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Abstract

In this thesis we modify, evaluate and implement algorithms which perform in
a massive parallel way to boost up Brownian dynamics (BD) simulations. BD-
simulations calculate association rates between diffusion controlled molecules.
We formulate the sum-product problem and show how to speed up calculations
for this problem by using parallelization techniques. A speed up of ~ 30 is
shown to be possible for molecules with huge atom-sizes. Another boost with a
factor of > 80 is reached for force (resp. torque, energy) calculations if multiple
BD-simulations (> 100 BD-simulations) run concurrently. A parallel trilinear
interpolation kernel is implemented and evaluated for preprocessing purposes
and it is shown how to design algorithms with a performance which will scale
up with future GPU devices.
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Chapter 1

Introduction

After the complete human genome has been published by the Human Genome
Project in 2001, there is a wide new range of scientific questions to be treated.
Beside just knowing how the linear DNA-sequence looks like, we want to un-
derstand, how proteins are translated into complex structures and how they
interact with each other. Therefore, it is crucial to understand what dynamic
processes there are in cells and which influence they have got. One step to dive
into this field is to be able to compute association rates between molecules. It
is an indication for us if pairs of, e.g., proteins really interact with each other,
in which medium and how often they build up a complex or get into new
conformations in a dynamic environment. We also want to know how solvent,
temperature or other environmental changes effect molecule-behavior.

With Brownian Dynamic simulations we are able to compute diffusional asso-
ciation rates in silico and simulate protein-protein encounter. In 1827 Robert
Brown was the first one who observed pollen in water and described their
motion. Later in 1926 A. Einstein described this dynamic motion of parti-
cles mathematically which have got a mass much higher than the one of its
surrounding solvent [Ein05]. Collisions with solvent-molecules are described
stochastically. This random movement is called diffusion [vS06]. Protein-
protein interactions form important steps for example in membrane interac-
tion, cell-cycle regulation, signal transduction or other regulatory mechanisms.
Simulation of protein-protein interactions in physical environment is compu-
tationally hard. Therefore, we have to introduce into simplification. Solvent
and auxiliary solute species like salt ions are represented as modifications in
forces and by frictional and stochastic forces.

In this thesis we modify, evaluate and implement parallel algorithms which
perform in parallel to border up Brownian Dynamics simulations. We formu-
late the sum-product problem and show that a speedup of ~ 30 is possible for
molecules with huge atom-sizes. Another boost with a factor of > 80 is shown
for force (resp. torque, energy) calculation if multiple BD simulations (> 100
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BD simulations) run concurrently. An implementation of a parallel trilinear
interpolation kernel is implemented and evaluated for preprocessing purposes
and it is shown how to design algorithms which will be scaled up by future

GPU devices.

This work is subdivided into four parts. At first, we will get into Brownian
Dynamics and learn what they are and on which theory it is based on. After-
wards we will briefly get into an implementation of a BD-simulation called SDA
(Simulation Of Diffusional Encounter). Later on, we will see how NVIDIA’s
GPU architecture works, get into its SDK called CUDA (Compute Unified De-
vice Architecture), which libraries we are able to use and give some outlook
in development. After the methods-section we will see which parallelization
techniques are candidates for BD-simulations and how they work. In the last
sections we analyze their performance and will discuss which hardware archi-
tecture is being required to safe computation time and make some comparison.
We discuss our results and give some outlook in future development of BD-
simulations and how efficiency can be optimized.



Chapter 2

Theory

In this chapter we will discuss how to calculate electrostatic forces and molecule
energies based on the implicit continuum solvent model and dive into the
Poisson-Boltzmann-Equitation. Later on, we will see how a BD-simulation is
being implemented by a program called SDA.

2.1 Electrostatic Fields and Potentials

Electrostatic forces are very small but ubiquitous. They appear between ions
(negative anions and positive cations), ion-dipole interactions (e.g. negative
partial charge of water with positive cations) or dipole-dipole interactions (po-
lar molecules like HCL). Also hydrogen bonds are preserved by electrostatic
forces. We are able to describe electrostatic forces F' like Newtons law of
gravitation. Two charges )1 and (), are described as

e

Kr?
This is the general Coulomb’s law. Both charges are in a vacuum and at a
distance of r. If K =1 a charge unit (LE) is a electrostatic unit (esE). Two
charges every 1 esE and at a distance of 1 cm are performing a force of 1 dyn to
each other. Internationally a charge ST unit is Coulomb (C: 1C ~ 3-10%sE).
So we write for K = 4mey whereas ¢g determines the permittivity or dielectric
constant in vacuum, respectively. €, is a measure for the transportability of

electric forces in an electric field. In vacuum it has got a value of 8.854 -
1072C2N=tm=2 (or C?J1m™1).

(2.1)

Q1Q2
F = 2.2
4dregr? (22)
The electric field force E is defined as
Qr
E = 2.3
4regrs (2:3)

3
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E of any point determines the force which has to be performed to hold that
point at its place. This equation shows that a field vector which has been
aroused through a positive charge gets the same direction as a vector from the
origin to the measured point. Therefore, we get the following norm for the
field vector:

Q

4regr?

|E] (2.4)
To obtain all forces in a field, a summation of every resulting force through
vector addition is needed. An electric field performs a force of 1 N to a charge
of 1 C. Thus the unit of a vector field is N/C. But because 1VC' = 1Nm a
vector field has got the unit V/m.

v 1, \\ '
\\ \ / e Iy ==~ s A \
N/ L7 oy !
NV NS AP I
~< A [/ — \\ |’ y N \' /
\:{} - ~ \\ﬁz -~ \\il/ -
- / \, =~ P ~ <<
AN TN == TN
// I\ \ / \ ~=--",1 \
/A PN 20!
I\ VA S==T
radialsymmetric field LN _7 )
of a charged sphere ==

inhomogene field between
two charges and opposite sign

inhomogene field between two charges

Figure 2.1: Electrostatic fields

In every point of a space we are able to display the electric field with
discrete vectors if we move the test charges. Summarized, all vectors result
in flux lines which are characteristic for vector fields (Figure 2.1)). All field
vectors describe tangents of the flux lines at every point of the space.

We can represent the electrostatic field as a gradient of a potential .
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Accounting all three components of the vector field, we get:

o o o
T i > (2.5)

An example of a gradient is been shown in figure A blue surface
indicates a positive and a red surface a negative electrostatic potential.

Figure 2.2: Gradient of barnase electrostatic potential

In a vectorial description of this relation is
E = —grad(®) = -Vo (2.6)

A negative sign means that a positive charge would move from a higher
potential to a lower one and we need to do work on getting a charge to opposite
direction.

With this definition it is much easier to account calculations with a scalar

potential function ®(z,y, z). We are able to calculate a force in every point of
a field.

2.2 Implicit Continuum Solvent Model

In electrostatics and especially for BD-simulations we use a continuum solvent
model or implicit water model, respectively. An explicit modelling of water
is computational hard and takes magnitudes of longer calculations compared
to implicit water simulations, because a huge amount of water molecules have
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to be simulated, too. Therefore, we will restrain to an implicit model which
simulates water as a continuum with a high dielectric constant € (Section [2.1)).
In this model, space is divided into an inner (protein) and outer molecule
surface (water) which is called solvent accessible surface (Figure [2.3).

outer water

p(e) =80
/
Jf@ N\ N
inner protein ,\
. p(g) =2 \\
S \\

A

Figure 2.3: Continuum model with solvent accessible surface

Water has got a net charge of zero. This is why partial charges lie in the
interior of proteins. These charges result to a charge density defined as p(r)

(Section [2.3)).

2.3 Poisson-Boltzmann Equation

The Poisson-Boltzmann equation (PBE) describes electrostatic potential in
ionic solvent. Because proteins are in ionic solvent we need to solve this equa-
tion to calculate electrostatics. This equation is important because it can be
used to solve implicit solvent models which we described in section [2.2] It uses
approximations on the effect of solvent on structures like proteins and other
molecules in solution of different ionic strength. This equation consists of two
parts. The first part describes the electrostatic field of ions and the second one
describes the number of ions per unit volume in a particular region of space

(Figure [2.4).

mobilized ion

o

solvent accessible
surface

attracting
s
electrostatic force

Figure 2.4: Ions approximated by PBE

The first part of the Poisson-Boltzmann equation is the Poisson-Equation
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which is defined as

A — V(e(r)Vo(r) — — 27 (2.7)

€0

Interestingly only p(r) and €(r) are required to define the potential ¢(r).
e(r) denotes the dielectricity function and p(r). ¢(r) and €, are described in
section 2.11

In our setting permittivity is a discrete charge distribution of point charges
and its value is defined by the function p(r).
Dielectricity is a material specific value and is returned by the dielectric func-
tion €(r) = é It is the ratio of the material specific permittivity € to the
permittivity of vacuum €,. With this value electrical properties of various

materials are comparable.

A second term is needed to consider counterions, because positive and neg-
ative ions act like shields. Positive charged parts of a protein affect appealing
to anions and negative ones to cations. This effect has been considered through
the Debye-Hiickel theory which describes anions as Boltzmann distributed and
delivers an additional charge density:

—x?% - sinh (W) (2.8)

k is a modified Debye-Hiieckel parameter which describes ionic strength. For
simplicity this equation is linearized with sinh(x) ~ z:
2€(r)o(r)

—Kf— 2.9

" TRT (29)

This shielding charge density can be inserted into the Poisson equation.
Therefore, we get the resulting Poisson-Boltzmann equation (PBE):

Ke(r)o(r) _ p(r)

A = V(e(r)Vo(r) — = = —F (2.10)

k is the Boltzmann constant and T is the absolute temperature which will
be explained in more detail at the next section [2.4]
We are able to solve this equation with FDPB (finite difference PB, [BL92])
on a 3D grid by linearizing the equation and calculating ®(r) at every grid
point which have equal distance between 0.4 - 1.0 A to each other. This is
possible because we are able to define €(r) (inner protein 2, outer water 78),
and p(r) for every crosspoint and interpolate between them. This method is
used by APBS [NBO1] (Adaptive Poisson-Boltzmann Solver) which calculates
the PBE numerically.
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2.4 Brownian Dynamics Simulations

Brownian dynamics algorithms simulate movement of microscopical particles
in solvent. The movement is caused by thermal movement of liquid molecules.
It was first detected by Jan Ingenhousz in 1785 who had interestingly also
discovered photosynthesis. But like his other colleagues he thought the origin
of the movement is of biological manner.

Finally, Robert Brown observed dithering movement of pollen in water
and draw his first conclusion. Since then this effect is called Brownian mo-
tion. Later in 1926 A. Einstein described this dynamic motion of particles
mathematically [Ein05] which have got a mass which is much higher than the
one of its surrounding solvent. Collisions with solvent-molecules are described
stochastically. This random movement is called diffusion [vS06].

With Brownian dynamics we are interested in protein-protein interaction
and calculate association rates. These reactions have to be diffusion controlled.
Diffusion control in a biochemical enzymatic reaction is the rate at which the
enzyme can actually bind with its particular substrate. The upper bounds
for the rate of enzymatic reactions is about 108M ~1s™! to 109M ~1s~!. If the
diffusion controlled rate is much higher than other chemical reaction rates, we
are able to calculate the protein-protein interaction with BD-simulations.

