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Abstract: Functionally relevant transitions between native conformations of a protein can be

complex, involving, for example, the reorganization of parts of the backbone fold, and may occur

via a multitude of pathways. Such transitions can be characterized by a transition network (TN),

in which the experimentally determined end state structures are connected by a dense network

of subtransitions via low-energy intermediates. We show here how the computation of a TN

can be achieved for a complex protein transition. First, an efficient hierarchical procedure is

used to uniformly sample the conformational subspace relevant to the transition. Then, the best

path which connects the end states is determined as well as the rate-limiting ridge on the energy

surface which separates them. Graph-theoretical algorithms permit this to be achived by

computing the barriers of only a small number out of the many subtransitions in the TN. These

barriers are computed using the Conjugate Peak Refinement method. The approach is illustrated

on the conformational switch of Ras p21. The best and the 12 next-best transition pathways,

having rate-limiting barriers within a range of 10 kcal/mol, were identified. Two main energy

ridges, which respectively involve rearrangements of the switch I and switch II loops, show that

switch I must rearrange by threading Tyr32 underneath the protein backbone before the rate-

limiting switch II rearrangement can occur, while the details of the switch II rearrangement differ

significantly among the low-energy pathways.

1. Introduction
Conformational changes are critical to the function of many
proteins. Well-known examples of functional transitions
include the rearrangement of subunits in the hemoglobin
tetramer upon oxygen binding,1 the lever-arm motion in
myosin during muscle contraction,2 and the molecular switch
in Ras p21 (see Figure 2) that signals cell division.3,4 Such
functional changes in conformation are often complex,

involving the rearrangement of backbone segments or the
packing at domain interfaces. Understanding the mechanism
of these transitions is particularly challenging, because the
nature and order of their subtransitions are difficult to predict
and may, in principle, occur in different ways.

X-ray crystallography and nuclear magnetic resonance
spectroscopy can provide atomic-detail structures for stable
end states of conformational transitions and sometimes long-
lived intermediates. However, the transitions themselves are
difficult to characterize experimentally because, although the
time required for a complete structural change can be
relatively long (µs or longer), the transition states involved
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are very short-lived. Computer simulation can help to gain
insight into these processes.

Because complex conformational transitions usually occur
on long time scales, they are not accessible to unbiased
molecular dynamics (MD) simulation with presently avail-
able computing power. Consequently, alternative computa-
tional approaches must be used. Variations of molecular
dynamics have been proposed to overcome this time scale
problem. For example, multiple time-step methods5 are quite
successful in certain multiple-time scale contexts. However,
they do not achieve sufficient speedup for the present
purposes.6,7 Other methods bias the underlying energy
potential8 or reduce the dimension of the conformational
space.9 These methods face the difficulty that a good guess
of the energy surface along the whole transition must in
principle be known a priori, which is usually not possible
for complex transitions in proteins. Steered and Targeted
Molecular Dynamics10,11 incorporate a constraint into the
energy function that directs the system toward the desired
product structure. While these methods are successful in
cases where the reaction follows a pathway that is compatible
with these constraints,12 they lead to unnatural structures and
unrealistic energy barriers in other cases.13 A further variant
is conformational flooding,14 which approximates the local
shape of the underlying energy surface explored by an MD
trajectory by computing its principal components and then
escapes the local energy minimum by adding a multivariate
Gaussian function to the energy function the form of which
depends on these principal components. Although this
method allows the trajectory to overcome high energy
barriers, it is designed to explore yet unknown new states
rather than performing a transition into a predefined state.

Pathway methods are a different approach to simulating
molecular transitions. Starting from an initial guess, the
transition pathway is allowed to relax on the energy surface
by constrained molecular dynamics15,16or by local minimiza-
tion methods.17-21 These methods have been applied suc-
cessfully in cases where the transition does not involve too
complex rearrangements of the protein, such that a number
of reasonable initial guesses of the pathway can easily be
formulated.22-24 This is particularly the case when the
conformational distance between the transition end states is
small. In contrast, when the transition involves rearrange-
ments of the protein fold, a guess for the initial path is more
difficult to make. Moreover, such transitions can follow
multiple pathways, as the energy landscape is likely to
include broad energy ridges with many saddle-points of
similar energies. Therefore, the determination of a single
reaction pathway (even if it is the lowest-energy one) does
not yield a comprehensive description of the transition.13

To represent multiple pathways, thetransition network
approach may be used. Transition networks are a discrete
and simplified representation of configurational space and
encode the possible transition pathways in a network of
subtransitions. Each subtransition occurs between two con-
formations that are relatively close in conformational space.
Each conformation in the network can be reached and left
through at least one, but usually several, subtransitions. Each
subtransition has an associated energy barrier that can be

used to determine an associated rate constant or a mean
passage time (i.e. “cost”). See Figure 1 for an illustration.

The construction of transition networks is documented in
a large number of studies which have addressed the analysis
of energy surfaces by mapping its local minima and saddle
points.25-46 These stationary points can be generated by local
optimization starting from conformational ensembles that are
generated by high-temperature molecular dynamics,29,33,36,39,47

by a mode-following guided parallel search starting from a
deep initial minimum,35,42,48 or by Discrete Path Sampling
(DPS).43,45,49 The kinetics between groups of stationary
points may be recovered using Master-Equation dynamics
(MED),28,29,32,36,39,35,38-40,42,43,45,46Kinetic Monte Carlo (KMC),45

or, again, by Discrete Path Sampling (DPS).43,45,49Typical
applications of the above methodology are the rearrangement
of atomic or molecular clusters29-31 and the rearrangement
or folding of peptides27,28,32,33,36,35,38,40,43,45and of model
proteins.34,42,50

The applicability of the above approaches to complex
transitions between native conformations of a protein is
limited by two main difficulties. The first involves the
generation of the minima which serve as TN vertices: It is
a priori unclear how a conformational ensemble can be
generated that adequately covers the volume of conforma-
tional space that is relevant for the transition. In particular,
the direct manipulation of the backbone torsion angles or
high-temperature dynamics are likely to disrupt the native
structure, while search-based procedures may get lost in the
huge number of possibly distant low-energy minima. Discrete
Path Sampling is likely to be successful in identifying a
connected channel between the end states, but it is unclear
how it can identify a collection of considerably different
channels. The second problem involves the computation of
energy barriers. The determination of global properties of
the network, such as the kinetics or the optimal path between

Figure 1. Transition network on a schematic two-dimensional
energy surface. The network vertices (white bullets) cor-
respond to low-energy intermediates between the reactant and
product end states of the transition (black bullets). The network
edges (white lines) correspond to subtransitions between the
vertices and are associated with weights (white numbers),
which are the rate-limiting energy barriers along each sub-
transition.
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two end states,51 requires the barriers of the subtransitions
in the network to be known. Dense transition networks for
complex macromolecular transitions typically have so many
edges and the computation of each subtransition barrier is
so CPU-demanding that the computation of all subtransition
barriers cannot be afforded.

In the present contribution we address these two problems.
In section 3.1 we present a procedure for efficiently sampling
the relevant degrees of freedom of a complex transition
between two native conformations of a protein so as to yield
a representative set of low-energy conformers. Then, in
section 3.2 we present a graph-theoretical approach that
allows for determining global network properties (such as
the best transition pathway or the rate-limiting ridge dividing
the energy surface into reactant and product basins) based
on the computation of only a limited subset of all subtran-
sition barriers.

The methods introduced here are used to identify likely
pathways and the order of events in an example system, the
molecular switch of Ras p21 (section 4). This switch plays
an important role in the signal transduction pathways that
control proliferation, differentiation, and metabolism.3,4 The
conformational transition, which occurs in the GDP-bound
state, involves a complex rearrangement of the backbone fold
around the nucleotide binding site (Figure 2). The complexity
of the transition suggests that it may occur via many different
pathways, thus making it an excellent case for testing the
present transition network approach. Among the questions
that have been raised by a previous study of this conforma-
tional transition13 and that are addressed here are as fol-
lows: (1) Is the rearrangement of switch I characterized by
the side chain of Tyr32 threading underneath the backbone
or by moving it through the solvent (see Figure 2)? (2) Is
there a coupling between the switch I and switch II
transitions, i.e. is the relative order of events in the two switch
regions strictly defined? (3) Is there a well-defined unfolding
pathway of switch II?

The present study reports on methodological advances
which permit the generation and analysis of a comprehensive
set of pathways for a complex conformational transition
between two native conformations of a protein. The meth-
odology is applicable to complex conformational changes
in many other proteins whose functional time scale and
complexity precludes the use of direct simulation.

