pma |

EX™ = Ep™ = max{E}, EV}

[Epesmin = Epeaimex

es
Y and EFS < Ee#kmn _AE .

A 4
Select edge (u,v) with undetermined energy(E>™" = E>™* )|
which has highest energy along P™n,

Determine edge energy by CPR:
g = £rme = 72 @
Update w.min and w-1.max yes

no

[ Return PMin as best path |
Figure 8. Flowchart for the best path finding procedure (section 3.3.1).
_ 140[A ' ‘ " the maximal difference found between any estimated lower
2 _120pt, 1 bound and the corresponding safe lower bound:
2 g 1000 .
== 80 e _ i S
EE 60F - ClMhax = MAX| EIUSmln — max = Ef}]all pairs@i,v) )
3 40[/—*—““—“—‘““"—'— . . .
g o ] Thus, erka also gives the maximum possible error on
05 = T000—— 13003000 the ratg—limiting bgrrier of t.he path. If the gra;maxis_used
o Iierations to obtain a preliminary estimate of the energy barrier of the
e best path, this estimate is usually improved by also replacing

sor_, 1 the safe upper energy bouig]>™ = « by an statistical

estimate. As the identification of the best path does not
{— . depend ong™, an incorrect upper bounk>™ cannot
- lead to a wrong result but may give a wrong upper bound
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Tterations 3.3.2. Energy Ridges.As defined in section 2.2, the
energy ridge is the rate-limiting cut that divides the TN into
Figure 9. Convergence behavior of the best-path. The energy a reactant and product side. The algorithm that computes
of the rate-limiting transition state along the best path Pgag the energy ridge while determining only a limited number
(solid line) or P (dashed line) is plotted as a function of of edge barriers uses a strategy similar to the one used to
iterations of the algorithm (see section 3.3.1). (A) Using “safe” find the best-path. The energy-ridge cut is determined (as
bounds, i.e. setting the lower and upper bounds to 0 and . described in section 2.2) on the graghé*(i.e. using upper

(B) Using guessed bounds, i.e. setting the barrier bounds

7 ) bounds for the yet unknown edge energies). The lowest-
based on statistics (see Figure 13).

energy unknown edgeu(v), in the resulting cutC™ is
computed by CPR, and™ is updated with the value of

TS . . . . . .
if the transition were barrierless. This saves computational Ew- ThiS Process is rne]:age_at_ed in successive iterations. When
effort as it makes sure thati,(v) is a part of the best path 2" €nergy-ridge cut™is identified whose edge barriers

identified in the next Dijkstra computation, thereby avoiding are all determined, it is identical to the true energy ridge.

Lo o - : In practice, it is sufficient to compute only the low-energy
to spend time in |dent|fy|ng paths 2v0|d|ng, ¢) that might barriers of the energy ridge, since the higher-energy barriers
have a lower energy barrier thag]>.

i ' ] are not populated. Thus, one is only interested in finding

The computing time can be drastically reduced, at the ¢ energy barriers of the energy ridge that are up to an
expense of possibly failing to identify the true best path, if energy differenceAEsu. above the energy of the lowest
the “safe” lower edge energy boui];™" = max E,, E,} barrier in the ridge,Eow (See Figure 3c). To find these
is replaced with a statistical estimate (described in more detailparriers, the algorithm given above proceeds until the value
in Appendix D). In this case the lower energy bound is not of E, is identified. From this moment on, whenever a barrier
necessarily correct as it might overestimate the real barrier.is computed which ha&'S > Ejoy + AEsye 9™ is updated
That is, edges which are not included in the resulting best by setting EIZS = o0. This fools the algorithm so that it
path and have been rejected based on their lower estimatéeaves these high-energy barriers in the ridge and thereby
E;>™ might in fact have a true edge energy> < E/>™" saves the computational cost of identifying the high-energy
The maximum overestimation possible,.@k is given by regions of the full ridge.
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Finding the energy ridge depends on the upper bounds onTable 5: Number of Edges Computed with CPR To
the edge energies; therefore, the performance of the algorithmPetermine the Best Path?
is considerably increased if estimates (see Appendix D) are AEgure? safe bounds® guessed bounds¢
used instead of infinite upper bounds. However, in contrast