We have to consider a lot of effects which influence protein-protein interac-
tions in many biological processes but also want to compute these interactions
computationally fast. For prediction of association rates between proteins we
have to know that diffusion constrained rates does not reach the upper bound
but are mostly > 10°M ~1s~!. These association rates are sensitive to environ-
ment. Because they are dependent on the ionic strength of the solution, long-
range electrostatic forces are important to account. Another important point
for a diffusion controlled association rate is inverse dependence on solvent vis-
cosity and linear dependence on the proteins’ relative diffusion constant. Also
dependency on temperature has to be taken into account.

Why are we using Brownian Dynamics?

In principle BD-simulations are similar to MD-simulations ( Molecular Dynam-
ics). MD-simulations simulate in the order of nanoseconds because they con-
sider degrees of freedom and intramolecular forces but we want to be able to
simulate a time range of milliseconds. Therefore, approximations are intro-
duced for BD-simulations. Simulation of water, for example, is computation-
ally hard and is approximated. It has got several important effects:

e Slowing down motion speed by viscosity

e Collision between water molecules and proteins
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A BD-simulation uses an implicit continuum model to model the solvent

which is explained in section [2.2] Thereby the calculation of thousands of wa-
ter molecules are omitted.
Also another important approach is pursued. After test charges have been
used in recent years, nowadays effective charges are computed. For this ap-
proach Razif R. Gabdoulline and Rebecca C. Wade use a clever rescaling of
test charges modelling better physically related charges and showed that a
better approximation is possible by using effective charges |[GW96].

2.4.1 Principles

In classical BD-simulations two proteins are simulated. The first protein (PI)
is fixed in the center of a coordinate system. A second protein (PII) is freely
moving. For every step (BD-step) a calculation of PII’'s movement and rotation
is made. This movement has to be considered relative to PI. After starting
a simulation the algorithm has to parse charge and coordinate input-files of
PI and PII. These files are processed and for example have modifications like
some hydrogen atoms have been added or specific mutants have been modelled
because we want to analyze their influence on association rate between PII and
PI. After parsing an assignment of atomic charges and radii are made. Also
surface atoms of PII are excluded and a construction of an exclusion grid for
PI is been made. Next we have to compute the electrostatic potential of PI
with for example UHBD [ea95] or APBS [NBOI]. After this step we define a
surface around PI which we call b-surface. A typical distance for the b-surface
is 50 - 100 A. After placing PII on the b-surface (Figure randomly, we
have to define a so called escaping surface declared as g-surface.

The g-surface specifies a space around PII where PII should not be out of
range. Normally, this surface has got a distance between 100 - 500 A. IfPILis
leaving the g-surface the simulation is aborting or restarting. After placing PII
on the b-surface the most important step is performed. The algorithm starts
to calculate the electrostatic force and torque of PII and multiplies it with a
timestep At. This timestep depends on the distance of PII to PI. If PII is near
PI, for example it can be inside the g-surface, At will be small and vice versa.
After every step the algorithm has to check, if there is a so called encounter
complex. An encounter complex is defined by the user and indicates a fit of
both proteins or a pre-complex formation which defines a complex at a specific
position where we are sure that this formation will perform a complex because
for example it will rotate side chains and therefore allow some structures to get
into contact with hydrophobic forces. For an encounter complex either we are
able to define hydrogen bonds and their number which have to be established
or we can define lists of atom-pairs which have to be in a predicted distances to
each other. Another approach for defining an encounter complex is to calculate
the RMS distance of selected atoms for both proteins. Because the number of
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Figure 2.5: Setting up a BD-simulation to compute biomolecular diffusion-
controlled rate constants

calculations grow extensively with larger proteins this approach is less used.
A repetition of the movement for PII relative to PI is made until PII exits the
g-surface. In this case the calculation of an association rate k is given by

k= kp(b)3>. (2.11)

kp(b) is the steads-state rate constant for two particles which are in distance
b. Distance b defines the distance where PII is placed onto the b-surface. 5 is
the probability for performing an encounter complex rather than diffusing away
to infinity. Hence kp(b) is calculated analytically and 3° is calculated by BD-
simulations with different distances for b. Thousands of trajectories have to
be calculated for this purpose. And because the force and torque calculations
take a long time for huge proteins we have to minimize the time used for such
calculations by trying to boost them with parallelization techniques on the

GPU.

2.4.2 Translational and Rotational Displacements

Brownian motion in theory describes the dynamic behavior of particles. This
random motion that is diffusion was described mathematically by Einstein and
Smoluchowski [Ein05]. A particle which subjects to Brownian motion in time
At has got an average displacement Ar which is defined as

(Ar?) = 6DAt (2.12)
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D is the translational diffusion constant of a spherical particle and is given
by

kT
p_

= 2.13
6mna ( )

n is the solvent viscosity and is a measure for an internal resistance to
flow and is like fluid friction. For example water has got a viscosity 7 of
1.308 - 1073Pa - s at a temperature of 283 K and 7 = 8.90 - 107%Pa - 5 at a
temperature of 298 K. a defines the hydrodynamic radius of a particle. k is
the Boltzmann constant which is defined as 1.3806504 - 10723, This value is
derived from following equation k, = ]\% where R = 8.314 -2~ (gas constant)

K-mol
and Ny = 6.022 - 10%mol~! (avogadro constant). 6mna defines the friction

coefficient. We are able to use this equation because the radius of a diffusing
particle is much higher than the radius of solvent molecules. If both radii are
similar we have to use 4 instead of 6 as factor in the numerator.

For protein-protein interactions a method is needed which describes dynam-
ics of diffusional motion. This can be solved by the Langevin equation. The
Langevin equation is a stochastic differential equation in which two force terms
have been added to approximate the effects of neglected degrees of freedom.
A method to solve this equation was presented by Ermak and McCammon in
1978 [EDMS5].

BD-steps are generated which reproduce current states of proteins at specific
time intervals of At and result to trajectories. With the following equation we
are able to calculate translational motion.

1
Ar = —DFA 2.14
T ka t+ RAr ( )

Where Ar is a translation vector. D and k%T also appear in equation

k%T describes the mean energy of an atom with temperature 7" and also has
got a damping effect. F' is the sum of all forces in the electrostatic field of
all atoms of PII and has to be calculated every step At. Ra, is a random
vector with (Ra,) = 0 and (R3,) = 6DAt. This also models random motion
in solvent. That is why we are not just accounting a directed force like the
first summand describes.

Equally, rotational displacement with an angle Aw is defined:

1
Aw=—D WA 2.1
w I WAL+ Ray ( 5)

D, is the rotational diffusion constant, Ra, is a random rotation which
fulfills (Ra,) = 0 and (R3,) = 6D,At and W is the torque which is the
sum of all torques of every atom of PII. We get a vector with angles which is
multiplied by At. At is variable and changes while BD-steps are calculated.
It has got a smaller value if PII is near PI and a higher one if it is far away.
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Smallest time steps are usually between 0.5 - 1.0 ps.

In the end our rigid body PII is translated by adding Ar and rotated by
taking all angles of Aw and rotating PII with a rotation matrix for every
direction in space.

Finally, we want to point out which limits of Brownian dynamics are given.
Flexibility is not accounted yet and some interactions are not considered to
make these simulations more accurate but also computational hard like allow-
ing hydrophobic interactions between proteins although they were described
by Donald L. Ermak and J. Andrew McCammon for BD-simulations in 1978
[EMT§]. For association rate calculation of protein-protein interactions it has
been shown with the interaction between Barstar and Barnase |[HelO6] that
performing BD-simulations the way we have described are delivering good
approximations to real-world experiments but it is crucial to define correct
reaction criteria.
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2.5 Simulation Software

There are some resources for BD simulations which use similar approaches.
One of them is Macrodox which is developed by Scott Northrup and col-
leagues. It is available at http://iweb.tntech.edu/macrodox/macrodox.
html. Macrodox can be used to perform BD-simulations with a simple atomic-
detail model. With this software it is also possible to approximate pK, values.
Another program is UHBD which has been mentioned before and is avail-
able at http://adrik.bchs.uh.edu/uhbd.html. Beside solving the PBE and
other equations it can be used to simulate steady-state and non-steady-state
association rates for protein-protein interactions. Therefore, they use a sim-
pler model than an atomic-detailed one. Another approach is being made
by E-Cell. It is a community who are building up a prototype and using
a GFRD algorithm (Green’s Function Reaction Dynamics) which was origi-
nally proposed by Zon and Wolde [ZtW05]. This prototype is available at
http://www.e-cell.org/ecell/software/bd-simulator-prototype.
Another available software is SDA which was developed by Gabdoulline and
Wade and which is able to solve simple or atomic-detail models and has got
the ability to compute effective charges using the potential grid computed by
UHBD and other enhancements. The authors provide a freely available For-
tran source code. This is why we want to briefly describe how a BD-simulation
with SDA is performed.

2.5.1 SDA Approach

SDA (Simulation of Diffusional Association) is a classical Brownian Dynamics
simulator and is available at http://projects.villa-bosch.de/mcmsoft/
sda/. The most important thing is that it is adaptive for a wide range of
protein-protein interactions which are diffusion limited. We also have to de-
fine encounter states.

The program is divided into three parts. The first part consists of an initializa-
tion. It loads all necessary data like potential-grid, DX-grid files, from PI and
PII, PQR-Files with atom-coordinates and charges and some configuration file
to determine variables which have been mentioned in section 2.4l It makes an
exclusion grid for PI and selects all surface atoms of PII to be able to detect
collisions. After this, it reads the reaction criteria and builds up rules to be
able to count an encounter complex after a BD-step. If there is a collision it
will just discard the step and will retry to make a new BD-step.

The second part is a processing step. SDA writes out all constants and then
shifts all coordinates to a computed center after it has read the input center.
The most important part of this algorithm is the third one. This part is re-
peated several times until PII leaves the g-surface (Figure [2.5). At first, PII
will be positioned randomly on the b-surface and will get a random orienta-


http://iweb.tntech.edu/macrodox/macrodox.html
http://iweb.tntech.edu/macrodox/macrodox.html
http://adrik.bchs.uh.edu/uhbd.html
http://www.e-cell.org/ecell/software/bd-simulator-prototype
http://projects.villa-bosch.de/mcmsoft/sda/
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tion. Now it will try to compute forces and torques. Hence it calls gridforce
and sums up all forces and torques of selected atoms and chargeforce to cal-
culate a force due to an effective charge. Now it has calculated a force which
contains a directed and random component and a torque. The rigid body of
PII will be moved and examined if there is an encounter complex. If there is
an encounter complex the number of them will be incremented. If there is a
collision gridforce will be called again and there will be no move until there is
no collision anymore. Of course it can be hard to get out of this state so there
is an approach to boost PII to get out of the “collision”-state. If there is an
escape part three will be restarted. Now PII will be rotated. Again there is a
check if PII and PI have got an encounter complex, a collison or if PII leaves
the g-surface. Having an encounter complex it also calculates the energy of the
system. If everything worked fine a successful step has been created and the
algorithm returns to try computing a new step with new coordinates again.
These steps are repeated until a maximal step size is reached or PII is out of
the g-surface. In the end an association rate 5 [GW9§| and other statistics
will be calculated and we are able to compare our results with experimental
ones. All steps are summarized in detail in figure |2.6]
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Figure 2.6: How SDA performs a BD-simulation
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2.6 Compute Unified Device Architecture

2.6.1 Introduction

After NVIDIA was founded in 1993 it is one of the biggest manufacturer of
graphic chips and chip sets for personal computer and game devices nowadays.
Its headquarter is based in Santa Clara, California.
After producing their NV1, Riva and Vanta graphic chips they were most suc-
cessful with their GeForce-series which still holds on. Now they produce the
GeForce 8 series but are also preparing the 9" generation. Because graphic
cards with chips like 8800 GT/X are quiet achievable everyone can get a real
powerful GPU (graphics processing unit) and compute with it. Every hardware
has got a major and minor revision number which is called compute capability.
The major revision number indicates the architecture (currently: 1) and the
minor revision number shows which features are implemented (currently: x.0,
x.1, and > x.2). They are listed in table

NVIDIA officially made their first CUDA SDK available to public in February

CPU
% Application
Libraries
v ¥
Runtime
. . 4
DriYer
|
v
‘ GPU ‘

Figure 2.7: CUDA application access layer

2007. CUDA (Compute Unified Device Architecture) is a software development
kit which enables access to driver, runtime and library components (Figure
2.7). CUDA is also directly compatible with OpenGL and DirectX but is not
the only GPU architecture on market. Comparison between architectures is
made by their performance on calculation with floats in GFLOP /s. As we can
see in figure 2.8 NVIDIA’s G80x architecture is providing a fast calculation ca-
pability compared to other approaches like AMD’s “close to metal”’-technology
and an architecture called R600. Another approach is made by Intel. They
are developing a multi-core graphics processor which is called “Larabee” and
will be available in late 2009. Because of this competition we can expect in
the near future to get chips which have higher computational power. With a
theoretical maximum of nearly 1 Teraflop in the next year (Figure there
is room for improving a lot of simulation software and this is the goal in which
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Figure 2.8: GFLOP/s performance CPU vs. GPU

this thesis is based on. We want to be able to perform a BD-simulation very
effective by making use of parallelization techniques.