2. Theory
Transition networks (TN) can in principle be used to model
any dynamical system that can be appropriately described
by a (possibly large) number of states and interstate transi-
tion rules. Here, we focus on TN for molecular systems
and in particular for conformational changes in proteins. A
TN is a discrete model which abstracts dynamic proper-
ties from the full system and captures its relevant
kinetic behavior. Formally, a TN is a weighted graph,G )
(V,XS,ES,E,XTS,ETS), where the list of vertices,V ) (1,...,|V |),
represents the stable states of the protein,XS ) (x1

S,...,x|V |
S )

are the corresponding configuration vectors, andES )
(E1

S,..., E|V|
S ) are corresponding state energies. The list of

edges,E ) ((u, V),...,(w, y)), specifies between which pairs

of states direct subtransitions are considered.XTS ) (xuV
TS,...,

xwy
TS) are the configuration vectors of the corresponding

transition states andETS ) (EuV
TS,..., Ewy

TS) are the associated
transition state energies.

Each TN vertex,V, corresponds to a regionRV of the
configurational space, containing a group of geometrically
similar molecular configurations. What is appropriate as a
definition of “group” depends on the application. For the
current work, each given vertexV corresponds to an
attraction basin, i.e. the set of configurations that can be
mapped to the same local minimumxV

S on the potential
energy surfaceU(x) by a direct minimization.25,52 Each
vertex,V, is associated with a state energyEV

S, generally, the
free energy of the basinRV. Depending on the complexity
of the system used, different approximations to the free
energy may be necessary. For systems where all basins can
be mapped, it has been shown that free energies calculated
from harmonic approximations to the potential in each basin
are able to reproduce thermodynamic properties.42,43

Figure 2. The conformational switch in Ras p21. (A) The
GTP-bound and (B) GDP-bound conformers of the Ras p21
transition. The blue regions are very similar in the crystal-
lographic end states and were kept fixed during the simula-
tions. During the transition, switch I (residues 30-35, in red)
rearranges such that Tyr32 (shown in red) is repositioned on
the opposite site of the backbone and opens the nucleotide
binding site to prepare for the release of GDP (shown in green
van der Waals spheres). Switch II (residues 61-71, in yellow)
unfolds from a helix to a coil structure.
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The TN edges represent subtransitions between pairs of
neighboring vertices. To any given edge (u, V), there is an
associated transition state configuration,xuV

TS. The energy
EuV

TS associated with the edge is generally the free energy of
the transition state.

The absolute height of the vertex and edge energies can
be shifted by subtracting an arbitrary constant valueE0

without affecting the results. To avoid numerical problems
when using exponentials ofEuV

TS, it is desirable to chooseE0

in such a way as to keepEuV
TS small.

Figure 1 shows a schematic representation of a transition
network.

2.1. Best Paths.Given the weighted graphG, one can
search for the “best” path connecting two particular vertices
VR andVP (e.g. corresponding to experimentally determined
“reactant” and “product” structures). For this, consider a
subtransition along one edge between two vertices,u f V,
with associated energiesEu

S and EuV
TS. We can express the

flux from state u into stateV, kuV, as a product of the
probability of being in stateu, pu, with the rate constant for
the transitionu f V, k′uV:

53

Using free energies for vertices and edges, the probability
pu at equilibrium is given by the ratio of the partition
functions foru and the full phase space:

Using the phenomenological form of transition state
theory,54 and assuming that all subtransitions have a similar
dynamic prefactor,γ, the rate constant can be expressed as

wherekB is Boltzmann’s constant, andT is the temperature.
Substituting eqs 2 and 3 into eq 1, we see that the equilibrium
flux for the transitionu f V is proportional to the Boltzmann
weight of EuV

TS:

The mean time between two subsequent transition events
from u to V, τuV, is given by the inverse of the flux:τuV )
kuV

-1. We take theedge cost, wj uV, as proportional toτuV,
setting the proportionality factor to unity:

For a path connecting verticesV1 ) VR andVm ) VP via a
series ofmvertices,P ) (V1, V2,...,Vm), travelling over edges

((V1, V2),...,(Vm-1, Vm)), the best path is defined as that which
minimizes the cumulative edge costs

This definition of a best path is similar to the previously
proposed notion of the continuous pathway with “maximum
flux” or “minimum resistance”.15,55 To determine the best
path in practice, the edge energy vectorETS is transformed
into a cost-vectorwj using eq 5.wj has size|E | and assigns
a costwjuV to each edge (u, V) in E. Subsequently, the Dijkstra
algorithm51 is used to identify a best path between the two
end states through the weighted network defined by (V,E,
wj ). This path minimizes the path costC(P) given in eq 6.

This best path furnishes a preliminary understanding of
the transition,13 and it may be used as a guess for a reaction
coordinate for free energy calculations56 or as a starting point
for discrete path sampling.49 However, it dominates the
transition only if the barriers of alternative pathways are
considerably higher. To obtain an idea of the number of
different accessible pathways and their associated structures,
it is useful to determine the set ofk different pathways,
(P1, P2,..., Pk) with costs (C1 e C2 e ... e Ck), whereP1 is
the path with the lowest cost,C1, P2 is the path with the
second-lowest cost,C2, etc. This so-called “k best path
problem” is well-known in graph theory.57 To precisely
define it, one must define in which way two paths must differ
in order to be treated as different. In a transition network, it
is clearly not very meaningful to distinguish two pathways
which differ only in two low-energy, non-rate-limiting
barriers. Therefore, two paths are treated as different only if
their rate-limiting steps (i.e. their highest-energy edges) do
not coincide. Thek best paths are determined ink steps:
The second best path is found by using the Dijkstra algorithm
after “blocking” the edge (u, V) associated with the highest
energy barrier in the previously found best path (by setting
its EuV

TS ) ∞). The third best path is found by blocking the
highest edges of the best and second best paths, etc.

2.2. Energy Ridge.The collection of rate-liming transition
states from all different (as defined above) paths from a
defined reactant to a defined product belongs to a (D-1)-
dimensional transition surface that divides theD-dimensional
conformation space into a reactant and a product side. In
terms of topography, this transition surface corresponds to
anenergy ridge, as illustrated in Figure 3. On a geographical
landscape, it is analogous to a water-shed, i.e. the mountain
ridge that separates water flows toward distinct oceans. The
particular interest of the energy ridge is that it allows for a
feeling to be quickly obtained for how degenerate the
transition is, i.e., how many significantly different paths are
likely to be accessible. For instance, if one transition state
in the ridge has a significantly lower energy than the other
transition states in the ridge, then the transition mechanism
is dominated by a well-defined bottleneck. In contrast, if the
ridge contains many different transition states with similar
energies, the transition mechanism is not well defined.

In graph-theoretical terms, an energy ridge is acut. The
name “cut” stems from the fact that deletion of its edges

kuV ) puk′uV (1)

pu )
exp(-Eu

S /kBT)

∑
w)1

|V|
exp(-Ew

S /kBT)

(2)

k′uV ) γ exp
-(EuV

TS- Eu
S)

kBT
(3)

kuV ∝ exp(-
EuV

TS

kBT) (4)

wj uV ) exp(EuV
TS

kBT) (5)

C(P) ) ∑
k)1

m-1

wj VkVk+1
(6)
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dissociates the network into two disconnected subnetworks.
Formally, the cutC is a set ofM edgesC ) {(u1, V1),...,(uM,
VM)} with the property that each vertexui belongs to one
set,U (e.g. “reactant side”), each vertexVi belongs to another
set,V (e.g. “product side”), and (U, V) partition the set of
all vertices (i.e.,U ∪ V ) V andU ∩ V ) L).

When the best and all next-best paths each have a
dominant (rate-limiting) step, the energy ridge is identical
to the cut whose total fluxkUV across it is minimal.kUV is
given by the sum of all localized fluxeskuiVi in the direction
u f V across edges (ui, Vi) in the cut

wherekuiVi is the equilibrium flux from eq 4. By dismissing
the proportionality constant, we obtain the normalized total
flux, kUV,0:

Note that the cut that minimizeskUV,0 (the rate-limiting
cut) and the cut associated with the topographic energy ridge
are not always identical. For example, consider a case where
the topographic ridge is very broad, its cut containing many
edges of similar energy, whereas another cut contains only
a single edge of slightly lower energy than those of the
topographic ridge. Then the cut with the single edge has a

lower kUV,0 than the cut of the topographic ridge, because
the many individual fluxes across the broad topographic ridge
add up to a larger total flux. In the current context, however,
this theoretical difference is not of importance.

The rate-limiting cut can be found by defining the vector
of weightsw ) (wE1,...,wE |E|), where for each edge (u, V) in
the networkwuV ) exp(-EuiVi

TS/kBT), and using the algorithm
of Nagamochi and Ibaraki.58 However, this algorithm is
computationally expensive (scaling asO(|V |3) or O(|V |2
+ |V ||E | log|V |), depending on the implementation).
Since the computation of the cut has to be repeated many
times (see section 3.3.2), we used the topographical energy-
ridge cut rather than the rate-limiting cut.

