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Abstract

This article proposes a new approach to non-gaussian component analysis
(NGCA). NGCA is already in use in high dimensional data analysis. It
identifies non-gaussian components in the data as a preprocessing step for
efficient information processing and is essentially based on Independent
Component Analysis (ICA) and Principle Component Analysis (PCA).
Instead we suggest an iterative and structure adaptive approach to
non-gaussian component analysis (SNGCA) which is based on iterative
convex projection. As an alternative to the use of principle components,
SNGCA uses a statistical procedure which combines the computation of
the Löwner-John ellipsoid and statistical tests for normality as a tool for
reducing the dimension of the data space.
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1 Introduction

Today many mathematical applications in econometrics or biology are con-
fronted with high dimensional data. Such data sets present new challenges in
data analysis, since often the data have dimensionality ranging from hundreds
to hundreds of thousands of components. On the one hand this means an
exponential increase of the computational burden for many methods. On the
other hand the sparsity of the data in high dimensions entails that data thin
out in the local neighborhood of a given point x . Hence statistical methods
are not reliable in high dimensions [32] if the sample size remains of the same
order. This problem is usually referred to as ”curse of dimensionality” [10]. The
standard approach to deal with the high dimensional data is based of one or an-
other structural assumption which allows to reduce the complexity or intrinsic
dimension of the data without significant loss of statistical information [22], [20].

In order to illustrate this task we consider a certain phenomenon governed
by m ∈ N stochastically independent variables. In measurements the observ-
able of this phenomenon will actually appear in Rd with m ≤ d, d ∈ N . The
additional degrees of freedom may stem from the influence of a variety of uncon-
trolled components for instance noise, imperfection in the measurement system
or the addition of irrelevant observable. In that sense m can be considered as
the intrinsic dimension of a phenomenon. From a geometrical point of view m
is the dimension of a manifold that approximately contains the structure of the
sample data. Consequently a lower dimensional, compact representation that
according to some criterion, captures the interesting information in the original
data, is sought. If the perturbations do not mask the original model, dimen-
sion reduction techniques may be appropriate for understanding the underlying
phenomena of interest [8]. This is illustrated in figure 1.1.

Figure 1.1: basic idea of dimension reduction

The problem of dimension reduction typically decomposes into two tasks:
First one has to determine elements from the target space. Second, one has
to construct a basis of the target space from these elements. Concerning both
tasks the structure adaptive approach of SNGCA, presented in this article, is
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an unsupervised, completely data driven, linear method. We will not assume
any apriori knowledge about the density ρ(x) of the original data or about
the spatial distribution of the informative data lying on the manifold in focus.
Moreover we will demonstrate in section (5.1) that SNGCA does not depend on
a special difference in the magnitude of the second moments of Gaussian noise
and informative data components. In the following sections we will see, that
all these are advantages of SNGCA wrt. other dimension reduction methods
e.g. Principal Component Analysis [14], Independent Component Analysis [12]
or Singular Spectrum Analysis [9].

In this paper we assume that we have a sample of metric data actually lying
approximately on a m ≤ d dimensional linear manifold I ⊆ Rd of the finite
dimensional Euclidean space. In order to reduce the dimensionality of the data
it is sought to find a mapping from the original data space onto this manifold.

The article is organized as follows. Section 2 describes the considered set-up
while Section 3 explains the main ideas and steps of the proposed approach.
The formal description of the algorithm is given in Section 4. In Section 5 we
will demonstrate the features of the algorithm and its behavior by means of
some artificial test examples. Moreover we compare the results of SNGCA with
that of FastICA, which is an implementation of the Independent Component
Analysis (ICA) or Projection Pursuit (PP) method [12]. The performance of the
procedure is demonstrated by the analysis of data sets, obtained from simula-
tions of some realistic examples. In the appendix we present a short theoretical
study of some features of the SNGCA.

2 Theoretical Framework

We will now give a formal representation of the idea of low-dimensional infor-
mative data embedded in a high-dimensional noise and a short sketch of the
features of SNGCA. To this end, let us assume that we have N metric data
in Rd , given by a set of independent and identically distributed (i.i.d) random
variables {Xi}N

i=1 ∈ Rd . Let X denote the space of the data. Furthermore we
assume, that these random variables are distributed according to an unknown
density ρ(x) .

2.1 General setting of the method

In this section we specify the considered model and the problem on focus.

Semi-parametric framework: According to the very popular parametric
approach the density function ρ(x) belongs to a parametric family F =
{ρθ(x)} where θ is an finite dimensional parameter which uniquely identifies
ρ(x) . Then an algorithmic procedure to find a reliable value for an estimator
θ̂ of θ has to be applied to the data. However the execution time to evalu-
ate a multivariate density typically has an exponential growth in the number
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of dimensions [25]. Another drawback of parametric modelling is the require-
ment that both the structural model and the error distribution have to be
correctly specified. In order to avoid these drawbacks, we apply a more flexible
semi-parametric approach. More precisely, we combine a parametric form for
most of components of the data generating process with weak non-parametric
restrictions on the remainder of the data density.

Non-informative Gaussian components: As well as in NGCA [27] it is
assumed here, that the structure of a data set is represented by non-Gaussian
components of its density ρ(x) . The Gaussian components of ρ(x) are con-
sidered as entropy maximizing and consequently as non-informative noise [4].
It is well known that for many high-dimensional clouds of points, most low-
dimensional projections are approximately gaussian [5]. However, important
structure in the data set is often contained in a linear subspace which is the
affine hull of directions whose one-dimensional projected distribution is far from
normality. Note that the suggested way of treating the Gaussian distribution as
a noise exclude the use of the classical Principle Component Analysis (PCA)
for searching the informative components because PCA heavily relies on the
Gaussian distribution of the data and it looks at the directions with the largest
variance.

NGCA against ICA: Another popular way of reducing the complexity
of the model is the so called Independent Component Analysis (ICA). The
basic assumption behind this method is that the whole distribution can be
decomposed as a product of univariate ones. For identifiability reason all of
them out of maybe one should be non-Gaussian. Every non-Gaussian direction
can be identified by a local optimization over linear projection directions wrt.
some characteristic which quantifies a certain deviation from normality [25].
Popular examples are curtosis or negentropy, [12]. The methodological problem
with the ICA approach is the unrealistic product structure of the whole
distribution and the requirement of non-Gaussianity for all the components.

In comparison, NGCA [27] and proposed here SNGCA allow for cross-
dependence of the non-Gaussian components and for presence of a full dimen-
sional Gaussian part (noise). The only important assumption for the SNGCA
approach is that the non-Gaussian part is low dimensional, otherwise no dimen-
sionality reduction will be produced. Correspondingly, the target of the NGCA
is to ”kill the noise” rather than to describe the whole distribution. Projecting
the data onto a low-dimensional subspace means that the orthogonal comple-
ment to this subspace only contains a non-informative noise.

2.2 Semi-parametric framework

We will now introduce a semi-parametric framework, that allows to estimate
the target space I as well as to determine the intrinsic dimension of I .
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The realization of this search for non-Gaussian components depends on a
semi-parametric framework already presented in [27]. According to the semi-
parametric framework, we assume the following stationary data model. Let
X1, . . . , XN ∈ Rd be i.i.d. random observable, distributed according to a struc-
tured density of the following form:

ρ(x) = φµ,Σ(x)q(Tx). (2.1)

Here φµ,Σ denotes the density of the multivariate normal distribution N (µ,Σ)
with expectation µ ∈ Rd and covariance matrix Σ ∈ Rd×d . The function
q : Rm → R with m ≤ d has to be nonlinear and smooth. T : Rd → Rm is an
unknown linear operator with

I = Ker(T )⊥ = range(T>). (2.2)

(2.1) is not a unique representation. However the m -dimensional linear sub-
space I ⊂ Rd is uniquely defined by (2.2). I contains the non-Gaussian dis-
tributed data and is called the non-Gaussian subspace. By analogy with the
regression case [3, 19, 18], we may call I the effective dimension reduction
space (EDR-space) alternatively. We call m the effective or intrinsic dimen-
sion of the data. In many applications m is unknown and has to be recovered
from the data. Furthermore the semi-parametric assumption (2.1) can be re-
garded as the distribution of the low dimensional signal Z corrupted by a full
dimensional Gaussian noise εN :

X = Z + εN .