2.6.2 Architecture

Programming with CUDA is efficient if the underlying hardware is efficiently
used. Additionally, algorithms have to be changed to fulfil performance re-
quirements and to have a high occupancy. The GPU is a compute device
which executes a high number of threads in parallel where every thread per-
forms same calculations on different data. The CPU is called host and is
facilitated by the device if there are massive calculations with low data load
and high data reuse.

To use the device an algorithm is divided into many portions which will be
calculated by threads that are organized in grids. In the end all results from
every thread will be sticked together and results can be used by the host or are
further processed by the device. A function which is executed on the device is
called a kernel. A kernel is launched in a way that a specific number of threads
are launched in parallel and with high processing balance to get the most per-
formance out of the GPU. There are some locations for storing information
on the host called host memory and according to this memory on the GPU is
called device memory. It is important to consider that we have got different
memory locations and therefore algorithm design choices have to be made for
performance issues which will be explained in more detail in section
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Programming Model

A general aim is to highly parallelize program execution and solve several real
world problems in a fast way. We always launch programs on the CPU for
solving a wide range of problems. Generally, every code is executed sequen-
tially on the CPU (Figure[2.9). The instruction units on the left are calculated
sequentially and through the C-code it is possible to call a kernel function. A

C program
sequentiell
execution
Serial code » Host
Block (2,0)
Parallel » Device
Kernel0<<<>>>() - | Tl, TZ, ey Tn, n=512v 1024
Grid 0
B(0,0) ||B(1,0) | B(2,0)
BOL) (B |BRY ||| ]
Serial code Host

Parallel
Kernell<<<>>>()

Device
Grid 1
B(0,0) |[|B(1,0) |B(20)

B(O,1) ||B11) [B@1)

Figure 2.9: Execution model

kernel function is launched on the GPU. As drafted a kernel-launch executes
grids on the device. Every grid is divided into blocks and every block in turn
launches several threads and waits until they are processed. Therefore, the
basic steps on implementing an algorithm on the GPU are the following ones.
On the CPU we have to:

e Allocate data in GPU memory,
e Copy data from CPU to GPU,

e Invoke kernel with N threads and pass pointers to the memory arrays for
association and writing issues at the first step,

e Wait until completion and copy data from GPU to CPUE|.

!This step can be enhanced through asynchronous data transfers while calculation on
the GPU is not disrupted.
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On the GPU side following approaches are made:

o Get ID for thread and determine on which data to work on.

e Start calculations on each thread and write output back to global mem-
ory.

Launching a kernel is computational cheap but to get most performance
out of the GPU, grids and threads have to be loaded in a manner that all of
our threads are in high occupation?] A low occupation means that we have to
try making threads not to diverge into different code sequence separations for
example by having different paths through if-decisions. We also have to hold
threads busy by long calculation on the same data to get a high occupancy for
all of our threads.

Hardware Model

Every GPU of the 8" GeForce generation and further consists of N Multipro-
cessors (N = 16 for GTX8800, N = 16 up to 4216 for Tesla; Figure[2.10). This

Device

Multiprocessor N

‘ Multiprocessor 2

Multiprocessor 1

Shared Memory ‘

Constant Cache

Texture Cache —

Device Memory

Figure 2.10: Hardware model

multiprocessors are controlled by NVIDIA’s driver and are optimized for high
computation where the performance is measured in GFLOPS. Furthermore,
every multiprocessor consists of M processors. Every processor has got his
own registers (v1.1: 8192, > v1.2: 16384; versioning was described in section

2Qccupation is a measure for activity of each thread in percentages.
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2.6.1)), shared memory (M x 16 kB) and local memory (Figure [2.11)). Threads
in blocks are able to access global memory which is not cached. Their size
varies between 768 MB - 1.5 GB (up to 4GB in Tesla C1060).

kernel<<<>>>()

Grid
Block (0, 0) Block (1, 0)
Shared Memory Shared Memory
H H H
‘ Thread (0, 0)‘ Thread (1, 0) ‘ ‘ Thread (0, O)‘ Thread (1, 0) ‘
H H { {
Local Local Local Local
Memory Memory Memory Memory
Global
Memory

Constant
Memory

Texture
Memory

Figure 2.11: Programming and memory model

Each processor also has access to a constant memory and texture memory.
Both have got a size of 64 kB with 8 kB cache but are read-only. They are
fast if data is cached (= 4 cycles) or if not cached as slow as global memory
with a latency between 400 - 600 clock cycles, because data has to be fetched
externally. Maximal 8 processors (= ALU, arithmetic logic unit) are activated
and running concurrently if we have got a high occupancy which means that
all running threads are in high computing activity. In the software model this
processors are declared as blocks. One block consists of several grids which
can be indexed one-, two- or three dimensional with a range of 65535 for
each dimension. Threads in a block are indexed as 512 x 512 x 64, respec-
tively. For example the index of a linear array of threads would be declared
as: thread(z,y, z) = (x + yD, + 2D, D,) where D,, D, denotes the block IDs
if we define a 2D array. Warps are a collection of 32 threads and are launched
together in every block. Actually they are build up by half warps and have
got an upper and lower component (first 16 threads and later 16 threads in
one warp).

A GTX 8800 has got 16 multiprocessors and 8 blocks running concurrently.
That is why a GTX8800 has got 128 cores (16 multiprocessors x 8 blocks) which
are able to operate concurrently on different data.

As mentioned before, we need a high occupancy for all of our threads because
we want to touch the peak of ~ 570 GFLOPS (GTX8800). This can only be
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achieved if our algorithm is optimized for this design. In general, this is very
difficult and a theoretical performance which is not reached fully in practice
yet. The number of warps in one multiprocessor is maximal 24 which are
running simultaneously. This means that the number of threads which are
running concurrently are 24 warps x 32 threads/warps = 768 threads.

We are able to launch a huge number of threads. But not all threads
are able to communicate with each other. Only threads of one block can
communicate with each other through divided shared memory (Figure [2.11]).
Threads from blocks have to communicate with other blocks through global
memory (constant and texture memory are read-only). This communication
has to be kept as small as possible, because an access (read-write operations)
takes up to 400 - 600 cycles per clock compared to 4 cycles in shared memory.
That means that global memory operations are 125x slower than operations
on shared memory. Too frequent access on global memory is leading to a
worse performance. One also has to keep in mind that a concurrent write to a
same area is not prohibited but the result is undefined. In this case NVIDIA
guarantees at least one success operation. This means if threads want to gain
access to the same memory at the same time this would cause a false result.
This can be solved by functions which are atomic operations. An access is
blocked until the memory is deallocated again. Such operations are serialized
by a thread-scheduler and therefore a programmer has no direct influence to
such behavior.

Summarizing for architecture with version 1.x we have to design algorithms
in a manner that high parallelization with high occupancy and low divergence
for each thread is guaranteed. This is possible if we load few data into threads
and have a lot of calculations before writing our results back to global memory.

Available Hardware

We have mentioned precise memory sizes, operation times and quantities for
threads, multiprocessors, etc. They are changing from time to time and precise
values are given in the CUDA Programming Guide 2.0 [Cor(8]. The higher
the compute capability is the more features are implemented to be used and
efficiency improvements are being expected.

An excerpt is given in table[2.1] Because of architectural advances it is possible
to gain a higher performance out of our final code without editing any source
code. An upscaling by using better hardware is possible because even if new
features are not used, a trend will be to launch more blocks, grids and there-
fore threads concurrently for example by using more multiprocessors. This is
possible because generally data is separated the way that it does not matter in
which order blocks are launched. If some blocks take longer time to calculate
there will be enough resources to start further blocks or terminate warps and
half warps and launch them again on other reassures.
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’ H M multiprocessors \ Compute capability ‘

GeForce GTX 280 30 1.3
GeForce GTX 260 24 1.3
GeForce 9800 GX2 2x16 1.1
GeForce 9800 GTX 16 1.1
GeForce 8800 Ultra, 8800 GTX || 16 1.0
GeForce 8800 GT 14 1.1
Tesla S1070 4x30 1.3
Tesla C1060 30 1.3
Tesla S870 4x16 1.0

Table 2.1: Technical specifications

2.6.3 Interplay with C

After installing CUDA, its compiler nvcc is used to compile CUBIN files (end-
ing with cu). C and C++ files are compiled with a favored c-compiler like gnu
c or other ones and all resulting object-files are linked together. We get an
executable file which is launched on the CPU with some binary code for the
execution of kernels in the GPU.

CUDA is made for coding with C and therefore a lot of C functions from
the standard library are provided by the common runtime component. It
consists of a host component which provides functions to control and access
compute devices from host. Another part is a device component which pro-
vides device-specific functions which has got a common component and serves
specific datatypes (Section and a subset of the C standard library. Both,
datatypes and the subset of the C standard library, are supported from host
and device.

Datatypes

CUDA allows us to use vector types which are basic integer and float types.
They are supported from one to four dimensions: charl, .., char4, intl, ..,
int4, floatl, .., float4 and many more are implemented to be used [Cor0§].
Another datatype is given by CUDA arrays which are defined as one, two or
three-dimensional arrays to build up textures. They have got several functions
like interpolation (3D interpolation is supported by CUDA 2.0), normalization,
filtering and other texture-specific functions for graphic development purposes.

NVIDIA developers also promise fast access to these arrays because CUDA
array data is loaded into vector memory which has 64 kB with 8kB cache.
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2.6.4 Performance Issues
Accessing Memory

The efficiency of accessing memory, especially working with global memory,
depends on access patterns. Access patterns describe reading and writing op-
erations on memory which have to fulfill several requirements to have few access
to global memory. Because of high latency of device memory compared to on-
chip memory like shared memory, device memory access should be reduced.
Hence we should do following steps:

e Load data from device memory to shared memory,

e Synchronize all threads after reading from device memory so that every
thread is able to access shared memory safely,

Perform calculation on data in shared memory,

Synchronize again to be sure that all results have been written in shared
memory,

Write results back to device memory.