The topographical energy-ridge cut is determined by an
algorithm that can be likened to flooding the energy
landscape by stepwise filling up its basins. The ridge that
last divides the reactant and product “lakes” before they
become connected is the energy ridge. In the network, the
edges which define the energy ridge are identified iteratively,
starting from an edgeless network,G, consisting only of the
vertices,V. In each iteration, a new edgee ∈ E is added to
the network in order of increasing edge energy. At each
iteration, the topology ofG allows the identification of
connected subgraphs (i.e. sets of vertices in which each
vertex has at least one link to another vertex in the set). Each
vertex is assigned an identifier that is unique for the
connected subgraph it belongs to. The subgraph containing
the reactant vertex is always assigned the identifier ‘0’, while
the subgraph containing the product vertex is always assigned
‘1’. Whenever an edge would be added that connects two
vertices with identifiers ‘0’ and ‘1’, this edge is not added
but marked as part of the energy ridge. The full ridge is
determined when all edges have been iterated.

3. Methods
3.1. Efficient Sampling Procedure for Complex Confor-
mational Changes in Proteins.In this section, a method is
described for generating a representative sample of low-
energy minima covering the conformational (sub)space
relevant to a conformational transition. The method consists
mainly of two stages: (1) generation of a sample of low-
energy minima that are sparsely distributed over a large
conformational subspace and (2) finding new low-energy
minima between the minima found in (1) so as to densely
map out the low-energy regions of conformational space.

In the first stage, the sampling can be limited to conforma-
tions that are likely to be relevant to the transition, thus
avoiding sampling of the full conformational space (which
would include, for example, mostly unfolded structures of
the protein). For most transitions between native protein
conformations, a good estimation can be made as to which
structural regions are likely to require significant sampling.
Small deformations in the remaining domains, which are
structurally similar in the two end states, are then sampled
by a simple interpolation between the end states. This
partitioning and sampling procedure is described in sections
3.1.1-3.1.3 and is illustrated in Figure 4. Section 3.1.4
describes strategies for finding a uniformly dense set of low-

Figure 3. Schematic representation of the graph-theoretical
concepts introduced in sections 2 and 3.3. (A) The best path
(white line) connecting the transition end states (black bullets)
and the energy ridge (black line) separating them. (B) Profile
of vertex and edge energies along the best path through the
network. The best path is requested to be correct in all edges
with energies in the range [Epeak - ∆Esure, Epeak] (indicated
by squares). (C) Profile of the energy ridge cutting the TN
into two conformational regions. The energy ridge is guaran-
teed to be correct in all edges with energies in the range [Elow,
Elow + ∆Esure].

kUV ) ∑
(ui,Vi)∈C

kuiVi
(7)

kUV,0 ) ∑
(ui,Vi)∈C

exp(-
EuiVi

TS

kBT) (8)
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energy minima. Figure 5 gives a schematic overview of all
the steps involved in the generation of the TN.

3.1.1. The Sampling (S) and Interpolation (I) Regions.
Functionally relevant conformational changes in proteins are
usually relatively local in the sense that most native contacts
are preserved. While there might be complex rearrangements
in certain regions, involving sometimes even refolding of
parts of the backbone (such as in Ras p21), the remainder
of the protein only deforms flexibly. This allows a sampling
subspace with a considerably reduced dimensionality to be
defined. Thus, the protein can be partitioned into interpolation
(I ) and sampling (S) regions. The changes in theI atoms
are sampled by simply interpolating between the atomic
positions in the two transition end states (see Figure 4a for

an illustration). For each such interpolated structure, the
rotable torsion angles of theS-region (including backbone
φ/ψ torsions and single-bond side-chain torsions) are sampled

Figure 4. Illustration of the sampling procedure. (A) Some
intermediate conformations are generated by interpolating the
positions of a subset of protein atoms (the I-region) between
their end state positions “R” and “P” (here 3 intermediate
structures are generated, shown in circles). From each
structure along the interpolation, a large set of conformations
is generated by sampling the torsional angles of the S-region
of the protein. The full set of conformations is defined by all
combinations of the five (including both end states) conforma-
tions for the I-region with each sample of the S-region. (B)
The interpolation (I) and sampling (S) regions in Ras p21.
Left: The atoms of the I-region are interpolated between the
transition end states (shown in white and dark blue), here
producing three intermediates (shown in shades of blue).
Right: The single-bond torsion angles of the S-region (switch
I in red, switch II in yellow) are sampled uniformly (examples
of several S conformations are overlaid). The S region
encompasses switch I (residues 30-35) and switch II (resi-
dues 61-70).

Figure 5. Overview of the steps in generating a transition
network (TN). (a) The potential energy surface and the
minimized reactant and product end states of the transition.
(b) Conformers (white bullets) are uniformly spread over the
part of conformational space that is relevant to the transition
(see Figure 4 and section 3.1.3). (c) Structures without steric
clashes are accepted (see Appendix A) and energy-minimized
(see section 3.1.4). Interpolation between pairs of available
conformers is used to explore nearby low-energy regions
(dashed line). (d) The minimized interpolation intermediates
(black bullets) increase the density of low-energy minima (see
section 3.1.4). These minima form the TN vertices. (e) Pairs
of neighboring minima are associated, forming the TN edges.
The subtransitions of selected edges are computed by CPR,
yielding the rate-limiting energy barriers for the TN edges (see
section 3.2).
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uniformly (Figure 4b). Finally, all degrees of freedom are
locally relaxed during the energy minimizations that follow
this combinedI /S sampling procedure.

3.1.2. Interpolation of I-Atoms. To obtain a smooth
variation of the positions of atoms in theI region near the
boundary to theS region, the coordinates of theI region are
generated by interpolating between the end states of the
transition. For this, a combined interpolation procedure is
used: First, so as to preserve the backbone fold, the backbone
atoms are interpolated in Cartesian coordinates, and then the
side-chain atoms are built onto the interpolated backbone,
using internal coordinate values that are interpolated between
the internal coordinates of the end states. This interpolation
method has been shown to produce less distorted structures
than Cartesian or internal coordinate interpolation alone.13

For practical convenience, the combined interpolation is
done for all atoms of the protein (including the atoms of the
S region). Because theS region has by definition very
different conformations in the end states, the interpolated
structures involve distorted internal coordinates in theSpart
of the backbone. To start theS sampling with reasonable
values of the internal coordinates of theS region, each
interpolated structure is energy minimized with positional
harmonic constraints on theI atoms (force constant 1 kcal
mol-1Å-1). In the example treated here,ninterpol ) 3 inter-
polated structures of Ras p21 were generated in this way,
yielding 5 structures along the interpolation including the
end states.

3.1.3. Conformational Sampling of the S Region.For
each of the structures along the interpolation between the
two end states, many conformers of theS region are
generated (Figure 5b). Sampling of theS region is performed
uniformly in the space of flexible torsion angles, comprising
the φ/ψ backbone and single-bond side-chain angles. The
stiff internal degrees of freedom (i.e. bond lengths, valence
angles and backboneω angles) were not sampled here. The
flowchart in Figure 6 summarizes the following algorithm
for sampling backbone conformations.

If the sampling region is located at one of the termini of
the polypeptide chain, there are no closure constraints on
the backbone, allowing theφ/ψ angles to be sampled directly
by setting them to random values. However, when the
sampling region is within the polypeptide chain (as is the
case for the switch I and switch II loops in Ras p21), this
“free” sampling is not possible, as it would involve violation
of the backbone closure (i.e., some backbone bond lengths
and angles would not be preserved) or disruption of the native
fold of the protein. Therefore, random backbone conforma-
tions are generated using a variant of the so-called window
method.59,60 This procedure allows backbone variation of a
series ofr g 3 consecutive residues (the “window”) while
preserving the position and orientation of the backbone at
the boundaries of that window. Out of the windows’ 2r
torsion angles (φ andψ), 2r - 6 can be freely chosen and
rotated randomly. The remaining six torsion angle values
are determined by the window method (see ref 59 for a
detailed description). In each sampling step, the location and
length of the window in theS region and the rotated torsion
angles are randomly chosen.

A backbone conformer is considered “valid” if it does not
produce steric collisions. For this, it is checked whether the
resulting backbone atoms and atoms whose positions are
directly dependent on the backbone configuration (i.e.,
backbone O and H, Câ, and proline side chains) can be placed
without collision among themselves and with theI region
of the protein. Since a large number ofS conformers have
to be tested for collisions, an efficient strategy is used to
perform these collision checks (see Appendix A).