The next section motivates and describes the main steps of the proposed
SNGCA method.

3 SNGCA procedure

For simplicity we assume below that the mean of the data is zero. This is easily
achieved by removing the empirical mean from the data. In the sequel with
E[X] we denote the expectation in X and EN [·] denotes the empirical mean,
i.e. for any function f(x) on Rd we set

EN

[
f(X)

]
:=

1
N

N∑

i=1

f(Xi).

Next we will explain how elements β ∈ I can be estimated from the data
without estimating the parameters µ , Σ and q of ρ in (2.1).

3.1 Estimation of the vectors from non-Gaussian subspace

The whole approach of SNGCA is essentially based on the following theorem.
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Theorem 1. Let X follow the distribution with the density ρ(x) according to
(2.1) and let E[X] = 0 . Suppose that ψ ∈ C1(Rd,R) is a function1 fulfilling
the condition

γ(ψ) := E[Xψ(X)] = 0, (3.3)

Define

β(ψ) := Ex

[∇xψ(X)
]

=
∫
∇xψ(x) ρ(x) dx, (3.4)

where ∇xψ means the gradient of ψ in x. Then β(ψ) belongs to I . Moreover
if (3.3) is not fulfilled, then there is a β ∈ I such that

‖β(ψ)− β‖2 ≤ ε

where ε is the uniform error bound:

ε =
∥∥∥Σ−1

∫
xψ(x)ρ(x) dx

∥∥∥
2
. (3.5)

Hence the distance between β(ψ) and the non-Gaussian subspace I is uni-
formly bounded as given by (3.5).

Equivalently one can state the result (3.5) in the form

‖(1d −ΠI)β(ψ)‖2 ≤ ε

where 1d is the unit operator and ΠI is the orthogonal projector on I in
Rd . The proof of this theorem is given in the appendix.

The basic idea of the estimation procedure is the algorithmic realization of
(3.4) and (3.3) in Theorem 1. To fulfill (3.3), it was already suggested in [27]
to start from some smooth function h(x) and to build ψ(x) in the form
ψ(x) = h(x)−α>x from the data where the vector α is selected to provide the
condition EN [Xψ(X)] = 0 . A problem with this approach is that it requires
to operate with the empirical covariance matrix which can be a hard numerical
and analytical problem in the case of a big dimension d .

In this article we apply a slightly different approach: Theorem 1 relies on the
vectors γ(ψ) and β(ψ) which in turn depend on the unknown density ρ .
However, both vectors are integrals w.r.t. ρ . Therefore, they can be easily
estimated from the data by using their empirical counterparts:

γ̂(ψ) = EN [Xψ(X)] = N−1
N∑

i=1

Xiψ(Xi),

β̂(ψ) = EN∇ψ(X) = N−1
N∑

i=1

∇ψ(Xi).

1We assume here, that Cp(Rn,Rm) is the normed space of functions f : Rn → Rm which
are p -times continuous differentiable.
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To this end we will construct ψ(x) as a convex combination of smooth functions
from the data. Let {ωl}L

l=1 be a given set of unit vectors ωl ∈ Rd . Then define

ψh,c(x) :=
L∑

l=1

cl hωl
(x) (3.6)

where the vector of coefficients c = {cl}L
l=1 fulfills ‖c‖1 ≤ 1 . Moreover we chose

hω ∈ C1,1(Rd × Rd,R) of the form

hω(x) = h(ω>x)e−λ‖x‖2/2.

where ω ∈ Rd is a unit vector and λ > 0 . The function h ∈ C1,1(R,R) should
be informative wrt. non-Gaussian components. For example the non-Gaussian-
Gaussian distinction can be exploited using the higher moments of the data
distribution. The multiplier e−λ‖x‖2/2 ensures that hω(x) is bounded and
integrable w.r.t. the density ρ over the whole space Rd .

Now let h′ denote the derivative of h and let us define

ηωl
:= E

{∇xhωl
(X)

}
= E

{
ωlh

′(ω>l X)e−λ‖x‖2/2 − λXhωl
(X)

}

Then using definition (3.6) this yields

β(ψh,c) =
L∑

l=1

clE
{∇hωl

(X)
}

=
L∑

l=1

cl ηωl
. (3.7)

Similarly with γωl
:= E

{
Xhωl

(X)
}

γ(ψh,c) =
L∑

l=1

clE
{
Xhωl

(X)
}

=
L∑

l=1

cl γωl
. (3.8)

The data counterpart of these expressions playing the central role in the algo-
rithm of SNGCA is given by

γ̂ωl
= EN

{
Xhωl

(X)
}

=
1
N

N∑

i=1

Xihωl
(Xi)

η̂ωl
= EN

{∇hωl
(X)

}
= ωl

1
N

N∑

i=1

h′(ω>l Xi)− λγ̂l

β̂(ψh,c) =
L∑

l=1

cl η̂ωl
=

1
N

L∑

l=1

clωl

N∑

i=1

h′(ω>l Xi)− λ
L∑

l=1

cl γ̂l. (3.9)

We will describe in the next section how to determine the coefficients {cl}L
l=1

by means of a convex projection approach.
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Choice of h : One may consider different parameter-dependent families of
symmetric and non-symmetric, smooth functions h . For the numerical simula-
tions later shown in this article, we use the families

h(t) = tanh(t) (hyperbolic tangent)
h(t) = (1 + t2)−1 exp(t) (asymmetric Gauss).

Choice of the directions ω : The choice of these directions is crucial to
the algorithm because the estimated vectors β̂ are searched as aggregations of
the vectors ωl . We use a Monte-Carlo or quasi Monte-Carlo sampling from the
uniform distribution U(x) for ωl . Due to the sparsity of high dimensional data
this step becomes more and more computationally expensive with increasing
number of dimensions.

3.2 Convex projection

The approach described in the last section may lead to the following implemen-
tation of (3.4) and (3.3): with given vectors ω1, . . . , ωL , compute γ̂l and η̂l for
all l and consider the convex combinations β̂ =

∑
l cl η̂l under the constraint∑

l cl γ̂l = 0 . The vector β̂ is informative if its length is larger in order than
the accuracy of approximation ε . So, one may try to maximize the length of β̂
over the `1 -ball ‖c‖1 ≤ 1 under the constraint

∑
l clγ̂l = 0 . But this method

is not appropriate by two reasons: first, such a problem of maximization a
convex function over a convex set cannot be solved by a computation cheap
interior point method. Second, such a way focus on the major non-Gaussian
direction(s) and discards the less pronounced directions.

However a well known result from the empirical process theory claims that
γ̂ω approximates the unknown vector γω with the accuracy of order N−1/2 .
Moreover, this result can be stated uniformly over all ω from the unit ball
Bd in Rd , see Theorem 4 in the appendix. The same holds for the differences
η̂ω−ηω . The use of convex combinations ψh,c(x) =

∑
l h(ω

>
l x) allows to extend

this accuracy of approximation ε on the difference β̂(ψh,c) − β(ψh,c) . This
motives an alternative method to compute the empirical counterpart of β(ψh,c)
in (betaestim), called convex projection: For a given direction ξ consider an
optimization problem

min
‖c‖1≤1

∥∥∥ξ −
L∑

l=1

cl η̂l

∥∥∥
2

2
subject to

L∑

l=1

cl γ̂l = 0. (3.10)

Note that under the latter constraint, the sum
∑

l cl η̂l is a convex combination
of the vectors ωl , see (3.9). Moreover, it is well known [6, 7], [29, 34] that
such a convex optimization realizes a numerical stable, continuous shrinkage
technique and thus leads to a sparse solution in which only few coefficients cl
are different from zero. Consequently (3.10) suppresses directions ωl which are
uninformative about I. However it is a limitation of SNGCA that in the first
iteration k = 1 of SNGCA, ξ is randomly chosen from U(x) .
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In Theorem 2 from the appendix it is shown that the convexity condition∑
l cl ≤ 1 leads to the claims that there is a value ε =

√
C1/N for a fixed

constant C1 and a random set Aεr of a dominating probability such that
‖(1d −ΠI)β̂‖2 ≤ εr for all such constructed vectors β̂ . Consequently the idea
of the procedure is to repeat this construction for different combinations of
ξ, ω1, . . . , ωL leading to a family of estimated vectors β̂ . Each of this vectors
belong to the target space I up to an estimation error εr . Then the subspace
I can be recover from the set of β̂ ’s.