to the error involved in the determination of best paths (eq 5, g;ié ggg
9), no upper bound for the error from using such estimates 5 2224 565
can be derived here. 20 2208 505
3.4. Test Case: Protein Model and Energy Function. 15 2115 321
The method is tested here on Ras p21. The conformational 10 2069 212
change in Ras occurs after tlrephosphate of bound GTP 5 2059 114
is cleaved off. GTP hydrolysis can be catalyzed by the 0 2059 106
binding of a GTPase-activating protein (GAPYr it can path length” 23 24
take place as a result of the weak intrinsic GTPase activity __energy barrierd 45.7 45.7

of Ras in absence of GAP. The conformational transition  #Assuming no energy barrier has been previously computed.
studied here is in the absence of GAP. as would occur afterb Energy range below the highest barrier for which the barriers of the

S . . .~ best path are to be determined (see Figure 3B). ¢Using EM" =
intrinsic hydrolysis of GTP. Crystallographic structures exist max{E,, £}, ET

' . = o as bounds on the unknown energy barriers.
for both the GTP-bound (Protein Data Bank structure 5921 @ ysing statistical estimates (Appendix D) to guess the E™" and E™
and GDP-bound states (1¢f21lof Ras p21. The-phosphate bounds. €« means that the whole best path with all its edges is to
was deleted from 5p21, to yield the reactant state. The 1q21be determined. Number of edges along the fully determined best
S .9 -limiti i i
structure served as product state. The HBUILD faC|I|ty in path. 9 Rate-limiting energy barrier along the best path, in kcal/mol

o relative to the reactant.
CHARMM®* was used to place the missing hydrogens.

Al calculations were performed using the extended-carbon regions were removed from the end states as described in
potential function (PARAM19%> Contributions from bulk ref 13. Finally, both end states were minimized to a gradient
solvent to the free energy of the conformational substatesRMS of 102 kcal molt A1,
were included with the Generalized Born model of con-
tinuum solvation, using version 2 of the Analytical Con- 4. Results and Discussion
tinuum Electrostatics (ACE) methS8Nonbonded interac-  4.1. Performance of Best Path CalculationsBest paths
tions were smoothly brought to zero by multiplying them between the reactant and product structures of the Ras p21
with a switching function between 8 and 12 A. conformational switch were computed using the iterative

The structure of a protein may be affected by the crystal algorithm described in section 3.3.1. The performance was
environment. Therefore, both the reactant and the productevaluated, first using safe values for the upper and lower
structures were first relaxed using molecular dynamics bounds on the edge barriers (™" = max E,, E,} and

1
simulations with ACE. For this 20 ps of heating were E3™* = «). Alternatively, statistical estimates for the

Uy

followed by 100 ps of equilibration and a 10 ns production bounds (described in Appendix D) were used. The partial
run. One structure every 100 ps (making up 100 structurescomputation of best paths, using different values for the
in total) was selected and energy minimized with ACE to a energy intervalAEq(See section 3.3.1 and Figure 3B) was
gradient RMS of 10° kcal molt A~2. The structures with  also examined.
the lowest energies were selected as reactant and product Table 5 shows how many edges need to be computed with
structures. The potential energy of these structures was lowerCPR in order for the best path to be determined under these
than that obtained by a direct minimization of 5p21 and 1921 different conditions (starting the count from scratch for each
by 30-45 kcal mot™. Structurally, the differences compared setting). To determine the full best pathHg,e = ) using
to 5p21 and 1921 were rather small, consisting mainly of safe bounds on the energy barriers, 2252 edges had to be
exposed side-chain rearrangements, while the backbone folccomputed (only 5% of the total number of 47 404 edges). It
of the switch regions was preserved. The RMS coordinate was possible to reduce this number by a factor of 4 (to 603)
deviations from the directly minimized crystallographic end when statistical estimates of the bounds were used. This faster
states were<1.8 A for the nonfixed atoms<2.4 A for the ~ convergence behavior is also apparent when comparing
switch regions). Figure 9A,B and demonstrates that the computation time can

