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COMPUTING BEST TRANSITION PATHWAYS IN
HIGH-DIMENSIONAL DYNAMICAL SYSTEMS: APPLICATION TO

THE αL � β � αR TRANSITIONS IN OCTAALANINE∗

FRANK NOÉ† , MARCUS OSWALD‡ , GERHARD REINELT‡ , STEFAN FISCHER§ , AND

JEREMY C. SMITH¶

Abstract. The direct computation of rare transitions in high-dimensional dynamical systems
such as biomolecules via numerical integration or Monte Carlo is limited by the sampling problem.
Alternatively, the dynamics of these systems can be modeled by transition networks (TNs) which are
weighted graphs whose edges represent transitions between stable states of the system. The compu-
tation of the globally best transition paths connecting two selected stable states is straightforward
with available graph-theoretical methods. However, these methods require that the energy barriers
of all TN edges be determined, which is often computationally infeasible for large systems. Here,
we introduce energy-bounded TNs, in which the transition barriers are specified in terms of lower
and upper bounds. We present algorithms permitting the determination of the globally best paths
on these TNs while requiring the computation of only a small subset of the true transition barriers.
Several variants of the algorithm are given which achieve improved performance, including a parallel
version. The effectiveness of the approach is demonstrated by various benchmarks on random TNs
and by computing the refolding pathways of a polypeptide: the best transition pathways between
the αL helix, αR helix, and β-hairpin conformations of the octaalanine (Ala8) molecule in aqueous
solution.
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1. Introduction. Complex dynamical systems with many degrees of freedom
are ubiquitous. Examples include climate systems, stock markets, and condensed-
phase molecular systems, among which biomolecules such as polypeptides, nucleic
acids, or proteins are of particular interest. The immense number of possible states
and state transitions poses a challenge to the simulation of these systems [1, 2, 3].
However, the qualitative and quantitative analysis of transitions between stable states
is at the heart of understanding their dynamics [4, 5, 6, 7]. Here we present methods
that are designed to enhance or enable the analysis of transitions between distant
states in complex molecules. However, many of the principles described here are also
applicable to nonmolecular systems.

Molecular dynamical systems are often modeled using a potential energy func-
tion U(x) : R

D → R, where D is the number of degrees of freedom of the system.
Dynamical trajectories typically reside most of the time within the energy basins of
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Fig. 1. TN on a schematic two-dimensional energy surface. The network vertices (white bullets)
correspond to low-energy intermediates between the reactant and product end-states of the transition
(black bullets). The network edges (white lines) correspond to subtransitions between the vertices
and are associated with the rate-limiting energy barriers along the subtransitions (white numbers).

U(x) and occasionally jump to neighboring basins [8]. The dynamics of the system
can be simulated by numerically integrating the equations of motion involved. For
stability, the integration time step must not exceed a value that depends on the fastest
motions in the system and is often many orders of magnitude below the time scale
during which the transitions of interest occur [9]. Larger steps are possible in Monte
Carlo simulations but lead to a considerable reduction of the acceptance ratio [10].
These difficulties often lead to an insufficient number (if any) of occurrences of the
transitions being investigated. Despite considerable progress in enhancing sampling
methods [9, 11], this sampling problem is still the main obstacle to using direct sim-
ulation methods for the characterization of rare transitions.

An alternative approach to exploring U(x) directly is to “map” its interesting
features into a transition network (TN). A TN consists of vertices representing stable
states (the energy basins of U(x)) and edges representing transition states connecting
pairs of stable states (saddle regions of U(x)). Moreover, each vertex and each edge
is assigned an energy. In the simplest case, these energies are potential energies of
minima and saddle points, but ideally they are free energies of the corresponding
states and transition states. Figure 1 shows a schematic representation of a TN on
a potential energy surface. TNs have been constructed for various molecular systems
[6, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Free energy TNs have
been shown to reproduce thermodynamic properties of the system [23, 24]. The
kinetics between groups of states may be recovered using a master-equation dynamics
[6, 13, 15, 18, 19, 20, 21, 22, 23, 24, 26, 27], kinetic Monte Carlo [26], or discrete path
sampling [24, 26, 28].

Here we are interested in identifying the most populated transition pathways
between two possibly distant system states (the transition end-states). In a related
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study [29], a method was proposed to construct a contiguous transition pathway
connecting possibly distant end-states. In this method, a graph-theoretic shortest-
path algorithm is used to iteratively connect already-found minima by new minima
on the potential energy surface, so as to yield a contiguous series of minima between
the end-states. A transition pathway, which is short in terms of an Euclidean measure,
is not necessarily highly populated but may serve as a starting point for a discrete
path sampling procedure [28] which then identifies a physically meaningful ensemble
of transition pathways. The advantage of this approach is that no a priori definition
of the TN is required but rather is generated on the fly. The approach has a limitation
in cases where multiple reaction channels (i.e., separate bundles of pathways) exist,
as there is a high chance that not all of them will be sampled from a single starting
pathway.

This danger of getting caught in locally optimal reaction channels can be avoided
by approaching the task as a global optimization problem to find the k best paths
on the network connecting two selected vertices. If the TN topology and energies
are known, and a theory for transforming the energies into a cost for the transition
along each edge is given, this problem can be solved with available graph-theoretical
methods [30, 31]. In practice, the most difficult part is to construct an appropriate TN
in the first place. Stable states can be identified by local optimization starting from
conformational ensembles that are generated by high-temperature molecular dynamics
[6, 16, 19, 21, 32], by parallel tempering methods [33, 34], or by direct manipulation
of selected degrees of freedom. These stable states yield the TN vertices. Edges may
be defined between all pairs of vertices within a certain cutoff distance d, yielding
the network topology. In a reasonably dense network, the number of edges may be
very large (e.g., > 105). As the determination of an edge energy requires a relatively
CPU-intensive optimization of the transition state [35, 36] or calculation of the free
energy barrier [37], it is usually infeasible to determine all edge energies of the TN.
How can one compute the k best paths while having only incomplete knowledge of the
edge energies? This question is in the focus of the present study.

The key to the solution lies in the definition of lower and upper bounds which
bracket the true unknown edge energies. This concept is similar to a special case
of fuzzy graphs, where it is possible to have a distribution of cost values associated
with each edge instead of a concrete cost [38]. Methods are available to compute best
paths in such fuzzy graphs [38, 39, 40], depending on the probability distribution of
the individual edge costs. While this approach might also be helpful in the present
context, the situation addressed in this paper has an important difference: In our
case, the cost of a TN edge can be exactly identified (exact within the computational
model), but this is very expensive. The question above can therefore be concretized
as follows: Given a TN with unknown edge energies and a set of lower and upper
bounds on these energies, which edge energies need to be determined in order to quickly
identify the best path (the k best paths)? Here we present algorithms which address
this problem and test their performance.

The rest of the article is organized as follows. In section 2, we formally intro-
duce the concept of TNs with bounded edge energies and bounded edge costs. We
also describe graph-theoretical methods for determining best paths in networks for
which all edge energies are given. Furthermore, we describe methods for generating
random TNs with certain desired properties, which are subsequently used for most of
the benchmarks in this study. Section 3 presents an algorithm which computes the
globally best path (and k best paths) on a TN with bounded energies by iteratively
computing the energy of selected edges which are likely to lead to a quick determina-
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tion of the best path. Section 4 presents methods to improve the performance of the
algorithm. A parallel version is also given. Benchmark results on random TNs illus-
trate the performance of the algorithms presented. In section 5, we demonstrate the
effectiveness of the approach by computing the refolding pathways of a biomolecule:
the best transition pathways between the helical (αL and αR) and β-hairpin confor-
mations of the octaalanine (Ala8) polypeptide in an implicit solvent model.

