
Methods for Modeling

Metastable Conformational Dynamics

from Trajectory Data

Diploma thesis

Department of Mathematics and Computer Science

Freie Universität Berlin

submitted by

Martin Fischbach

Berlin, 2008 - November

This work is dedicated to Julia.

Abstract

Molecular dynamics is characterized by a multitude of processes that occur on di�erent
timescales. At a given timescale of interest, these dynamics are often metastable, i.e.
there are fast processes in which the molecule vibrates and oscillates within a metastable
set of structures, while there are slow processes in which the molecule switches between
metastable sets. Considerable e�ort has been devoted to developing methods which au-
tomatically characterize these metastable states and quantify the dynamics within and
between them.

The Perron Cluster Cluster Analysis (PCCA) partitions the state space into metastable sets
based on a transition matrix. In order to set up this transition matrix, state space must �rst
be partitioned in some way, e.g. by geometrical clustering. For computational e�ciency,
this clustering often needs to be done on some subspace of "interesting" or "relevant"
coordinates, which bears the danger of adding memory to the system by creating overlaps
between metastable states.

Hidden Markov Based models with continuous output (HMM-Gaussian and HMM-SDE
and in general HMM-VAR) explicitly avoid to work on the full-dimensional state space
and allow metastable states to overlap in the few coordinates worked with. The potential
drawback here is that a particular model is assumed for the dynamics within metastable
states, which may be wrong for a practical system. Additionally, HMMs su�er from local
optima, i.e. determining the globally optimal HMM for a given set of observations is a
di�cult task.

In this work, we compare PCCA and HMM-based methods as for their ability to determine
the correct metastable states and the true timescales of model systems and a real mole-
cular system. To avoid the problem of local optimizers in HMMs, a Genetic Algorithm is
developed and implemented such a way that the system may asymptotically converge to
its globally optimal HMM model, at the cost of additional computational e�ort. Moreover,
the HMM code was extended to work with multiple trajectories and long lagtimes.

Lumping microstates of the state space into metastable sets creates memory due to the
�nite time necessary to equilibrate within each metastable set. In order to account for
this, we �nd it is essential to conduct the modeling process (either PCCA or HMM) for
di�erent lagtimes, and to verify that the rates/timescales of the implied rate matrix are
converged. We observe that the reliability of HMMs strongly depends on the projection
of the dynamics onto the observed coordinates. Thus a reliable and automatic way to use
HMMs on molecular dynamics data is still elusive.

The clustering methods PCCA and HMM-VAR are applied to microsecond MD simulations
of an arti�cial pentapeptide. A Markov model with converged timescales is constructed
based on a �ne k-means clustering of state space coordinates. A PCCA-based de�nition
of metastable states shows a convergence to these timescales for larger lagtimes τ . HMM-
VAR is applied to low-dimensional projections onto the principal components of state

iv

space coordinates. For 1 and 2 dimensions, HMM-VAR provides a reasonable agreement
to the true timescales, while the agreement becomes worse with an increased number of
dimensions. Furthermore, the direct comparisons of the assignment of metastable states in
PCCA and HMM-VAR show signi�cant discrepancies. The observed discrepancies may be
due to the approximation of conformational states via Gaussians and due to the increasing
number of �t parameters in higher dimensions.

Contents

1 Introduction 1

1.1 Outline . 2

2 Theory 3

2.1 Markov Chains . 3

2.2 Inverse Problem, Likelihood Principle . 4

2.3 Transition Matrix Estimation and Maximum Likelihood Transition Matrix . 5

2.4 Implied Timescales . 8

2.5 Hidden-Markov Models (HMM) . 9

2.5.1 General Properties . 9

2.5.2 Maximum-likelihood . 11

2.6 Expectation-Maximization (EM) Algorithm 11

2.6.1 Baum-Welch Algorithm - EM algorithm for HMMs 12

2.7 HMM-Gaussian - HMM with Continuous Output 14

2.8 HMM-SDE . 14

2.8.1 Propagation of Probability Density 15

2.8.2 Likelihood . 16

2.8.3 Parameter Estimation . 16

2.9 HMM-VAR as Generalization of HMM-SDE 17

2.9.1 Estimator Calculation . 19

2.10 Using HMM-VAR for Trajectories with Di�erent Lagtimes 20

2.10.1 Extension of HMM-VAR to Multiple Trajectories 21

2.11 Perron-Cluster-Cluster-Analysis (PCCA) . 22

2.11.1 Mathematical Idea . 22

2.11.2 Derivation . 22

2.12 Principal-Component Analysis (PCA) . 24

2.12.1 Covariance Matrix . 24

2.12.2 Diagonalization of Covariance Matrix 25

2.13 K-means Clustering . 26

3 PCCA and HMM on Model Examples 29

3.1 Approach . 29

3.2 Model Trajectory Generation and Potential 29

3.3 3-Well Potential . 30

3.3.1 Parameters for Trajectory Generation 30

3.3.2 Microstate-Clustering and True Timescales 32

3.3.3 PCCA: Clustering Results and Timescales. 34

3.3.4 HMM-VAR starting from "correct" Assignment of Viterbi Path . . . 36

3.3.5 Convergence of HMM-VAR from Wrong Assignment 37

vi Contents

3.4 3-Well Potential where HMM-VAR Clustering fails 39
3.4.1 PCCA . 39
3.4.2 HMM-VAR . 39

3.5 Comprehension of Results . 42

4 A Genetic Algorithm to escape Local Likelihood Maximizers in HMMs 45

4.1 Genetic Algorithm . 45
4.1.1 Basic Algorithm . 46
4.1.2 Genetic Operations . 47
4.1.3 Termination Criteria . 49

4.2 Example of Genetic Algorithm with HMM-VAR 50
4.2.1 Prerequisites . 50
4.2.2 Mutation of Genes representing HMM-VAR Parameters 51
4.2.3 Simple Test Cases . 51
4.2.4 Application to HMM-VAR on Model Trajectory 52
4.2.5 Results and Performance . 53

4.3 Comprehension . 53
4.4 Implementation Details . 55

5 PCCA and HMM on Molecular Trajectories 59

5.1 MR121-GSGSW Peptide . 59
5.2 Approach . 59
5.3 Clustering with PCCA . 60
5.4 Clustering with HMM-VAR . 61
5.5 Comparison of Clustering Results . 61

5.5.1 Measure for Comparison of Clustering Results 62
5.5.2 Timescales . 63

6 Conclusion 65

6.1 Outlook . 65

1 Introduction

Molecular dynamics (MD) simulation generate large amounts of data. Models are required
to analyze these data [4] and to extract the essential dynamical features and to provide a
physical interpretation. A common approach is to describe the system dynamics in terms
of transitions between coarse partitions of conformational space. One basic question which
immediately arises is how best to partition state space into discrete states.