To remove insignificant degrees of freedom, residues be greatly reduced by introducing a relatively small uncer-
which were not involved in the conformational switch and tainty. In the worst case, the error on the rate-limiting barrier
whose atoms had similar positions in both end states wereresulting from the present estimates @m'” could have
fixed (residues 4, 42-53, 7795, 110-115, 124-143, been as much as 5.25 kcal/mol (from eq 9). But in the present
155-167), leaving 1001 atoms free to move. To obtain the case, statistical estimation actually resulted in a best path
same positions for the fixed atoms in the two end states, thewith the same rate-limiting energy barrier as found when
product structure was oriented onto the reactant structure scsafe bounds were used. Moreover, except for one additional,
as to minimize the RMS deviation between the fixed atom insignificant low-energy step, the estimated best path is equal
coordinate sets. Then, the reactant and product values of thesé& the true best path.
coordinates were averaged. The averaged coordinates of the The computational savings are even larger when only the
fixed atoms were used for all calculations. Furthermore, highest-energy barriers of the best path are determined. The
insignificant differences in the side chains of nonswitch number of edges that need to be computed with CPR when
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Table 6: Number of Edges Computed with CPR To
Determine Ridge 22

=)

AEsure? safe bounds® guessed bounds® e
ood 1092 667 [P}
20 1092 622 =
f—
15 1092 509 o 4
10 897 383 —
5 862 293 §
0 805 214 ) 3 LS,
ridge size® 174 162 E _
energy barrier” 45.7 45.7 < b _ i
2 The energy ridge of the switch Il rearrangement, assuming no : 2 J |
energy barrier has been previously computed. ? Energy range above =
the lowest barrier for which ridge barriers are to be determined (see &) i
Figure 3C). ¢ Same meaning as in Table 5. ¢ « means that all barriers =
of the ridge are determined. ¢ Number of edges in the fully determined 3 ] —
energy ridge. fLowest edge barrier of the energy ridge, in kcal/mol w

relative to the reactant.

\ | (I | ! | [ 1
- - - 2
only the highest barrier along the best path is requested to QSO 120 -60 0 60 120 180

be certain AEs, = 0) in conjunction with statistical Switch I ﬂngle (deg)

estimates orEu”‘yin is 106, reducing the number of edge
computations by a factor of 6 (from 603). This shows that
statistical estimates help to quickly isolate the rate-limiting

step of the reaction. . . P;,C32,N32,0H3;, in degrees). The vertical axis measures the
4.2. Perf fE Ridge ComputationsTh /
-£. Feriormance of Energy kidge Lomputationsihe helicity of switch Il (number of a-helical H-bonds). The contour

_higheSt energy ridge in the TN (here: .termed as ridge 2, as|gyels show the energy of the TN vertices (dark gray = 0—10
it is associated with rearrangements in the switch Il) was cajmol, light gray > 60 kcal/mol). Reactant and product