2. TNs and k best paths.

2.1. Energy-bounded TNs. An energy-bounded TN is a weighted undirected
graph G = (V,ES , E ,ETS,min,ETS,max). V is a list of vertices, representing system
states whose energies are given by ES . E is an edge-list, defining which pairs of
vertices are connected by a direct transition. ETS,min and ETS,max are the lower and
upper bounds, respectively, of the transition states’ energies.

The list of vertices, V = (1, . . . , |V|), represents states of the dynamical system.
The number of states in the TN is equal to the size of this list, |V|. Each state is
associated with a region R of the system’s configuration space. The precise definition
of R depends on the application. A simple example for R is an attraction basin, i.e.,
the set of configurations that are mapped to the same local minimum by a direct
minimization [1, 4].

The vertex energy vector, ES = (ES
1 , . . . , E

S
|V|), assigns an energy to each vertex

in the order given by the list V, ideally the free energy of region R. Depending on
the application, different approximations to the free energy may be employed. In the
simplest case, the entropy of region R is neglected and the energy is taken as the
potential energy of an energy minimum in R.

The list of edges, E , represents the transition states of the system. It is a list
of pairs, each pair defining a connection between two vertices. For example, (u, v)
corresponds to a connection between vertices u and v. As the TNs here are undirected,
(u, v) and (v, u) refer to the same edge. Each edge appears only once in E ; i.e., the
total number of edges in the TN is given by the size of the list, |E|.

Each transition (u, v) can be associated with the free energy of the transition
state, ETS

uv . As the ETS
uv are initially unknown, we instead use lower and upper edge

energy bounds, ETS,min
uv and ETS,max

uv , with ETS,min
uv ≤ ETS

uv ≤ ETS,max
uv . The vectors

ETS,min and ETS,max are of size |E| each and assign lower and upper edge energy
bounds to each edge in the order given by the list E .

The a priori values for the bounds of each edge (u, v) are given by

ETS,min
uv := max{ES

u , E
S
v },(1)

ETS,max
uv := max{ES

u , E
S
v } + M,(2)

where M is a number that is larger than the anticipated maximum energy barrier.1

In some cases, it is convenient to refer to relative barriers instead of absolute energies,
so we define the edge barrier Buv:

2

BTS
uv := ETS

uv − max{ES
u , E

S
v },(3)

1M is used instead of ∞ because this avoids some numerical problems.
2BTS

uv is to be distinguished from the usual definition of an energy barrier, which is the difference
between transition state and reactant energies. Such a definition would produce two different barriers
for each edge (ETS

uv − ES
u and ETS

uv − ES
v ).
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such that (1) and (2) translate into equations for the a priori barrier bounds:

BTS,min
uv := 0,(4)

BTS,max
uv := M.(5)

An edge is said to be undetermined if its edge energy is unknown (i.e., if ETS,min
uv <

ETS,max
uv and BTS,min

uv < BTS,max
uv ). It is said to be determined if its edge energy is

known (i.e., ETS
uv = ETS,min

uv = ETS,max
uv and BTS

uv = BTS,min
uv = BTS,max

uv ).

2.2. Best paths in TNs. Here we derive a theory that allows us to transform
the TN energies into edge costs and give methods that allow us to compute pathways
of minimal cost through the network. For the present section, assume that all edge
energies, ETS

uv , are known and given by the vector ETS . Consider a particular tran-
sition between two vertices, u → v, with energies ES

u and ETS
uv . We can express the

transition rate from state u into state v, kuv, as a product of the probability, pu, to
be in state u and the rate constant for the transition u → v, k′uv:

kuv = puk
′
uv.(6)

Using free energies for the vertices, the probability pu to be in vertex u, at equi-
librium, is given by the ratio of partition functions for u and the full configuration
space [41]:

pu =
exp(−ES

u /kBT )∑|V|
v=1 exp(−ES

v /kBT )
.(7)

We assume that the local transition u → v can be modeled by a rate theory
which takes an Arrhenius form [42] and, moreover, that all subtransitions have a
similar dynamic prefactor, ν (including, e.g., kBT/h and expressions for the friction
or viscosity). Thus, the rate constant can be expressed as

k′uv = ν exp
−(ETS

uv − ES
u )

kBT
,(8)

where kB and h are Boltzmann and Planck constants, respectively, and T is the
temperature. Substituting (7) and (8) into (6), we see that the equilibrium flux for
the transition u → v is proportional to the Boltzmann weight of ETS

uv :

kuv =
ν∑|V|

v=1 exp(−ES
v /kBT )

exp

(
−ETS

uv

kBT

)
.(9)

The expected mean time, τuv, between two subsequent transition events from u
to v is the inverse of the rate: τuv = k−1

uv . We define the edge costs, cuv, as the
normalized τuv which are obtained by setting the constant rate factor to unity. They
are therefore equal to the inverse Boltzmann weight of the edge energies:

cuv = exp

(
ETS

uv

kBT

)
.(10)

The best path connecting vertices v1 and vm, P = (v1, . . . , vm), is one which
minimizes the cumulative edge cost:

C(P ) =

m−1∑
k=1

cvkvk+1
.(11)
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This definition of a best path is similar to notion of the path with the “maximum
flux” or “minimum resistance,” as given in [43, 44]. The main difference is that the
minimum resistance path is defined as a continuous line integral connecting the end-
states on the potential energy surface, while (11) is a discrete sum over a contiguous
series of transition states, connecting the end-states on a free energy surface.

To determine the best path in practice, the edge energy vector ETS is transformed
into a cost vector c using (10). c has size |E| and assigns a cost cuv to each edge (u, v)
in E . Then the Dijkstra algorithm [30] is used to identify a best path between the two
end-states through a weighted network defined by (V, E , c). Such a path minimizes
the path cost given in (11).

Because of the exponential weighting of energies in C, the best path tends to
be one that minimizes the highest barrier along the path; i.e., it optimizes the rate-
limiting step. A single best path dominates the transition only if the barriers of
alternative pathways are considerably higher. However, the best path furnishes a
preliminary understanding of the transition [45] or may be used as a guess for a
reaction coordinate to obtain a free energy profile along the transition [46]. To obtain
a better representation of the ensemble of accessible pathways, it is useful to compute
the k best pathways (P1, P2, . . . , Pk) with path costs (C1 ≤ C2 ≤ · · · ≤ Ck). “k best
path” problems are well established in graph theory [31] and vary in the criterion
by which paths are treated as “different.” For molecular systems, it is useful to
distinguish paths which include different rate-limiting steps. Therefore, here two
paths are treated as different only if they do not coincide in the highest-energy edge.
The k best paths are determined in k steps, using the following simple protocol: The
ith best path is given by computing the best path while “blocking” all edges (u, v)
associated with the highest energy barrier along each of the (i− 1) previously found
best paths by setting their BTS

uv = M .
When the best path is recomputed after changing only a single edge energy, it

is not necessary to repeat the whole Dijkstra algorithm from scratch. Rather, the
algorithms of Frigioni and Marchetti-Spaccamela [47] are used to dynamically update
the shortest path tree and thereby recompute the next best path with minimal effort.

2.3. Cost bounds and best paths. To compute best paths (and k best paths)
in energy-bounded TNs, we must take into account that there is no unique energy
vector ETS given but lower bounds ETS,min and upper bounds ETS,max. Therefore, we
transform ETS,min into a vector of lower cost bounds cmin and ETS,max into a vector
of upper cost bounds cmax, as specified in section 2.2. As cuv increases monotonously
with ETS

uv (see (10)), cmin
uv and cmax

uv are bounds for the unknown true edge cost:
cmin
uv ≤ cuv ≤ cmax

uv .
For a given TN G, we can compute two different best paths: an “optimistic” best

path, Pmin, using the minimum edge costs, cmin, in (11) and a “pessimistic” best path,
Pmax, using the maximum edge costs cmax. Obviously, if all edges are determined
(cmin = cmax), then Pmin and Pmax are identical, and the true best path is identified.