Several clustering methods, that partition space, are available. Two major groups of clus-
tering methods are available: these based on geometric proximity and those clustering
methods based on kinetics. However, when aiming at modeling the system dynamics an
essential requirement to clustering methods is, that they partition space without destroying
the essential dynamical behavior of the system.

The biomolecular function often depends on the existence of dynamically metastable states,
states in which a molecular system stays for long periods of time. The transitions between
metastable states are rare events. On the longest time scales, dynamics is characterized
by �ipping processes between metastable conformations. On shorter time scales, the dy-
namical behavior is dominated by �exibility within these conformations.

A construction of a reduced model, which re�ects the �e�ective� dynamics of a biomolecular
systems, is desired. One approach to dynamical data-based kinetic clustering is to decom-
pose the dynamics of macromolecules undergoing conformational changes. The approach
uses the improved Perron cluster cluster analysis (PCCA) method [3, 23, 22, 17]. Small
partitions of conformational space, so called microstates, are merged to clusters. PCCA
uses the transition matrix T which models the switching between the microstates to merge
the microstates under the constraint of maximal metastability of the clustered dynamics.
The obtained clusters then represent approximations of the ideal metastable states. The
initial microstates can be de�ned by geometrical proximity, nevertheless, it is essential not
to choose microstates, such that they merge kinetically separated regions of state space.

Another approach avoiding the initial geometric clustering is given by Hidden Markov
Models (HMM). The e�ective dynamics is described by a Markov chain with discrete states,
which represent switching between the metastable conformations via a transition matrix T .
The dynamics of the system within a metastable state is modeled by a stochastic di�erential
equation (SDE) in a (quadratic) model potential. This description by an SDE also accounts
the relaxation from one metastable conformation to another. The combination of HMM
and SDE yields the HMM-SDE approach [16, 7]. A generalization of HMM-SDE using
autoregressive models is HMM-VAR [13].

A comparison of these two di�erent clustering approaches is performed here. It is evaluated
how PCCA and HMM-VAR perform in terms of recovering the true physical timescales of
the underlying dynamical system (measured by the dominant eigenvalues of the microstate
transition matrix) and how well they agree in terms of assigning microstates to metastable

2 1 Introduction

states. Both methods are �rst applied to di�erent kinds of low-dimensional model trajec-
tories in order to understand their performance. The simple structure of these trajectories
allows general functional tests and validation of the clustering. Due to a small number
of essential parameters, diagnostics can easily be performed. To support this evaluation
approach the low dimension of the model trajectory provides the possibility to visually
interpret clustering results.

The application of both clustering methods to an arti�cial pentapeptide reveals the ca-
pabilities when dealing with real molecular systems. The analysis and evaluation of the
clustering results focuses on the comparison of timescales and macrostate assignment be-
tween both clustering methods.

The memory that is introduced by merging of microstates of the state space into metastable
sets can be compensated by increasing lagtime. This memory e�ect is induced by the
fact, that �nite time is required to equilibrate within a metastable state. For increasing
lagtimes the implied timescales, which indicate the speed of switching processes between
metastable states, converge towards the true timescales. Due to the importance of the
lagtime, a rigorous evaluation of the in�uence of di�erent lagtimes is performed for all of
the above trajectory data and a veri�cation of the converged implied timescales is given.
For this the HMM-VAR method is adapted to operate with di�erent lagtimes.

The Baum-Welch algorithm [1] estimates the unknown parameters of a HMM under given
observation. Internally the algorithm retrieves a maximum-likelihood by the alternating
calculation of the forward and backward probabilities, thus improving the likelihood con-
tinuously with each iteration step. However, this procedure will only converge to a local
maximum that may, due to the raggedness of the likelihood landscape, represent a very
bad model for the observed data. Thus �nding the global optimum on the likelihood land-
scape is a relevant problem. Several approaches like simulated annealing [9], Monte Carlo
methods [2] and Genetic Algorithms [5] are known to solve that kind of problem. Here,
a genetic algorithm in combination with the Baum-Welch algorithm is developed that al-
lows HMM-VAR to �nd the global optimum and thus yields an improved quality of the
clustering results by HMM-VAR, at the expense of computational e�ort.

1.1 Outline

The thesis is structured as follows: Section 2 covers the theory which is essential for
the understanding of the two clustering methods HMM-VAR and PCCA. Furthermore, a
theoretical approach to the simultaneous parameter estimation by HMM-VAR for multiple
input sequences is given. In Section 3 three elementary two-dimensional model trajectories
are clustered with PCCA and HMM-VAR and results are shown. Section 4 presents one
possible resort to the convergence to local optima through the use of a genetic algorithm.
The application to a model trajectory of Section 3 is presented. Within Section 5 the
clustering method HMM-VAR and PCCA are applied to a pentapeptide glycine-serine-
glycine-serine-tryptophan to whose glycine end the dye MR121 is attached. The work
closes in Section 6 with a conclusion of the obtained results. Open problems which arose
during the realization of this thesis are summarized. A �nal outlook presents ideas which
seem reasonable wrt. the experience gained during this work.

2 Theory

2.1 Markov Chains

A Markov chain1 is a special class of stochastic processes ([12], Chapter 1). So a Markov
chain is a sequence of random variables X1, X2, X3, . . . with Markov property, meaning,
that given a present state, future states are independent of past states. Accordingly one
could de�ne, that future states only depend on the current state, but not on past states,
so the system is memoryless. Mathematically, the Markov property is

P (Xn+1 = x|Xn = xn, . . . X1 = x1) = P (Xn+1 = x|Xn = xn).

Intuitively speaking, the probability for the realization x of the random variable Xn+1 and
knowledge of all previous realizations xn to x1 is equal to the probability for the realization
x of random variable Xn+1 only having knowledge of the realization xn of variable Xn.

Time-homogeneous Markov chains additionally have the property

P (Xn+1 = x|Xn = y) = P (Xn = x|Xn−1 = y),

where the transition probability from state y to state x does not depend on time.

A de�nition for the transition probability of going from state i to state j in n time steps
is given as

p
(n)
ij = P (Xn = j | X0 = i)

and the single-step transition as

pij = P (X1 = j | X0 = i).

A probability vector ν is a vector with νi ≥ 0 for all i and
∑m

i=1 νi = 1. An initial
distribution (vector) π is the vector de�ned as

πi = P (X0 = i).

If the Markov chain is a time-homogeneous Markov chain and the state space of X is �nite,
a stochastic matrix can be used to describe the transitions of a Markov chain. Therefore,

1Often, the term Markov chain is used to mean a discrete-time Markov process.

4 2 Theory

x
1

x
2

x
3

a
12

a
21

a
23 a

32

a
13a

31

a
11 a

22

a
33

Figure 2.1: Example of a Markov model with three states x1, x2 and x3 which represents
a time-homogeneous Markov chain.

this matrix is often called transition matrix. Within a transition matrix T the entry tij
denotes the transition probability to go from state i to state j. The row sum ful�lls∑

j

ti,j = 1.