computed with and without the use of statistical estimates siryctures are labeled as ‘R’ and ‘P’. The best transition
for the barrier bounds to test the performance of the algorithm pathway is shown in white, and the next-best transition
given in section 3.3.2. The results are shown in Table 6, pathways (with a rate-limiting step up to 10 kcal/mol higher
where the counting is started from scratch for each setting, than the white) in yellow, red, magenta, and cyan. Triangles
assuming that no energy barrier has been computed yet. 1092nark the rate-limiting transition state of the switch | rear-
energy barriers were computed to determine the full energy rangement (corresponding to the lowest-energy points shown
ridge (AEsue= ) with safe bounds, which amounts®% in Figure 11b,c) and belong to ridge 1 (see section 4.3). Ridge
of the total number of 47 404 TN edges. By using statistical 1 can be split into two energy ridges: one along a ~ 30°
estimates, this number was reduced to 667. When only the(where Tyr32 passes underneath the backbone, Figure 11b)
lowest energy barrier of the ridg&Es,e= 0) was computed, ~ and another along o ~ 150° (where Tyr32 passes through
the computational savings were comparatively slight (805 the solvent, Figure 11c). The best path with Tyr32 moving
energy barriers were computed for this), but using g, ~ through the solvent is shown in dark blue.
= 0 and statistical estimates reduced the number of computed
barriers to 214. The “safe” and the “estimated” ridge 2 agree  The next-best pathways (i.e. pathways having a different
in their lower-energy edges (up to 5 kcal/mol above the rate-limiting transition state, see section 2.1) with rate-
lowest edge). For edges of higher energy, only about 25% limiting barriers within 10 kcal/mol above that of the best
of the edges in the “estimated” ridge belong to the safe path were also computed. There are 12 such pathways in
energy ridge. the present TN. The order of events in these pathways is
4.3. Structural Mechanism of Ras p21. Structural similar to the events described above for the best path, i.e.,
analysis shows that in the best path about half of the switch switch Il unfolds (to a varying degree) in the first part of
II helix first unfolds before the rearrangement of the switch the transition, and the subsequent switch | transition occurs
I, in which Tyr32 passes underneath the backbone. Subsewith Tyr32 passing underneath the backbone (see Figure 10).
quently, the rearrangement of switch Il completes. This latter The differences between these pathways are mainly in the
step is rate limiting, having the highest potential energy precise order of events in the switch Il rearrangement.
barrier along the best patBg.a=45 kcal/mol relative to the In the lowest best path, the passage of Tyr32 underneath
reactant). From the time scale of the Ras p21 conformationalthe backbone is associated to an important barrier of about
switchf” (on the order of 10s in absence of GAP), it follows 25 kcal/mol. This raises the question whether the Tyr32 must
that the highest free energy barrier along the path cannotnecessarily pass underneath the backbone. An obvious
exceed 23 kcal/mdf This indicates that a significant alternative would be for Tyr32 to pass the other way (i.e.
contribution from entropy, due possibly to an increase in through the solvent). To better analyze the motion of Tyr32,
backbone flexibility, reduces the high enthalpic barrier found the energy ridge corresponding to its reorientation (abbrevi-
here. ated as ridge 1, since it is the rate-limiting step of switch |

Figure 10. Two-dimensional representation of the potential
energy surface of Ras p21. The horizontal axis measures the
orientation of Tyr32 on the switch | loop (o = dihedral angle



Complex Conformational Change in Proteins J. Chem. Theory Comput., Vol. 2, No. 3, 20@53

PC2(A)

'?I._I'\I“;”TI.SH 10 12.5

Energies
(kcal/mol)
925-35
035-45
945-55
©55-65

65+ 0(\/3-’
Figure 11. Two-dimensional projection of the energy ridges of the Ras p21 transition. Three major ridges were identified: two
for the switch | rearrangement (both belonging to ridge 1) and one for the switch Il rearrangement (ridge 2). Transition states
from each ridge were projected on their two first principal components (computed from the C,-coordinates). Each panel (b,c,d)
shows one ridge and the corresponding conformation of the switch | loop (box in top right corner of each panel). The projected
points cluster (ellipsoids) according to their different switch Il conformations (typical backbone conformation shown for each
cluster). The energy of each transition state is coded by color. (a) Reactant state: switch | has Tyr32 pointing to the ‘right’,
switch Il is a helix. From here, the conformational change proceeds through panels b or c. (b) Energy ridge of the switch I-transition
(ridge 1), with Tyr32 passing underneath the backbone. There is a large variety of alternative switch ll-conformations at this
step of the transition. (c) Ridge 1 with Tyr32 moving through the solvent. (d) Energy ridge of the switch II-transition (ridge 2),
which is globally rate-limiting. The transition of switch | is already completed and Tyr32 is pointing to the ‘left’. Various isoenergetic

ways for the switch Il rearrangement coexist. (e) Product state: switch | is pointing to the ‘left’ and switch Il helix has fully
unfolded.