To obtain a conformational sample that is approximately
uniform, conformers that are valid (i.e., have no collisions)
are “accepted” (i.e., added to a “conformational repository”)
only if they significantly differ from already-accepted
conformers as measured by theφ/ψ dihedral RMS difference,
which must exceed a chosen value,δs (see Table 2 for
suggested parameter values). The choice ofδs determines
the density of sampling. It is set according to how finely the
details of the transition should be probed. Backbone con-
formers are generated until the sampling density defined by
δs has been reached. The criterion used here for this is that
no “valid” structures are “accepted” anymore for a number
of nreject successive attempts. This yields a number ofni

back

backbone conformations for each interpolation stepi (i ∈
{0,1,...,ninterpol + 1}, where i ) 0 and i ) ninterpol + 1 are
associated with the end states and 1,...,ninterpol are the
interpolated intemediates).

To obtain a complete conformation, the side chains of the
S region are built onto a randomly picked backbone out of
the ni

back generated backbones, using randomly chosen
single-bond torsion angles. The resulting conformer is
accepted if it does not involve atom collisions (see Appendix
A), giving for each interpolation stepi a numberni

full of
sterically valid conformations of theS region. ni

full )
ksideni

back, wherekside is the desired average number of side
chain conformers per backbone conformer. An efficient

Figure 6. Flowchart for the backbone sampling procedure
(section 3.1.3).
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protocol for building side chains on largeS regions is
described in Appendix B.

For Ras p21, the switch I and IIS regions were sampled
independently, usingδs ) 50° andnreject ) 1000. For each
interpolation step,i (i ∈{0,...,4}), this yieldedni

back1 ≈ 30
backbone conformers for switch I andni

back2 ≈ 104 back-
bone conformers for switch II. An average ofkside) 10 side-
chain conformations per backbone conformer were generated,
yielding ni

full1 ≈ 300 andni
full2 ≈ 105 collision-free confor-

mations of switch I and II, respectively. Combining pairs of
these switch I and II conformers yielded 3× 107 fully built
protein structures for each interpolation stepi. Thus, the total
number of collision-free and significantly different structures
is nfull ) 1.5× 108, forming a large conformational repository
from which structures can be drawn and further energy
optimized. The conformations in this repository are distrib-
uted uniformly within the sterically accessible regions of the
conformational subspace spanned by the torsional coordinates
of S and the interpolation coordinate ofI .

3.1.4. Constructing a Uniformly Dense Set of Low-
Energy Minima. To obtain a representative collection of

low-energy minima, a number ofnmin conformers is drawn
randomly from the conformational repository and energy-
minimized on the potentialU(x) (see Figure 5c). Only
minima which reach a low-energy region defined byU(x)
< Elow are accepted, whereElow is a predefined constant.
Minimization of many conformers is expensive, so it is
desirable to reject structures early which are not likely to
fall into low-energy minima. An efficient method to do this
is proposed in Appendix C. For Ras p21,nmin )15 000
conformers were randomly retrieved from the conformational
repository. Out of these, 189 reached the desired low-energy
region belowElow, which was taken here as 40 kcal/mol
above the energy of the minimized reactant structure
(obtained by quenched molecular dynamics, see section 3.4).
These were minimized to a gradient RMS of 10-3 kcal mol-1

Å-1. They form a sparse set of low-energy conformations
in the desired region of conformational space (see Table 4).

The density of conformers in the low-energy regions can,
in principle, be increased by minimizing more structures from
the conformational repository. Given the low yield of this
approach (see above: 189/15 000≈ 1.25%), this is com-

Table 1: Frequently Used Symbols

symbol meaning

U(x) energy function
V ) (1,...,|V |) list of vertices in network; |V | is the number of vertices

XS ) (x1
S,...,x|V|

S ) conformers corresponding to vertices (here: minima on U(x))

E0 energy of the minimized reactant structure (see section 3.4)

ES ) (E1
S,..., E|V |

S ) vertex energies (here: Ei
S ) U(x i

S) - E0)
E ) ((u1, v1),...,(u|E |, v|E |)) list of edges in the network, each edge connecting two vertices of V;

|E | is the number of edges

XTS ) (xu1v1

TS ,...,xu|E|v|E|
TS ) for each edge in E, highest saddle point on minimum-energy path

connecting the conformers xui

S, xvi

S

ETS ) (Eu1v1

TS ,...,Eu|E|v|E
TS ) edge (i.e. saddle-point) energies: Euivi

TS ) U(xuivi

TS) - E0

G ) (V,XS,ES,E,XTS,ETS) transition network composed of vertices V connected by edges E

ETS,min ) (Eu1v1

TS,min,...,Eu|E|v|E|
TS,min) lower bounds to the (yet unknown) edge energies

ETS,max ) (Eu1v1

TS,max,...,Eu|E|v|E|
TS,max) upper bounds to the (yet unknown) edge energies

w ) (wu1v1,..., wu|E |v|E |) Boltzmann weights of the edge energies: wuivi ) exp(-Euivi

TS/kBT)
wj ) (wj u1v1,..., wj u|E |v|E |) inverse Boltzmann weights of the edge energies: wuivi ) exp(Euivi

TS/kBT)

wj min ) (wj u1v1

min ,..., wj u|E|v|E|
min ) inverse Boltzmann weights of the lower edge energy bounds:

wuivi

min ) exp(Euivi

TS,min/kBT)

wj max ) (wj u1v1

max,..., wj u|E|v|E|
max ) same as wj min, for upper bounds

Table 2: Parameters for the Sampling Algorithm

parameter meaning value

ninterpol number of steps along the interpolation between the transition end states, including the end states
(ninterpol g 2)

5

δs shortest permitted RMS distance between two accepted backbone conformers
(here: in φ/ψ torsion angle space)

50°

nreject sampling has converged when nreject newly generated conformers are successively rejected
because they are closer than δs to already-accepted conformers

1000

kside average number of side chain conformers per backbone conformer. 10
Etol largest permitted interaction energy between each atom-pair, for a structure to be considered valid 20 kcal/mol
nmin number of structures drawn from the conf. repository for minimization 15000
Elow largest permitted energy difference above minimized reactant structure to accept a conformer 40 kcal/mol

δmin
interpol shortest and longest permitted RMS distance between a pair of minima to generate additional δmin

interpol ) 0.75 Å

δmax
interpol conformers by interpolation between them δmax

interpol ) 2 Å

δmin
connect shortest permitted RMS distance between any pair of minima xu

S, xv
S, to avoid redundancy in the TN 0.75 Å

δmax
connect longest permitted RMS distance between any pair of minima xu

S, xv
S, to form an edge (u, v) in the TN 1.5 Å

nmax
connect maximum number of neighbors for each vertex 20
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putationally inefficient. Instead, additional conformers are
built by interpolation between the already-found low-energy
conformers. This can be done in various ways. The strategy
used here was to select each pair of low-energy conformers
separated by a distance in the rangeδmin

interpol ) 0.75 Å and
δmax

interpol ) 2 Å (measured as Cartesian RMSD of the CR

atoms in theS region) and to generate an interpolation
pathway between them using the method described in section
3.1.2. Two structures were generated, one-third and two-
thirds of the way along each interpolation, respectively, and
energy minimized as described in section 3.1.4 (see Figure
5d). This procedure was efficient in finding low-energy
minima, increasing the number of conformers belowElow

from 189 to 10 831 (see Table 4). This considerably
increased the average number of neighbors for each minimum
from 3 to 267 (“neighborhood” being defined by a cutoff
distanceδmax

connect, see section 3.2).
During minimization, it is possible that some conformers

end up in similar minima. This produces conformational
redundancy, which was subsequently removed. For this,
minima were considered in the order of increasing energy,
accepting only those minima whose nearest-neighbor distance
to any already-accepted minimum was at leastδmin

connect )
0.75 Å. This led to a final number of|V | ) 6242 diverse
minima.

3.1.5. Verification of the Set of Minima. The available
set of minima is approximately uniformly distributed in a
conformational subspace which depends on the original
definitions of S and I . There are two questions regarding
the adequacy of this set of minima: (1) is the set dense
enough and (2) are relevant parts of conformational space
sampled.

The density of the set may be increased by reducing the
parameterδmin

connect and conducting further interpolations.
Clearly, there is a tradeoff between the density of minima
and the computational requirements. The important question

is how sensitive the analyses are to the density of minima.
In the present study, density variation, within reason, has
little effect as the CPR path calculations used to compute
the edge energies ensure that no important intervening
barriers are missed (see section 3.2). Moreover, the purpose
of the present calculations is to generate a coarse-grained
model of the Ras p21 energy function which is analyzed in
the Results section based on qualitative properties of large
sets of pathways. Local features of the network do not play
a role in this analysis, and therefore the density of minima
was not further increased.