Coalesced Access Patterns

To create desirable access patterns we have to try accessing memory coalesced.
Coalesced memory access means fetching variables in memory concurrently.
This reduces the number of device access and increases memory bandwidth.
It is important to know that 32-bit, 64-bit, or 128-bit words from global mem-
ory are loaded into registers by a single instruction. Every word has to be a
type of a size which is equal to 4, 8 or 16 bytes. Also their position has to
be a multiple of their typesize. For example: A float is 4 bytes and fulfills
requirements. A float4 datatype (Section also complies requirements
because a float4 has got 4 floats and 4 x 4 bytes = 16 bytes.

Another important approach to use bandwidth most efficiently is if a
halfwarp (16 threads) can be coalesced into a single memory transaction.
A single memory transaction has got a size of 32 bytes (for > v1.2), 64
bytes, or 128 bytes. This means, if we have got 4 byte words which
are fetched by a halfwarp, this results into a 64-byte memory transaction
(4 bytes x 16 threads = 64 bytes; v1.1). 8 byte words result to one 128-
byte memory transaction and 16 byte words into two 128-byte transactions.
All 16 words of our half warp with 16 threads have to be at the same segment
of memory transaction size. An access also has to be sequenced. That means
that every " thread must access the i*® word. If this requirements are not
fulfilled another or many more additional memory accesses have to be issued.
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Figure 2.12: Access patterns: i. type = float2, coalesced access pattern; ii.
type = float, coalesced; #ii. type = float2, non-coalesced; iv. type = float,
non-coalesced.

Also memory bandwidth would be significantly reduced. Compute capability
cards with > v1.2 are able to transact areas of memory where not every i
thread must access the i"® word. This is very useful for some algorithms be-
cause otherwise they would need 7 separate transactions in worst case. Figure
2.12] shows typical coalesced and non-coalesced situations. In this figure 4.
and 7. are in coalesced access because every " thread accesses the i*" word.
71. is also possible although thread 1 behaves divergent. . is non-coalesced
because not every ¥ thread accesses the i word. Thread 1 has to access
address 128 and thread 2 should point to address 136. At 7v. address pointing
is shifted and access is not sequential.

Avoiding Bank Conflicts

We also have to consider fetching variables from threads. Every thread exe-
cutes same commands but loads different data to work on. Hence all threads
have to load variables into shared memory concurrently and while consider-
ing memory access patterns described before we also have to pay attention to
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memory bank conflicts.
Every block accesses shared memory. Currently (< v.1.3) shared memory

Address- | 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56
position

60 64 68 72 76 80 84 88 92 100 | 104 | 108 | 112 116 | 120

Bankno.

Halfwarp
(16 Threads)

Figure 2.13: Bank conflicts. This example shows no bank conflict because
access to banks by threads are bijective.

has got a size of 16 kB for each multiprocessor. This is why it does not matter
how many threads are executed concurrently in one block which are organized
in half warps for access pattern manner because all max. 512 threads for
one block have to share this 16 kB. Therefore, we are able to boost thread
scheduling and memory access to same areas of shared memory if we are able
to separate access to this locations for every thread. This locations are called
banks and are organized in 16 blocks for a 16 thread-access by a half warp.
Furthermore, this blocks are divided into 1 kB areas which should be accessed
by only one thread to have no bank conflict. This results in an access by
threads without having to be serialized if threads try to concurrently access
their bank. An example is given in Figure [2.13| where an array of 4 byte-words
is saved. Thread 0 accesses bank 2 which has got positions of 8 4+ 60x and
thread 1 accesses bank 0 which is attributed to positions 0 + 60x and so on
where z € IN, x > 0.

Loop Unrolling

Another performance optimization strategy is loop unrolling. Loop unrolling
performs an operation such as described in Figure If we consider loop

before after
for (inti=0;1i<=3;it+) A(0) = B(0) + C(0)
A(i) = B(i) + C(i) A(1) = B(1) + C(1)
A(2)=B(2) + C(2)
A(3)=B(3) + C(3)

Figure 2.14: Loop unrolling. This example shows what loop unrolling actually
does.
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unrolling and tell the compiler how to unroll a loop the compiler will be able
to reduce overhead for initializing a loop because it will not have to consider
structures like managing the loop variable and make queries if loop condition is
fulfilled to repeat loop statements. Registers are used efficiently and therefore
resources are saved or used more efficiently. For example a GTX 8800 has got
8192 Registers. This is why a loop could be unrolled in such a manner that
registers are optimally used because accessing registers is very cheap and is as
fast as fetching a value from shared memory. If a loop cannot be unrolled such
that it fits into registers it has to be partly unrolled as shown in Figure [2.15
In this case the compiler tries to partly unroll the loop but for a small N loop

before after
for (inti=0;1i < N;it+) balance =N % 4
A(i) = B(®i) + C(i)
for (inti = 0;i < Rest; i++)
A(i) = B(i) + C(i)

for (inti=Rest;i<N;i=1i+4){
A(i) =B@) +C(3)

A(i+1) = B(i+1) + C(i+1)
A(i+2) = B(i+2) + C(i+2)
A(i+3) = B(i+3) + C(i+3)

}

Figure 2.15: Partly loop unrolling if registers are too small to consider all
control-structures.

unrolling is worse. That is why we are able to tell the compiler not to unroll
loops for small N. With loop unrolling in mind it has been shown in several
algorithms that accounting loop unrolling we get a better performance. Lars
Nyland, Mark Harris and Jan Prins for example showed that performing an
N-body simulation with 16384 bodies an increase from 184 GFLOPS to 204
GFLOPS are possible just by unrolling a loop by a factor of 4 [LNPQT].

Performance Consideration for BD-Algorithm

Because we want to boost BD-algorithm it is evident to account all discussed
points. That is we have to take care of half warps which fulfill access pattern
issues to get a high memory bandwidth and avoid bank conflicts because we
do not want to have serialized shared memory access of threads which reduces
occupancy (Section . In the BD-algorithm our bottleneck is given by
accessing memory. Therefore, we should use arrays like CUDA arrays which
are saved in texture cache and provide cache to boost access because every
matching request is up to 125z faster than one access to global memory in
worst case. We should then try to calculate as much as possible with our
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threads (forces, torques and energy) to get a high GFLOP rate. A next step
is a summing of all thread-calculations which will represent one atom each.
One approach is to have a register value which will be summed up by results
of threads of one block and then this result will be summed up with a global
memory value for every result of every block. This is not really possible because
although we get true results from every thread for a specific atom the sum of
values will be wrong because a lot of threads will always try to write to the
sum concurrently. In this case we are not able to handle access and it is
undefined what results will occur. In this case NVIDIA promises that at least
one operation will always be performed if there are concurrent write requests.
This is a general problem handling a huge amount of threads which produce
subresults for a general common result. In this case we need atomic operations.
These operations solve this problem by serializing access to values on shared
memory or global memory. Therefore, every operation is guaranteed but we
have to consider performance loss. On the other side atomic operations are
not available for all compute capabilities. Atomic operations on global memory
are just supported for > v.1.1 and atomic operations on shared memory are
supported for devices of compute capability > v1.2. Hence another approach
is to fill arrays with results and sum them up faster than O(NN) in O(log(N))
time. We will evaluate various approaches in chapter [3|

Occupancy Calculations

In this last subsection we will briefly introduce occupancy calculations. With
this calculations it is possible to get a fast way to decide how many threads and
blocks (dimensions) should be used to call a kernel. For this purpose NVIDIA
provides a sheet which calculates necessary dimensions [Inca.

If we define tpb, as the number of threads per block, rpt, enumerating registers
per thread and smpb, indicating the size of shared memory allocation per block
in bytes all formula which hold are given in Appendix [7.2] For example, if we
define following variables:

tpb, = 256
rpt, = 10
smpb, = 4096

We will get following results:

In this example we see that we would launch 8 warps per block which
denote 8 - 32 threads = 256 threads. It is the same value we have defined
for tpb,. We also defined rpt, = 10. Because we have got 10 registers per
thread and 16 threads are one halfwarp which denotes that 2 - 16 threads
are one warp and we have got 8 warps running concurrently we get a total
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’ component H abbreviation \ result ‘
Warps per block wpb, 8
Registers per block rpb, 2560
Shared memory per block smpb, 4096
Blocks per multiprocessor limited by warps WP, 3
Blocks per multiprocessor limited by registers | rpm, 3
Blocks per multiprocessor limited by shared || smpm, 4
memory
Blocks per multiprocessor atbm, 3
Active warps per multiprocessor awpIm, 24
Active threads per multiprocessor atpm, 768
Maximum simultaneous blocks per GPU - 48
Occupancy of each multiprocessor - 100%

Table 2.2: Example of occupancy calculation, see Appendix

amount of registers per thread block of 10-2-16 - 8 = 2560. smpb, is defined
as 4096 which means that every block is able to access 4096 bytes of data.
Because every multiprocessor has got 16 kB shared memory and we have
calculated that 3 to 4 blocks are running concurrently (we will choose 4 for
clean values) 16 - 1024/4 = 4096 bytes for each block. If we have got 8 warps
per block and maximal 24 warps are able to run concurrently we get 24/8 = 3
blocks running concurrently if limited by warp size. We also know that every
multiprocessor has got 8192 registers. This means, if one thread has 10
registers associated and we are running 256 threads this means we will get
floor(8192/(256-10)) = floor(3,2) = 3 running blocks concurrently if limited
by registers. Last but not least, if the number of concurrent running blocks is
limited by the size of shared memory we will get 4 concurrent running blocks,
because every block has got 4096 bytes of shared memory. This means, if
one multiprocessor has got 16 kB, we have to calculate 16 - 1024/4096 = 4
concurrent running blocks. We want to give a lower bound, therefore we
accept the minimum of concurrent running blocks which we have calculated
so far and which is 3. The number of active warps per multiprocessor has
got an upper bound of 24. But in this case the same value is calculated by
having 3 blocks and 8 warps running in every block which is 3-8 = 24. The
number of active threads per multiprocessor is 768 which is also an upper
bound given by architectural purposes. This value is calculated by having
3 blocks running and 256 threads executed in every block which results to
3256 = 768.The maximum simultaneous blocks per GPU is 48 because a
G80 has got 16 multiprocessors and if every multiprocessor has got 3 running
blocks this determines to 16 - 3 = 48.

Because of the occupancy of each multiprocessor is given by
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active warps per multiprocessor
maximal allowed warps per multiprocessor

100% occupancy for every multiprocessor in this example.

we get a value of % = 1 which denotes

2.6.5 Libraries

Libraries support work with CUDA therefore we want to know which methods
are provided and are useful for our purpose. This is why we want to introduce
the most important libraries for CUDA.

CUBLAS

The CUBLAS (Basic Linear Subprogram) library is freely available for CUDA
[Inca] and provides some subprograms which are optimized for NVIDIA
GPUs. It allows access to computational resources and no direct interactions
with the CUDA driver is necessary. CUBLAS provides creating matrix and
vector objects, operating on them by functions like filling objects with data
calling sets of CUBLAS functions and some helper functions are also provided
for writing and retrieving data from these objects.

Most functions calculate with single-precision for fast runtime and are divided
in BLAS2 and BLAS3 functions. BLAS2 functions provide matrix-vector
operations which we will use in methods (Section [3)) and BLAS3 provides
matrix-matrix operations.