E n
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rearrangement) was determined. Tyr32 passes from anin ridge 1 and ridge 2. Ridge 1 was split into two sets: one

orientation where its side chain points toward GDP ai3@° set containing the transition states that involve the passage
< a < —10° to an orientation where 80< a < 11C. ais of Tyr32 underneath the backbone and the other set contain-
an artificial dihedral angle, defined over atomg®2,Nso,- ing the transition states having Tyr32 passing through the

OHs, (Ps is the p-phosphorus of GDP). Ridge 1 was solvent. In the case where passage of Tyr32 is underneath
computed withAEg, = 30 kcal/mol and using safe values the backbone, there are 7 different transition states in ridge
for the barrier bounds (see section 3.3). The resulting energyl up to 10 kcal/mol above the lowest transition state in ridge
ridge consists of 92 transition states. In 11 of them, Tyr32 1. These differ considerably in the amount of unfolding of
goes through the solvent, and the associated barrier is at leagthe switch Il helix: some still form a perfect helix, while in
40 kcal/mol, clearly indicating that passage underneath theothers the helix is fully unfolded (see Figure 11b). In the
backbone is the preferred mechanism. In Figure 10, ridge 1unfavorable case that Tyr32 passes through the solvent the
appears split in two regions. conformation of the partially unfolded switch Il helix is well
To visualize the two energy ridges, Figure 11 shows a defined, as can be seen from its similar structure in all next-
two-dimensional projection of the transition states contained higher transition states (Figure 11c).
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After the switch | rearrangement has completed, the Appendices: A. Checking Conformers for
transition pathways must cross ridge 2, which contains the Steric Collisions
globally rate-limiting transition states. Ridge 2 contains 14 puring the sampling procedures described in section 3.1.3,
transition states within 10 kcal/mol above the lowest transi- new conformers are validated by checking that they do not
tion state in ridge 2 (which here is identical to the highest produce very high potential energies, mostly due to atom
transition state in the lowest best path). These alternativecollisions (see Figure 5c). For each pair of atoimf the
transition states are highly scattered in Figure 11d, showing criterion used is that the combined Lennard-Jones and
that the structure of switch Il varies considerably. Thus, there Coulomb interaction energy should not exceed a tolerance
are many different ways in which switch Il can rearrange value Eq (E = 20 kcal mot in this study). This check
toward the product structure, and the coupling between needs to be repeated so often that it is a computational
switch I 'and Il is weak enough to allow for many different pottleneck for the sampling method. Therefore, to avoid
orders of the conformational events in both switch regions. Computing all pairwise interaction energies for each con-
This means that the Ras p21 conformational switch is highly former, we first precompute the minimum dlstancﬁ"”

degenerate, thus confirming a significant entropic contribu- ajlowed for each atom pair. This is obtained as the solution
tion to the free energy profile of the conformational switeh. ¢

aiG;

4re eodm'n

—Ea=0 (10)