The idea of Algorithm 3 in section 3.1 is to determine only a small subset of
edges and still identify the best path (which involves that Pmin = Pmax). Whenever
an edge (u, v) is determined, and thereby ETS,min

uv and ETS,max
uv are modified, the

corresponding edge cost bounds, cmin
uv and cmax

uv , must be updated.

2.4. Random TNs. For testing the algorithms presented in this paper, it is
useful to have a model that generates random TNs. Depending on the underlying
physical system, TNs can have various different topologies and edge energies. How-
ever, TNs for molecules are not well represented by purely random graphs [48] with
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random energies, the reason being that they have a number of special properties which
are discussed in the present section. Below we give the details of how to generate the
random TNs used in this study.

Embedding. The TN vertices are embedded in a D-dimensional space. Typi-
cally, the degrees of freedom of the molecule are strongly correlated. Therefore, the
system configurations mostly reside in an essential subspace with an effective dimen-
sionality much lower than D. For example, it has been shown that, for proteins with
many thousands degrees of freedom, less than 1% of the degrees of freedom is suffi-
cient to cover most of the variance in the atomic motions [49]. Therefore, the random
TN vertices are embedded in a (C � D)-dimensional space.

For the vertices of all random TNs in this study we choose a C = 5-dimensional
hypercubic space. Our application system (section 5) is a peptide whose conformation
is characterized by a number of internal torsion angles. To achieve a similar coordi-
nate system for random TNs, each dimension of the embedding space has values in
]−180, 180] degrees and periodic boundary conditions. Initially, all |V| vertices are
embedded as random points in this space.

Connectivity. Given the positions of the vertices, the connectivity of the net-
work is specified by defining an edge between all vertex pairs within a distance, dmax.
Here a root mean square distance of 40◦ is used; i.e., for two vertices (u, v) to be
connected by an edge it must hold that

dmax =

√∑C
i=1 d(θu,i, θv,i)

2

C
< 40◦,(12)

where xu = (θu,1, . . . , θu,C) and vu = (θv,1, . . . , θv,C) are the embedding coordinates
of vertices u and v, respectively, and d(θu,i, θv,i) is the minimal difference between
the two angles θu,i and θv,i. A common measure for the connectivity of the network
is its degree distribution p(k): The degree of a vertex, k, is its number of neighbors;
the degree distribution is the distribution of all vertex degrees in the network. For a
random TN to be representative, we require it to have a degree distribution that is
typical for the class of physical systems of interest.

To obtain a random network with a predefined degree distribution pref(k), we
use the following Monte Carlo algorithm which modifies the initial vertex embedding
until the desired distribution pref(k) is obtained.

Algorithm 1 (random TN embedding).

(1) Given an initial vertex embedding (x1, . . . ,x|V|), compute the neighborhoods
for each vertex and from this the degree distribution p(k). Compute the
distribution error εp(k) =

∑∞
k=0(p(k) − pref(k))2.

(2) Set i := 0. While i < imax and εp(k) > εtol, repeat:
(2.1) Randomly choose a vertex v with embedding xv and randomly choose a

new point x′
v in the embedding space.

(2.2) Compute the degree distribution p(k)′ for the case that v is moved to
x′
v and the distribution error εp(k)′ .

(2.3) If εp(k)′ < εp(k), accept move:
xv := x′

v, p(k) := p(k)′, εp(k) := εp(k)′ .

The algorithm terminates when the maximum allowed error in the distribution,
εtol, or the maximum number of iterations, imax, is reached (here εtol = 0.01 and
imax = 104). The degree distribution of the octaalanine TN analyzed in section 5 is
a Poisson distribution that can be fitted by a Gaussian with mean μ = 12.4 and a
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Fig. 2. Illustration of the effect of the order parameter, o, on the energy surface underlying
random networks. Here an energy surface defined over two coordinates, E(x, y), is shown. A
minimum value of o = 1/|V| (here 0.001) corresponds to a random noise surface, while o = 1
represents a harmonic surface with some local roughness.

standard deviation σ = 6.1. This is used as reference degree distribution, pref(k), for
all random TNs in this study.

TN energies. In TNs, the energies correspond to the form of the energy surface
of the underlying physical system. Two extreme cases are when (a) the energy surface
has the global form of one large basin (with some roughness) and (b) the energy surface
has no underlying form, where the energies are just uncorrelated random numbers.
Between these two extremes are the cases in which the energy surface has some local
form: (c) the energy surface has a number of basins (with some roughness), which are
mutually connected. Figure 2 illustrates these cases.

To simulate different energy surfaces, we use following method to assign edge
energies, which can be controlled by an order parameter o to switch between cases
(a), (b), and (c). The algorithm selects nb = 1/o vertices as centers for harmonic
energy basins. Next, for each vertex v, the distance d to the closest basin center
(the number of edges in the shortest path) is computed. Vertex v is treated as a
part of that closest basin; i.e., its energy is set to ES

v = d2. To account for the local
roughness of the energy surface, a random value is added to each vertex energy. Each
edge barrier BTS

uv is simply given by a positive random number.

Algorithm 2 (random TN).

(1) Generate TN topology according to pref(k) (Algorithm 1).
(2) Randomly select a set of nb = 1/o different vertices, which act as harmonic

basin centers.
(3) For each vertex, v ∈ V:

(3.1) Set d := number of edges on shortest path to nearest basin center.
(3.2) Set ES

v := d2 + Gaussian(0, σ).
(4) For each edge, (u, v) ∈ E :

(4.1) Set BTS
uv := |Gaussian(0, σ)|.

Here Gaussian(μ, σ) generates a random value drawn from a Gaussian distribution
with mean μ and standard deviation σ. The order parameter o, which is the inverse
of the number of basins, nb, quantifies the amount of order on the potential energy
surface. For o = 1 (nb = 1), we have a single harmonic basin (case (a)). For o = |V|−1

(nb = |V|), the order is minimal, as all energies are determined by random values.
This is the random noise network (case (b)). Order values between these extremes
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are associated with energy surfaces having some local form (case (c)). Unless stated
otherwise, σ = 1 kcal/mol and o = |V|−1 = 0.001 are used in this study. Section 3.2
treats the effects of using different values of o.

In this study, best path(s) are computed on random TNs. This requires the
definition of a pair of end-states for each computation. As transition end-states usually
are in the energy minima of the end-state basins, the pair of end-states was not selected
in a completely random way. Rather, two random vertices were chosen and then both
were minimized on the network; i.e., each end-state was repeatedly moved to the
lowest-energy neighboring vertex until no neighboring vertices had a lower energy. If,
after this minimization, both vertices coincided, the process was repeated until two
distinct end-states were found.

3. Efficient computation of best paths. We propose an iterative algorithm
to compute the best path in an energy-bounded TN that requires the determination
of only a small number of edge energies.

3.1. Algorithm. Given a TN, G = (V,ES , E ,ETS,min,ETS,max), whose edge
energies are bounded by ETS,min and ETS,max, the following algorithm iteratively
determines the best path through the network. For this the “optimistic” best path
Pmin is identified using the minimum edge costs cmin (see section 2.3). A “critical
edge,” (u, v), is identified, defined as the highest-energy undetermined edge along
Pmin. Then the CPU-intensive step is performed by determining the real energy
ETS

uv . We set ETS,min
uv = ETS,max

uv := ETS
uv and update cmin

uv and cmax
uv . This may

lead to a different Pmin in the next iteration. These steps are repeated until all edge
energies along the optimistic best path are determined, giving the truly best path.

To obtain a preliminary estimate of the best path’s energy barrier, the same
computations can be performed using the maximum edge costs cmax, yielding the
“pessimistic” best path Pmax. The rate-limiting barrier of the true best path is
bounded by those of Pmin and Pmax. During successive iterations, these bounds
converge to the true value (see Figure 3).