The transition for the Markov model given in Figure 2.1 is

T =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

2.2 Inverse Problem, Likelihood Principle

Let Θ be a stochastic dynamical system and O(t) be an observable trajectory that can be
generated by the system.

A forward problem is, given a model and an initial condition O(0), to generate a trajectory
O(t). This problem can be straightforwardly solved with standard numerical techniques.
Since Θ is a stochastic system, repeating this process for a given initial condition will not
always generate the same trajectory, but rather a distribution of trajectories.

In practical scenarios, one is often faced with the inverse problem. Given an observed
trajectory O(t), or an ensemble thereof, reconstruct the underlying dynamical system Θ.
Due to the stochasticity of Θ, this problem is ill-posed, i.e. there are many possible models
that could have generated the observation. The inverse modeling problem is to make an
assertion about the most likely model(s) corresponding to the observation. For an in-depth
discussion of the theory of inverse problems see [18].

Within the context of inverse problems the term likelihood is often appropriate. Informally
speaking, the likelihood gives a measure of how good a model Θ is in explaining the data
O. More formally, likelihood is the hypothetical probability that an event that has already
occurred would yield a speci�c outcome. The concept di�ers from that of a probability

2.3 Transition Matrix Estimation and Maximum Likelihood Transition Matrix 5

in that a probability refers to the occurrence of future events, while a likelihood refers to
past events with known outcomes. Using this intuition of likelihood our problem can be
formulated as

L(Θ) = αP (O|Θ),

that is asking for the probability of O under a given observation Θ. Here, α is a arbitrary
constant. Using Bayes theorem, the probability P (Θ|O) can be expressed as

P (Θ|O) =
P (O|Θ)P (Θ)

P (O)
. (2.1)

Thus inserting equation 2.1 into the expression of the likelihood one obtains

L(Θ) = αP (O|Θ) = α
P (Θ|O)P (O)

P (Θ)
.

We make the assumption that all parameters Θ are initially equally distributed, thus that
these parameters are uniform prior. Therefore, we can write P (Θ) = γ with the constant
γ ∈ R. We introduce β = α

ψ . Secondly, since the observation O is given, P (O) = 1. This
allows us to write the likelihood L as a function of the probability P (Θ|O).

L(Θ) =
α

γ
P (Θ|O) = βP (Θ|O).

So, by maximization of the likelihood L we are able to estimate an optimal model Θ′.
The notion of a maximized likelihood is that likelihood, which delivers the most probable
parameters under given observation O. It is noted as

Θ′ = arg max
Θ

L(Θ).

Further explanations about the notion of maximum likelihood are given in Section 2.3 and
Section 2.5.2.

2.3 Transition Matrix Estimation and Maximum Likelihood
Transition Matrix

Usually, T (τ) is not readily given but needs to be estimated from a set of trajectories. Here,
these trajectories are typically from molecular dynamics simulations, but the estimation of
Markov model transition matrices is ubiquitous in statistics and has applications in other
disciplines, such as �nance.

Consider one trajectory with n observations at time resolution τ given:

Y = {y1 = s(0), y2 = s(τ), . . . , yn = s((n− 1)τ)}

6 2 Theory

(The generalization to multiple trajectories is straightforward). Let the frequency matrix
C = (cij) count the number of observed transitions between states, i.e. cij is the number
of observed transitions from state i at time t to state j at time t + τ , summed over all
times t:

cij(τ) = |{yk = i, yk+1 = j | k = 1...n− 1}|,

and, as a shorthand notation we de�ne:

ci :=
m∑
k=1

cik,

which is the total number of observed transitions leaving state i. It is intuitively clear that
in the limit of an in�nitely long trajectory, the elements of the true transition matrix are
given by the trivial estimator:

T̂ij(τ) =
cij∑
k cik

=
cij
ci

. (2.2)

For a trajectory of limited length, the underlying transition matrix T (τ) cannot be unam-
biguously computed. The probability that a particular T (τ) would generate the observed
trajectory is given by:

p(Y |T) =
n−1∏
k=1

Tyk,yk+1
= p(C|T) =

m∏
i,j=1

T
cij
ij

Vice versa, the probability that the observed data was generated by a particular transition
matrix T (τ) is

p(T |C) ∝ p(T)p(C|T) = p(T)
∏
i,j∈S

T
cij
ij , (2.3)

where p(T) is the prior probability of transition matrices before observing any data. p(C|T)
is called likelihood and the goal of the transition matrix estimation is usually to identify
the maximum of p(C|T), i.e., the maximum likelihood estimator. For the case of a uniform
prior, this is identical to the transition matrix with maximum posterior probability.

We will now derive the Maximum Likelihood Estimator by �nding the transition matrix
that maximizes p(C|T):

L = p(C|T) =
∏
i,j∈S

T
cij
ij .

The likelihood is di�cult to work with due to the product. For optimization purposes it
is therefore a common �trick� to instead work with the logarithm of the likelihood (log-
likelihood):

2.3 Transition Matrix Estimation and Maximum Likelihood Transition Matrix 7

log L = log p(C|T) =
∑
i,j∈S

cij log Tij .

This is meaningful since the logarithm is a monotonic function: as a result, the maximum
of log L is also the maximum of L. However, this function is not bounded from above,
since for Tij → ∞, log L → ∞. Of course, we somehow need to restrict ourselves to sets
of variables which actually form transition matrices, i.e., they satisfy the constraint:

∑
j

Tij = 1.

When optimizing with equality constraints, one uses Lagrangian multipliers. The La-
grangian for log L is given by:

F = log L + λ1(
∑
j

T1j − 1) + ... + +λm(
∑
j

Tmj − 1).

This function is maximized by the maximum likelihood transition matrix. It turns out
that F only has a single stationary point, which can be easily found by setting the partial
derivatives to zero. Those are given by

∂ log F

∂Tij
=

cij
Tij

+ λi.

Set to 0:

cij

T̂ij
+ λi = 0

λiT̂ij = −cij .

We now make use of the transition matrix property:

λi

m∑
j=1

T̂ij = λi = −
m∑
j=1

cij = −ci

and thus:

cij

T̂ij
− ci = 0

T̂ij =
cij
ci

.

It turns out that T̂ (τ), as provided by Eq. (2.2), is the maximum of p(C|T) and thus also
of p(T |C) when transition matrices are assumed to be uniformly distributed a priori. In
the limit of in�nite sampling, p(T |C) converges towards a delta distribution with its peak
at T̂ (τ).

8 2 Theory

2.4 Implied Timescales

The eigenvalue/eigenvector pairs of a transition matrix indicate the elementary processes
of the system. Here, an eigenvalue yields the implied rate or implied timescale of the
corresponding process and the eigenvector bears the information between which states the
corresponding process switches.