Obviously (3.10) is a non-smooth optimization problem. Since we are only in-
terested in the directions β̂ an equivalent but smooth and convex version of
(3.10) is given by

arg min
c−,c+

∥∥∥ξ −
L∑

l=1

c+l η̂l +
L∑

l=1

c−l η̂l

∥∥∥
2

2

such that
L∑

l=1

(c+l − c−l ) ≤ 1,

L∑

l=1

(c+l − c−l ) γ̂l = 0,

0 ≤ c+l , c
−
l .

The estimation procedure of elements from the target space described here
solves only this smooth problem. In the next section we will describe how
SNGCA aims to solve the remaining task of dimension reduction, the recon-
struction of a low dimensional linear subspace from the set of {β̂j}J

j=1.

3.3 Reduction of dimensionality

The first step of the SNGCA procedure consists in estimating the set of vectors
β̂j , j = 1, . . . , J . The basic property of these vectors is given by Theorem 2
of the appendix: with a dominating probability ‖(1d − ΠI)β̂‖2 ≤ ε for some
small ε . The next important step of the SNGCA procedure is to recover the
subspace I from the estimated vectors β̂j . This problem is a special case of
the so called Reduced Rank Regression (RRR) problem.

PCA solution: A standard and popular solution of the RRR problem is given
by minimizing the sum of orthogonal complements

∑J
j=1 ‖(1d −ΠI)β̂j‖2

2 over
all projectors ΠI of a given rank m , i.e.

Π̂I = arg min
ΠI

J∑

j=1

‖(1d −ΠI)β̂j‖2
2

s.t. rank(ΠI) = m.
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The solution of this problem is known as PCA solution and it is given by the
span

〈· · · 〉 of the first m eigenvectors of the matrix D̂ :=
∑J

j=1 β̂j β̂
>
j :

Î =
〈
first m eigenvectors of D̂

〉
.

Let βj be the vectors from I such that ‖β̂j − βj‖2 ≤ ε . The closeness of the
subspace I and its estimate Î can be measured by the error function

E(Î, I) := ‖ΠbI −ΠI‖2
Frob (3.11)

where ‖ · ‖Frob is the Frobenius norm.

However consider the matrix D =
∑J

j=1 βjβ
>
j . This matrix is of the rank

m(D) ≤ m . Simple algebra yields

‖D̂ −D‖2
2 = tr(D̂ −D)2 ≤ ε2.

Therefore, the matrix D can be well identified if its first mth eigenvalues fulfill
the condition

λm(D) > Jε2.

This condition is easily verified if some significant fraction of the vectors βj

are significant (informative) in the sense ‖βj‖2 ≥ κ with some fixed κ > 0 .
However, if the most of vectors βj are non-informative, the PCA solution is
very volatile. Moreover the larger is the number of non-informative vectors the
worse is the quality of recovering the subspace I . This drawback requires to
consider more robust estimates of I .

”Rounding ellipsoid” solution: Another way of recovering the subspace
I is given by the ”rounding ellipsoid” idea. Consider the symmetrized set of
estimators β̂j with j = 1, . . . , J :

S := {β̂1,−β̂1, β̂2,−β̂2, . . .}. (3.12)

In the direction orthogonal to the linear subspace I , this set expanded only
with the distance not larger than ε while the for the direction within I we
expect some informative vectors. This leads to the idea of building an ellipsoid
which contains S and hence its convex hull conv(S) and take its m largest
axes for estimating the subspace I . The problem of computing a minimum
volume enclosing ellipsoid (MVEE) of the symmetrized convex set conv(S)
can be considered as the problem of computing the Löwner-John ellipsoid:

Theorem 2. (Existence and Uniqueness) [13]
For every convex, bounded, centrally symmetric and non-empty set C there is
a unique ellipsoid E of minimum volume that covers C with the center at zero.
Moreover, the following Fritz-John-inequality holds:

d−1/2MVEE(C) ⊆ conv(C) ⊆MVEE(C).
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In the sequel let E√d denote the
√
d -rounding of the MVEE of S . This ellipsoid

is described by a matrix B̂ :

E√d := {x ∈ Rd : ‖B̂−1/2x‖2 ≤ 1} (3.13)

Finding the matrix B̂ is a convex optimization problem. The numerical
algorithm 4.2 to compute B̂ is presented in the next section.

However the numerical results indicate that with growing dimension, the frac-
tion of non-informative vectors β̂j increases. Furthermore due to the random
choice of the projected directions ξ the length of the informative vectors is no
longer correlated with small values of

‖(1d −ΠI)β̂(ψ)‖2

In higher dimensions this leads typically to the situation when some of the
longest semi-major axis of E√d are also non-informative and nearly orthogonal
to I . Motivated by this observation we propose to identify the semi-axis of E
close to I using statistical tests on normality.

Identifying the non-Gaussian subspace by statistical tests: Currently
the estimation procedure of the vectors β(ψh,c) itself does not allow the
identification of the semi-axis within the target space. Hence the basic idea
is to apply statistical tests on normality wrt. the significance level α to the
original data from Rd projected on every semi-axis of E√d . If the hypothesis
of normality is rejected wrt. the projected data, the corresponding semi-axis is
used as a basis vector for the reduced target space I .

Since statistical tests specialized for a certain deviation from the normal distri-
bution, are more powerful, we use different tests inside of SNGCA in order to
cope with different deviations from normality of the projected data. To be more
precise we use the K2 -test according to D’Agostino-Pearson [33] to identify a
significant asymmetry in the projected distribution and the EDF-test accord-
ing to Anderson-Darling [1] with the modification of Stephens [28], which is
sensitive to the tails of the projected distribution. In order to confirm these
test results from above we use the Shapiro-Wilks test [26] based on a regression
strategy in the version given by Royston [23, 24]. Once we have classified the
semi-axis of E√d as being close to the target space we can use the identified
subset of axis in the structural adaption step to be described in the next section.

3.4 Structural adaptation

The quality of recovering the target non-Gaussian subspace I heavily depends
on the quality of sampling the directions ξj and ωl . At the beginning of
algorithm, we have no prior information about I and therefore, sample them
randomly from the uniform law. However, the SNGCA procedure assumes
that the obtained estimated structure Î delivers some information about I
which can be used for improving the sample mechanism and therefore, the
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final quality of estimation. This leads to the structurally adaptation iterative
procedure [11]: the step of estimating the vectors {β̂j}J

j=1 and the step of
estimating subspace I are iterated, the estimated structural information given
by Î is used to improve the quality of estimating the vectors β̂j in the next
iteration of SNGCA which in turn allows to better estimate the target space I .

Statistically this structural adaptation idea is justified by Theorem 3 from the
appendix. If the sampling directions {ξj}J

j=1 and {ωl}L
l=1 are informative then

the corresponding vectors ηl = E∇hωl
(X) are expected to be informative as

well. This ensures that the vector β∗ =
∑

l c
∗
l ηl coming out of the ”ideal”

optimization problem:

{c∗l } = arg min
‖c‖1≤1

∥∥ξ −
L∑

l=1

cl ηl

∥∥
2

subject to
L∑

l=1

cl γl = 0

is also informative. The message of Theorem 3 is that in this situation the
estimated vector β̂ delivers as much information as β∗ up to a small error
of estimation. So, a successful sampling of the data space X increases the
fraction of informative vectors β̂j and hence, the final quality of estimating
the subspace I .

In our implementation, we sample a fraction of directions {ξj}J
j=1 and {ωl}L

l=1

due to the previously estimated ellipsoid B̂ and the other part randomly. The
fraction of the randomly selected directions decreases during iteration.