The following pseudocode gives a formal representation of the algorithm, while
Figure 4 shows a graphical illustration.

Algorithm 3 (best path).

(1) Compute two best paths: Pmin using cmin and Pmax using cmax between the
transition end-states.

(2) If all edge energies along Pmin are determined (i.e., ETS,min
uv = ETS,max

uv ∀
(u, v) along Pmin), RETURN(Pmin).

(3) Choose from Pmin the edge (u, v) with ETS,min
uv = max{ETS,min

wy |((w, y) edge

along Pmin)∧(ETS,min
wy < ETS,max

wy )} (critical edge with undetermined energy).
If (u, v) exists: Determine (u, v).

(4) GOTO 1.
Termination: Determined edges are never selected as critical edges in step (3);

therefore each edge can be determined only once. At last, when all edges are deter-
mined, the algorithm returns in step (2). The algorithm thus terminates after at most
|E| cycles.

Correctness: The returned path is the globally best path after termination.
Assume the algorithm returns the path Pret, but the real best path is P �= Pret

with C(P ) < C(Pret).
Case 1: All edge energies of P are determined. Then P is computed as the best

path in step (1), and it must be P ≡ Pmin ≡ Pmax in step (2), and therefore P ≡ Pret

(a contradiction).
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(A)

(B)

Fig. 3. Convergence behavior of the best-path algorithm on a random TN, using different
settings. The algorithm determines an “optimistic” and a “pessimistic” guess of the best path in
each iteration, allowing the derivation of a lower and an upper bound for (A) the highest energy
barrier of the true best path and (B) its path cost. These optimistic (solid lines) and pessimistic
(dashed lines) pairs of values are equal when the true best path is determined. If a priori bounds
[0,M ] are used on the edge energy barriers (black lines), the upper bound for the path energy and the
path cost are very far from their true values for many iterations but then quickly converge when any
full pathway between the transition end-states has been determined on Gmax (i.e., when the current
pessimistic hypothesis of the best path does not contain any uncomputed barriers with height M). If
the values of edge energies are refined in two steps (green lines, discussed in section 4.3) rather than
one, the initial convergence is much faster, because the first step of refinement is first performed
on all edges along the current best-path hypothesis before the CPU-intensive full determinations
of the edge energies begin. The use of statistical estimates for the edge energy bounds (red lines,
discussed in section 4.1) also allows the lower and upper estimates for the best-path energy and cost
to converge faster and may significantly speed up the computation.

Case 2: Not all edge energies of P are determined. Let {ETS
1,2 , E

TS
2,3 , . . . , E

TS
m−1,m}

be the (unknown) true edge energies of the edges along P . Since the ETS,min are
lower bounds to the edge energies (ETS,min

uv ≤ ETS
uv ∀ (u, v)), the path cost of Pmin

in step (1) is always less than or equal to the true cost of P , in particular in the last
iteration, in which Pret is returned. With the above assumption C(P ) < C(Pret) it
follows that C(Pmin) < C(Pret), which means that Pmin �= Pret. However, in step (2)
Pmin is returned, so Pmin ≡ Pret (a contradiction).

3.2. Performance. The CPU time needed for the best-path algorithm is dom-
inated by the determination of the edge energies. Therefore, to evaluate the perfor-
mance of the algorithm, we calculate the number, nec, of determined edges necessary
to determine the best path.

Approximate upper bound for nec. We first derive an approximate upper
bound for nec. Consider a pathway, P . The cost of this path is likely to be dominated
by the highest edge energy along P as a result of the exponential weighting in (10). We
can therefore formulate following proposition, which claims that the costs of different
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Fig. 4. Illustration of Algorithm 3 which determines the best path through an energy-bounded
TN. A. The TN with its (initially unknown) true edge energies. B. Each edge is given lower and
upper bounds for the edge energies (here a priori bounds are shown). Best paths are computed
between the end-states (a) and (d) using the optimistic (yellow) and pessimistic bounds (blue). The
critical edge (b)-(d) is the highest-energy undetermined edge along the optimistic path. Its true
energy is determined. C–G. The process is iteratively repeated until all edge energies along the
optimistic best path are determined. Both the optimistic and pessimistic best path coincide with the
true best path.

pathways can be approximately ordered by their highest edge energies.
Proposition. For any two pathways, P1 = (u1, . . . , um) and P2 = (v1, . . . ,

vn), along series of edges with edge energies (ETS
u1u2

, . . . , ETS
um−1um

) and (ETS
v1v2

, . . . ,

ETS
vn−1vn

), respectively, it holds that

max{ETS
ukuk+1

|k ∈ {1, . . . ,m− 1}} < max{ETS
vkvk+1

|k ∈ {1, . . . , n− 1}}
⇒ C(P1) � C(P2).

Assuming this proposition is exact rather than approximate, then edges (u, v)
with ETS,min

uv > Epeak are never refined, where Epeak is the highest edge energy of
the best path.3 Thus, nec is approximately bounded from above by the number of
low-energy edges, nlow:

nec � nlow = |{(u, v) ∈ E|ETS,min
uv ≤ Epeak}|.(13)

This upper bound is only approximate because the above proposition is itself only
approximate. However, not a single case with nec > nlow was observed in the present
simulations.

In most cases, it holds that nec < nlow, as it is not necessary that all edges with
ETS,min

uv ≤ Epeak be computed. Some edges may lie in regions of the network which
are separated from the transition end-states by edges with ETS,min

uv > Epeak and are
therefore never considered by the algorithm.

3Proof. In each iteration of Algorithm 3, Pmin is computed using the costs obtained from the

lower energy bounds, ETS,min
uv . As an edge determination may only increase but never decrease

ETS,min
uv , the next iteration’s Pmin is guaranteed to have an equal or higher cost than the current

one. Therefore, the costs of Pmin are nondecreasing until termination. If the above proposition
holds exactly, i.e., if the different pathways would be exactly ordered in the same way by cost or
by maximum edge energy, then the maximum edge energies of Pmin are also nondecreasing until
termination. When the algorithm terminates, the maximum edge energy of Pmin ≡ Pmax equals, by
definition, Epeak. This is then the highest energy edge that was refined.
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Fig. 5. Dependence of the average number of computed edges, 〈nec〉, on the amount of order
on the energy surface. o = 0.5 represents two large harmonic wells with some superimposed noise,
while o = 0.001 represents the random noise network (see also Figure 2).

nec varies strongly depending on the topology of the network, on its edge energies,
and on the location of the two end-state vertices. The performance of the best-path
algorithm was evaluated on an ensemble of random networks and measured in terms
of the average number of edges computed to determine the best path(s), 〈nec〉.

Evaluating the average number of computed edges, 〈nec〉, on random
TNs. Here we describe how to evaluate 〈nec〉 on random networks. This forms the
basis for all benchmarks given in sections 3 and 4.

For each calculated value of 〈nec〉, 50 random networks with |V| = 1000 vertices
were generated as described in section 2.4. For each of these networks, 50 pairs of
end-states were randomly chosen as described in section 2.4, yielding 2500 random
setups. The a priori barrier bounds BTS,min

uv = 0 and BTS,max
uv = 5 kcal/mol were

used. As a standard deviation of σ = 1 kcal/mol was used in Algorithm 2 to generate
the edge barriers, above bounds were valid for the vast majority of edges. The best
paths between the selected end-states were determined using Algorithm 3, giving 2500
values for nec. From this ensemble we obtain the mean value 〈nec〉 and the standard
deviation σ(nec). The error bars shown in Figures 5, 7, 8, and 10 are given by the
values 〈nec〉 ± 2σ(nec).