We will see later, how this information is used by PCCA to identify metastable sets. The
physically interesting information provided by an eigenvalue, namely the implied rate or
timescale is obtained by considering following relation:

T (τ) = exp(τK),

where K is the generator of the system. For strictly positive de�nite transition matrices
this relation can be inverted providing the rate matrix that is implied by T (τ)

K =
1
τ
· log T (τ) =

1
τ
·Q−1 · log(Λ) ·Q,

with log(Λ) = diag(log(λ1), . . . , log(λm)) and Q the matrix of eigenvectors Q = [q1 . . . qm],
being the eigenvalues of K and

ki =
− log(λi)

τ

being the ith implied rate, or vice versa,

τ∗i =
−τ

log(λi)

being the ith implied timescale.

Since the implied timescales are a physical property of the system they should be invariant
with respect to numerical modeling. We can thus use the implied timescales as an indicator
for Markovianity. For a Markov process, the population of the states at some time t + nτ ,
can be expressed by applying the Transfer matrix n times to a population at a previous
time t, which leads to the Chapman-Kolmogorov equation [21]:

p(t + nτ) = p(t) [T (τ)]n = p(t) S(nτ)

where we have de�ned S(nτ) := [T (τ)]n. Using the eigenvalue-eigenvector equations:

Λ Q = QT T (τ)
Γ(n) Q = QT S(nτ),

where Λ and Γ(n) are diagonal matrices with eigenvalues λ1, . . . , λm and γ1(n), . . . , γm(n)
on the diagonal, respectively. We can write:

[T (τ)]n = Q−1 Λn QT = Q−1 Γ(n) QT = S(nτ),

2.5 Hidden-Markov Models (HMM) 9

and hence the eigenvalues λi of T (τ) are related to the eigenvalues γi(n) of S(nτ) by:

γi(n) = λni .

This relation can equivalently be transformed to

τ∗i := − nτ

ln γi(n)
= − τ

lnλi
, (2.4)

where τ∗i is the characteristic timescale corresponding to the decay of eigenmode i. Ac-
cording to this equation, if the process associated to eigenmode i is Markovian, then τ∗i is
constant and thus independent of n. For many processes, this is true only for some mini-
mum timescale nτ > τmem, after which the memory pertaining to the inter-state dynamics
has disappeared. In this case, the Markov model of the system must employ the Markov
matrix S(nτ) instead of T (τ). The time nτ which is used to set up the Markov matrix is
referred to as lagtime. It is desirable to �nd a de�nition of states such that the lagtime is
minimal, i.e. such that there is minimal memory in the system.

Note that choosing the number or size of microstates for a given system is not trivial if the
statistics is poor. If we have lots of statistics, it is always best to use as many microstates
as possible, in order to avoid merging kinetically separated states. In practice, statistics are
always limited and using too many states could mean that we overestimate the timescales
of the system, since di�erent transitions to the same metastable state are not counted
correctly due to too �ne partitioning.

2.5 Hidden-Markov Models (HMM)

2.5.1 General Properties

A hidden Markov model is a statistical model in which the system being modeled is assumed
to be a Markov process with unknown parameters. An example of a simple hidden Markov
is given in Figure 2.2. Hidden parameters are determined from the observable parameters.
These extracted model parameters are used to perform further analysis.

In contrast to a Markov model, where each state is directly visible to the observer and
transition probabilities are the only parameters, a hidden Markov model consists of states
which are not directly visible (hidden states). But instead variables in�uenced by these
states are visible. Each state has a probability distribution over the possible outputs.
Thus the sequence of observed states, generated by the HMM, gives information about the
sequence of hidden states.

A Hidden Markov model is a probabilistic of the joint probability of a collection of random
variables {O1, . . . , OT , Q1, . . . , QT }. The sequence Q1, . . . , QT is the hidden process, the
Qt variables are hidden and discrete and denote the state of the system at time t. The
sequence O1, . . . , OT is the sequence of observed states, Ot variables are either continuous
or discrete observations.

10 2 Theory

x
1

x
2

x
3

y
1

y
2

y
1

y
3

y
4

a
12

a
21

a
23

b
11

b
21

b
22

b
24

b
33

b
34

Figure 2.2: Schema of a basic Hidden-Markov model. The hidden states have the labels
x1, x2 and x3. The transitions probabilities between the hidden states are
labeled aij , f.e. a12 is the transition probability to go from state x1 to state x2.
Each hidden state xi produces some output or observation yj with a certain
probability bij , thus bij is the output probability for observation yj if the hidden
state is xi.

In the HMM context the sequence of hidden states is assumed to be a Markov process.
Thus this process has the Markov property: a state Qt+1, given the history Q1, . . . , Qt ,
depends only on the previous state Qt:

P (Qt+1 = si|Q1, . . . , QT) = P (Qt+1 = si|Qt).

Furthermore we assume that the underlying hidden Markov chain de�ned by P (Qt|Qt−1) is
time homogeneous, thus independent of the time t. Therefore, we can represent P (Qt|Qt−1)
as a time-independent stochastic transition matrix. Since the HMM state space in general
is �nite, we thus are concerned with a Markov chain, which is characterized by the so-called
transition matrix A = (aij). An entry aij corresponds to the conditional probability of
switching from the hidden state si to sj . The sum over j has to be one for each i, thus the
transition matrix A is a row-stochastic matrix.

Each hidden state causes a speci�c output that might be either discrete or continuous. This
output is distributed according to a certain conditional distribution. Thus realizations of
HMMs are concerned with two sequences, an observation sequence and a sequence of hidden
states.

An HMM is formally de�ned as a tuple λ = (S, V,A,B, π):

• S = (s1, . . . , sN) is the set of hidden states,

• V is the observation or output space, thus Ot ∈ V ,

• A = (aij) is the transition matrix, where aij is the probability of switching from the
hidden state si to sj ,

• B as a vector of probability density functions (pdf) in the observation space

2.6 Expectation-Maximization (EM) Algorithm 11

• π = (π1,, . . . , πN) is a stochastic vector, that describes the initial state distribution
πi = P (Qi = si).

According to the HMM a complete set of HMM parameters for a given model is: λ =
(A,B, π). There are three basic problems associated with HMMs:

• Determine P (O|λ) for some O = (o1, . . . , oT), that means to determine the probabil-
ity of observe a certain output sequence O = (o1, . . . , oT) under given parametrization
λ.

• Given O = (o1, . . . , oT) and some λ, �nd the best state sequence q = (q1, . . . , qT)
that explains O. This is the search for the most probable hidden path (Viterbi path)
under given O and λ. To determine this sequence, the Viterbi algorithm is used.

• Find λ∗ = arg max
λ

p(O|λ). The Baum-Welch algorithm solves this problem.

2.5.2 Maximum-likelihood

We have a density function p(x|λ) that is governed by the set of parameters λ. Furthermore
we have a data set of size N , drawn from that distribution, X = {x1, . . . , xn}. We assume
that these data is independent and identically distributed with distribution p. The resulting
density for the samples is

p(X|λ) =
N∏
i=1

(xi|λ) = L(λ|X)

The function L(λ|X) is called the likelihood of the parameters λ given the data. The
likelihood is thought of as a function of the parameters λ where the data X is �xed. In
the maximum likelihood problem, our goal is to �nd the λ that maximizes L. So we want
to �nd

λ∗ = arg max
λ

L(λ|X).