5. Conclusions [ 2oy \®
We have introduced here an efficient method for mapping v di" di"
the low-energy minima involved in a complex conforma-
tional transition in a protein. The method was shown to be Wheree, is the van der Waals well deptb; is the effective
effective in identifying minima belonging to very different van der Waals radius for atomsandj, ¢ andg; are the
conformational pathways. Furthermore, the resulting set of partial charges of atomssandj, ande€o is the dielectric
minima is dense in the low-energy regions. constant. The above equation is solved tdi?'” with
A transition network is constructed to connect the available Newton's root-finding method. For thg, used in this study,
set of low-energy minima. The graph-theoretical methods there was always a unique solution ", If smaller Eq
have allowed to determine global properties of the network are used, eq 10 may have two solutions, in which case, the
while only requiring computation of a small subset of the smaller solution must be used so as to ensure dﬁgt
subtransition barriers in the network. When applied to the reflects the repulsive interaction. The resultxdi@j values
conformational switch of Ras p21, the globally best pathway are stored. A given conformation is treated as valid if all
connecting the transition end states and the energy ridgenonbonded atom distancesk; (excluding 4 pairs) fulfill
separating them could be determined while computing lessthe crlterlond”l“” di;. The number of distance computa-
than 5% of the total number of subtransitions in the network. tions is kept small by embedding the protein coordinates in
The energetically best pathway and the two main energy @ lattice and computing distances only between atoms which
ridges of the Ras p21 switch give insight in the mechanism have been changed in a given sampling step and atoms which
of the transition and provide answers to the three questionsare in the same or adjacent lattice cells.
asked in the Introduction: (1) The rearrangement of switch
| always occurs such that Tyr32 is threaded underneath theB. Efficient Side-Chain Sampling Method
protein backbone. (2) This rearrangement of switch | must Given a set of backbone conformations that is uniformly
be finished before the rate-limiting rearrangement of switch distributed ing/y-torsional space, a uniformly distributed
Il can start. (3) The order of conformational events in either set of full (backbone and side chain) conformations can be
switch | or Il and the details of rearrangement in switch Il build by repeating following steps: (1) randomly selecting
vary substantially. This confirms that complex conforma- a backbone conformation, (2) building all side chains on this
tional transitions in proteins such as Ras may occur via backbone conformation, using random torsion angles, and
multiple pathways. (3) accepting the conformation if it does not produce
The methodological advances presented here allow com-collisions. This trivial method is not very efficient in practice,
prehensive analysis of the mechanism of complex transitionsfirst because some backbone conformers may never allow a
in proteins. To allow for comparison with certain experi- given side chain to be built without collisions, and second
ments, it will be desirable to obtain free energy TN that allow because for a given backbone conformer it is unlikely that
calculation of thermodynamic and kinetic properties. This placing all side chains at once produces a conformation
might be achieved by estimating vibrational free energies without collisions. Here, a more efficient method is used that
for the TN state®4 and merging vertices which are consists of the following steps: (1) For each backbone
separated by low-energy barriers so as to account forconformationc, a weightw. is computed which is equal to
intrastate configurational entrog§4243 the probability that a set of noncolliding side chains can be
built on this backbone, when a uniform distribution of side
Acknowledgment. We thank Prof. G. Reinelt and M.  chain torsion angles is used. (2) A random backbone
Oswald for valuable discussions concerning the graph- conformation is selected according to the probabitity=
theoretical aspects of this work. We kindly acknowledge w3 wi. (3) Onto the selected backbone, each side chain is
Deutsche Forschungsgemeinschaft (DFG) for financial build by itself in a number of conformations that do not
support. produce collisions with the backbone and the nonsampled
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regions of the protein. (4) Side-chain conformations from 1001 =509 estimate .
step 3 are combined randomly to form a fully build protein 0
conformation, which is accepted if is does not have any
collisions. Steps 24 are repeated until a desired number of
conformations have been generated.

The weightw, is computed as follows: For each backbone
conformationc, an acceptance probabilify; for each side
chaini is calculated by generating a large number of random
rotamers for that side chain (in the absence of the other side
chains of theS region) and counting the number of
noncolliding rotamers. If anp; = O (i.e. some side chain Figure 12. Using the gradient during minimizations to predict
cannot be placed at all without producing collisions), then the expected energy at the minimum. Based on the minimiza-
backbone conformationis permanently rejected and = tions of 100 _dlffergnt confo.rmers,.each mlnlmlzatlon going
0. Otherwise, the probabilitge to find a noncolliding through a series oflnterme_dlates with gradients (go,...,0,) and
combination of the individually valid side-chain conforma- .energ'es.(uo""’ Un), t.he d'ﬁ.er.ence between the energy of an
tions is computed. This is done by generating a large number'ntermedlate and the f'nal. (m|n|mum0) energy, U'._ Unis plotted
N. of random combinations of valid side-chain rotamers and against the current gradient g;. 90% of the points are below

tina th b f llidi binati = the dashed line, which can be used to estimate how much
counting the r_]um e'T‘C 0 no_nco 1ding combinationge = more the energy may decrease during a minimization, based
nJ/N.. The weightw, is obtained asv. = qc[]ipc;-

on the current gradient value, thus allowing nonpromising
minimizations to be stopped early.