We first tested how the form of the underlying energy surface influences the
performance of the best-path algorithm by computing 〈nec〉 for random networks
with different order parameter values o. These results are shown in Figure 5. For
random noise networks, 〈nec〉 has a maximum value, while for networks with some
local structure, 〈nec〉 decreases significantly, approaching a constant value (o > 0.01).
This result is expected, as random noise networks contain many more pathways of
similar energies than TNs with more order. The random noise network is therefore a
worst-case scenario. It is used as a model for all computations of 〈nec〉 in sections 3
and 4, unless stated otherwise.

Figure 6 shows a correlation of nec with nlow for all 2500 best-path computations
on random noise networks. Most values of nec are about 2 orders of magnitude below
the approximate upper bound nec = nlow. The average number of computed edges,
〈nec〉, increases linearly with nlow for large values of nlow.
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Fig. 6. Correlation between the number of computed edges, nec, for best paths on random
networks with the number of low-energy edges, nlow (defined in (13)). The black dots show all
value pairs generated by simulations on random noise networks. All data points are well below the
approximate upper bound of nec = nlow (solid line). The average number of computed edges, 〈nec〉
(diamonds), computed for several windows of nlow approaches 〈nec〉 = 0.0044nlow (dashed line).

3.3. k best paths. The best-path Algorithm 3 can be used directly to compute
multiple, k best paths if the protocol described in section 2.2 is followed. Typically,
there is an overlap between the sets of edges which need to be determined to compute
each of the k best paths individually. Therefore, the number of edges required to
compute k best paths, 〈nec,k〉, is expected to be less than k times 〈nec,1〉, where nec,1

is the number of edges required to compute the best path. This is indeed visible in
Figure 7, which shows 〈nec,k〉 that has been computed for values of k ≤ 16. 〈nec,k〉
increases linearly with k for the numbers of 〈nec,k〉 observed here,4 approaching the
function 〈nec,k〉 = 0.78 k〈nec,1〉.

4. Improving performance.

4.1. Statistical edge energy estimates. The computing time can be drasti-
cally reduced, at the expense of possibly failing to identify the true best path, if the
a priori bounds for the edge barriers BTS,min

uv = 0 and BTS,max
uv = M are replaced

by statistical estimates. Such estimates can be obtained if a reasonable number of
edge energies is already known, such that a probability distribution for energy bar-
riers can be proposed. If a lower-energy estimate BTS,min

uv > 0 is used, the problem
exists that it is not necessarily a true lower bound and may therefore overestimate
some barriers. That is, edges which are not included in the resulting best path and
have been rejected based on their lower estimate BTS,min

uv might in fact have a true
barrier BTS

uv < BTS,min
uv . The maximum overestimation possible, errmax, is given by

4〈nec,k〉 is, of course, bounded from above by |E|, and can therefore not continue to rise linearly,
but the present simulation values for nec,k do not come close to |E|.
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Fig. 7. Dependence of the average number of computed edges for k best paths on random
networks, 〈nec,k〉, on the number k of best paths that were computed. 〈nec,k〉 increases slower
than the theoretical maximum 〈nec,k〉 = k〈nec,1〉 (solid line), approaching the function 〈nec,k〉 =
0.78 k〈nec,1〉.

the maximum lower barrier bound:

errmax = max{BTS,min
uv |(u, v) ∈ E}.(14)

Thus, errmax also gives the maximum possible error on the rate-limiting barrier
of the path.

To give benchmarks for the efficiency of statistical estimates, we define a con-
fidence ratio, rconf : For each random network, the lower estimate BTS,min was set
such that rconf |E| edge energies were greater than BTS,min, and likewise the upper
estimate BTS,max was set such that rconf |E| edge energies were smaller than BTS,max

(i.e., rconf is the fraction of correctly estimated bounds). Figure 8 shows the de-
pendence of 〈nec〉 for computing the (estimated) best path in random noise networks
on rconf . Comparing with Figure 5, which shows 〈nec〉 for best-path computations
with a priori bounds, reveals that even a maximum confidence ratio, rconf = 1, gave
〈nec〉 ≈ 15, which is only about half the runtime compared to the value of 〈nec〉 ≈ 30
with a priori bounds. In general, rconf = 1 does not guarantee that BTS,min are true
lower bounds for the barrier. This is because usually only a small subset of all barrier
energies is used to set up the barrier statistics, such that rconf = 1 means only that
BTS,min and BTS,max are true bounds for all observed barriers. However, the above
results show that a statistical estimate involving only a small potential error can save
a considerable amount of CPU time. Smaller values of rconf can further reduce 〈nec〉
by a factor of three.

4.2. Partial computation of best paths. So far, we assumed that the best
path is computed in its full detail. However, one is often not interested in the details
of how the best path travels in the low-energy regions, since the highest-energy edges
along the whole path are rate-determining. Computation time can thus be saved if
only the high-energy edges of the best path, i.e., those with energies within ΔEsure of
the highest energy along the path, Epeak, are requested to be correct (see Figure 9). To
achieve this, Algorithm 3 is extended as follows: The computation proceeds as above
until the energy of the highest energy barrier along the best path, Epeak, is identified
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Fig. 8. Dependence of the average number of computed edges, 〈nec〉, for best paths on random
noise networks, on the confidence of statistically estimated edge energy bounds. Even a confidence
value of rconf = 1 (energy bounds are true bounds for all observed edge energies) allows a factor of
two to be saved compared to the use of a priori edge energy bounds (compare with Figure 5).

ΔESURE

Energy

Path Coordinate, 1−dim.

PEAKE

Fig. 9. Schematic representation of the concept of partial determination of best paths. A profile
of vertex and edge energies along a pathway through the network is shown. Given ΔEsure, the edges
in the range [Epeak − ΔEsure, Epeak] are guaranteed to belong to the true best path (indicated by
squares).

(this is the case when Pmin and Pmax agree in this energy). From this moment on,
whenever a barrier with energy ETS

uv < Epeak − ΔEsure is computed, we update the
edge energies by setting ETS,min

uv = ETS,max
uv := max{ES

u , E
S
v }, i.e., as if the transition

was barrierless. This prevents the next Dijkstra computation from finding a different
best path that would circumvent the low-energy barriers of the current best path.

To evaluate the effect of using ΔEsure < ∞ on random TNs, we must take into
account that the values of Epeak for different random TN setups can be very different.
We therefore define the ratio

rsure :=
ΔEsure

Epeak − Emin
,(15)

where Emin is the lowest vertex energy in the path. rsure is therefore the “fraction”
of the best path that is determined (on the energy scale). Figure 10A shows that
using rsure < 1 can considerably reduce 〈nec〉. The amount of reduction, however,
depends on the amount of order on the energy surface. For random noise networks
〈nec〉 is reduced only by a small fraction when only the highest barrier along the path
is identified (rsure = 0) instead of the full path (rsure = 1). The reduction amounts
to more than 50% for networks with o = 0.2. The reason for this difference is that
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Fig. 10. Dependence of the average number of computed edges, 〈nec〉, for best paths on random
networks, on the fraction of the best path that has been determined, rsure (defined in (15)). A. Edge
energies refined in a single step. B. Edge energies refined in two steps (discussed in section 4.3).
After the first step the upper bound was 0.5 above the true edge energy. A partial computation of
the best path (rsure < 1) performs better with well-ordered energy surfaces (bullets, squares) than
with random noise networks (crosses). A two-step refinement enhances the savings at low values of
rsure.

for energy surfaces with a significant amount of underlying order the edge energy
bounds already give a good estimate of where the highest edge of the best path may
be located. In contrast, for random noise networks, nearly all edges are candidates
for these highest edges, so that the reduction of 〈nec〉 is small compared with a full
computation of the best path.