Often one uses the log-likelihood log L(λ|X) instead, because it is analytically easier.

The di�culty of our problem depends on the form how p(x|λ) changes. If p(x|λ) is a single
Gaussian distribution, where λ = (µ, σ2) then we can set the derivative of logL(λ|X) to
zero and solve directly. However for many problems it is impossible to �nd such analytical
expressions.

2.6 Expectation-Maximization (EM) Algorithm

The Expectation-Maximization algorithm is a general method of �nding the maximum-
likelihood parameter estimation of an underlying distribution from a given data set. An
excellent introduction to this �eld is given in [1].

The EM-algorithm repeats the two steps below until convergence is obtained:

12 2 Theory

• Expectation-step: this step evaluates the expectation value Q based on the given
parameter set λk.

• Maximization-step: this step determines the re�ned parameter set λk+1 by maximiz-
ing the expectation

λk+1 = arg max
λ

Q(λ, λk),

the maximization guarantees L(λk+1) ≥ L(λk).

2.6.1 Baum-Welch Algorithm - EM algorithm for HMMs

In this section, we derive the EM algorithm for �nding the maximum-likelihood estimate
of the parameters of a hidden Markov model given a set of observed feature vectors. This
algorithm is called Baum-Welch algorithm. It is a special instance of the EM algorithm
based on HMMs.

The probability of seeing the partial sequence o1, . . . , ot and ending up in state i at time t
is given by:

αi(t) = P (O1 = o1, . . . , Ot = ot, Qt = i|λ).

The variable αi(t) is called the forward variable. We can e�ciently de�ne αi(t) recursively
as:

• αi(1) = πbi(o1)

• αj(t + 1) =
∑N

i=1(αi(t)aij)bj(ot+1)

• P (O|λ) =
∑N

i=1 αi(T). That is the probability of the observation of the sequence
o1, . . . , oT under given parameter λ. It is given by summation over all αi at �xed
time T .

The backward procedure is similar. The probability of the ending partial sequence ot+1, . . . , oT
given that we started at state i at time t is:

βi(t) = P (Ot+1 = ot+1, . . . , OT = oT |Qt = i, λ).

Accordingly the variable βi(t) is called the backward variable. Analogously we can de�ne
βi(t):

• βi(T) = 1

• βi(t) =
∑N

j=1 aijbj(ot+1)βj(t + 1)

• P (O|λ) =
∑N

i=1 βi(1)πibi(o1)

2.6 Expectation-Maximization (EM) Algorithm 13

We proceed and compute the probability γi(t) of being in state i at time t for the state
sequence O

γi(t) = P (Qt = i|O, λ)

with respect to the forward- and backward-variables. Note:

P (Qt = i|O, λ) =
P (O,Qt = i|λ)

P (O|λ)
=

P (O,Qt = i|λ)∑N
j=1 P (Q,Qt = j|λ)

.

Furthermore because of the conditional independence it is:

αi(t)βi(t) = P (o1, . . . , ot, Qt = i|λ)P (ot+1, . . . , oT |Qt = i, λ) = P (O,Qt = i|λ)

and thus the de�nition of γi(t) in terms of αi(t) and βi(t) is:

γi(t) =
αi(t)βi(t)∑N
j=1 αj(t)βj(t)

.

The probability of being in state i at time t and being in state j at time t + 1 is given as

ξij(t) =
P (Qt = i, Qt+1 = j, O|λ)

P (O|λ)
=

αi(t) · aijbj(ot+1)β(t + 1)∑N
i=1

∑N
j=1 αi(t) · aijbj(ot+1)β(t + 1)

.

Through the summation over all time steps t one obtains the expected total number of
transitions away from state i for O :

T∑
t=1

γi(t).

With the same assumptions one obtains for the expected number of transitions from state
i to state j for O :

T−1∑
t=1

ξij(t).

For the estimation of HMM we obtain for the relative frequency spent in state i at time 1:

πi = γi(1).

The quantity aij , which is an entry of the transition matrix, is the expected number of
transition from state i to state j relative to the expected total number of transition away
from state i:

aij =
∑T−1

t=1 ξij(t)∑T−1
t=1 γi(t)

.

And for discrete distributions, the quantity

bi(k) =
∑T−1

t=1 δot,,vk
γi(t)∑T−1

t=1 γi(t)

is the expected number of times the output observations have been equal to vk while in
state i relative to the expected total number of times in state i.

14 2 Theory

2.7 HMM-Gaussian - HMM with Continuous Output

In standard HMM the observation probability is discrete, in HMM Gaussian a Gaussian
probability distribution function is assigned to each hidden state. Thus for a hidden state
j, the pdf is

bj(ot) = N (ot|µjΣj).

The parameter estimation for HMM-Gaussian changes little. The calculation of aij and
bi(k) stays identical, but additionally it is necessary to calculate the parameters describing
the parameters of each Gaussian distribution as follows during the maximization-step of
the EM-algorithm:

µi =
∑T−1

t=1 γi(t)ot∑T−1
t=1 γi(t)

and

Σi =
∑T−1

t=1 γi(t)(ot − µi)(ot − µi)T∑T−1
t=1 γi(t)

.

2.8 HMM-SDE

The HMM-SDE is a general approach to model the dynamics of a system. Each hidden
state of the HMM has a stochastic di�erential equation assigned to it, thus generating the
output probability of that hidden state. In full length this approach is presented in [7].

The stochastic di�erential equation (SDE) to approximate the e�ective dynamics is of the
following type:

dx(t) = − ∂

∂x
V (q(t)) · x(t) + σ(q(t))dW (t).

Here

• q(t): a Markov jump process with states 1, . . . ,M ,

• W (t): standard Brownian motion,

• Σ = (σ(1), . . . , σ(M)) noise intensities and

• V = (V (1), . . . , V (M) interaction potentials.

Within the SDE the variables V and σ are parameters wrt. the hidden state q.

Thus each SDE approximates the dynamics within a single metastable state. The setup of
the potential V is a polynomial potential of the form

V (q)(x) =
1
2
D(q)(x− µ(q))2 + V

(q)
0 .

2.8 HMM-SDE 15

2.8.1 Propagation of Probability Density

In order to construct L appropriately one has to know the probability of output of state
x(tj) under the condition of being in metastable state qtj for given parameters λ. One
determines the probability by considering the propagation of probability densities by the
SDE associated with metastable state qtj .

We consider a �xed state q(t) = q for the time intervals t considered. For di�erent rea-
lizations of the stochastic process W we consider a statistical density function ρ(x, t) of an
ensemble of SDE solutions. So we get an identical representation of the dynamics, the so
called Fokker-Planck operator:

∂tρ = 4x V (q)(x)ρ +∇xV
(q)(x) · ∇xρ + B(q) 4x ρ,

where B(q)denotes the variance of the white noise.