A more critical question is whether there are important
parts of the conformational space that are not sampled at
all. A logical check of this is to examine whether any low-
energy minima exist in regions of conformational space
continguous with regions already explored. If so, energeti-
cally accessible pathways might exist that lead out of the
available set of minima into other regions of the conforma-
tional space which were not included in the initial sampling.
This can be checked by calculating the lowest-energy minima
within shells that are increasingly distant from the reactant
and product vertices and ensuring that the found set of
minima defines an energetic basin that is unlikely to be left.

To examine this, we have analyzed all 35 836 minima that
were generated (see Table 4) and computed their distances
to the reactant or product structure (whichever of the two
was closer). For each distance-window between 1 and 4.5
Å, the lowest energy of all minima within that window was
recorded. The result, which is shown in Figure 7, shows that
there is a strong increase in energy with increasing distance,
reaching about 150 kcal/mol aboveE0 at 4.5 Å. This result
shows that the existence of low-energy exit pathways from
the initial set of minima is unlikely, and therefore a sufficient
volume of conformational space has been sampled.

3.2. Construction of the Ras p21 Transition Network.
The final number of|V | ) 6242 diverse minima served as
the vertices of the transition network (see Table 4).

Table 3: Sampling of the S Regions in Ras P21

symbol meaning (see section 3.1.3) value

ni
back1 number of backbone conformers (residues 30-35),

for each interpolation step i (i ∈{0,...,4})
≈30

ni
back2 same as ni

back1, for residues 61-70 ≈104

ni
full1 number of fully built conformers with side chains

(residues 30-35), for interpolation step i
≈300

ni
full2 same as ni

full1, for residues 61-70 ≈105

nfull total size of the conformational repository 1.5‚108

Table 4: Size and Density of the Network during
Sampling

minimaa acceptedb neighborsc

after first samplingd 15002 189 3
after increasing densitye 35836 10831 267
TN verticesf n/a 6242 117

a The total number of generated energy-minima. b The number of
accepted minima with energy below Elow. c The average number of
neighbors around accepted minima within a distance-range from
δmin

connect to δmax
connect. d After the sampling of the I and S regions

(sections 3.1.2 and 3.1.3). e After increasing the density of low-energy
minima (section 3.1.4). f After removing redundancy by not allowing
neighbors closer than δmin

connect (section 3.2).

Figure 7. Dependence of energies of minima on the distance
from the crystallographic end states. For each minimum, the
distance to the reactant or product structure (whichever is
closer) is calculated. The minima with distances between 1
and 4.5 Å were grouped according to their distances, each
group being 0.1 Å wide. The lowest energy of the minima
within each group is plotted versus the distance of that group.
The plot shows that the energies increase considerably with
increasing distance from the crystallographic end states,
indicating that the relevant portions of conformational space
have been sampled.
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Due to the large number of possible conformations of the
system studied in this article, it is possible to map only a
subset of the dynamically accessible minima, so that the
computation of meaningful free energies is not feasible. Here,
the contributions from local vibrations around the minima
are neglected, and the potential energyU(xV

S) is used
directly for EV

S. Nevertheless, the important free energy
contributions from bulk solvent are accounted for in the
calculation ofU(x) through a continuum solvent method (see
section 3.4).

The absolute height of the vertex can be shifted by
subtracting an arbitrary constant valueE0 without affecting
the results. Thus, we defineEV

S asEV
S: ) U(xV

S) - E0. Here,
E0 is chosen as the minimized reactant energy.

The “reactant” and “product” vertices were redefined by
selecting the lowest energy minima within the vicinity of
the crystallographic reactant and product structures after
quenched MD (see section 3.4). The “vicinity” was defined
here to be within both aφ/ψ-RMSD of 50° and a Cartesian
RMSD of 1.5 Å for the CR-atoms of the switch regions. The
resulting Cartesian RMSD over all CR atoms between the
crystal structures and the so-chosen reactant and product
conformers was 1.4 and 1.5 Å, respectively.

Given the complete set of vertices,V, the edges of the
transition network are generated by defining connections
according to distance-based criteria. Each vertex is connected
to up to nmax

connect of its nearest neighbors that are within a
distanceδmax

connect(see Figure 5e). For Ras p21,δmax
connect) 1.5

Å (measured as RMS distance between the CR-atoms of the
S region), andnmax

connect ) 20 were used. The resulting
transition network had|E | ) 47 404 edges and was fully
connected (i.e. any given pair of vertices is connected by
some pathway).

To determine the energy barrier associated with a given
edge, (u, V), a Minimum Energy Path (MEP) between the
two minima xu

S and xV
S corresponding to that edge was

computed using the Conjugate Peak Refinement (CPR)
method.18 An initial guess for the path was generated by
interpolation between the edge end structures, using the
procedure described in section 3.1.2. Starting from this guess,
CPR identifies all the first-order saddle points that are local
energy maxima along the Minimum Energy Path. Here, the
CPR calculation was stopped as soon as the highest (i.e. rate-
limiting) of these saddle points along the edge was deter-
mined. Its structure is assigned toxuV

TS, the corresponding
edge energy is taken asEuV

TS ) U(xuV
TS) - E0 (see section 2).

3.3. Efficient Determination of Best Paths and Energy
Ridges.Even though the subtransition pathways are short
compared with a whole pathway between the transition end
states, finding the highest saddle-point along an edge can
still be very CPU intensive (here, the average time on a single
3 MHz CPU was about 2 h per subtransition). Therefore, it
is computationally infeasible to do this for all edges in the
network. The problem thus arises that global properties of
the network (such as the best path or the dividing energy
ridge) must be determined using incomplete information on
the barriers. We solve this problem by devising a strategy
such that only a small number of edge energies need to be
computed to determine the best path and the energy ridge.

The strategy relies on the introduction of lower and upper
bounds,EuV

TS,min, EuV
TS,max on each edge energy, which bracket

the (yet unknown) true edge energy,EuV
TS.

The “safe” lower bound for the edge energy isEuV
TS,min )

max{Eu
S, EV

S}, because the energy of each barrier is at least
as high as the highest of the two minima it connects. The
safe upper bound isEuV

TS,max ) ∞, but for numerical reasons
it is taken asEuV

TS,max ) EuV
TS,min + M, whereM is a large but

finite number (here,M)100 kcal/mol). A tighter upper bound
could also be obtained by performing a very short (i.e.
unconverged) CPR path refinement on the edge (u, V) and
using the highest energy along the resulting path asEuV

TS,max.
An alternative method to both the lower and upper bounds,
based on statistical estimates, is used here (see Appendix
D).

To implement lower and upper bounds, two graphs are
defined, which have the same topology as the actual
transition network: one using the lower bounds for the edge
energies,Gmin ) (V,XS,ES,E,ETS,min), and the other using the
with upper bounds for the edge energies,Gmax )
(V,XS,ES,E,ETS,max). The best paths (and energy ridges)
through Gmin and Gmax can be computed, using the corre-
sponding inverse Boltzmann weight vectors,wj min,wj max and
Boltzmann weight vectorswmin,wmax. This is addressed in
the next sections.

3.3.1. Best Paths.The flowchart in Figure 8 summarizes
the procedure for finding the best path. The best path through
the transition network is found iteratively as follows: In each
iteration, the best path through the graphGmin, Pbest

min )
(VR,..., VP), is determined as described in section 2.1. The
edge with the highest unknown energy alongPbest

min, (u, V), is
identified, and its true energyEuV

TS is computed by CPR. The
network Gmin is updated by settingEuV

TS,min to the true edge
energy,EuV

TS (the weightswj min are also updated accordingly).
This procedure is repeated until all edge energies along the
resulting best path have been computed, yielding the true
best path.

A preliminary estimate of the energy barrier of the best
path can be easily obtained. For this, in each iteration of the
above algorithm, the best path is calculated on both graphs
Gmin and Gmax, yielding best pathsPbest

min and Pbest
max, respec-

tively. The rate-limiting barrier of the true best path is
bounded by those ofPbest

min and Pbest
max. During successive

iterations, these bounds converge to the true value (see Figure
9).

Often, one is not interested in the details of how the best
path travels in the low-energy regions, since it is the highest-
energy edges along the whole path that are rate determining.
Computation time can thus be saved if only the high-energy
edges of the best path, i.e., those with barrier energies within
a range∆Esure of the highest-energy barrier along the path,
Epeak, are required to be correct (see Figure 3b). To achieve
this, the computation proceeds as above until the energy of
the rate-limiting barrier,Epeak, is identified. This is the case
whenPmin andPmax have the same value forEpeak. After that,
whenever a barrier is computed whose energyEuV

TS is below
the thresholdEpeak - ∆Esure, the transition networks are
updated by settingEuV

TS,min ) EuV
TS,max: ) max{Eu, EV}, i.e., as
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if the transition were barrierless. This saves computational
effort as it makes sure that (u, V) is a part of the best path
identified in the next Dijkstra computation, thereby avoiding
to spend time in identifying paths avoiding (u, V) that might
have a lower energy barrier thanEuV

TS.