4.3. Stepwise determination of edge energies. In the previous sections we
always assumed that edges are determined in a single step: In step (3) of Algorithm 3,
a program was called to compute the edge energy, ETS

uv , and the initial bounds were
immediately replaced: ETS,min

uv := ETS
uv and ETS,max

uv := ETS
uv . Now we will consider

that an edge is only refined in step (3) of Algorithm 3; i.e., we call a program which
computes some information on the transition u → v that provides tighter energy
bounds (ETS,min

uv is increased and ETS,max
uv is decreased). To guarantee the termination

of the algorithm, we require that only a fixed number of refinements of the same edge
are necessary to determine the edge, i.e., to deliver bounds that are equal to ETS

uv .
To simulate this approach, we used a two-step refinement algorithm: The first

refinement changes the bounds [ETS,min
uv , ETS,max

uv ] into [ETS,min
uv , ETS

uv +0.5 kcal/mol],
and the second refinement delivers the determined edge energy [ETS

uv , ETS
uv ]. The

motivation for this choice is that the program we use here for the determination of
energy barriers in the application (section 5) approaches the transition state energy
from above; i.e., a preliminary computation can be used to improve the upper bound.
To take advantage of the improved upper bounds, we must modify the criterion by
which the critical edge is identified in Algorithm 3. Here we chose the critical edge to
be an undetermined edge in Pmin which has the highest upper energy bound ETS,max

uv ,
instead of the highest lower energy bound.

Such a multistep determination approach alone does not guarantee finding the
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best path faster (i.e., to reduce nec). However, it considerably improves the lower and
upper bounds for the energy barrier and the best-path cost during the runtime of the
algorithm, as shown in Figure 3 (green line). While this is actually an improvement
of perceived performance (the user gets a good estimation of the result at an earlier
time), a multistep determination approach can also improve real performance (i.e., a
reduction of nec) substantially when used in combination with the method of partial
computation introduced in section 4.2. Figure 10B shows the reduction of 〈nec〉 when
only the rate-limiting step of the path is computed (rsure = 0) instead of the full path
(rsure = 1), the edge energies being refined in two steps rather than in a single step. For
random noise networks, the reduction of 〈nec〉 is already significant (about 30%), while
for ordered networks with o = 0.2, the savings amount to more than 70%. The reason
for this is that for many edges which are below Epeak − ΔEsure a partial refinement
is already sufficient to obtain an upper-barrier bound of ETS,max

uv < Epeak − ΔEsure,
after which the edge energy is no longer improved. Since 〈nec〉 counts the number of
full edge refinements, partial refinements do contribute to it.

4.4. Parallelization. Here we propose a modified version of Algorithm 3 that
can be executed in parallel on p processors. The communication is realized through
a common database of edge energies that is accessed by each process. To avoid that
two processes compute the same edge energy simultaneously, the processes need some
synchronization. For this, it is necessary that an edge can be flagged in the database
as being currently computed. If one of the processes determines a currently flagged
edge (u, v) to be a critical edge, this process temporarily assigns a hypothetical edge
energy ETS,est

uv to it, which is used only within that process. ETS,est
uv can either be

predefined by the user, be given by a statistical estimate (see section 4.1), or be simply
ETS,est

uv = 1
2 (ETS,min

uv +ETS,max
uv ). The edge (u, v) is added to a set of estimated edges

and the algorithm continues to the next iteration, determining another critical edge.
In each iteration, the list of estimated edges is checked. If the computing flag for
any of these edges has meanwhile been removed, that edge is removed from the list
of estimated edges and its energy bounds are reset to the current database values.
As the use of estimated edges may produce wrong best paths, the algorithm requires
that the list of estimated edges be empty before it can terminate successfully.

Algorithm 4 (parallel best path).

(1) Let F := ∅ be a set of estimated edges.
(2) For each member (u, v) ∈ F not flagged as being currently computed:

set ETS,min
uv and ETS,max

uv according to their database values, remove (u, v)
from F .

(3) Compute two best paths: Pmin using cmin and Pmax using cmax between the
transition end-states.

(4) If all edge energies along Pmin are determined (i.e., ETS,min
uv = ETS,max

uv ∀
(u, v) along Pmin) and F = ∅: RETURN(Pmin).

(5) Choose from Pmin the edge (u, v) with ETS,min
uv = max{ETS,min

wy |((w, y) edge

along Pmin)∧(ETS,min
wy < ETS,max

wy )} (critical edge with undetermined energy).
If no such edge exists, GOTO 2.

(6) If (u, v) is flagged as being currently computed:
assign a hypothetical edge energy to (u, v): ETS,min

uv := ETS,max
uv := ETS,est

uv .
Add this edge to the set of estimated edges: F := F ∪ {(u, v)}.

Else flag (u, v) as being currently computed, determine it, and remove the flag
thereafter.

GOTO 2.
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Fig. 11. Dependence of the parallelization efficiency and speed-up for best-path computations
on random networks, on the number of parallel processors, p, on which the job was distributed. The
speed-up for parallel best paths approaches 0.7p (crosses). The solid black line shows the theoretical
maximum (speed-up = p). The efficiency is nearly 1 for up to three processors and drops to a value
of 0.7 for p > 10.

As the estimated edges may temporarily have wrong energies, this error may lead
the individual processes to explore regions of the network which are not relevant to
determining the best path. Because of these unnecessary computations, there is some
loss of efficiency with an increasing amount of parallelization. To quantify this effect,
we have simulated the computation of the best path on random networks in parallel
on a number, p, of virtual processors. In this simulation, all edge computations
were assumed to have equal runtimes. The total number of edges computed in one
such simulation is 〈nec,p〉, giving rise to an average runtime per processor of 〈nec,p〉/p.
The normalized runtime compared to the single-processor process is 〈nec,p〉/(〈nec,1〉p).
Thus, the speed-up, Sp, is defined as

Sp :=
〈nec,1〉p
〈nec,p〉

and the efficiency εp as

εp :=
〈nec,1〉
〈nec,p〉

.

The results are shown in Figure 11. For a large number of processors, the speed-
up increases linearly with the number of processors and the efficiency is therefore
constant. Computing best paths on up to three processors is practically lossless, the
efficiency being near 1. For a larger number of processors, the speed-up is Sp ≈ 0.7p
(efficiency εp ≈ 0.7).

5. Application to octaalanine. To examine the effectiveness of the algorithms,
they are now applied to a real world problem: the computation of the best transition
pathways for conformational changes in the peptide octaalanine (Ala8). Our goal here
is not to explain the function and dynamics of polyalanines, which are well studied
by both experiment and simulation (see, e.g., [21, 18, 3]). Rather we use octaalanine
as a test system to show that multiple optimal pathways can be computed at a very
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modest computational cost for a system which allows for an immense number of
possible pathways.

5.1. Ala8-network setup. To generate the energy function U(x), the
CHARMM force field was used with a united-carbon-atom model (parameter set 19)
in the CHARMM program [50]. The electrostatic interactions were computed with
ACE 2 [51], which mimics the electrostatic screening effects of aqueous solution. The
octaalanine molecule was set up with charged termini (NH+

3 and COO−).
To obtain the system states, 5 · 105 conformations were generated in which all

φ/ψ-backbone dihedral angles were drawn from a uniform random distribution. Each
conformation was energy-minimized on U(x), first using steepest descent and then
using adopted-basis Newton–Raphson minimizers to a root mean square of the gra-
dient (GRMS) of 10−3 kcal mol−1 Å−1. To remove redundancy from the resulting
conformations, all conformations xu were sorted in the order of increasing energies,
and each conformation was accepted only if the distance distφψ(xu,xv), calculated as
the root mean square deviation in φ/ψ coordinates (as defined in (12)), to the nearest
already-accepted conformation xv was more than 20◦. A TN vertex was assigned to
each of these diverse energy minima, obtaining |V| = 166 233 vertices. Their ener-
gies, ES , were given by the potential energies at the minima, minus a constant E0:
ES = (U(x1) − E0, . . . , U(x|V|) − E0). E0 was chosen to be the absolute potential
energy of the lowest-energy minimum, in order to make all energy values nonnegative.
Entropical contributions of the energy basins were not taken into account.