4 Algorithms

This section presents the formal description of the SNGCA algorithm.

4.1 Basic subprocedures of SNGCA

Whitening: As a preprocessing step the SNGCA procedure uses a compo-
nentwise whitening of the data. To this end let σ = (σ1, . . . σd) be the stan-
dard deviations of the data components of x1, . . . , xd . Then the componentwise
whitening of the data is done by

Yi = diag(σ)Xi

for i = 1, . . . , N .

Estimation of the vectors from non-Gaussian subspace: Here we re-
peat in more detail the estimation procedure already presented in section (3.1).
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Algorithm 4.1: Estimation(Y,L, J)

comment: linear estimation of β(ψ)

Sampling: choice of the measurement directions

Estimation:

for j = 1 to J

for l = 1 to L

Compute:

η̂jl = 1
N

∑N
i=1∇hωjl

(Yi)

γ̂jl = 1
N

∑N
i=1 Yihωjl

(Yi)

end loop on l

Convex projection:

Solve ĉj = arg min‖c‖1≤1 ‖ξj −
∑L

l=1 cjl η̂jl‖2
2

subject to
∑L

l=1 cjl γ̂jl = 0

Compute:

β̂j =
∑L

l=1 ĉjl η̂jl

end loop on j

In the sequel we will call the directions ωl and ξj the measurement directions.

Reduction of dimensionality: Let us consider again the symmetrized
set S = {β̂1,−β̂1, β̂2,−β̂2, . . .} already defined in (3.12). From theorem 2 we
know that there is a minimum volume ellipsoid E , that covers conv(S) . For
a polytope conv(x1, x2, . . .) of given points x1, x2, . . . the MVEE and the
maximum volume inscribed ellipsoid (MVIE) are affine invariant. In this case
the computation of the MVEE can be reduced to the computation of the
MVIE [16]. Even though the latter problem can be solved using interior-point-
methods in O(d3 logN) iterations, their use is advisable only in the case of a
full-dimensional ellipsoid [30].

However we expect the computation of the MVEE to be numerically bad con-
ditioned. Hence SNGCA uses a regularized version of an algorithm recently
proposed in [21] to compute an approximation of the MVEE. For convenience
we repeat that algorithm here:
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Algorithm 4.2:
√
d -Rounding({β̂j}J

j=1)

comment: computation of the
√
d -rounding of the MVEE

Let δk∗
i = max1≤j≤J 〈β̂j , B̂iβ̂j〉 and set νi = δk∗

i d−1 . Let B̂0 be the

inverse empirical covariance matrix of the β̂j and set ti = νi

(δk∗
i d−1−1)

.

Let i be the index of the loop.

while

if δk∗
i ≤ C · d , where 1 ≤ C is a tuning parameter

then stop the loop

else





compute the updates:

xi = B̂iβ̂k∗

B̂i+1 = 1
1−ti

(
B̂i − ti

1+νi
xix

>
i

)

δk∗
i+1 = 1

1−ti

(
δk∗
i − ti

1+νi
〈β̂k∗ , xi〉2

)

The next algorithm (4.3) reports the pseudocode for constructing a basis of the
target space from the estimated elements:

Algorithm 4.3: DimensionReduction(B̂, α)

comment: discard elements from the basis of eigenvectors of B̂

Let V̂ be the matrix of eigenvectors v̂i from B̂ computed
according to algorithm 4.2.

for i = 1 to d

do
{

Project the data orthogonal on v̂i .
Compute tests on normality of the projected data.

Discard every eigenvector with associated normal distributed
projected data.

The reduction of the dimensionality described above allows us to restart the
algorithm wrt. to an already identified estimator Î .
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Structural Adaption: In algorithm 4.1 we start with a random initialization
of the non-parametric estimator (3.9) by means of a Monte-Carlo sampling of
the directions ωjl and ξj containing only rough and poor information about
the image of the operator T in (2.1). However we can use the result of the first
iteration j = 1 of SNGCA in order to accumulate information about I in a
sequence Î1, Î2, . . . of estimators of the target space as described in section 3.4.
The procedure is described in detail in the pseudocode of algorithm 4.4.

Algorithm 4.4: StructualAdaption(B̂, n1, n2, J, L)

comment: structural adaption of the estimation of β(ψh)

Let V̂ be the matrix of eigenvectors v̂i from B̂ and suppose
that there are already k iterations completed.

For the initialization of iteration k + 1 choose random numbers
zj,1, . . . , zj,m and ul,1, . . . , ul,m from U[−1,1] and set

ξj :=
∑m

s=1 zj,sv̂is for 1 ≤ j ≤ n1 < J
ωl :=

∑m
s=1 ul,sv̂is for 1 ≤ l ≤ n2 < L

Then define ωL−n2 , . . . , ωL and ξJ−n1 , . . . , ξJ analogous to the
case k = 1 . Now compose the sets

{ξ(k)
1 , . . . , ξ

(k)
n1 , ξ

(k)
n1+1, . . . , ξ

(k)
J }

{ω(k)
1 , . . . , ω

(k)
n2 , ω

(k)
n2+1, . . . , ω

(k)
L }

for the initialization in the case k = k + 1 . Moreover we choose
n1 = kd and n2 = kd until n1 > J − d or n2 > L− d . In this case
we set n1 = J − d or n2 = L− d for every iteration k = k + 1 .

In the sequel we call that part of measurement directions which are chosen by
a Monte-Carlo method the Monte-Carlo-part.

In the next section we will describe, how SNGCA makes use of the algorithms
4.1, 4.3 and 4.4 in order to realize an iterative estimation procedure of I . We
will close the following subsection by demonstrating the improvement of the
estimation error between subsequent iterations of SNGCA.

4.2 Full description

For convenience we will now give a detailed description of the complete SNGCA
algorithm. The choice of the parameters will be explained in the sequel.
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Input: Data points (Xi)N
i=1 ∈ Rd

Parameters: numbers J , L of measurement directions; significance level α

Whitening:
The data (Xi)N

i=1 are recentered by subtracting the empirical mean. Let
σ = (σ1, . . . σd) be the standard deviations of the components of Xi . Then
Yi = diag(σ)Xi denotes the componentwise empirically whitened data.

Main Procedure: (Loop on k )

Sampling:
The components of the Monte-Carlo-parts of ξ(k)

j and ω
(k)
jl are randomly

chosen from U[−1,1] . The other part of the measurement directions
are initialized according to the structural adaption approach described
in algorithm 4.4. Then ξ

(k)
j and ω

(k)
jl are normalized to unit length.

Estimation:
Loop on j = 1, . . . , J :

Loop on l = 1, . . . , L : Compute the estimators

η̂jl =
1
N

N∑

i=1

∇hωjl
(Yi) γ̂jl =

1
N

N∑

i=1

Xihωjl
(Yi)

End Loop on l .

Compute the coefficients {cl}L
l=1 by solving the second-order

conic optimization problem (SOCP) (3.10):

min q s.t.

1
2
‖z‖2 ≤ q ,

L∑

l=1

(c+l − c−l )η̂jl − z = ξj

L∑

l=1

(c+l − c−l )γ̂jl = 0 ,
L∑

l=1

(c+l − c−l ) ≤ 1

0 ≤ c+l , c
−
l ∀l

End Loop on j .

Compute the estimator β̂j =
L∑

l=1

(ĉ+l − ĉ−l )η̂jl .

Dimension reduction:
Compute the symmetric matrix B̂ defining the approximation of
the Löwner-John ellipsoid E in (3.13) according to algorithm 4.2.
Reduce the basis of X according to algorithm 4.3.

Output: Î

Figure 4.1: Pseudocode of the full SNGCA algorithm.
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Choice of parameters: One of the advantages of the algorithm proposed
above is the fact that there are only a few tuning parameters.

i) Suppose now that ωi is an absolute continuous random variable with
ωi ∼ U[−1,1] . Without loss of generality we set e = (1, 0, . . . , 0) . Due to
the normalization of (ω1, . . . , ωd) , it holds:

P
(|(ω1, . . . , ωd)>e| ≥ 0.5

)
=

(√
d
)−1

However the choice of J and L heavily depends on the non-gaussian
components. In the experiments we use 7d ≤ J ≤ 18d and 6d ≤ L ≤ 16d .

ii) Set the parameter of the stopping rule to δ = 0.05 .

iii) Set the constant in the stopping rule for the computation of the MVEE
to C = 2 .

iv) Set the significance level of the statistical tests to α = 0.05 .

v) The tuning parameter χ in the dimension reduction step is set to χ = 3 .