CUBLAS Fortran Bindings

Because many applications are written in Fortran and they would benefit from
using CUBLAS, Fortran bindings have been implemented to make CUBLAS
as easy callable as from C or C++ applications. Furthermore, it provides a lot
of wrapper functions for maximum flexibility in addressing a lot of differences
even in Fortran code. It could be possible to boost SDA (Section by
performing some calculations on the GPU. For further references see Appendix
A of a technical guide “CUDA CUBLAS Library” which is available at NVIDIA
Incal.

CUDPP

CUDPP which stands for CUDA Data Parallel Primitives Library is a library
which includes some important algorithms like various scan algorithms (e.g.
parallel-prefix-sum). Also sparse matrix-vector multiplication and parallel re-
duction are implemented with a Plan-interface which is similar to other li-
braries. We will use the matrix-vector multiplication and parallel reduction
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primitives to gain some performance measurement in the next chapter (Sec-
tion [3). CUDPP is also freely available [Lib] and is expanded by an online-
community.

2.6.6 Parallelizability on CUDA

In the prior sections we have shown how NVIDIA has build up a GPU architec-
ture, how access patterns are performed, discussed how to avoid bank conflicts
and pointed out occupancy calculations. If we take care of all discussed points
in algorithmic design we will get very fast algorithms which are boost up
compared to a CPU implementation in a high magnitude of orders. NVIDIA
shows such approaches and we are able to discover boosts in calculation from
13x speedup (Biomedical Image Analysis) until 260x (Accelerating Statistical
Static Timing Analysis). All of this algorithms have got some similarities:

e Fewer read-write access to global memory and effective access pattern,

Working with cached memory,

Designing an algorithm by subdividing it into small parts. This parts
have to be calculated very efficiently in a massive parallel way,

A lot of calculation is made on few data,

The size of threads which are needed has to be very high (sometimes >
65000) to get a very high memory bandwidth and GFLOP rate.

As it becomes clear not every scientific problem is amenable considering these
points. But mostly, if an algorithm is able to be designed by fulfilling some
of these requirements a high boost is likely to be expected. For some example
application see [Inch].

2.6.7 Future Development

NVIDIA has shown that it is possible building up an architecture which is
scalable in the future and speeds up algorithms which are designed for this
architecture. The GPU market is highly embattled and competing firms like
AMD and Intel also try to settle into the HPC market (high performance
computing) where Intel dominated the market for further years. Because of
this competition it is expected to get better processors in the coming months
and years. We also have to take care about other architectural approaches
like the CELL-architecture which prognosticate a peak of 1 TFLOP in early
2010 [pal]. This architecture which was originally developed by companies
like IBM, Sony and Toshiba are also providing parallel execution components



2.6. COMPUTE UNIFIED DEVICE ARCHITECTURE 31

called SPEs (Synergistic Processor Element), have got an own cache and are
operating isolated until calculations are finished. Because of an interesting
DMA transfer and a local memory size of 256 kB such an architecture could
also be interesting if a high read-write access for an algorithm like the BD-
algorithm is expected. But because of a large community and nearly daily
progress we expect that NVIDIA has produced an architecture which has got
a chance to affirm in the near years for the HPC market.
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Chapter 3

Methods

In this chapter we will introduce some parallelization strategies which are
used in the next chapter to improve the BD-algorithm (Section . At first, we
show how to calculate important parameters like forces, energies and torques
and how to approximate the potential ®(r) of every atom with position r by
trilinear interpolation. After this, a Parallel prefix sum is performed and we
show which part of this algorithm is used. Later on, Parallel sum reduction is

evaluated and matrix-vector multiplications are calculated. For that purpose,
different libraries (Section [2.6.5)) are used.

3.1 Requirements for a BD-Step

At first, we briefly introduce how to perform calculations for moving a protein
(PII) relative to protein (PI) in every BD-step (Section [2.4.1)).

3.1.1 Forces, Energies and Torques

A regular way for defining a force F' is given by Newtons law: F' = m-a. F is
a force, m is the mass of an object and a is the velocity of an object. Because
we have got atoms with position r the equation is equivalent to

F(r)=m-a(r) (3.1)

a(r) is described as a gradient of an electrostatic potential field —V®(r) which
is described in equation It is possible to solve ®(r) by APBS on an
equidistant 3D grid numerically. Therefore, we can get an approximation ®(r)
by trilinear interpolation (Section for every atom-position of our protein
in the 3D grid. In an electrostatic field charges ¢; are used instead of m,;. In our
case, ¢; defines the charge of the i atom. As charges we use effective charges

33
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because they are good approximations for real charges of an atom [GW96].
Hence the force F' for an atom at position 7 is

Fi(r)y=m;-a(r)=q;- —Vo(r) (3.2)

Every component of V®(r) has to be multiplied with the appropriate effec-
tive charge ¢; (Section before summation. The interpolation and summa-
tion of all forces for every atom is a bottleneck of the BD-algorithm because
the amount of sum-products increases by increasing atoms.

To get the overall force at every BD-step, we have to calculate V®(r) for
all atom-coordinates and sum them up to get a force-vector which moves the
rigid protein PII for a specific timestep At.

Fall = Zmz QA = Zqz . —Vq)l (33)

To rotate a rigid protein, we also have to calculate torques w; for every "
atom and build an overall sum. A torque is a vector which defines a tendency
of a force to rotate an object about some axis. A protein will be translated if
it is not hold at a fixed place. But if it is fixed and a force is acting on it, the
protein will rotate around the fixed axis (normally a pre-calculated center).
A torque w; is defined as:

The result is a cross product of r; and F;. r; is the position of the atom as
a vector and Fj is the force affecting the i'* atom (Equation [3.2). Hence the
overall torque for the protein PII is given by

Wall = Z(TZ X E) (35)

7

For a final translation and rotation of PII we have to calculate Ar and Aw
which is described in section 2.4.2

We get following equation for the energy E of an atom at point r:

Therefore, the overall electrostatic energy of a protein is given by
1
Ea = 3 > 6P (3.7)

The main problem of our BD-step is to solve a sum-product in a massive
parallel way because it is quite often used in BD-algorithm and builds up a
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bottleneck for calculation performance. This is why we define the following
general sum-product problem to be solved efficiently:

ZQi(I)i (3.8)

All other calculations are not very expensive (depending on encounter-
complex formulation). This is why we will evaluate various strategies for solv-
ing the sum-product problem on a GPU.

3.1.2 Trilinear Interpolation

We have got a discrete 3D grid with the potential ®(r) for every grid point
which have equal distances between 0.4 - 1.0 A to each other. This potential
grid is calculated by APBS which solves the Poisson-Boltzmann-Equation lin-
early (Section . The atom-coordinates of the protein are mostly between
grid-points of our 3D grid and that is why we have to approximate the poten-
tial ®(r) of every atom by interpolating trilinearly.

Generally, trilinear interpolation calculates the value of a point (sample point)
which is based on the distance-weighted contribution of its eight neighbouring
points in a grid space (Figure . For calculating a value for this point, re-
spectively an atom, we have to build an average in every direction. At first,
we build up a distance-weighted average in y-direction (red squares; U0O be-
tween U010 and U000, UO1 between U010 and U011, U10 between U110 and
U100). Then a distance-weighted average is build up for each pair in z-direction
(green triangle; U0 between U00 and U01, Ul between U10 and U11). Finally,
a distance-weighted average for the x-pair (between UO and U1) is calculated.
We get the final sample point U (blue dot) which results into a trilinear ap-
proximation between its eight neighbours. Since CUDA 2.0 (beta) NVIDIA

U011

Figure 3.1: Trilinear interpolation in all directions in space

supports trilinear interpolation and has got a built-in function for this purpose

if CUDA arrays are used (Section [2.6.4]).
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3.2 Parallelization Techniques and Strategies

At first, an introduction to an algorithm which is called Parallel prefix sum
(Scan) is given and the code is modified to solve our sum-product problem
defined in the last section. Afterwards it is shown how Parallel sum reduction
and a matrix-vector multiplication can be performed efficiently on a GPU.
These are important techniques for reducing bottleneck effects of the BD-
algorithm with parallelization strategies.

3.2.1 Parallel Prefix Sum (Scan)

The Parallel prefix sum has got an array of n elements
[ao, aty ... ,an,l] (39)
and returns following result for an operator &

[ag, (a0 ® a1),...,(ao B a; & B ap_1)] (3.10)

For example: If we use + for the @ operator and an array which looks like:
[1,4,2,6,4, 8], we get following result: [1,5,7,13,17,25].

This parallel algorithm is called inclusive scan. An exclusive scan is build
by an inclusive scan by shifting all values by 1 and replacing the first element
at position 0 with the identity of the & operator. A sequential exclusive scan
which is executed on the CPU is trivial and is given in Algorithm [1}

Algorithm 1 void scan(float* inputdata, float* outputdata, unsigned int
length)

1: outputdatal0] < 0

2: for (j = 1; j < length; ++j) do

3:  outputdata[j] < inputdata[j — 1] + outputdata[j — 1]
4: end for

This algorithm has a complexity of O(n). Therefore, a work efficient par-
allel scan on the GPU should not increase this complexity to speed up the
Scan algorithm compared to an implementation on the CPU. A work efficient
implementation is realized by subdividing Scan into two parts which are called
(1) up-sweep or reduce phase and (2) down-sweep phase (after Blelloch [Rei93],

Figure [3.2)).
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1. up-sweep (reduce) phase
‘ Xo ‘Z(XO..X1) X, ‘Z(xo..xs)

Xy ‘Z(X4..X5)

A
Xo  [ZeX)| Xo o [ Z(X0Xs)| Xy [Z(xeX)| Xg o | E(X.X)
Direction
Xo  [ZeX)| Xo o [ Z(XeX))| Xy [Z(XeX)| Xg o | E(XeX)
Xo Xp | Xo | X | X X5 Xg | Xy
2. down-sweep phase
Xo  [Zex)| Xoo [ Z(X0Xs)| Xy [Z(xeX)| Xg o | E(X.X)
Direction
200 %)] 0% 06| Z00-) 2060 20 %) ¥

Figure 3.2: Up- and down-sweep phase of Parallel prefix sum (Scan)

For our purpose we need the up-sweep phase and the last element builds
up the overall sum for all elements. To solve the whole equation |3.3|we have to
multiply with appropriate ¢; at the first step. A scheme for the whole modified
algorithm is shown in figure [3.3

Algorithm

The up-sweep phase (unmodified) is shown in algorithm [2| (down-sweep phase
cf. [Har07]). At first, data is loaded in line 1 - 5 for every thread. Every thread
holds a pair of elements to sum it up in the next step. Line 7 ensures that all
threads have loaded their pairs until the first sum is made (line 11). The first
condition in line 8 has to be fulfilled because every level has got half of sums
to perform compared to one level before. If we are at the first level we have to
perform half of the size of elements (in this example 8 / 2 = 4 sums). In the
next level it is the half again (4 sums / 2 = 2 sums) until we are at the top
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Modified up-sweep phase

‘ X, ‘xqﬂ‘ X, [ xq,)‘ X, ‘ xqz‘ X3 ‘z<xq4.xq,.>‘ X, ‘ Xq4‘ X, ‘ Xq5\ Xq ‘ xq(,‘ X, ‘m.xq,)‘_

A

spa, xq,)‘ X, ‘ xqz‘ X, ‘x(xa;..xqg)‘ X, \xq4\ X5 ‘ qu‘ X, ‘ xqﬁ‘ X; ‘Z(xq‘ xq,)‘

[x [xq [ %

| +

Direction ‘ X, ‘ Xqu‘ X z(xqu.xq,)‘ X, ‘ qu‘ X5 ‘x(xu, xq«)‘ X, ‘ Xq4‘ X5 ‘x(qu.xqo‘ X ‘ qu‘ X; ‘Z(xab xa,)‘

[ % [ X ] X [ X[ % [XG | % | XG| X [ XAi] % [ XD | X [ XGe [ X [ X0 |5

‘Xo‘qo‘xl‘q1‘xz‘qz‘xs‘q3‘x4‘q4‘xs‘q5‘xe‘q6‘x7‘q7"

Figure 3.3: Up-sweep phase with multiplication at first step. A modification
of Scan.