State transitions, and thereby the TN edges, were defined between all pairs of
vertices xu,xv with distφψ(xu,xv) ≤ 40◦, yielding |E| = 772 420 TN edges. This
left only 0.3% of the vertices unconnected, which were dismissed from the TN. The
a priori edge energy bounds were chosen to be BTS,min

uv = 0 kcal/mol and BTS,min
uv =

100 kcal/mol.
Energy barriers were determined by computing a minimum energy path between

any selected pair of minima xu,xv using the conjugate peak refinement (CPR) algo-
rithm [35]. CPR optimizes a given initial guess for the transition pathway (here the
linear interpolation between xu and xv) by first searching for its maximum and then
conducting a multidimensional minimization in the conjugate subspace. This series
of maximizations along the path coordinate and minimizations in the remaining sub-
space results in first-order saddle points that are the local energy maxima along the
path. Here the method was terminated if the highest saddle point was refined to a
GRMS of 10−2 kcal mol−1 Å−1 for seven successive line minimizations. The potential
energy of the highest saddle point, minus E0, was used as the edge energy, ETS

uv . As
the CPR calculation identifies the highest saddle point between xu and xv, the “res-
olution” of the TN (i.e., the minimum distance between pairs of vertices, which was
40◦ φ/ψ RMS in our case) is not critical. A finer resolution, however, might produce
lower-energy pathways.

5.2. Best paths: Structural analysis. To determine the end-states, vertices
with α-helical and β-hairpin structures were identified based on the shortest hydrogen-
bond distances. Left- or right-handed helices in octaalanine form up to four hydrogen
bonds between the backbone atoms of residues i and i + 4, with i ∈ {1, 2, 3, 4}. The
β-hairpin forms a turn in the middle of the peptide at residues 4–5, and the peptide
ends are connected by hydrogen bonds between residue pairs 1–8, 2–7, 3–6. According
to these criteria, three vertices corresponding to a right-handed α-helix (αR), a left-
handed α-helix (αL), and a best β-hairpin (β) were selected as transition end-states.

Figure 12 shows visualizations of these structures. It was found that the best
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Fig. 12. Ala8 structures on the best paths for the αL � β � αR reactions. The peptide
backbone is drawn as a gray tube, the bonds are represented in black sticks, and hydrogen bonds are
drawn as dashed lines. For both subreactions, three alternative rate-limiting transition structures
are drawn (dashed boxes). All other structures correspond to energy minima. The numbers near
the structures correspond to the vertex energies (potential energy of the minima, relative to αR

structure), and the numbers near the arrows give the edge energies (potential energy of the saddle
points, relative to αR structure). A description of the structural events is given in the text.

paths between the left- and right-handed helices lead through the β-structure as an
intermediate, so that we have following multistep transition:

αL � β � αR.

The energies shown in Figure 12 are given relative to the αR structure, which
has the lowest energy of the structures shown here. The relative energies of αL

and β are 17.7 and 4.2 kcal/mol, respectively. The rate-limiting transition state of
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the αL � β transition lies very close to the energetically unfavorable αL structure
and has an energy of 23.3 kcal/mol. The two next-best paths were also computed.
They differ only in the rate-limiting transition-state, having energies of 26.6 and 27.9
kcal/mol, respectively. The unfolding of the αL helix starts at one end of the peptide,
breaking two successive hydrogen bonds. Then the open half of the peptide forms and
inverts its turn, forming an “S”-shaped structure stabilized by two hydrogen bonds.
Subsequently, the S twists and a “U”-shaped precursor of the β-hairpin is formed. The
hydrogen bonds form from the hairpin to the termini, such that the two β-strands
close like a zipper. The first steps of the reaction are likely to follow a well-defined
pathway, as the transition energies are high and the alternative best-path energies
are considerably higher. However, this is not the case for the subsequent, low-energy
steps of the reaction, where the pathway is likely to branch into various alternative
pathways towards the β-hairpin structure.

The rate-limiting transition state of the β � αR reaction lies approximately
equidistant from the β and αR structures, when about one helix turn has formed. It
has a barrier energy of 7.9 kcal/mol. In the best path, one helix turn is formed at
the C-terminus. This turn subsequently shifts towards the center of the peptide. The
termini then also assume helical turns until the αR structure is formed. The next-best
pathways have rate-limiting steps which are energetically close to the 7.9 kcal/mol bar-
rier, indicating that a large number of different pathways is accessible at physiological
temperature.

5.3. Contribution of the individual paths to the overall rate. In order to
decide the number, k, of best paths required for a comprehensive description of the
transition, it is desirable to calculate their contribution to the overall transition rate.
This can be done by formulating the master equation for the system on the network.
The time evolution of the population at vertex u is then expressed as

dpu
dt

=
∑

neighbors v

(kvu − kuv) =
∑

neighbors v

(pvk
′
vu − puk

′
uv).(16)

The rate constants, k′uv and k′vu, may be computed using transition state theory
(see (8)), using an expression for the dynamic prefactor ν that is appropriate for the
individual system. If only a qualitative convergence criterion is required, as is the
case here, the dynamic prefactor can be ignored and rate constants are given in units
of ν:

k′uv,0 =
k′uv
ν

= exp

(
−(ETS

uv − ES
u )

kBT

)
.(17)

To test the (relative) contribution of k best paths between vertices vR and vP ,
(P1, . . . ,Pk), we compute the master-equation dynamics in the best-path network
which includes all vertices and edges of (P1, . . . ,Pk). This requires first defining an
initial probability distribution (p1, . . . , p|V|). To do this, each path Pi = (vR . . . , vC1,
vC2, . . . , vP )i is split into two path segments (vR, . . . , vC1)i and (vC2, . . . , vP )i, such
that the edge ETS

vC1vC2
is the highest-energy edge along Pi. The probabilities of all

vertices in the best-path network which are on the reactant side of the highest barrier,
i.e., U =

⋃k
i=1(vR, . . . , vC1)i, are initialized with a Boltzmann distribution, i.e.,

pu∈U =
exp(−ES

u /kBT )∑|U |
v=1 exp(−ES

v /kBT )
.
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We now conduct k master-equation dynamics simulations, starting from the same
initial probability distribution each time. In the ith simulation, only the rate-limiting
edges (vC1, vC2) of the i best paths are present, while the rate-limiting edges of the
remaining k − i best paths are missing from the network. For each simulation, it
is calculated how the summed probability of the product side of the highest barrier,
V =

⋃k
i=1(vC2, . . . , vP )i, evolves:

pV (t) =

|V |∑
u=1

pv∈V (t).

The overall rate constant of the transition U → V is thus

k′UV (t) =
1

pV (t)

dpV (t)

dt
.

Many transitions exhibit simple kinetics, in the sense that the probability evo-
lution can be fitted by a single exponential, in which case the rate constant is time
independent. By calculating the rate constant k′UV (t)i for each simulation i, the rel-
ative contributions of the individual pathways to the overall reaction U → V can be
estimated.

For the present application to Ala8, a rigorous calculation of the rates is not
possible, as the energies used in the TN are potential energies and do not include
entropical contributions. Nevertheless, the best-path evaluation was performed in
order to give an approximate idea of the number of best paths required. For this, the
above evaluation was conducted, integrating the master equations numerically using
a fixed time step of 10−15 s. This analysis showed that the transition αL → β is well
described by the single best pathway alone, as the contribution of the second-best
pathway to the rate constant is already three orders of magnitude smaller than that
of the best pathway. In contrast, the rate for the β → αR does not converge with less
than 50 pathways (see Figure 13). Despite the fact that the best pathway contributes
around 40% of the total rate for k = 50, this confirms that the β → αR transition
is highly disordered and involves significant contributions of configurational entropy.
The corresponding pathway shown in Figure 12 must therefore be understood as an
example of a large set of possible pathways.