The ansatz for the solution is based on the superposition of Gaussian distributions:

ρ(x, t) = A(t) exp(−(x− x(t))TΣ(t)(x− x(t)). (2.5)

This leads us to a system of three ordinary di�erential equations:

ẋ = −D(q)(x− µ(q)),

Σ̇ = −2B(q)Σ2 + 2D(q)Σ,

Ȧ = (D(q) −B(q)Σ)A,

for the time-dependent parameters {x,Σ, A}. This system can be solved analytically. We
consider the probability of output O(tj+1) in metastable state qtj+1 . Therefore, the output
probability distribution results to be

ρ(Otj+1 |qtj , Otj) = A(tj+1) exp(−(Otj+1 − x(tj+1))Σ(tj+1)(Otj+1 − x(tj+1))
T),

with

x(tj+1) = µq + exp(−D(q)τ)(O(tj)− µq),

Σ(tj+1) = (1− exp(−2D(q)τ))−1D(q)B(q)−1
,

A(tj+1) =
1√
π

Σ(tj+1)
1
2

for metastable state q = qtj+1 and with τ = tj+1 − tj .

16 2 Theory

2.8.2 Likelihood

In order to be able to calculate the maximum-likelihood, which is required for the parameter
estimation of the EM-Algorithm, we need the likelihood function.

First referring to the rate matrix R a transition matrix T can be obtained by

T = exp(τR).

For the given model λ = (π, T, x,Σ, A) with π the initial distribution of hidden states
of the HMM, T the transition matrix and x, Σ and A as used as parameters in the
ordinary di�erential equations. Thus the joint probability distribution for the observation
and hidden state sequences is:

P (O, q|λ) = v(qo)ρ(O0|q0)
T∏
t=1

T (qt−1, qt)ρ(Ot|qt, Ot−1), (2.6)

wherein ρ is the probability distribution:

ρ(Ot|qt, Ot−1) = A(qt)(t) exp(−(Ot − x(qt)(t))Σ(qt)(t)(Ot − x(qt)(t))T). (2.7)

The joint likelihood for the complete data is

L(λ) = L(λ|O, q) = P (O, q|λ).

2.8.3 Parameter Estimation

The key objective of the EM-algorithm is the expectation

Q(λ, λk) = E(log P (O, q|λ)|O, λk), (2.8)

where λk is the current parameter set. The expectation and maximization step of the
EM-algorithm are performed as described above, the Q-function delivers the parameter
estimates accordingly.

The calculation to obtain the Q-function is quite lengthy and will not be done here in full
detail. Instead a short overview of the necessary steps will be given.

In the beginning some simpli�cation is done through the use of Euler discretization:

x(t + τ) = Ot −D(q)(Ot − µ(q))τ,

Σ(t + τ) =
1
2τ

B(q)−1
,

A(t + τ) =
1√
π

Σ(t + τ)
1
2 .

2.9 HMM-VAR as Generalization of HMM-SDE 17

Inserting these expressions into equation 2.7 one yields

ρ(Ot|qt, Ot−1) =
1

(4πτ2)
1
4

B(qt)−1/2
exp(−(Ot − x(qt))

1
2τ

B(qt)−1
(Ot − x(qt))T) (2.9)

with x(qt) = (Ot−1 −D(qt)(Ot−1 − µ(qt))τ).

Furthermore we proceed by inserting equation 2.6 into equation 2.9. This delivers the
likelihood function with respect to the parameters µ, D and B. Finally to obtain the
parameter estimates one has to insert this likelihood into equation 2.8 and calculate the
partial derivatives ∂Q

∂µ ,
∂Q
∂D and ∂Q

∂B . Setting these partial derivatives to zero gives the �nal
analytical expressions for the parameter estimates:

µ(i) =
X1X2 −X3X4

X1X4 −X3X5
,

D(i) =
∑T

t=2 αt(i)βt(i)(Ot −Ot−1)(Ot−1 − µ(i))

−τ
∑T

t=2 αt(i)βt(i)(Ot−1 − µ(i))2
,

B(i) =
∑T

t=2 αt(i)βt(i)(−Ot + Ot−1 −D(i)(Ot−1 − µ(i))τ)2

τ
∑T

t=0 αt(i)βt(i)

and with the abbreviations

X1 =
T∑
t=1

αt(i)βt(i)(Ot −Ot−1),

X2 =
T∑
t=1

αt(i)βt(i)O2
t−1,

X3 =
T∑
t=1

αt(i)βt(i)(Ot −Ot−1)Ot−1,

X4 =
T∑
t=1

αt(i)βt(i)Ot−1,

X5 =
T∑
t=1

αt(i)βt(i).

2.9 HMM-VAR as Generalization of HMM-SDE

The parameter estimation of a one dimensional SDE has been described in detail in the
previous section. In this section the generalization of the concept behind HMM-SDE is
investigated. Extending the HMM-SDE approach, based on a one-dimensional SDE, to a
d-dimensional SDE of the form

ż = F (z − µ) + ΣẆ

18 2 Theory

the parameter estimation is obtained by investigation of an appropriate likelihood function,
this extension is performed in [16]. A more generalized approach is based on VAR processes
([13]), here the interpretation of a SDE as VAR process is given and a comprehension is
presented. An detailed analysis of the di�culties of parameter estimation of generalized
multidimensional Langevin processes is given in [8].

The trajectory zt with t ∈ {1, . . . , T ′} is given at discrete points in time. According to the
above equation and given an observation zt, the conditional probability density of zt+1 is
a Gaussian with density function

fλ(zt+1|zt) =
1√

|2πR(τ)|
· exp(−1

2
(zt+1 − µt)TR(τ)−1(zt+1 − µt)) (2.10)

with the variance of the distribution given as

µt := µ + exp(τF)(zt − µ)

and

R(τ) :=
ˆ

exp(sF)ΣΣT exp(sF T) ds.

A likelihood function with parameter set λ = (µ, F,Σ) can be constructed as

L(λ|Z) =
T ′−1∏
t=1

fλ(zt+1|zt).

But unfortunately this likelihood function can not be solved analytically. Therefore, we
express Equation 2.10 by using the de�nition of µt as

zt+1 = N (µ + exp(τF)(zt − µ), R)
= (I − exp(τF))µ + exp(τF)zt +N (0, R),

where N is a multivariate normal distribution and I is an identify matrix. Using the
de�nitions

Φ :=
(

(I − exp(τF))µ exp(τF)
)
∈ Rd×(d+1)

X :=
(

1 . . . 1
z1 . . . zT−1

)
∈ R(d+1)×(T ′−1)

Y :=
(

z2 . . . zT
)
∈ Rd×(T ′−1)

ε :=
(
N (0, R) . . . N (0, R)

)
∈ Rd×(T ′−1)

allows to write

Y = ΦX + ε.