Stopping criterion: Suppose that I is apriori given. Then the convergence
of SNGCA can be measured according to the criterion (3.11). More precisely
we assume convergence if the improvement of the error measured by (3.11)
from one iteration to the next one is less than δ percent of the error in the
former iteration.

Suppose now that I is unknown. Then compute the maximum angle θ between
the subspaces specified by the matrix of eigenvectors V (k) =

[
v̂

(k)
1 , v̂

(k)
2 , . . .

]
and

V (k+1) =
[
v̂

(k+1)
1 , v̂

(k+1)
2 , . . .

]
given by

cos(θ) = max
x,y

|x>V (k)>V (k+1)y|
‖V (k)x‖2 ‖V (k+1)y‖2

The algorithm stops if the change of the subspace angle is less than δ percent.

Complexity: Let us now estimate the arithmetical complexity of SNGCA.
We restrict ourselves to the leading polynomial terms of the complexity of
corresponding computations counting only the multiplications.

1. The numerical effort to compute ηjl and γjl in algorithm 4.1 heavily
depends on the choice of h(ω>x) . Let h(ω>x) = tanh(ω>x) . Then this
step takes O(J(logN)2N2) operations.

2. Algorithm 4.2 takes O(d22J log(2J)) operations [21].

3. For the optimization step in 4.1 we use a commercial solver 2 based on
an interior point method. The constrained convex projection solved as an
SOCP takes O(d2n3) operations there n is the number of constraints.

2http://www.mosek.com
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4. The computation of the statistical tests in one dimension: Let N de-
note the number of samples. D’Agostino-Pearson-test needs O(N3 logN)
and the Anderson-Darling-test O((logN)2N2) operations. The test of
Shapiro-Wilks takes O(N2) . In order to avoid robustness problems [15]
in SNGCA the number of samples is limited to N ≤ 1000 . For larger
data sets, N = 1000 points are randomly chosen.

5. The computation of the entropy estimator takes only O(N logN) oper-
ations [17].

Hence the SNGCA procedure computes an estimate Î of I in
O(J(logN)2N2 + d22J log(2J)) arithmetical operations in each iteration.

Illustration of one-step-improvement: We will now illustrate the iterative
gain of information about the EDR space. To this end we use the projection of
β̂j to the EDR-space in order to demonstrate, how the algorithm works.

Figure 4.2: illustrative plots of SNGCA applied to toy 20 dimensional data of type (C) (see

section 5): We show ‖bβ‖ vs. cos(θ(bβ, I)) for different iterations of the algorithm where I is
the apriori known EDR-space.

Figure 4.2 shows that dist(β̂, Î) decreases with increasing number of iterations.
As expected we observe, that estimators β̂ with higher norm tend to be close to
I . Nevertheless this can not be assured for much higher dimensions. Moreover
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improvement in each iteration heavily and hence depends on the size of the
MC-sampling of the measurement directions.

5 Numerical results

The aim of this section is to compare SNGCA with other statistical methods
of dimension reduction. The reported results from Projection Pursuit (PP) and
NGCA were already published in [27].

5.1 Synthetic Data

Each of the following test data sets includes 1000 samples in 10 dimension
and each sample consists of 8 -dimensional independent, standard and homo-
geneous Gaussian distributions. The other 2 components of each sample are
non-Gaussian with variance unity. The densities of the non-Gaussian compo-
nents are chosen as follows:

(A) Gaussian mixture: 2 -dimensional independent Gaussian mixtures with
density of each component given by 0.5 φ−3,1(x) + 0.5 φ3,1(x) .

(B) Dependent super-Gaussian: 2 -dimensional isotropic distribution with
density proportional to exp(−‖x‖) .

(C) Dependent sub-Gaussian: 2 -dimensional isotropic uniform with con-
stant positive density for ‖x‖2 ≤ 1 and 0 otherwise.

(D) Dependent super- and sub-Gaussian: 1 -dimensional Laplacian with
density proportional to exp(−|xLap|) and 1 -dimensional dependent uni-
form U(c, c+1) , where c = 0 for |xLap| ≤ log(2) and c = −1 otherwise.

(E) Dependent sub-Gaussian: 2 -dimensional isotropic Cauchy distribu-
tion with density proportional to λ(λ2 − x2)−1 where λ = 1 .

That means, that the non-normal distributed data are located in a linear
subspace.

In the sequel we compare SNGCA with PP and NGCA using the test data
sets from above and the estimation error defined in (3.11). Each simulation
is repeated 100 times. All simulations are done with the index tanh . Since
the speed of convergence varies with the type of non-Gaussian components
we use the maximum number maxIter = 3log(d) of allowed iterations to
stop SNGCA. In the experiments the error measure E(Î, I) is used only to
determine the final estimation error. All simulations other than whose wrt.
model (C) are computed with a componentwise pre-whitening.

Figure 5.1 illustrates the densities of the non-Gaussian components of the test
data. For all numerical experiments reported in this article the dimension of
the target space I is apriori given as a tuning parameter for the algorithm.
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Figure 5.1: densities of the non-Gaussian components: (A) 2D independent Gaussian mixtures,
(B) 2D isotropic super-Gaussian, (C) 2 d isotropic uniform and (D) dependent 1 d Laplacian
with additive 1D uniform, (E) 2 d isotropic sub-Gaussian

Since the optimizer used in PP tends to trap in local a minimum in each of
the 100 simulations, PP is 10 times restarted with random starting points. The
best result wrt. (3.11) is reported as the result of each PP-simulation. In all
simulations the number of non-Gaussian dimensions is apriori given. In the next
figure 5.2 we present boxplots of the error (3.11) of the methods PP, NGCA
and SNGCA.
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(A) (B)

(C) (D)

(E)

Figure 5.2: performance comparison in 10 dimensions of PP and NGCA versus SNGCA (wrt.

the error criterion E(bI, I) ) using the index tanh(x) . The doted line denotes the mean, the
solid lines the variance of (3.11).

Concerning the results of SNGCA on the data sets (A) and (D) we observe
a slightly inferior performance compared to NGCA. In case of model (A) this
is due to the fact that most of the data projections have almost a Gaussian
density. Consequently the decrease of the estimation error is slow with increas-
ing number of iterations. In case of the model (D) the higher variance of the
results indicate that the initial MC-sampling of the data sets gives a poor re-
sult. Consequently more iterations are needed to get an estimation error with
is comparable to the result of NGCA. The smallest possible error of SNGCA
heavily depends on the quality and the size of the initial MC-sampling as well as
on the number of allowed iterations. In order to illustrate this interpretation we
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report the progress of SNGCA wrt. estimation error E(I, Î) in each iteration
for every test model.

j µε σ2
ε

1 0.232504 0.045787
2 0.163022 0.072263
3 0.066537 0.032436
4 0.009380 0.021975
5 0.002359 0.000853

j µε σ2
ε

1 0.30350 0.175313
2 0.144430 0.057856
3 0.088142 0.015168
4 0.041420 0.008197
5 0.026436 0.000917

(A) (B)

j µε σ2
ε

1 0.040556 0.004215
2 0.016012 0.002441
3 0.012427 0.001105
4 0.008874 0.000169
5 0.003770 0.000125

j µε σ2
ε

1 0.203419 0.044672
2 0.023023 0.000314
3 0.019960 0.000211
4 0.012709 0.000197
5 0.009343 0.000127

(C) (D)

j µε σ2
ε

1 0.2762e-3 0.1371e-6
2 0.0450e-3 0.0031e-6
3 0.0416e-3 0.0033e-6
4 0.0360e-3 0.0014e-6
5 0.0287e-3 0.0024e-6

(E)

Table 5.1: Progress of SNGCA for test models in 10 dimensions with increasing number j

of iterations. The empirical mean of the error E(bI, I) defined in (3.11) is denoted by µε and
σ2

ε is its empirical variance.