Algorithm 2 void prescan_reduction(float* inputdata, float* outputdata, un-
signed int length)

1: _shared_ float temp]]

2: int thid < threadID.x

3: int offset « 1

4: temp|2 * thid] < inputdatal2  thid]

5: temp(2 * thid] « inputdata|2 * thid + 1]
6: for (d =n>>1;d >0;d >>=1)do
7. _syncthreads()

8 if thid < d then

9: int ai < offset -(2-thid +1) —1
10 int bi < offset (2 - thid +2) —1
11: temp|bi] < templ[bi] + temp|ai]
12:  end if

13:  offset « offset -2

14: end for

level where we have to perform 1 sum and get the sum of all elements. In line
13 offset is doubled because after every step a sum has to be calculated for
a pair of elements which has got a double distance to each other after every
level.

Avoiding Bank Conflicts

With algorithm [2| we are getting bank conflicts. In fact, offset = 1 results to
a 2-way bank conflict (offset = 2 results to a 4-way bank conflict). In figure
thid and ai are calculated and arrows show which thread (thid) accesses
which bank. For example thid = 2 calculates ai = offset -(2-thid+1)—1 =2
(offset = 1). Although thid = 9 calculates ai = offset -(2 - thid +1) — 1 = 18
(offset = 1), thid = 9 has to access bank 2 because 16 banks form one block
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and after the 16" bank, bank 15, the access begins with bank 0 again.

a)
bank | 0] 1] 2] 3] 4| 5] 6] 7] 8] 9]10/11|12]13]14]15]

ai
thid

oo

b)

bank | 0] 1] 2] 3] 4| 5] 6] 7] 8] 9]10]11|12]13]14]15]

ai 012468 |10/12]14/17]19|21|23|25|27|29|31
thid | 0/1]2/3/4|5]6|7|8|9]10/]11 12 |13 [14]15

Figure 3.4: a: Addressing without padding: 2-way bank conflict, offset = 1,
b: Addressing with padding: no bank conflict, offset = 1

To address with padding and therefore to avoid bank conflicts, algo-
rithm [2 has to be enhanced by adding two lines (Algorithm after line
10:

int ai < offset (2 - thid +1) —1

int bi < offset (2 - thid +2) —1

ai < ai + ai / Number of banks (16)

bi < bi + ai / Number of banks (16)

temp[bi] < temp|bi] + temp[ai]

CUDPP Implementation

An implemented version of Parallel prefix sum is available for CUDPP (Section
. The algorithm is called by cudppSegmentedScmﬂ where d_idata is the
inputdata and d_out is the outputdata. Another built-in function which is
called cudppMultiScan is interesting, too. With cudppMultiScan it is possible
to perform a scan on multiple rows in parallel.

3.2.2 Parallel Sum Reduction

Parallel sum reduction is an algorithm which sums up a vector of values, re-
spectively an array of words which can be linked by a @& operator. It is a

LeudppSegmentedScan( CUDPPHandle planHandle, void * d_out, const void * d_idata,
const unsigned int * _iflags, size _t numElements)
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common and important data parallel primitive and has got a high paralleliza-
tion potential. Generally the sum of values are built by many threads in blocks
which are acting simultaneously on a portion of an array (Figure .

Figure 3.5: Tree-based approach for summation of an array

Every block of threads calculates one part of the whole array and writes
its result back to an array which has to be summed again until there is one
block left for calculation (Figure [3.6). Every kernel launch of this algorithm
calculates a new level of our multiple tree which results into a decomposed
computation. To know the possibility for optimization, an upper bound for

Level 0:
4 blocks

N v

..... OQoO” Level N:
1 block

Figure 3.6: Decomposing computation into multiple kernel invocations

the bandwidth in GB/s (B) for a GPU is given by the equation [3.11]

 _ memory interface [bit] - 2 - clock rate [MHz]

(3.11)

max. concurrent running blocks

For example a GTX 8800 has got following upper bound: B =
w = 86.4 GB/s. Best performance ever reached by NVIDIA for
this algorithm is a bandwidth of 73 GB/s on 32M elements. Also many opti-
mizations have been made to reach this peak by reducing divergent branches
of threads, avoiding bank conflicts, adding multiple elements per thread and
completely unrolling all control structures with templates. A pseudocode is
given in the next subsection with further explanation.
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Algorithm

A pseudocode of the parallel sum reduction algorithm is given in Algorithm
It is separated into four parts. The first part (line 1 - 10) loads elements from
global memory into shared memory for every thread. This is shown in figure
3.70 An array which is larger than the gridSize (= threads / block) is loaded
by summation of all elements for every position i (i < threads / block) from
neighbour parts of the whole array. In the end the first part of the array has
got a size of gridSize and a parallel summation is going to take place just in the
first part because it has the overall sum of every part. Of course this can lead
to worse performance if there is too much load from global memory, but we are
able to choose the size of the array for reduction and call the reduction kernel
until there is just one block left for processing. After loading all elements a

U

whole array to be reduced (summed up)

# threads / block = blockSize

Lblocl;SizeJ

1 1 ]
M0 1 e 0 7 LI T

Parallel summing

Figure 3.7: 1: Loading elements into first part of array

parallel summation has to take place in the first part of the array (line 11 - 16,
Figure . To avoid bank conflicts every i'* thread accesses one block which
has got his own elements indexed with 2% 4 ¢ (sequential addressing).

Lines 17 - 21 from Algorithm [3|shows how a loop unrolling (Section [2.6.4))
is performed. If the number of threads is < 32 we are able to perform a
complete loop unrolling by defining exactly which positions to sum up. This
leads to a better performance because if we have got a low arithmetic intensity
our bottleneck is likely to be the instruction overhead (address arithmetic
and loop overhead) which has to be dissolved by compiler if not determined
exactly by the programmer. That means, we do not need _syncthreads() and
no if(tid < s) because it does not save any work.
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Figure 3.8: 2: Parallel summation of first part of array. Block processing with
sequential addressing to avoid bank conflicts

[ 1] o

The last three lines are for writing back the result in sdata[0] to outputdata
in global memory for this specific block. Later on, we have to call reduce(vars)
again until we have got a final sum (Figure .
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Algorithm 3 void reduce(float* inputdata, float* outputdata, unsigned
length)

1: _shared_ int sdatal]

2: int tid <« threadlD.x

3: int ¢ «— blockID.x - blockSize -2 + tid
4: int gridSize < blockSize -2- gridDim.x
5: sdatal0] < 0
6
7
8
9

: while 7 < length do
sdata[tid] < sdata[tid]+ inputdatali] + inputdata[i+blockSize]
1 «— 1+ gridSize
: end while
10: _syncthreads()
11: if blockSize > 2% (x € N,z € [9..7]) then
12:  if tid < 27! then

13: sdata[tid] « sdataltid]+ sdata[tid + 277!
14:  end if

15:  _syncthreads()

16: end if

17: if tid < 32 then
18:  if blockSize > 2% (z € N,z € [6..1]) then

19: sdata[tid] « sdata[tid]+ sdate[tid + 277
20:  end if

21: end if

22: if tid == 0 then

23:  outputdata[blockID.x] = sdata|0]

24: end if

To use this algorithm for a BD-step it is possible to pre-calculate all ®(r),
store them in a linear array and before summation of neighbouring elements,
each of them is multiplied with the corresponding ¢; and we get an array which
contains ®qqq, P1q1, ..., P,_1¢,—1. This allows us to calculate the overall sum.

3.2.3 Dense Matrix-Vector Multiplication

A dense matrix-vector multiplication arise in many problems needed to solve
a wide range of issues. Hence, it is important to speed up such calculations
which is defined in following equation:

A-x=y (3.12)

A is a matrix (R™*") and z is a vector (R™). Therefore, y is our resulting
vector (R™) of a sum-product. Applied to the BD-algorithm problem A holds
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®; and x has all ¢;. y is therefore the resulting force, torque for x-, y-, z-
dimension and energy of the protein PII.

In CUDA there are two implementations solving equation The first
one is defined in NVIDIA’s BLAS library CUBLAS (Section [2.6.5)). It provides
a function called sgemwv. A faster matrix-vector multiplication with a speed
up of maximum = 15 compared to the CUBLAS’ implementation has been
developed by Norijuki Fujimoto [Fuj08].

We briefly want to describe how a matrix-vector multiplication is performed

on a GPU. A naive CPU implementation for solving Az = y is given in algo-
rithm [l

Algorithm 4 void mv_cpu(float* y, float™ A, float™ x, int m, int n)
1: for (1 =0;i < 0;i+ +) do
22 yli] <0
3: for (j=0;j<n;j++)do
4: ylil+ = Ali-n+j] - 2[j]
5
6:

end for
end for

In case, designing an algorithm for the GPU the code has to be optimized
for GPU architecture. An efficient way for performing a matrix-vector multi-
plication is done in the following way:

e For every thread load a 16 x 16 submatrix P[é|[j]. This is done by loading
w times a 16 x 16 submatrix for one row of A.

e Calculate P[i][j] in every thread separately but at the same time in
parallel.

e Build up the sum P[i][j] for every thread.
e Write every result into vector y.

e Repeat all steps while it is possible to calculate a new row in the column
with a 16 x 16 submatrix.

A schematic representation is shown in figure and a pseudocode is given
in algorithm [5] This code is constrained to A needing dimensions m and n
which have to be a multiple of 16. To solve this problem a more detailed imple-
mentation is given by using CUDA arrays to save elements in texture memory
for caching issues and using float4 datatypes for coalesced access without bank
conflicts by Norijuki Fujimoto [Fuj08]. ¢ is kept in shared memory so it is im-
portant that ¢ does not exceed available shared memory.
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Figure 3.9: Performing a matrix-vector multiplication in parallel on the GPU

Algorithm

Line 1 of the parallel Dense matrix-vector multiplication algorithm indi-
cates that a sum has to be performed for rows in m-direction n/16 times,
because the assumption, n being a multiple of 16, is been made for reason of
clarity. P[i][j] is initialized with O for every thread in line 2 and in lines 3 - 8
all P[i][j] are calculated in m-direction m/16 times. The last lines (9 - 11) are
calculation a total sum of P[i][*] and assigning the result to vector y.