The computing time can be drastically reduced, at the
expense of possibly failing to identify the true best path, if
the “safe” lower edge energy boundEuV

TS,min ) max{Eu, EV}
is replaced with a statistical estimate (described in more detail
in Appendix D). In this case the lower energy bound is not
necessarily correct as it might overestimate the real barrier.
That is, edges which are not included in the resulting best
path and have been rejected based on their lower estimate
EuV

TS,min might in fact have a true edge energyEuV
TS < EuV

TS,min.
The maximum overestimation possible, errmax, is given by

the maximal difference found between any estimated lower
bound and the corresponding safe lower bound:

Thus, errmax, also gives the maximum possible error on
the rate-limiting barrier of the path. If the graphGmax is used
to obtain a preliminary estimate of the energy barrier of the
best path, this estimate is usually improved by also replacing
the safe upper energy boundEuV

TS,max ) ∞ by an statistical
estimate. As the identification of the best path does not
depend onGmax, an incorrect upper boundEuV

TS,max cannot
lead to a wrong result but may give a wrong upper bound
for the preliminary estimate of the best path’s energy barrier.

3.3.2. Energy Ridges.As defined in section 2.2, the
energy ridge is the rate-limiting cut that divides the TN into
a reactant and product side. The algorithm that computes
the energy ridge while determining only a limited number
of edge barriers uses a strategy similar to the one used to
find the best-path. The energy-ridge cut is determined (as
described in section 2.2) on the graphGmax (i.e. using upper
bounds for the yet unknown edge energies). The lowest-
energy unknown edge, (u, V), in the resulting cut,Cmax, is
computed by CPR, andGmax is updated with the value of
EuV

TS. This process is repeated in successive iterations. When
an energy-ridge cutCmax is identified whose edge barriers
are all determined, it is identical to the true energy ridge.

In practice, it is sufficient to compute only the low-energy
barriers of the energy ridge, since the higher-energy barriers
are not populated. Thus, one is only interested in finding
the energy barriers of the energy ridge that are up to an
energy difference∆Esure above the energy of the lowest
barrier in the ridge,Elow (see Figure 3c). To find these
barriers, the algorithm given above proceeds until the value
of Elow is identified. From this moment on, whenever a barrier
is computed which hasEuV

TS > Elow + ∆Esure, Gmax is updated
by setting EuV

TS ) ∞. This fools the algorithm so that it
leaves these high-energy barriers in the ridge and thereby
saves the computational cost of identifying the high-energy
regions of the full ridge.

Figure 8. Flowchart for the best path finding procedure (section 3.3.1).

Figure 9. Convergence behavior of the best-path. The energy
of the rate-limiting transition state along the best path Pbest

min

(solid line) or Pbest
max (dashed line) is plotted as a function of

iterations of the algorithm (see section 3.3.1). (A) Using “safe”
bounds, i.e. setting the lower and upper bounds to 0 and ∞.
(B) Using guessed bounds, i.e. setting the barrier bounds
based on statistics (see Figure 13).

errmax ) MAX[ EuV
TS,min - max{Eu

S, EV
S}]all pairs(u,V) (9)
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Finding the energy ridge depends on the upper bounds on
the edge energies; therefore, the performance of the algorithm
is considerably increased if estimates (see Appendix D) are
used instead of infinite upper bounds. However, in contrast
to the error involved in the determination of best paths (eq
9), no upper bound for the error from using such estimates
can be derived here.

3.4. Test Case: Protein Model and Energy Function.
The method is tested here on Ras p21. The conformational
change in Ras occurs after theγ-phosphate of bound GTP
is cleaved off. GTP hydrolysis can be catalyzed by the
binding of a GTPase-activating protein (GAP)61 or it can
take place as a result of the weak intrinsic GTPase activity
of Ras in absence of GAP. The conformational transition
studied here is in the absence of GAP, as would occur after
intrinsic hydrolysis of GTP. Crystallographic structures exist
for both the GTP-bound (Protein Data Bank structure 5p2162)
and GDP-bound states (1q2163) of Ras p21. Theγ-phosphate
was deleted from 5p21, to yield the reactant state. The 1q21
structure served as product state. The HBUILD facility in
CHARMM64 was used to place the missing hydrogens.

All calculations were performed using the extended-carbon
potential function (PARAM19).65 Contributions from bulk
solvent to the free energy of the conformational substates
were included with the Generalized Born model of con-
tinuum solvation, using version 2 of the Analytical Con-
tinuum Electrostatics (ACE) method.66 Nonbonded interac-
tions were smoothly brought to zero by multiplying them
with a switching function between 8 and 12 Å.

The structure of a protein may be affected by the crystal
environment. Therefore, both the reactant and the product
structures were first relaxed using molecular dynamics
simulations with ACE. For this 20 ps of heating were
followed by 100 ps of equilibration and a 10 ns production
run. One structure every 100 ps (making up 100 structures
in total) was selected and energy minimized with ACE to a
gradient RMS of 10-3 kcal mol-1 Å-1. The structures with
the lowest energies were selected as reactant and product
structures. The potential energy of these structures was lower
than that obtained by a direct minimization of 5p21 and 1q21
by 30-45 kcal mol-1. Structurally, the differences compared
to 5p21 and 1q21 were rather small, consisting mainly of
exposed side-chain rearrangements, while the backbone fold
of the switch regions was preserved. The RMS coordinate
deviations from the directly minimized crystallographic end
states were<1.8 Å for the nonfixed atoms (<2.4 Å for the
switch regions).

To remove insignificant degrees of freedom, residues
which were not involved in the conformational switch and
whose atoms had similar positions in both end states were
fixed (residues 1-4, 42-53, 77-95, 110-115, 124-143,
155-167), leaving 1001 atoms free to move. To obtain the
same positions for the fixed atoms in the two end states, the
product structure was oriented onto the reactant structure so
as to minimize the RMS deviation between the fixed atom
coordinate sets. Then, the reactant and product values of these
coordinates were averaged. The averaged coordinates of the
fixed atoms were used for all calculations. Furthermore,
insignificant differences in the side chains of nonswitch

regions were removed from the end states as described in
ref 13. Finally, both end states were minimized to a gradient
RMS of 10-3 kcal mol-1 Å-1.

4. Results and Discussion
4.1. Performance of Best Path Calculations.Best paths
between the reactant and product structures of the Ras p21
conformational switch were computed using the iterative
algorithm described in section 3.3.1. The performance was
evaluated, first using safe values for the upper and lower
bounds on the edge barriers (i.e.EuV

TS,min ) max{Eu, Ev} and
EuV

TS,max ) ∞). Alternatively, statistical estimates for the
bounds (described in Appendix D) were used. The partial
computation of best paths, using different values for the
energy interval∆Esure(see section 3.3.1 and Figure 3B) was
also examined.

Table 5 shows how many edges need to be computed with
CPR in order for the best path to be determined under these
different conditions (starting the count from scratch for each
setting). To determine the full best path (∆Esure ) ∞) using
safe bounds on the energy barriers, 2252 edges had to be
computed (only 5% of the total number of 47 404 edges). It
was possible to reduce this number by a factor of 4 (to 603)
when statistical estimates of the bounds were used. This faster
convergence behavior is also apparent when comparing
Figure 9A,B and demonstrates that the computation time can
be greatly reduced by introducing a relatively small uncer-
tainty. In the worst case, the error on the rate-limiting barrier
resulting from the present estimates ofEuV

TS,min could have
been as much as 5.25 kcal/mol (from eq 9). But in the present
case, statistical estimation actually resulted in a best path
with the same rate-limiting energy barrier as found when
safe bounds were used. Moreover, except for one additional,
insignificant low-energy step, the estimated best path is equal
to the true best path.

The computational savings are even larger when only the
highest-energy barriers of the best path are determined. The
number of edges that need to be computed with CPR when

Table 5: Number of Edges Computed with CPR To
Determine the Best Patha

∆Esure
b safe boundsc guessed boundsd

∞e 2252 603
30 2246 589
25 2224 565
20 2208 505
15 2115 321
10 2069 212
5 2059 114
0 2059 106
path lengthf 23 24
energy barrierg 45.7 45.7
a Assuming no energy barrier has been previously computed.

b Energy range below the highest barrier for which the barriers of the
best path are to be determined (see Figure 3B). c Using Euv

min )
max{Eu, Ev}, Euv

max ) ∞ as bounds on the unknown energy barriers.
d Using statistical estimates (Appendix D) to guess the Euv

min and Euv
max

bounds. e ∞ means that the whole best path with all its edges is to
be determined. f Number of edges along the fully determined best
path. g Rate-limiting energy barrier along the best path, in kcal/mol
relative to the reactant.
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only the highest barrier along the best path is requested to
be certain (∆Esure ) 0) in conjunction with statistical
estimates onEuV

min is 106, reducing the number of edge
computations by a factor of 6 (from 603). This shows that
statistical estimates help to quickly isolate the rate-limiting
step of the reaction.