Now let us switch to the question of robustness of the estimation procedure with
respect to a bad conditioning of the covariance matrix Σ of the data. In figure
5.3 we consider the same test data sets as above. The non-Gaussian coordi-
nates always have variance unity, but the standard deviation of the 8 Gaussian
dimensions now follows the geometrical progression 10−r, 10−r+2r/7, . . . , 10r

where r = 1, . . . , 8 . Again we apply a componentwise whitening procedure to
the data from the models (A), (B), (D), (E).
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Figure 5.3: results wrt. E(bI, I) with deviations of Gaussian components following a geomet-
rical progression on [10−r, 10r] where r is the parameter on the abscissa) .

We observe that the condition of the covariance matrix heavily influences the
estimation error for the methods NGCA and PP(tanh). In comparison SNGCA
is independent of differences in the noise variance along different direction in
most cases. Only the detection of the uniform distribution by SNGCA is in-
fluenced by the condition of Σ . The next figure 5.4 compares the behavior of
SNGCA compared with PP and SNGCA as the number of standard and ho-
mogeneous Gaussian dimensions increases. As described above we use the test
models with 2 -dimensional non-Gaussian components with variance unity. We
plot the mean of errors E(Î, I) over 100 simulations wrt. the test models (A)
to (E).
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Figure 5.4: results wrt. E(bI, I) with increasing number of gaussian components.

Again concerning the mean of errors E(Î, I) over 100 simulations of PP and
NGCA we find a transition in the error criterion to a failure mode for the test
models (A), (C) between d = 30 and d = 40 and between d = 20 and d = 30
respectively. For the test models (B),(D) and (E) we found a relative continuous
increase in E(Î, I) for the methods PP and NGCA. In comparison SNGCA fails
to analyze test model (A) independently from the size of the MC-sampling, if
the dimension increase d = 12 . Concerning test model (B) there is a sharp
transition in the simulation result between d = 35 and d = 40 .

Failure modes: In order to provide a better insight into the details of
the failure modes we present box plots of the error criterion E(Î, I) in the
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transitions phase wrt. the models (A) and (B).

Figure 5.5: failure modes of SNGCA - upper figure: model (A) - lower figure: model(B)

Figure 5.5 demonstrates the differences in the transition phases of model (A)
and (B) respectively. The transition phase of SNGCA is characterized by high
variance of the estimation error. For model (A) the increase of the variance σ2

E
of the error E(Î, I) beginning at dimensions 13 and its decrease beginning
at dimension 15 indicates that a sharp transition phase is happens in the
interval [13, 15] . For higher dimensions iterations of SNGCA have a decreasing
effect on the estimation result. This indicates that by the MC-sampling of the
measurement directions, we can not detect the non-Gaussian components of
the data density. For model (B) the transition phase starts at dimension 35
and ends at dimension 43 .

Moreover the decrease of σ2
E towards higher dimensions and the increase of

the mean of E(Î, I) is much slower. This indicates that the non-Gaussian
components of the data density might be detectable if we would allow much
more iterations of SNGCA and an enlarged size of the set of measurement
directions. This observation motivates the interpretation that the Monte-Carlo
sampling is a very poor strategy which fails to provide sufficient information
about the Laplace distribution in high dimensions. Currently the performance of
SNGCA is limited by the Monte-Carlo sampling of the measurement directions.
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5.2 Application to real life examples

We consider a simulating of a mixture of oil and gas flowing under high
pressure through a pipeline. Under these physical conditions different phases
of the oil-gas-mixture may exist at the same time in the phase space Γ. Only
some of these phase configurations in Γ are stable over long periods of time.
Consequently one expects some clusters of points in Γ indicating the physical
state of the mixture. The 12 -dimensional data set, obtained by numerical
simulations of a stationary physical model, was already used before for testing
techniques of dimension reduction [2]. The data set comes with a subset of
training data and a subset of test data. The length of the time series is 1000
in each dimension.

The task with this data is to find the clusters representing the stable configu-
rations in the training data set. It is not known a priori if some dimensions are
more relevant than others. However is known apriori that the data is divided
into 3 classes, indicated by different shapes of the data points.

The cluster information is not used in finding the EDR-space. Again we compare
SNGCA with NGCA and PP using the tanh index. For PP and NGCA the
results are shown in figure 5.6. They were already published in [27].

Figure 5.6: left: 2D projection of the ”oil flow” data manually chosen from 3D projection
obtained from by vanilla FastICA methods using the tanh index - right: projection obtained
by NGCA using a combination of Fourier, tanh, Gauss-pow3 indices

Figure 5.6 shows a slice through Γ such that the structure in the data set
become visible: Using NGCA we can distinguish 10 − 11 clusters versus at
most 5 for the PP method with index tanh.

For the SNGCA method the results are shown in the figure 5.7. SNGCA iden-
tifies 3 non-Gaussian dimensions. All figures are rotated by hand such that the
separation of the cluster is illustrated at best. The next figure 5.7 shows the
result of the oil-flow data obtained from SNGCA using a combination of the
tanh and the asymmetric Gauss index. In this case we can distinguish 10− 11
clusters versus at most 5 for the PP methods. Moreover we confirm the result of
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Figure 5.7: phase configurations of the ”oil flow” data with apriori cluster mapping induced by
crosses, circles and triangles obtained by SNGCA using a combination of asymmetric-Gauss
and the tanh index

NGCA on the data set. The clusters are clearly separated from each other on the
SNGCA projection. Only on the PP projection they are partially confounded in
one single cluster. By applying the projection obtained from SNGCA to the test
data, we found the cluster structure to be relevant. We conclude that SNGCA
gives a more relevant estimation of I than PP. However it is found that the
family of functions hω(x) is an important tuning parameter in SNGCA: If we
use only the tanh-index, we found only 6-7 cluster are identified and they are
partially confounded. Hence a combination should be used in order to cope with
symmetric data distributions.

6 Conclusion

We proposed a slightly more sophisticated approach to non-Gaussian com-
ponent analysis as already proposed in [27]. As well as NGCA the suggested
method is based on a semi-parametric framework for separation an un-
interesting multivariate Gaussian noise subspace from a linear subspace,
where the data are non-Gaussian distributed. Both methods assume that the
non-Gaussian contribution to the data density contains the structure in a
given data set. The combined strategy of convex projection and structural
adaption provides promising results of SNGCA. Moreover SNGCA provides an
estimate for the dimension of the non-Gaussian subspace. However the method
is limited by the quality and the computational effort of Monte-Carlo sampling
of the measurement directions.
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A Statistical tests

In this section we shortly report the statistical tests on normality used the
dimension reduction step of SNGCA (see section 3.3).

In order to detect a significant asymmetry in the distribution of the original
data projected on the semi-axis of the numerical approximation of the rounding
ellipsoid E√d we use the K2 -test according to D’Agostino-Pearson [33]. The
D’Agostino-Pearson test computes how far the empirical skewness and kurtosis
of the given data distribution differs from the value expected with a Gaussian
distribution. The test statistic is approximately distributed according to the
χ2

2 -distribution and its empirical data counterpart is given by

K̂2 = Z2(
√
b1) + Z2(b2)

√
b1 = 1

N

∑N
i=1

(
Xi−µ

σ

)3

b2 = 1
N

∑N
i=1

(
Xi−µ

σ

)4

Here µ denotes the empirical mean, σ the empirical standard deviation of the
data and Z(·) denotes a normalizing transformations of skewness and kurtosis
and. The test is more powerful wrt. an asymmetry of a distribution.