Algorithm 5 void mv_gpu(float™ y, float* A, float™ x, int m, int n)
1: for all h (0 < h < n/16) in parallel do

2:  float P[16][16] < O

3 foralli, j(0<4i,j<16) in parallel do

4: Pli][j] < 0

5: for (w =0; w <m/16) in parallel do

6: Pli][j] < P[i][j] + A[(16 - b +14) - n + (16 - w + j)] - 2[16 - w + J]
7: end for

8: end for

9: foralli (0 <=1 < 16) in parallel do

10: y[16 - h + i] = total sum of P[i][*]

11: end for
12: end for
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Chapter 4

Results

In this section a performance analysis for various parallelization algorithms
(described in section [3) is given. At first, we show which testsystem is used
to obtain results. Later on, a benchmark is presented which is given by the
“Simulation of Diffusional Association” (SDA, Section [2.5.1)). After this, the
performance of Parallel prefix sum, Parallel sum reduction and matrix vec-
tor multiplications like Dense matrix-vector multiplication and a CUBLAS
approach are discussed. Also an algorithm for the trilinear interpolation is
implemented and a performance analysis is perfomed. All tests are repeated
10 times and we have drafted the average of all independent trials per mea-
surement. Deviation between trials is very low, so there are no error bars
indicating the error bounds in the following results. A comparison between
all results is made in the discussion (Section [5)) and results are summarized in
figure [5.1}

4.1 Test Environment

The test environment performs sum-product calculations of the BD-algorithm.
For analyzation and discussion, trends are recognized and a performance
is measured compared to similar issues performing a fast sum-product. So
it is not necessary to use best hardware to find out performance trends
for various algorithms. Generally, all algorithms perform faster on Tesla
products (by leastwise a factor of 2), but for our purpose we want to analyze
trends. Efficiently programmed algorithms will always be scaled up by better
hardware with compute device 1.x .

For this thesis all tests are performed on following host and device.
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MB /s

Host:

e Intel Core 2 Duo, Q6600, which has got 4 cores with 2,4 GHz for each
one. On the host-side a calculation is always performed on one core each.

e 3,25 GB RAM (DDR-800, 2 x 400 MHz for each RAM).
Device:

e NVIDIA GeForce 8300 GT

e Revision number: 1.1

e 1 GB global memory space

Multiprocessors: 14

Number of cores: 112

Maximal threads per block: 512

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

Figure 4.1: Bandwidth for pageable memory (GPU: GT8800, CPU: DDR 800,
Q6600)

A data-transfer between the host to device (1,8 GB/s) is nearly as high

as from device to host (1,5 GB/s) but a transfer inside the device has got an



4.2. LINEAR SUM-PRODUCT CALCULATION 49

average of 47,2 GB/s (Figure [£.1). The x-axis denotes the transfer direction
and the y-axis shows a bandwidth in GB/s.

The theoretical bandwidth in GB/s for a 8800 GT (Equation [3.11]) is given

by B — memory interface [bit]-2-clock rate [MHz] __ 256[bit]-2- Clock rate [MHz] = 57 GGB/S
max. concurrent running blocks

The highest peak we have reached is 47.2 GB/s Flgure [1.1). The difference
10 GB/s typically results from managing threads and data transfer access and
other software specific issues.

4.2 Linear sum-product Calculation

To get to know how fast an efficient calculation of forces, torques or energies
can be performed, a performance test of SDA is made for the force calculation
part. This test is shown in figure 4.2 The ordinate defines the time in ms
which is needed to perform a calculation for z atoms (axis of abscissa). A

20

1.6

1.2 ¢

time [ms]

08t

04

0 0.5 1 1.5 2 25
# atoms [x 10¢]

Figure 4.2: Performance for SDA in FORTRAN code running on one core at
2.4 GHz

nearly linear dependency is given for the atom-size and the time it takes for
calculation. This result is to be expected because for every atom, we have to
do a constant number (k) of calculations. The sum of all calculations is higher
if the atom-size (n) is high. Therefore, we get a complexity of O(k-n) = O(n),
respectively.
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4.3 Parallel Prefix Sum Performance

In this algorithm we have two parts to consider. The up-sweep and the down-
sweep phase (Figure [3.2)). In both phases we have to start (resp., end) with
calculating n/2 elements, then n/4 elements and so on. This results into
a complexity of nearly O(2 - log(n)) = O(log(n)). This behaviour is also
measured in figure [4.3]

0.6

time [ms]

0 2 2 6 8 10
# atoms [x 10°]

Figure 4.3: Parallel prefix sum performance

Figure seems to look like f(z) = log(z) and is compressed by a factor
greater than 2 if calculation is reduced to a up-sweep phase.

Interestingly, in figure |3.3] we show, how to get a product into a sum at
the first step. Because this is a switch in operation from - to + the complexity
does not change but the array has to be extended by ¢;. ¢; has to be copied
into the array several times which doubles the size needed for the linear array.
For our purpose all results are given after the up-sweep phase (which is similar
the Parallel sum reduction).

Another approach is that every vector is written linearly into the array.
Results are able to be fetched after the up-sweep phase, because a calculation
of the overall sum for every vector is possible through subtraction of the prior
one.

4.4 Parallel Sum Reduction Performance

The Parallel sum reduction calculates balanced-trees in blocks and writes its
sum into an array which is also summed up until one block is left and we get the
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overall sum of the array . Because every tree performs log(n) operations,
where n denotes the number of knots and leafs of one tree, and this has to be
calculated k times it leads to a complexity of O(log(n)). We get the following
performance measure (Figure [4.4)):

0.034

0.032 L

0.03

0.028

0.026 [

time [ms]

0.024

0.022

0.02

0.018

0.5 1 15 2 25 3 3.5

0.016 : ;
0

# atoms [x 10%]

Figure 4.4: Parallel sum reduction performance

A tendency to f(x) = log(x) is apparent but the results converge into
a fluctuating range. This characteristic is observed because the algorithm is
able to distribute the load-write balance in a more or less precise way. We are
able to hide load-write operations which are expensive if a lot of threads are
working concurrently. If this is the case the bandwidth raises up and the time
for a summing up an array is able to fall although the array is larger than a
smaller one. The size of an array has always got to be a multiple of 2 to get
best performance out of the architecture for compute device 1.x .

For example in table the average time for one BD-step calculating the
overall force for 10000 atoms takes 0.054 ms and has got a bandwidth of 1.21
GB/s. The summing of 23150 atoms takes fewer time (0.028 ms) because it
is possible to raise up the bandwidth up to 4.64 GB/s because of for example
coalesced access of warps which leads to a higher occupation (Section .

The bandwidth used, raises up dramatically by increased array size (Figure
. This is important because more blocks are calculated concurrently and if
bandwidth would not increase the thread scheduler would have to work harder
to get independent access to hardware resources. This leads to a worse latency
hiding and therefore to higher overall execution time.
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Figure 4.5: Bandwidth used for Parallel sum reduction

4.5 Matrix-Vector = Multiplication  Perfor-
mance

Two different approaches solving a problem which is defined as A -z = y are
evaluated and discussed to fit into our problem in the next subsections.

4.5.1 Dense Matrix-Vector Multiplication Performance

Performing a Dense matrix-vector multiplication (DMV) is fast for proteins
which have thousands of atoms (# columns of A, Figure and if matrix A
has got a lot of rows (every row holds one direction of space for one protein).
To get more than 3 rows which is needed if calculated one protein (forces of x-,
y-, z-direction) it is also possible to perform a BD-simulation for two proteins
many times in parallel. A visualization of the calculation is given by figure
5.9l

The complexity of the algorithm increases nearly linear because every
thread calculates one “row” (16 x 16 matrix or more precise in a faster im-
plementation a 16 x 64 array for A). A has got dimensions m and n. So the
time for calculating m elements in parallel has to be done n times which has
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| # atoms | average time for one step [ms] | bandwidth [GB/s] |

1 0.0176 0.0004
42 0.031 0.008
200 0.018 0.056
1000 0.027 0.157
10000 0.054 1.21
23150 0.028 4.64
50000 0.031 8.41
75000 0.036 10.9
100000 0.036 10.8
500000 0.066 31.4
1000000 0.107 39.01

Table 4.1: Dependency between bandwidth and GPU execution time

23

a linear cost if memory access is coalesced and there are no bank conflicts like
it is fulfilled by DMV. For small atom-sizes the performance is bad because
every time the algorithm performs memory has to be copied to a 2D CUDA
array which is bind to a texture to get fast access to the array. As mentioned
before the texture cache is 64kB and has got 8 kB cache included which makes
fetching memory fast if an element is cached. A high speed up is reached if the
m and n increase and therefore this method is much faster than calculating a
sum-product linearly (Section [£.5.2)).

Figure 4.6:
tein

time [ms]

Dense matrix-vector multiplication performance for a single pro-

0.5 1 15

i atoms [x 10¢]

25
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Figure 4.7: Dense matrix-vector multiplication performance for 100x concur-

rent BD-simulations divided by 100 for a realistic value of one BD-step calcula-
tion of one protein

To indicate the efficiency of many concurrent BD-simulation calculations
figure 4.7 shows the performance. For example if 100 proteins with 10000
atoms need ~ 1 ms to be calculated by Dense matrix-vector multiplication.
Calculation of, e.g., forces for one protein with 1000 atoms by the linear sum-
product algorithm needs 0.8 ms. This results to a boost of 0.8ms/1ms* 100 =
80 (without interpolation).

4.5.2 DMatrix-Vector Multiplication performed with
CUBLAS

Figure indicates the matrix-vector multiplication calculated with sgemuv
which is a part of the CUBLAS library v1.1. As we can see, for small values
sgemu performs good and is twice as fast as DM V. But for matrices with higher
order its performance decreases rapidly.

A comparison between DMV and sgemv leads to a high performance of
DMV (Figure [4.9). While for 200 atoms sgemu is faster than DMV there is
a speedup of 21.3x for 10000 atoms which is similar to evaluated values by
Norijuki Fujimoto [Fuj0§].

4.6 Naive Parallel Interpolation Performance

To get all ®; into A we have to make a preprocessing. We fetch one atom with
X-, y-, z-elements, make a trilinear interpolation as described in [3.1.2) and have
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Figure 4.8: CUBLAS v1.1: sgemwv performance for matrix vector multiplica-
tion

to write all results into A with few-way bank conflicts and coalesced memory
access to get a high memory bandwidth. Performance is given in figure [4.10]

While the curve rises up until 5000 atoms it drops permanently again. This
is the case because a decision is made of how many threads, blocks and grids
are launched. The number of concurrent threads depends on the number of
atoms to be calculated. We think that the number of bank conflicts rises cyclic
dependent on the number of atoms compared to threads. This is why the Naive
parallel interpolation has got potential to calculate much faster if decisions for
using hardware parts are made dynamically.

In the next compute capability (> 1.2) NVIDIA promises to provide a
3D-CUDA array to use texture memory and interpolate trilinearly between 8
neighbours. While this thesis this functions seems to be buggy and has got
a driver conflict which should be fixed soon. That is why we separated this
preprocessing from the real sum-product problem and think that this operation
will soon be very efficient because it is demanded by the market.
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Figure 4.9: Speed up of Dense matrix-vector multiplication for one concurrent
protein compared to sgemuv
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Figure 4.10: Naive parallel interpolation performance
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Discussion

Linear sum-product (SDA)

Parallel Prefix Sum

Dense Matrix-Vector Multiplication (1 Protein)
Dense Matrix-Vector Multiplication (100 Proteins)
sgemv (CUBLAS)

time [ms]

02+ -

2000 4000 6000 8000 10000 12000 14000 16000 18000

# atoms

Figure 5.1: Comparison between all parallel algorithms (without preprocess-
ing)

BD-simulations are important for calculation of association rates between
proteins if they are diffusion limited. Understanding protein-protein interac-
tions is crucial for simulating many biological mechanisms but calculation of
protein-protein interactions in physical environment is computationally hard.
Therefore, we need to make some simplification in theory. Simplification is
made by simulation of two rigid proteins where one protein (PII) moves and
rotates relative to another protein (PI). In this thesis we described how to
calculate a force (resp., torque or energy) by summing all partial forces (resp.,
torque or energy) of every atom of PII which then moves and rotates in a well
defined surface relative to PI after every step At. A solution for a general
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problem which we denote as the sum-product problem
Z 7;9P;

has to be solved in a very efficient way. Several strategies have been shown
in this thesis by using the G80 GeForce architecture (compute device 1.x) of
NVIDIA.