2.9 HMM-VAR as Generalization of HMM-SDE 19

A transformation of the parameter set λ to λ′ = (Φ, R) leads to the likelihood function

L(λ′|Z) =
(

1√
2πR

)T ′−1

exp(−1
2
tr(Y − ΦX)(Y − ΦX)TR−1)

for which maximum likelihood estimators are available:

Φ = Y XT (XXT)−1 (2.11)

and

R =
(Y − ΦX)(Y − ΦX)T

T ′ − 1
. (2.12)

2.9.1 Estimator Calculation

The analytic estimators given in Equation 2.11 and 2.12 are in general not used for the com-
putation of the parameters, as the required matrix inversion can be numerically unstable.
Instead a moment matrix is constructed

M(Z) =
T∑
i=1


1
zi
...

zi+p

 ·
(

1 zTi . . . zTi+p
)

=
(

XXT XY T

Y XT Y Y T

)
=:
(

M11 M12

M21 M22

)
.

The moment matrix is an important object, since it contains all statistical relevant infor-
mation about the observed process. By rewriting the likelihood in terms of M this fact
becomes evident:

L(Φ, R|Z) = L(Φ, R|M)

=
(

1√
2πR

)m
· exp

(
−1

2
tr((M22 −M21ΦT − ΦM12 + ΦM22ΦT)R−1)

)
.

A Cholesky decomposition of the moment matrix M yields

M =
(

XXT XY T

Y XT Y Y T

)
= RRT =

(
R11 R12

0 R22

)
·
(

RT
11 0

RT
12 RT

22

)
=
(

RT
11R11 RT

11R12

RT
12R11 (RT

12R12 + RT
22R22)

)
.

Thus the estimators Φ and R can be expressed as

20 2 Theory

z t
 ,=z ⋅t−1 

with t∈{1, ,T },
=const. ,0≤



 trajectories

z t
3,0=z 3 t−10

z t
3,2=z 3 t−12

Figure 2.3: Original trajectory and τ shifted trajectories.

Φ =
(
RT

11R12

)T
and

R =
1
m
·RT

22R22.

The derivation of HMM-VAR based on VAR processes presented here is based on personal
communication with Eike Meerbach.

2.10 Using HMM-VAR for Trajectories with Di�erent
Lagtimes

Given a trajectory zt, where the index t indicates the discrete character of the trajectory,
the requirement is often to analyze the trajectory for di�erent lagtimes τ . This require-
ment stems from the fact that only for su�ciently large lagtimes τ the Markov model
obtained from clustering ful�lls the Markovian property. So far, taking di�erent lagtimes
into account, the resulting trajectory for lagtime τ is given as zτt := z(τ(t−1)). Intuitively
spoken, only each multiple of τ value is taken from the trajectory, e.g. with τ = 100 and
t ∈ {1, . . . , 1000} only z100

1 = z(0), z100
2 = z(100), . . . , z(900), thus the obtained trajectory

is sparse.

Without discarding information the only opportunity is also to take the shifted trajectories
zτ,∆t := z(τ(t − 1) + ∆) for all 0 ≤ ∆ < τ into account. In total for a certain lagtime τ
there exist τ such shifted trajectories (see Figure 2.3).

But one problem which still remains is to prepare a suitable input for HMM-VAR from
the shifted trajectories. Two solutions are reasonable:

• Concatenation of all shifted trajectory pieces zτ,0t , . . . zτ,τ−1
t . A simple concatenation

will not su�ce. Oriented on the example above suppose z100,0
t and z100,1

t are the �rst
two trajectory pieces, thus simple concatenation yields

z100,0
1 , z100,0

2 , . . . , z100,0
9 , z100,1

1 , z100,1
2 , . . . , z100,1

9

= z(0), z(100), . . . , z(900), z(1), z(101), . . . , z(901)

2.10 Using HMM-VAR for Trajectories with Di�erent Lagtimes 21

Thus at the glueing point z(900), z(1) an additional transition might have been
introduced for the underlying Markov model. Therefore, imagine z(0), z(1) live in
the conformational state 1, while z(900) lives in a conformational state, which is not
state 1. Thus a transition is induced, which especially in case of statistically rare
events is inacceptable.
Therefore, the only way is to adapt the HMM-VAR accordingly, so that special care
is taking at the glueing points. This involves the neglect of these transitions for the
observation as well as the neglect within the Markov model of the HMM. Without
going into much detail here, this step requires serious bookkeeping. Due to the
error-prone character this approach is not chosen.

• The second solution takes multiple trajectories as input for HMM-VAR. At this point
the set of trajectories consists of τ shifted trajectories. Instead of a concatenation of
trajectory pieces, HMM-VAR is adapted to simultaneously calculate model parame-
ters λ for all trajectory pieces. This approach is presented below.

2.10.1 Extension of HMM-VAR to Multiple Trajectories

The necessity to perform HMM-VAR simultaneously on multiple trajectories requires some
modi�cations to the HMM-VAR, which operates on a single trajectory. Here, we adapt
our notation. The set of m trajectories as input for HMM-VAR is {zk|0 ≤ k < m}.
Within this approach, the trajectories zi are treated independently. The calculation of the
forward variables αi(t), where i is the index for the hidden state and t is the time step, is
performed independently for each trajectory zk. So, we get forward variables αki (t), which
depend on the trajectory index k as well. Accordingly the backward variables βki (t) are
calculated. The forward and backward variables are used to calculate γki (t), the probability
to be in state i at time t for trajectory k. The transition probabilities ξkij(t) are calculated
appropriately.

Given αki (t), βki (t), γki (t) and ξkij(t) as above the calculation of the transition matrix, the
initial distribution and the moment matrix is possible. Here, for the calculation of these
entities we sum over the transition probabilities for all k. The transition matrix is obtained
by

aij =

∑m−1
k=0

∑T−1
t=1 ξkij(t)∑m−1

k=0

∑T−1
t=1 γki (t)

,

and the initial distribution by

πi =
m−1∑
k=0

γki (1)

and appropriate normalization. At this point, it needs to be mentioned, that a proper
justi�cation for a common initial distribution π is required.

For all trajectories zk a common parameter estimation is performed by the following two
steps:

• Calculate moment matrix M with appropriate weighting γ. All statistical relevant
information is contained within M . The information coming from di�erent points in
time is weighted by γ.

22 2 Theory

• Calculation of estimators from moment matrix M .

The approach presented here does not conform to mathematical strictness. A clean deriva-
tion is required and will be part of future work.

2.11 Perron-Cluster-Cluster-Analysis (PCCA)

PCCA is a method for the determination of metastable states based on a transition matrix
([3, 23, 22, 17]). Therefore, PCCA transforms that transition matrix into a block-diagonal
form by permutation. The transition matrix is obtained by counting the transitions be-
tween microstates (see Section 2.3). By PCCA each of the microstates is assigned to one
of 1,..,C clusters or metastable states. The assignment of macrostates to microstates is
called the membership-assignment.