Furthermore we use the EDF-test according to Anderson-Darling [1] with the
modification of Stephens [28]: Let FN be the empirical cumulative distribution
function and F the assumed theoretical cumulative distribution function. The
test statistics T measures the quadratic deviations between FN and F :

T =
∫

R
[FN (x)− F (x)]2ν(x) dF

where ν(x) is the weighting function ν(x) = [FN (x)(1 − FN (x))]−1 . In sum
the data counterpart of T is given by

T̂ = c

(
−N −∑N

i=1
[2i−1]

N

[
log(F

(
Xi−µ

σ

)
+ log(1− F

(
XN−i+1−µ

σ

)])

c =

(
1 + 0.75

N + 2.25
N2

)
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Again µ is the empirical mean and s the empirical standard deviation of the
data. We compute T̂ to detect deviations from normality in the tails of the
projected distributions. The test is rejected if T̂ exceeds a critical value cv
specific for a given level of significance:

α : 0.10 0.05 0.025 0.01 0.005
cv : 0.631 0.752 0.873 1.035 1.159

The last test, applied to the projected data is the Shapiro-Wilks test [26] based
on a regression strategy in the version given by Royston [23, 24]:

W =

([
1− b2

σ2(N−1)

]λ
− µ

)

σ
∼ N (0, 1)

b =
N/2∑

i=1

aN−i+1(XN−i+1 − xi)

(a1, . . . , aN ) =
m>Σ−1

(m>Σ−1>Σ−1m)1/2

In this test m = (m1, . . . ,mn) denote the expected values of standard normal
order statistics for a sample of size N and Σ is the corresponding covariance
matrix.

B Theoretical study

In this appendix we will give the proofs of the theorems used in this article.

Theorem 1. Let X follow the distribution with the density ρ(x) according to
(2.1) and let EX = 0 . Suppose that ψ ∈ C1(Rd,R) is a function fulfilling the
condition

γ(ψ) := E[Xψ(X)] = 0, (B.14)

Define

β(ψ) := E∇ψ(X) =
∫
∇ψ(x) ρ(x) dx, (B.15)

where ∇xψ means the gradient of ψ . Then β(ψ) belongs to I . Moreover if
(B.14) is not fulfilled, then there is a β ∈ I such that

‖β(ψ)− β‖2 ≤ ε

where ε is the uniform error bound:

ε =
∥∥∥Σ−1

∫
xψ(x)ρ(x) dx

∥∥∥
2
. (B.16)

Hence the distance between β(ψ) and the non-Gaussian subspace I is uni-
formly bounded as given by (B.16).
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Proof. (2.1) and the identity

∇x log
[
φµ,Σ(x)

]
= −Σ−1(x− µ)

imply

−
∫
ψ(x)

[∇ log(ρ(x))
]
ρ(x) dx =

−
∫
ψ(x)

[∇ log(q(Tx))
]
ρ(x) dx−

∫
ψ(x)

[∇ log(φµ,Σ(x))
]
ρ(x) dx =

−
∫
ψ(x)T>q′(Tx)φµ,Σx dx+

∫
ψ(x)Σ−1(x− µ)ρ(x) dx

where q′(x) denotes the gradient of q(x) . The vector β(ψ) with

β(ψ) := −T>
∫
ψ(x)q′(Tx)φµ,Σ(x) dx

obviously belongs to I . Suppose now the condition (B.14) is fulfilled. Then it
holds that

Σ−1

[∫
xψ(x)ρ(x) dx− µ

∫
ψ(x)ρ(x) dx

]
= 0

Thus we know that β(ψ) ∈ I . Otherwise if the condition (B.14) is not fulfilled,
we it follows from from (B.17) that there is a β ∈ I such that

‖β(ψ)− β‖2 =
∥∥∥Σ−1

∫
(x− µ)ψ(x)ρ(x) dx

∥∥∥
2
. (B.17)

Let u ∈ Rd . Then it holds that
∫
ψ(x+ u)ρ(x) dx =

∫
ψ(x)ρ(x− u) dx (B.18)

Using the regularity conditions on ψ and ρ , we differentiate (B.18) with re-
spect to u and use the identity

∇ log(ρ(x)) =
[∇ρ(x)]ρ(x)

This yields:
∫
ρ(x)∇ψ(x) dx = −

∫
ψ(x)

[∇ log(ρ(x))
]
ρ(x) dx

From this consideration we get an equivalent expression for β(ψ) :

β(ψ) =
∫

[∇ψ(x)]ρ(x) dx
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B.1 Estimation accuracy

This section presents some upper bounds on the accuracy of approximating
the target non-Gaussian subspace I by the vectors β̂ which come out of our
algorithm.

By Bd we denote the unit ball in Rd . Let h(ω, x) be a continuously differ-
entiable function of ω ∈ Bd and x ∈ Rd such that h(ω, x) , ∇xh , ∇ωh and
∇ω∇xh are uniformly continuous and bounded on Bd × Rd and let some set
of unit vectors ω1, . . . , ωL and also a unit vector ξ be given. Consider the
optimization problem

{ĉl} = arg min
‖c‖1≤1

∥∥ξ −
∑

l

cl η̂l

∥∥
2

subject to
∥∥∑

l

cl γ̂l

∥∥
2

= 0 (B.19)

where
∑

l means
∑L

l=1 in the sequel. We are interested to bound the distance
of β̂ from the target space I . This distance is naturally measured by the value
‖(1d −ΠI)β̂‖2 . Again ΠI means the orthogonal projector on I .

Theorem 2. There is a constant C1 depending on function h and the dimen-
sion d only such that

E‖(1d −ΠI)β̂‖2
2 ≤ C1/N .

Proof. For the proof we apply one result from the theory of empirical processes
given in Theorem 4 below in the appendix. Corollary (B.21) of this theorem
applied to every coordinate of the vectors γ̂l yields in the obvious way that

Emax
l
‖γ̂l − γl‖2

2C0/N.

This yields for any c ∈ RL with ‖c‖1 ≤ 1

E
∥∥∥
∑

l

cl γ̂l −
∑

l

cl γl

∥∥∥
2

2
≤ C0/N.

Similarly

E
∥∥∥
∑

l

cl η̂l −
∑

l

cl ηl

∥∥∥
2

2
≤ C0/N. (B.20)

For the solution ĉ of (B.19) this yields in view of the constraint
∑

l clγ̂l = 0
that

E
∥∥∥
∑

l

ĉl γl

∥∥∥
2

2
≤ C0/N.

The result of Theorem 1 ensures that

E
∥∥∥(1d −ΠI)

∑

l

ĉl ηl

∥∥∥
2

2
≤ C0‖Σ−1‖.

This yields the result in view of (B.20).
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B.2 Significance bound

Unfortunately the result of Theorem 2 only explains the distance from the
constructed vector β̂ from the target space and tells nothing about the
projection of β̂ onto I . In particular, if this projection is small then the
vector β̂ is not informative.

Now we aim to present a result which gives some sufficient conditions for vector
β̂ to be informative. Consider the couple of optimization problems

{c∗l } = arg min
‖c‖1≤1

∥∥ξ −
∑

l

cl ηl

∥∥
2

subject to
∥∥∑

l

cl γl

∥∥
2

= 0,

{ĉl} = arg min
‖c‖1≤1

∥∥ξ −
∑

l

cl η̂l

∥∥
2

subject to
∥∥∑

l

cl γ̂l

∥∥
2
≤ εr

where εr ≥ 0 is a relaxation parameter. The second problem can be viewed
as the empirical counterpart of the first one. Define also β∗ =

∑
l c
∗
l ηl . By

Theorem 1 β∗ belongs to the non-Gaussian space I . The vector β∗ is the
convex projection of ξ onto I . It is natural to measure the significance of β∗

by the value ‖ξ−β∗‖2 : β∗ is significant if ‖ξ−β∗‖2 ≤ 1− δ for some δ which
is larger in order than εr . Alternatively, ‖ΠI(ξ−β∗)‖2 can be considered. Here
significance means that ‖ΠIξ‖2 ≥ δ and ‖ΠI(ξ − β∗)‖2 ≤ (1− δ)‖ΠIξ‖2 . The
next result shows that if β∗ is significant, then β̂ is significant as well.

Theorem 3. Let Aεr be a random set on which

max
l
‖γl − γ̂l‖2 ≤ εr, max

l
‖ηl − η̂l‖2 ≤ εr.