A comparison between all parallel algorithms without preprocessing is given
in figure 5.1} The Dense matrix-vector multiplication is 100 times higher than
in the figure but because we want to compare one protein each this value
is divided by 100 and we have to keep in mind that it indicates 100 BD-
simulations in parallel. We will briefly discuss all parallel algorithms which
solve the sum-product problem.

One strategy which has been evaluated is the upper-sweep phase of the
Parallel prefix sum algorithm which is called Scan (Figure p.2}  denotes ®;).
At first, we have to perform a preprocessing by filling a linear array with
®; - q;. After preprocessing we are able to calculate the sum (grey box) via
Scan (possibility a). Another approach (possibility b) is to write a linear array
with elements @, qo, ®1,q1, ..., Pr_1,¢.—1 and to perform a multiplication at
the first step and then an addition for every further step.

a) ‘ Xq, ‘Z(xauuxu«* Xq, ‘L(qu..xa-,* Xq, ‘Z(xq,,_xqs)‘ Xq, ‘E(an..xq,){

‘ Xq, ‘Z(an..xq,* Xq, ‘E(xq,v.xq‘* Xq, ‘Z(xqwxqi)‘ XJ, ‘E(xm »«w{

_— 1

[Xqy [roaxa] Xq, Poa-xa] Xqy [roaa] Xqs foanal

Direction

1 Preprocess:Z.‘ Xq, ‘ Xq, ‘ Xq, ‘ Xq; ‘ Xq, ‘ Xqs ‘ Xq ‘ Xq; ‘

b)

A‘ X, ‘ Xq, ‘ X, ‘z(xq,.xq,)‘ X, ‘ qu‘ X, ‘z(quvxqz)‘ X, ‘ XqJ‘ X5 ‘ qu‘ X, ‘ qu‘ X, ‘Z(xqb_,xq,)‘_
o [ e % [ % e % v (5] % (5] % [

Direction ‘ +
‘ Xy ‘ Xq“‘ X4 ‘E(xq(-vxa‘)‘ X, ‘ qu‘ )(3 ‘L(qu xq)‘ Xy ‘ Xqé‘ X5 ‘z(qu xqs)‘ X ‘ Xq(,‘ X7 ‘E(xq“.xq,)‘
‘ Xo ‘ X{, ‘ Xy ‘ Xq, ‘ X, ‘ Xq, ‘ X3 ‘ qu‘ Xy ‘ XCL\ X5 ‘ X5 ‘ X ‘ Xqe ‘ X; ‘ Xq; ‘—

M X
tsep= [ [q|x[a[%[d[%][q|[x[a[x%][¢][x[d][%][q]-

Figure 5.2: Upper sweep-phase of Scan. Two possible strategies for solving
the sum-product problem. = denotes ;.

The complexity is O(log(n)) but to be faster than a linear sum-product
calculation the size of the linear array has to be huge to compensate time
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for data-loading from host to device, execution time for threads and other
mechanisms to perform efficient usage of GPU elements (details are listed in
section . This means that for small arrays a GPU cannot be faster than
a linear sum-product calculation on the CPU. Given the obtained results we
need > 3800 atoms which have to be processed to be faster with parallel Scan
than the linear sum-product algorithm (Section [4.2)). But if this requirement
is fulfilled we will get a speed up of 4.3 for example for 20000 atoms (time for
linear sum-product: 1.6 ms, time for Scan: 0.37 ms), if preprocessing has a
cost of 0, therefore speed up is smaller in reality.

Level 0:
4 blocks

v

"Q Level N:
1 block

Figure 5.3: Parallel sum reduction scheme

Another approach has been given by the Parallel sum reduction algorithm
(Reduction, Figure . This algorithm performs a calculation of balanced
trees by summing up all values in O(log(n)). This summation is performed
in parallel for many balanced trees. A partial sum is build up and is reduced
again until one block is left for calculation with a last balanced tree to get
the overall sum (Level N). The smallest performance we get is 0.0176 ms for
1 atom. 0.0176 ms are reached by the linear sum-product if ~ 220 atoms are
processed. A size between 220 < 256 for Reduction is as fast as the linear
sum-product approach. But a size of 1024 performs to a speed up of 30 (time
for linear sum-product: 0.82 ms, time for Reduction: 0.027) which is faster
than the Scan approach if trilinear interpolation has no cost. Because of an
atom has got a x-, y- and z-coordinate and we have to calculate a force in
every direction the speed up is reduced to a factor of 10 because we have to
perform Reduction 3 times for one atom. Because of balanced-tree summing
which is processed always in one block the factor is mostly higher in reality.

A third way for solving the sum-product problem is given by solving A-z =
y (Section and , where A denotes a matrix (with dimensions m - n)
and x, y are vectors. A stores all ®;, x stores ¢; and y is our result with all
summed up results needed to perform a BD-step (Figure . We performed
two ways of solving A-x = y. The first approach is called Dense matrix-vector
multiplication and the second one is an implementation of a matrix-vector
multiplication called sgemv in CUBLAS (v1.1, Section . Our measured
data shows that the Dense matrix-vector multiplication is at least as fast as
sgemv but speeds up up to = 30 for larger matrices A. Therefore, Dense
matrix-vector multiplication is chosen to boost our BD-algorithm.

First of all, at least ~ 1.7 ms are needed for setting up all arrays and
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Figure 5.4: Performing a matrix-vector multiplication in parallel on the GPU

datatypes for Dense matrix-vector multiplication. This means, we need at
least ~ 5000 atoms (not shown in figure |5.1)) to be as fast as the linear sum-
product algorithm if we have got 3 rows for matrix A.

A great performance increase is reached, if several BD-simulations are per-
formed simultaneously. In this case we could perform, e.g., 100 BD-simulations
in parallel with the same two proteins and compare diffusion association rates
with each other. We have measured such a setup in figure [4.7]

For example 100 proteins with 1000 atoms (nearly same time for 10000
atoms) need ~ 1 ms to be calculated by the Dense matrix-vector multiplica-
tion algorithm. Calculation of, e.g., forces for one protein with 1000 atoms
needs 0.8 ms for the linear sum-product algorithm. Although 0.8 ms is smaller
than 1 ms we performed 100x a BD-simulation with the Dense matrix-vector
multiplication instead of one BD-simulation with the linear algorithm. This
results in a boost of 0.8ms/1Ims % 100 = 80 (without preprocessing). This
speed up rises if more BD-simulations are performed simultaneously.

In fact, we want to calculate different proteins and would like to simulate
for example not 100x the same protein but 100 different proteins. This is not
really possible because x = ¢; has to be loaded into shared memory (16kB *
1024 / 4 Bytes = 4096 floats to be stored maximal without control variable
consideration and other important constants which have to be declared in
shared memory) and every protein needs other effective charges ¢. But if it is
possible to load all different ¢ into shared memory, this could also be possible
to consider in near future.

For preprocessing purposes a trilinear interpolation has to be performed
and added to overall BD-simulation performance. We implemented a naive
parallel trilinear interpolation algorithm which in fact has got optimization
potential (Section [4.6]). Also a new function for allocation of 3D-CUDA ar-
rays is going to be provided by NVIDIA which has the ability to perform an
interpolation in a 3D grid-space by trilinear interpolation of a point with its 8
neighbours (Section [3.1.2).
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Conclusion

In this thesis the aim is to understand the main routines, i.e. force and energy
calculation for BD-simulation and to effectively parallelize them on NVIDIA
GPU hardware. Thereby, the development, implementation and evaluation of
different parallelization strategies are performed.

In summary, we get an appropriate speed up by a GPU which can be a
factor of 80 and more. It is highly dependent on the problem we want to
solve. A sum-product of a huge array (> 1024 atoms) is performed by Parallel
sum reduction algorithm with a speed up of nearly 30. A speed up of > 80
is reached by a Dense matrix-vector multiplication for calculation of multiple
BD-simulations on same two proteins. A Parallel prefix scan algorithm also
performs good results for arrays which are > 3800 atoms but is not as fast as
the Parallel sum reduction algorithm.

In future, internal forces will have to be calculated for modelling protein
flexibility which has got an important effect on protein-protein interactions.
Also a multi protein BD-simulation should be performed to understand dy-
namics between multiple protein interactions. The most important step is to
design an algorithm which is highly parallelizable and therefore will scale up
with future hardware improvements while dynamic allocation of memory usage
is made by smart programming. It is expected to reach a higher performance
than 1 Teraflop of calculation speed this year by NVIDIA’s G200 GPU and a
doubling of performance has been announced every two years. Another impor-
tant developments are being made for example by INTEL. They are scaling
up multi-core processor systems and also working on systems called “Larabee”
which will have ~ 32 cores.

If the BD-algorithm is designed as described in section [2.6.6] such as mem-
ory bank conflicts are avoided, coalesced memory access is used and a huge
number of threads and blocks are launched with high occupancy and also
shared memory of cached memory is used in a massive parallel way, a speed
up of, e.g., 30 could be performed with the Parallel sum reduction algorithm
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to perform an efficient and fast BD-simulation or many BD-simulations con-
currently which leads to a boost of > 80 or more by upscaling or using better
hardware in the near future, respectively.



Chapter 7

Appendix A

7.1 Technical Details on G80

’ H abbreviation | quantity

Multiprocessors per GPU mpg 16
Threads per warp tpw 32
Warps per multiprocessor wpm 24
Threads per multiprocessor tpm 768
Blocks per multiprocessor bpm 8
Registers (32-bit) per multiprocessor rpm 8192
Shared memory (bytes) per multiprocessor smpm 16384

Table 7.1: Architectural details on G80 (GTX)

7.2 Occupancy Calculation

Note that ceil(x,y) indicates the next multiple of y where ¢ -y > z and
c € N,c > 1. Also all abbreviations are given in Appendix [7.1] We are free to
set dimensions for a kernel launch with ¢pb, (threads per block), rpt, (registers
per thread) and smpb, (shared memory per block). We have to design our
algorithm the way trying to max < (occupancy per multiprocessor) (Equation
7.11)).

7.2.1 Processing per Block

tpb, ([ tpb,
wpb, = ceil <t]1))w’ 1) = ceil ( §2 ,1) (7.1)
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rpb, = ceil (wpb, -2, 4)-16 - rpt, (7.2)
smpb, = ceil (smpb,, 512) (7.3)

7.2.2 Maximum Blocks per Multiprocessor

limited by wpm, := min (bpm, ceil (me 1>>

wpb, ’
(7.4)
(20 1) if rpt, > 0,

limited by rpm, = ot (rpb*7 ) s (7.5)

bpm other

ceil (Smpm, 1) if smpb, > 0,

limited by smpm, = Smpm, (7.6)

bpm other

7.2.3 GPU Occupancy

active blocks per multiprocessor := abpm, = min (wpm,, rpm,, smpm,)

(7.7)
active warps per multiprocessor := awpm, = abpm, - wpb,
(7.8)
active threads per multiprocessor := atpm, = abpm, - tpb
(7.9)
max. simultaneous blocks per multiprocessor := abpm, - mpg
(7.10)
) awpm,
occupancy per multiprocessor :=
wpm

(7.11)
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