. — — ]

U-U, (kcal / mol)

1 . )
Gradient RMS (kcal / mol / A)

C. Efficient Method for Early Rejection of ST ] %
High-Energy Minima Ss0 N

This describes a method for the early rejection of energy g;‘z .
minima with U(x) > Ewr during the minimization. Early 5 1
rejection is based on statistics that are collected during as, k

[}

number of preliminary full minimizations, correlating the g

energy difference between partially minimized and final %ﬂi/Ps?sanglg(l)RMS:sE? (de‘;?) 05 |=1KMSD1(R) 2 Oifn%?geweig%?eh RMSS"{}SS
structures with the gradient of the partially minimized _. -
structure 9 P y Figure 13. Predicting lower and upper bounds to the energy

. barrier of subtransitions. The energy barrier is plotted versus
For Ras p21, 100 samples were retrieved from the sampley,e gistance between the end states of a given subtransition

repository and minimized to a gradient RMS of (kcal in Ras p21, using different distance metrics: (A) RMSD in
mol~ A-1, Each of these minimization trajectories delivered ¢ly-dihedral space of the S-regions, (B) all-atom RMSD in
a series of gradientsy,0:,...gn) and associated potential  cartesian space, and (C) same, but with each atomic distance
energies o, Us,..., Uy), where the pairdy,, Uy) corresponds  weighted by the absolute atomic charge. Solid line: average
to the fully minimized structure. All pairsg(, U;) from all barrier. 90% of the points lie below the upper dashed line,
100 minimization trajectories were used to derive correlation 10% below the lower dashed line. These were used as lower
statistics betweelg; and AU = U; — U, i.e., the energy and upper estimates for the estimation of optimistic and
difference from the fully minimized structure. These statis- pessimistic best paths (see Figure 9).

tics, shown in Figure 12, were used to obtain for each range
of gradient a corresponding value &lU that was higher
than 90% of theAU’s in that range. This yields an upper
estimate ofAU, given a certain gradierd. This estimate
was used to reject structures during minimizations if their
minimum energy, predicted from this upper estimate, con-
siderably exceeded an energy tolerance thresholigk) —

AU > Ey + Epw + 10 kcal mof?. Ey is the minimized
reactant energy, artfl,,, was set to 40 kcal mot (see Table

2).

D. Barrier Estimation. A method is given for the
statistical estimation of lower and upper bounds for the
energy barriers of subtransitions. For this, one correlates
available information on the edges= (u, v), such as
distance between its vertices, = |X, — X,|, with the de(xy) =
computed energy barrieB, = E.> — maxX E, E}. Using
a certain confidence interval, one obtains upper and lower whereN is the number of atoms amglis the charge on atom
estimatesB]]"(du,) andB;"(dw), which are used to replace i, here gives the best correlation of the three distance

uy v

the strict edge-weight bounds by n{ﬁﬁ, Ef} + Bumi”(c‘)uv) measures. The 90% confidence interval was used to derive

v

and maXE, E;} + B"*{0u.). BM"(0u,) andBI"(dy,).

v v v

For Ras p21, after computing the first2000 energy
barriers, these barriers were correlated with the distance
between the corresponding minima so as to yield a distance-
dependent barrier estimate. Figure 13 shows a plot the first
~2000 barriers against three different distance measures. The
average value and the boundaries of a 90% confidence
interval are given. Clearly, thg¢/y-RMSD is not a useful
measure here as it is not correlated with the energy barrier.
The Cartesian RMSD gives a better correlation, while the
charge-weighted RMSDdc(x,y), defined as

(x — yi)ZQiZ

N
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