5.4. Best paths: Algorithmic performance. Out of a total number of |E| =
772 420 TN edges, a number of nlow = 74515 and nlow = 2568 edges were below the
transition state energy Epeak of the αL � β and β � αR reactions, respectively.
Using Algorithm 3, only nec = 870 and nec = 865 edges, respectively, were required
to be computed to determine the best path for each of both reactions.

Next, we evaluated the effect of using an statistical estimate for the energy barriers
(section 4.1). To set up efficient statistics, it is helpful to find an available measure
which correlates well with the barrier energy. For this, each vertex configuration
x = (x1, . . . ,xN ) was characterized by the interatomic distance matrix D(x), defined
as

D(x) :=

⎡
⎢⎢⎢⎢⎣

0 |x1 − x2| · · · |x1 − xN |
...

. . .
...

...
. . . |xN−1 − xN |

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎦ .(18)
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Fig. 13. The rate constant for the β → αR transition evaluated on the network defined by
k = 50 best paths. The contributions to the rate constant from the individual pathways are shown
as crosses, and the cumulative rate constant is shown by the diamonds. The overall rate converges
around k = 50, showing that a large number of different pathways is thermally accessible.

Only the Cα atom coordinates were used to compute D(x). D(x) is one way to
characterize individual configurations of atoms, based on interatomic distances. Each
edge (u, v) connects two configurations xu,xv. A distance between the vertex pairs
u, v was defined according to the distances between the coordinate distance matrices
D(xu), D(xv):

distD(xu,xv) :=

√∑N−1
i=1

∑N
j=i+1(D(xu)ij − D(xv)ij)2

N(N − 1)/2
.(19)

As the molecular energy function used here is also based on interatomic distances,
the distance-matrix-distance distD(xu,xv) is correlated with the energy change for a
small perturbation of the molecular structure from xu to xv. To set up the energy
barrier statistics, 1000 already-computed edges were considered. For all 1000 edges
(u, v), the distances distD(xu,xv) were correlated with the energy barriers, BTS

uv .
Distance-dependent lower (upper) energy barrier estimates, BTS,min

uv (distD(xu,xv))
(BTS,max

uv (distD(xu,xv))), were generated by choosing values which were less (greater)
than a fraction of rconf = 0.9 of the data points. The data points and the values of
BTS,min

uv and BTS,max
uv are shown in Figure 14. For the β � αR reaction, using these

estimates reduced nec by nearly a factor of 2 to nec = 458, whereas the use of estimates
for the best-path computation of the αL � β reaction provided no significant speed-
up (see Table 1). For both reactions, the use of statistical estimates instead of hard
bounds led to best paths with the same rate-limiting barriers; i.e., there was no
significant error in the result arising from the use of estimates.

We also conducted partial determinations of the best path(s), using finite values
of ΔEsure (see Figure 9 and section 4.2). When applied to the TN with a priori edge
energy bounds (BTS,min

uv = 0, BTS,max
uv = M) this did not considerably reduce nec, as

the definite highest edge in the best path was determined only close to the end of the
computation. However, when used with the TN with statistically estimated energy
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Fig. 14. Distance-dependent statistical estimate of the edge energy bounds. The distance is
calculated as the RMS distance between the Cα-distance matrices (see (18) and (19)). The energy
barrier is calculated as the excess energy of the transition state energy over the maximum of the
energies of the two vertices connected by that edge (BTS

uv ). Each dot corresponds to one out of 1000
already-determined edges and represents a distance-barrier pair. The solid lines mark the lower and
upper barrier estimates, which are below and above 90% of the data points, respectively, for each
window of distance values. The dashed line marks the average barrier.

Table 1

Number of computed edges, nec, for the Ala8 pathways αL � β, β � αR, and αL � αR.
(a) nlow, the total number of edges with energies below the highest best-path energy (approximate
upper bound for nec). (b) nec required with Algorithm 3, with a priori barrier bounds Bmin

uv = 0 and
Bmax

uv = 100 kcal/mol. (c) nec with statistical estimates for the barrier bounds, using a confidence
ratio of 0.9. (d) Same as (c) but with only the highest edge of the best path guaranteed to be optimal
(ΔEsure = 0). (e) Same as (d) but with edge energies determined in a two-step refinement procedure.

The first step produced barrier bounds of BTS,min
uv = 0 and BTS,max

uv = BTS
uv + 0.5 kcal/mol.

αL � β β � αR αL � αR

(a) nlow 74515 2568 74515
(b) nec, normal 870 865 1016
(c) nec, 90% est. 860 458 970
(d) nec, 90% est., ΔEsure = 0 184 458 199
(e) nec, 2 refinements, ΔEsure = 0 63 450 71

bounds, the effect was significant for the αL � β transition. As shown in Table 1,
the rate-limiting transition state (ΔEsure = 0) was determined with only nec = 184
edges. nec for the β � αR reaction was not reduced.

As was performed for random networks in section 4.3, we also computed the best
paths with ΔEsure = 0 and a two-step refinement scheme. The first step of refinement
delivered energies of BTS,min

uv = 0 and BTS,max
uv = Euv+0.5 kcal/mol. Using this setup,

the αL � β reaction was determined with only nec = 63 edges, while, again, nec for
the β � αR reaction did not decrease significantly.

6. Summary and conclusion. In the present paper algorithms are introduced
that enable efficient computation of the lowest-energy transition pathways for high-
dimensional dynamical systems. These systems are modeled using energy-bounded
TNs, which require information on the stable system states together with their relative
energies and positions. The network connectivity, and thereby the existence of transi-
tions between system states, is defined via a distance cutoff. The exact knowledge of
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transition energy barriers, which is very expensive to obtain, is a priori not required,
and the barriers are instead bracketed by pairs of lower and upper bounds. Given
a program which refines selected energy barriers, and thereby is able to replace the
lower and upper bounds by definite values, the algorithm presented here iteratively
selects and refines a small subset of energy barriers, such as to obtain the best path.
An extension to compute the k best paths is given.

The average number of edges, 〈nec〉, that needs to be computed to obtain the best
path is shown to increase linearly with the number of edges nlow with lower energy
bounds below the highest energy barrier of the best path. Moreover, it is shown
that one can expect nec < nlow. These theoretical results allow one to predict the
computational effort of a best-path computation when the user can guess the energy
barrier of the best path.

The precise energy barrier can be quickly determined by performing a partial
best-path computation. The performance of this computation is generally improved
if edge energy barriers are refined in two or more steps. This is an inexpensive way
of isolating the rate-limiting transition state in the network which may already give
significant insight in the analyzed process.

As soon as a few hundred barriers have been determined, statistics can be set up
which allow one to improve the bounds on the TN energies by statistical estimates.
This considerably speeds up further best-path computations. If the individual com-
putations are CPU intensive, it is recommended to use the parallel version of the
best-path algorithm, which was shown to exhibit a high efficiency (≥ 0.7) on up to
32 processors.

The methods were applied to the computation of best transition pathways between
three conformations of the octaalanine (Ala8) molecule, showing that the algorithms
given here are capable of computing the best paths of complex transitions in high-
dimensional dynamical systems in moderate CPU time. For the Ala8 network, which
had > 105 edges, the best path(s) can be determined by computing only the barriers
of several hundred edges.

The method introduced here is widely applicable in the study of the dynamics of
complex systems. One particularly promising area, however, is in the determination
of best transition pathways for large biomolecules, such as proteins, for which the
computation of a single transition barrier may take several hours of CPU time. These
transitions, between states of different function, play crucial roles in the workings of
the living cell.
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