4.2. Performance of Energy Ridge Computations.The
highest energy ridge in the TN (here: termed as ridge 2, as
it is associated with rearrangements in the switch II) was
computed with and without the use of statistical estimates
for the barrier bounds to test the performance of the algorithm
given in section 3.3.2. The results are shown in Table 6,
where the counting is started from scratch for each setting,
assuming that no energy barrier has been computed yet. 1092
energy barriers were computed to determine the full energy
ridge (∆Esure) ∞) with safe bounds, which amounts to≈2%
of the total number of 47 404 TN edges. By using statistical
estimates, this number was reduced to 667. When only the
lowest energy barrier of the ridge (∆Esure) 0) was computed,
the computational savings were comparatively slight (805
energy barriers were computed for this), but using both∆Esure

) 0 and statistical estimates reduced the number of computed
barriers to 214. The “safe” and the “estimated” ridge 2 agree
in their lower-energy edges (up to 5 kcal/mol above the
lowest edge). For edges of higher energy, only about 25%
of the edges in the “estimated” ridge belong to the safe
energy ridge.

4.3. Structural Mechanism of Ras p21. Structural
analysis shows that in the best path about half of the switch
II helix first unfolds before the rearrangement of the switch
I, in which Tyr32 passes underneath the backbone. Subse-
quently, the rearrangement of switch II completes. This latter
step is rate limiting, having the highest potential energy
barrier along the best path (Epeak)45 kcal/mol relative to the
reactant). From the time scale of the Ras p21 conformational
switch67 (on the order of 104 s in absence of GAP), it follows
that the highest free energy barrier along the path cannot
exceed 23 kcal/mol.13 This indicates that a significant
contribution from entropy, due possibly to an increase in
backbone flexibility, reduces the high enthalpic barrier found
here.

The next-best pathways (i.e. pathways having a different
rate-limiting transition state, see section 2.1) with rate-
limiting barriers within 10 kcal/mol above that of the best
path were also computed. There are 12 such pathways in
the present TN. The order of events in these pathways is
similar to the events described above for the best path, i.e.,
switch II unfolds (to a varying degree) in the first part of
the transition, and the subsequent switch I transition occurs
with Tyr32 passing underneath the backbone (see Figure 10).
The differences between these pathways are mainly in the
precise order of events in the switch II rearrangement.

In the lowest best path, the passage of Tyr32 underneath
the backbone is associated to an important barrier of about
25 kcal/mol. This raises the question whether the Tyr32 must
necessarily pass underneath the backbone. An obvious
alternative would be for Tyr32 to pass the other way (i.e.
through the solvent). To better analyze the motion of Tyr32,
the energy ridge corresponding to its reorientation (abbrevi-
ated as ridge 1, since it is the rate-limiting step of switch I

Table 6: Number of Edges Computed with CPR To
Determine Ridge 2a

∆Esure
b safe boundsc guessed boundsc

∞d 1092 667
20 1092 622
15 1092 509
10 897 383
5 862 293
0 805 214
ridge sizee 174 162
energy barrierf 45.7 45.7
a The energy ridge of the switch II rearrangement, assuming no

energy barrier has been previously computed. b Energy range above
the lowest barrier for which ridge barriers are to be determined (see
Figure 3C). c Same meaning as in Table 5. d ∞ means that all barriers
of the ridge are determined. e Number of edges in the fully determined
energy ridge. f Lowest edge barrier of the energy ridge, in kcal/mol
relative to the reactant.

Figure 10. Two-dimensional representation of the potential
energy surface of Ras p21. The horizontal axis measures the
orientation of Tyr32 on the switch I loop (R ) dihedral angle
Pâ,C32,N32,OH32, in degrees). The vertical axis measures the
helicity of switch II (number of R-helical H-bonds). The contour
levels show the energy of the TN vertices (dark gray ) 0-10
kcal/mol, light gray > 60 kcal/mol). Reactant and product
structures are labeled as ‘R’ and ‘P’. The best transition
pathway is shown in white, and the next-best transition
pathways (with a rate-limiting step up to 10 kcal/mol higher
than the white) in yellow, red, magenta, and cyan. Triangles
mark the rate-limiting transition state of the switch I rear-
rangement (corresponding to the lowest-energy points shown
in Figure 11b,c) and belong to ridge 1 (see section 4.3). Ridge
1 can be split into two energy ridges: one along R ≈ 30°
(where Tyr32 passes underneath the backbone, Figure 11b)
and another along R ≈ 150° (where Tyr32 passes through
the solvent, Figure 11c). The best path with Tyr32 moving
through the solvent is shown in dark blue.
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rearrangement) was determined. Tyr32 passes from an
orientation where its side chain points toward GDP and-30°
< R < -10°, to an orientation where 60° < R < 110°. R is
an artificial dihedral angle, defined over atoms Pâ,C32,N32,-
OH32 (Pâ is the â-phosphorus of GDP). Ridge 1 was
computed with∆Esure ) 30 kcal/mol and using safe values
for the barrier bounds (see section 3.3). The resulting energy
ridge consists of 92 transition states. In 11 of them, Tyr32
goes through the solvent, and the associated barrier is at least
40 kcal/mol, clearly indicating that passage underneath the
backbone is the preferred mechanism. In Figure 10, ridge 1
appears split in two regions.

To visualize the two energy ridges, Figure 11 shows a
two-dimensional projection of the transition states contained

in ridge 1 and ridge 2. Ridge 1 was split into two sets: one
set containing the transition states that involve the passage
of Tyr32 underneath the backbone and the other set contain-
ing the transition states having Tyr32 passing through the
solvent. In the case where passage of Tyr32 is underneath
the backbone, there are 7 different transition states in ridge
1 up to 10 kcal/mol above the lowest transition state in ridge
1. These differ considerably in the amount of unfolding of
the switch II helix: some still form a perfect helix, while in
others the helix is fully unfolded (see Figure 11b). In the
unfavorable case that Tyr32 passes through the solvent the
conformation of the partially unfolded switch II helix is well
defined, as can be seen from its similar structure in all next-
higher transition states (Figure 11c).

Figure 11. Two-dimensional projection of the energy ridges of the Ras p21 transition. Three major ridges were identified: two
for the switch I rearrangement (both belonging to ridge 1) and one for the switch II rearrangement (ridge 2). Transition states
from each ridge were projected on their two first principal components (computed from the CR-coordinates). Each panel (b,c,d)
shows one ridge and the corresponding conformation of the switch I loop (box in top right corner of each panel). The projected
points cluster (ellipsoids) according to their different switch II conformations (typical backbone conformation shown for each
cluster). The energy of each transition state is coded by color. (a) Reactant state: switch I has Tyr32 pointing to the ‘right’,
switch II is a helix. From here, the conformational change proceeds through panels b or c. (b) Energy ridge of the switch I-transition
(ridge 1), with Tyr32 passing underneath the backbone. There is a large variety of alternative switch II-conformations at this
step of the transition. (c) Ridge 1 with Tyr32 moving through the solvent. (d) Energy ridge of the switch II-transition (ridge 2),
which is globally rate-limiting. The transition of switch I is already completed and Tyr32 is pointing to the ‘left’. Various isoenergetic
ways for the switch II rearrangement coexist. (e) Product state: switch I is pointing to the ‘left’ and switch II helix has fully
unfolded.
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After the switch I rearrangement has completed, the
transition pathways must cross ridge 2, which contains the
globally rate-limiting transition states. Ridge 2 contains 14
transition states within 10 kcal/mol above the lowest transi-
tion state in ridge 2 (which here is identical to the highest
transition state in the lowest best path). These alternative
transition states are highly scattered in Figure 11d, showing
that the structure of switch II varies considerably. Thus, there
are many different ways in which switch II can rearrange
toward the product structure, and the coupling between
switch I and II is weak enough to allow for many different
orders of the conformational events in both switch regions.
This means that the Ras p21 conformational switch is highly
degenerate, thus confirming a significant entropic contribu-
tion to the free energy profile of the conformational switch.13

5. Conclusions
We have introduced here an efficient method for mapping
the low-energy minima involved in a complex conforma-
tional transition in a protein. The method was shown to be
effective in identifying minima belonging to very different
conformational pathways. Furthermore, the resulting set of
minima is dense in the low-energy regions.