Then

‖ξ − β̂‖2 ≤ ‖ξ − β∗‖2 + εr,

‖ΠI(ξ − β̂)‖2 ≤ ‖ΠI(ξ − β∗)‖2 + (1 + C1)εr.

Proof. Observe that on Aεr the solution c∗ = {c∗l } of the “ideal” optimization
problem fulfills the constraint of the empirical one. Indeed,

∥∥∥
∑

l

c∗l γ̂l

∥∥∥
2

=
∥∥∥
∑

l

c∗l (γ̂l − γl)
∥∥∥

2
≤ εr.

Therefore,
∥∥∥ξ −

∑

l

ĉl η̂l

∥∥∥
2
≤

∥∥∥ξ −
∑

l

c∗l η̂l

∥∥∥
2
.

because ĉ is the minimizer of such norm. It remains to mention that on Aεr∥∥∥ξ −
∑

l

c∗l η̂l

∥∥∥
2
−

∥∥∥ξ −
∑

l

c∗l ηl

∥∥∥
2
≤

∥∥∥
∑

l

c∗l (η̂l − ηl)
∥∥∥

2
≤ εr

and hence, for β̂ =
∑

l ĉl η̂l

∥∥ξ − β̂
∥∥

2
≤ ∥∥ξ − β∗

∥∥
2
+ εr

and the first assertion follows. For second one use additionally that (1d −
ΠI)β∗ = 0 and ‖(1d−ΠI)β̂‖2 ≤ C1εr on Aεr , see the proof of Theorem 2.
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B.3 Uniform error bound

Here we present one useful result from the empirical process theory and some its
corollaries. Similar statements under a bit different assumptions can be found
e.g. in [31].

Theorem 4. Let f(ω, x) be a continuously differentiable function of ω ∈ Bd

and x ∈ Rd such that f(ω, x) and ∇ωf(ω, x) are uniformly continuous and
bounded on Bd × Rd . Define

ζ(ω) = N1/2
{
ENf(ω,X)− Ef(ω,X)

}

and ζ(ω, ω′) = ζ(ω)− ζ(ω′) . Then there are two constants n0 > 0 and λ∗ > 0
such that for any ω◦ ∈ Bd and any µ > 0 , λ ≤ λ∗

logE exp
[λ
µ

sup
ω∈B(µ,ω◦)

ζ(ω, ω◦)
]
≤ n0λ

2 + ed

where B(µ, ω) = {ω′ : ‖ω − ω′‖2 ≤ µ} and ed =
∑∞

k=1 2−k log(2kd) .

Before proving this result, we present some useful corollaries. As application
with µ = 1 and ω◦ = 0 yields the bounded exponential moments for the
supremum of differences ζ(ω, ω◦) over all ω ∈ Bd . This immediately implies
the result about the supremum of the ζ(ω) :

E
∣∣ sup
ω∈Bd

ζ(ω)
∣∣2 ≤ C0 (B.21)

for some fixed constant C0 .

Proof. Define for ω, ω′ ∈ Bd

ξ(ω, ω′) =
ζ(ω, ω′)
‖ω − ω′‖2

.

With u = (ω − ω′)/‖ω − ω′‖

ξ(ω, ω′) =
∫ 1

0
u>∇ζ(ω + tu)dt.

The conditions of the theorem easily imply that there is some λ1 > 0 such that
for any λ ≤ λ1 and any unit vectors u and ω

g(λ;ω, u) := logE exp
[
λu>{∇ωf(ω,X1)− E∇ωf(ω,X1}

]
≤ n0λ

2

where n0 depends only on λ1 and on the upper bound of the gradient
∇ωf(ω, x) . Indeed, it suffices to note that g(λ;ω, u) is analytic in λ and sat-
isfies g(0;ω, u) = 0 and g′λ(0;ω, u) = 0 . Independence of the Xi ’s yields for
λ ≤ λ1N

1/2

logE
{
expλu>∇ζ(ω)

}
= Ng(λN−1/2;ω, u) ≤ Nn0 (λN−1/2)2 = n0λ

2.
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Therefore, for λ ≤ λ1N
1/2

logE exp
{
2λξ(ω, ω′)

}
= logE exp

{
λ

∫ 1

0
u>∇ζ(ω + tu)dt

}

≤
∫ 1

0
logE exp

{
λu>∇ζ(ω + tu)dt

} ≤ n0λ
2. (B.22)

The rest of the proof is based on the standard chaining argument (see e.g., [31]).
For any integer k ≥ 0 , there exists a 2−kµ -net Dk(µ) in the ball B(µ, ω◦)
having the cardinality N(2−kµ, µ) ≤ 2kd in the sense that

B(µ, ω◦) ⊂
⋃

ω∈Dk(µ)

B(2−kµ, ω).

Using the nets Dk(µ) with k = 1, . . . ,K − 1 , one can construct a chain con-
necting an arbitrary point ω in DK(µ) and ω◦ . It means that one can find
points ωk ∈ Dk(µ), k = 1, . . . ,K − 1 , such that ‖ωk − ωk−1‖2 ≤ 2−k+1µ for
k = 1, . . . ,K . Here we denoted for ωK = ω , and ω0 = ω◦ . Notice that ωk can
be constructed recurrently ωk−1 = τk−1(ωk), k = K, . . . , 1 , where

τk−1(ω) = arg min
ω′∈Dk−1(µ)

‖ω − ω′‖2.

It obviously holds

ζ(ω, ω◦) =
K∑

k=1

ζ(ωk, ωk−1).

In view of the definition of ξ(·, ·)
ζ(ωk, ωk−1) = ‖ωk − ωk−1‖2 × ξ(ωk, ωk−1) = 2µckξ(ωk, ωk−1)

with ck = ck(ω) = ‖ωk − ωk−1‖2/(2µ) ≤ 2−k , thus resulting in

sup
ω∈DK(µ)

ζ(ω, ω◦) ≤
K∑

k=1

sup
ω′∈Dk(µ)

ζ(ω′, τk−1(ω′))

≤ 2µ
K∑

k=1

sup
ω′∈Dk(µ)

ck(ω′)ξ(ω′, τk−1(ω′)). (B.23)

Next, we use the elementary inequality

logE exp
( K∑

k=1

λkξk

)
≤

K∑

k=1

λk logEeξk (B.24)

which holds for any r.v.’s ξk and any nonnegative coefficients λk with Λ =∑K
k=1 λk ≤ 1 . Its proof is based on the convexity of ex and concavity of xΛ

E exp
[
Λ

1
Λ

K∑

k=1

λk

(
ξk − logEeξk

)] ≤ EΛ exp
[ 1
Λ

K∑

k=1

λk

(
ξk − logEeξk

)]

≤
[ 1
Λ

K∑

k=1

λkE exp
(
ξk − logEeξk

)]Λ
= 1.
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Combining (B.23) and (B.24) and (B.22) yields in view of
∑K

k=1 2−k ≤ 1 and
2kck(ω) ≤ 1

logE exp
[λ
µ

sup
ω∈DK(µ)

ζ(ω, ω◦)
]

≤ logE exp
[
2λ

K∑

k=1

sup
ω′∈Dk(µ)

ck(ω′)ξ(ω′, τk−1(ω′))
]

≤
K∑

k=1

2−k log
[
E sup

ω′∈Dk(µ)
exp

{
2kck(ω′)× 2λξ(ω′, τk−1(ω′))

}]

≤
K∑

k=1

2−k log
[ ∑

ω′∈Dk(µ)

E exp
{
2kck(ω′)× 2λξ(ω′, τk−1(ω′))

}]

≤
K∑

k=1

2−k
{
logN(2−kµ, µ) + n0λ

2
}
.

These inequalities yield

logE exp
[λ
µ

sup
ω∈B(µ,ω◦)

ζ(ω, ω◦)
]
= lim

K→∞
logE exp

[λ
µ

sup
ω∈DK(µ)

ζ(ω, ω◦)
]

≤
∞∑

k=1

2−k
{
n0(λ) + logN(2−kµ, µ)

} ≤ n0λ
2 + ed

where ed =
∑∞

k=1 2−k log(2kd) which completes the proof of the theorem.
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