A transition network is constructed to connect the available
set of low-energy minima. The graph-theoretical methods
have allowed to determine global properties of the network
while only requiring computation of a small subset of the
subtransition barriers in the network. When applied to the
conformational switch of Ras p21, the globally best pathway
connecting the transition end states and the energy ridge
separating them could be determined while computing less
than 5% of the total number of subtransitions in the network.

The energetically best pathway and the two main energy
ridges of the Ras p21 switch give insight in the mechanism
of the transition and provide answers to the three questions
asked in the Introduction: (1) The rearrangement of switch
I always occurs such that Tyr32 is threaded underneath the
protein backbone. (2) This rearrangement of switch I must
be finished before the rate-limiting rearrangement of switch
II can start. (3) The order of conformational events in either
switch I or II and the details of rearrangement in switch II
vary substantially. This confirms that complex conforma-
tional transitions in proteins such as Ras may occur via
multiple pathways.

The methodological advances presented here allow com-
prehensive analysis of the mechanism of complex transitions
in proteins. To allow for comparison with certain experi-
ments, it will be desirable to obtain free energy TN that allow
calculation of thermodynamic and kinetic properties. This
might be achieved by estimating vibrational free energies
for the TN states42,43 and merging vertices which are
separated by low-energy barriers so as to account for
intrastate configurational entropy.32,42,43
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Appendices: A. Checking Conformers for
Steric Collisions
During the sampling procedures described in section 3.1.3,
new conformers are validated by checking that they do not
produce very high potential energies, mostly due to atom
collisions (see Figure 5c). For each pair of atomsi, j, the
criterion used is that the combined Lennard-Jones and
Coulomb interaction energy should not exceed a tolerance
valueEtol (Etol ) 20 kcal mol-1 in this study). This check
needs to be repeated so often that it is a computational
bottleneck for the sampling method. Therefore, to avoid
computing all pairwise interaction energies for each con-
former, we first precompute the minimum distance,di,j

min

allowed for each atom pair. This is obtained as the solution
of

whereεw is the van der Waals well depth,σij is the effective
van der Waals radius for atomsi and j, qi and qj are the
partial charges of atomsi and j, and εrε0 is the dielectric
constant. The above equation is solved fordi,j

min with
Newton’s root-finding method. For theEtol used in this study,
there was always a unique solution fordi,j

min. If smaller Etol

are used, eq 10 may have two solutions, in which case, the
smaller solution must be used so as to ensure thatdi,j

min

reflects the repulsive interaction. The resultingdi,j
min values

are stored. A given conformation is treated as valid if all
nonbonded atom distances,di,j (excluding 1-4 pairs) fulfill
the criteriondi,j

min e di,j. The number of distance computa-
tions is kept small by embedding the protein coordinates in
a lattice and computing distances only between atoms which
have been changed in a given sampling step and atoms which
are in the same or adjacent lattice cells.

B. Efficient Side-Chain Sampling Method
Given a set of backbone conformations that is uniformly
distributed inφ/ψ-torsional space, a uniformly distributed
set of full (backbone and side chain) conformations can be
build by repeating following steps: (1) randomly selecting
a backbone conformation, (2) building all side chains on this
backbone conformation, using random torsion angles, and
(3) accepting the conformation if it does not produce
collisions. This trivial method is not very efficient in practice,
first because some backbone conformers may never allow a
given side chain to be built without collisions, and second
because for a given backbone conformer it is unlikely that
placing all side chains at once produces a conformation
without collisions. Here, a more efficient method is used that
consists of the following steps: (1) For each backbone
conformationc, a weightwc is computed which is equal to
the probability that a set of noncolliding side chains can be
built on this backbone, when a uniform distribution of side
chain torsion angles is used. (2) A random backbone
conformation is selected according to the probabilitypc )
wc/∑kwk. (3) Onto the selected backbone, each side chain is
build by itself in a number of conformations that do not
produce collisions with the backbone and the nonsampled

εw[( σij

di,j
min)12

- ( σij

di,j
min)6] +

qiqj

4πεrε0di,j
min

- Etol ) 0 (10)
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regions of the protein. (4) Side-chain conformations from
step 3 are combined randomly to form a fully build protein
conformation, which is accepted if is does not have any
collisions. Steps 2-4 are repeated until a desired number of
conformations have been generated.

The weightwc is computed as follows: For each backbone
conformationc, an acceptance probabilitypc,i for each side
chaini is calculated by generating a large number of random
rotamers for that side chain (in the absence of the other side
chains of the S region) and counting the number of
noncolliding rotamers. If anypc,i ) 0 (i.e. some side chain
cannot be placed at all without producing collisions), then
backbone conformationc is permanently rejected andwc )
0. Otherwise, the probabilityqc to find a noncolliding
combination of the individually valid side-chain conforma-
tions is computed. This is done by generating a large number
Nc of random combinations of valid side-chain rotamers and
counting the numbernc of noncolliding combinations,qc )
nc/Nc. The weightwc is obtained aswc ) qc∏ipc,i.

C. Efficient Method for Early Rejection of
High-Energy Minima
This describes a method for the early rejection of energy
minima with U(x) > Etol during the minimization. Early
rejection is based on statistics that are collected during a
number of preliminary full minimizations, correlating the
energy difference between partially minimized and final
structures with the gradient of the partially minimized
structure.

For Ras p21, 100 samples were retrieved from the sample
repository and minimized to a gradient RMS of 10-5 kcal
mol-1 Å-1. Each of these minimization trajectories delivered
a series of gradients (g0,g1,...,gn) and associated potential
energies (U0, U1,...,Un), where the pair (gn, Un) corresponds
to the fully minimized structure. All pairs (gi, Ui) from all
100 minimization trajectories were used to derive correlation
statistics betweengi and ∆U ) Ui - Un, i.e., the energy
difference from the fully minimized structure. These statis-
tics, shown in Figure 12, were used to obtain for each range
of gradient a corresponding value of∆U that was higher
than 90% of the∆U’s in that range. This yields an upper
estimate of∆U, given a certain gradientg. This estimate
was used to reject structures during minimizations if their
minimum energy, predicted from this upper estimate, con-
siderably exceeded an energy tolerance threshold:U(x) -
∆U > E0 + Elow + 10 kcal mol-1. E0 is the minimized
reactant energy, andElow was set to 40 kcal mol-1 (see Table
2).

D. Barrier Estimation. A method is given for the
statistical estimation of lower and upper bounds for the
energy barriers of subtransitions. For this, one correlates
available information on the edgese ) (u, V), such as
distance between its verticesδuV ) |xu - xV|, with the
computed energy barriersBuV ) EuV

TS - max{Eu
S, EV

S}. Using
a certain confidence interval, one obtains upper and lower
estimates,BuV

min(δuV) andBuV
max(δuV), which are used to replace

the strict edge-weight bounds by max{Eu
S, EV

S} + BuV
min(δuV)

and max{Eu, EV} + BuV
max(δuV).

For Ras p21, after computing the first∼2000 energy
barriers, these barriers were correlated with the distance
between the corresponding minima so as to yield a distance-
dependent barrier estimate. Figure 13 shows a plot the first
∼2000 barriers against three different distance measures. The
average value and the boundaries of a 90% confidence
interval are given. Clearly, theφ/ψ-RMSD is not a useful
measure here as it is not correlated with the energy barrier.
The Cartesian RMSD gives a better correlation, while the
charge-weighted RMSD,dC(x,y), defined as

whereN is the number of atoms andqi is the charge on atom
i, here gives the best correlation of the three distance
measures. The 90% confidence interval was used to derive
BuV

min(δuV) andBuV
min(δuV).

Figure 12. Using the gradient during minimizations to predict
the expected energy at the minimum. Based on the minimiza-
tions of 100 different conformers, each minimization going
through a series of intermediates with gradients (g0,...,gn) and
energies (U0,..., Un), the difference between the energy of an
intermediate and the final (minimum) energy, Ui - Un is plotted
against the current gradient g i. 90% of the points are below
the dashed line, which can be used to estimate how much
more the energy may decrease during a minimization, based
on the current gradient value, thus allowing nonpromising
minimizations to be stopped early.

Figure 13. Predicting lower and upper bounds to the energy
barrier of subtransitions. The energy barrier is plotted versus
the distance between the end states of a given subtransition
in Ras p21, using different distance metrics: (A) RMSD in
φ/ψ-dihedral space of the S-regions, (B) all-atom RMSD in
Cartesian space, and (C) same, but with each atomic distance
weighted by the absolute atomic charge. Solid line: average
barrier. 90% of the points lie below the upper dashed line,
10% below the lower dashed line. These were used as lower
and upper estimates for the estimation of optimistic and
pessimistic best paths (see Figure 9).

dC(x,y) ) x∑
i)1

N

(xi - yi)
2qi

2

N
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