2.11.1 Mathematical Idea

Given a transition matrix T with a real-valued spectrum with sorted Eigenvalues λ1 ≥
. . . ≥ λs and an Eigenvector matrix X, where the ithcolumn of X is an Eigenvector
corresponding to λi, the clustering can be computed in terms of the basis X as

χdis = XA,

with A ∈ Rs×nc .

2.11.2 Derivation

For the derivation of PCCA we need a special kind of functions ξj and a disjoint decom-
position χi of our space Ω. The functions {ξ1, . . . , ξs} : Ω → R are a partition of unity and
non-negative. They form a so called membership basis of Ω and are usually characteristic
functions that de�ne microstates

s∑
i=1

ξi(q) = 1, ∀q ∈ Ω.

The {χ1, . . . , χc} are almost characteristic functions and also are a partition of unity,
that decompose the space Ω into c (almost) disjoint subsets, that can be referred to as
macrostates. To discretize the macrostate basis χi the microstate basis ξi is used

χl(q) =
s∑
i=1

ξi(q)χdisc(i, l).

The goal will be to �nd for a given set of microstates the optimal discretization matrix χdisc.
So we can give two transition matrices. One for the microstates, one for the macrostates:

2.11 Perron-Cluster-Cluster-Analysis (PCCA) 23

Tmacro
ij =

〈χi, P τχj〉π
〈χi〉π

,

P = Tmicro
ij =

〈ξi, P τξj〉π
〈ξi〉π

.

If we have a metastable subset, that means

χl ≈ Pχl,

it follows easily that

Pχdisc ≈ χdisc

has also to be true. If the χl should still be non negative and be a partition of unity, it
follows for the discretization χdisc, that it has to be a stochastic matrix. For PCCA it is
reasonable to express the discretization in terms of the �rst c eigenvectors of the microstate
transition matrix

χdisc = X · A.

In this case to keep the properties of χdisc these transfer similar to A. After all this
transformations the question still remains, which discretization or which A out of the
feasible set of allowed matrices to choose. For this reason we choose an objective function
I(A), which is to be maximized to �nd A. There are two prominent choices:

1. For each cluster / microstate there should be a point q ∈ Ω with maximal degree of
membership χi(q) ≈ 1:

I1(A) =
c∑
j=1

max
l=1,...,s

χdisc(l, j) =
c∑
j=1

max
l=1,...,s

c∑
i=1

X(l, i)A(i, j) ≤ c.

2. Maximize the metastability of the conformations χ1, . . . , χc, which equivalent to max-
imize the trace of the macrostate transition matrix

I2(A) = trace(Pmacro) = trace(D̃−1ATΛA) ≤
c∑
i=1

λi.

Once a solution is found it is an optimal clustering. The solution can be found using Linear
Programming, but it is not always feasible. In general any optimization technique can be
used.

Another more intuitive approach to PCCA is given by the idea, that each stochastic matrix
inhibits a Perron Eigenvalue of one with a constant right eigenvector. If we have a transition
matrix with c completely decoupled subset, then this is true for each subset. If we have

24 2 Theory

a �rst order approximation to this, in other terms a transition matrix with metastability,
then, to �rst order approximation. The eigenvectors will be a linear combination of the
characteristic functions for each metastable subset and the eigenvalues will be close to one.
This means that the number of eigenvalues close to one are in indication for the number
of metastable sets in the system.

Looking at the transition matrix as a generator of a Markov chain, we can decompose the
transition matrix in s matrices of rank one, which describe each a movement of probability
in the system, where the eigenvalues give the timescale of the process. In detail this is
minus the inverse of the log of the rate. So eigenvalues close to one indicate nearly in�nite
lifetimes of processes.

2.12 Principal-Component Analysis (PCA)

Principal-component analysis (PCA) (see [11], Chapter 2) is a vector space transform
used to reduce multidimensional data sets to lower dimension. Mathematically PCA is
de�ned as an orthogonal linear transformation that transforms the data to a new coordinate
system such that the greatest variance by any projection of the data comes to lie on the
�rst coordinate (called the �rst principal component), the second greatest variance on the
second coordinate, and so on.

2.12.1 Covariance Matrix

Consider two sets of data, written as row vectors,

~a′ = [a′1 a′2 . . . a′n]; ~b′ = [b′1 . . . b′n].

Performing a mean correction (zero mean correction) by the mean of ā =
∑n

i=1 ai and with

∆ai = ā− ai, we obtain vectors ~a and ~b

~a = [∆a1 . . . ∆an]; ~b = [∆b1 . . . ∆bn].

The variance of ~a is de�ned as

σ2
a =< ai · ai >=

1
n− 1

n∑
i=1

ai · ai =
1

n− 1
~a · ~aT .

In the same manner the covariance between ~a and ~b is de�ned as

σ2
ab =< ai · bi >=

1
n− 1

n∑
i=1

ai · bi =
1

n− 1
~a ·~bT .

Extending these de�nitions to matrix calculus and setting up a matrix X, whose rows
consists of some data vectors (for the sake of simplicity we take ~a, ~b and some further

2.12 Principal-Component Analysis (PCA) 25

vectors up to ~z):

X =


~a
~b
...
~z

 .

One obtains the covariance matrix as

CX =
1

n− 1
XXT =


σ2
a σ2

ab . . . σ2
az

σ2
ab σ2

b . . .
...

...
...

. . .
...

σ2
az · · · · · · σ2

z

 . (2.13)

The following properties can be easily derived from Equation 2.13:

• CX is a square symmetric matrix,

• the diagonal terms are the variances of the data vectors,

• the o�-diagonal terms are the covariances of two di�erent data vectors.

Thus, the covariance matrix CX captures the correlations between all possible pairs of
data vectors. The correlation values re�ect the noise and redundancy of the data. In the
diagonal terms, large (small) values correspond to interesting dynamics (noise). In the
o�-diagonal terms large (small) values correspond to high (low) redundancy.

The main purpose of PCA is now to

• minimize redundancy, measured by covariance and

• maximize the signal, measured by variance

of CX by using some linear orthogonal transform. So the new �optimized� and transformed
matrix CY has o�-diagonal terms, which are 0. Thus CY has to be a diagonal matrix.

2.12.2 Diagonalization of Covariance Matrix

Mathematically speaking, our purpose is to �nd an orthonormal matrix P , where Y = PX
such that

CY =
1

n− 1
Y Y T

is diagonal. Inserting PX for Y yields

CY =
1

n− 1
(PX)(PX)T

=
1

n− 1
(PX)(XTP T)

=
1

n− 1
P (XXT)P T

=
1

n− 1
PAP T . (2.14)

26 2 Theory

Note that the introduced matrix A = XXT is symmetric. Since A is symmetric, it is
orthogonally diagonalizable. Furthermore it is diagonalized by a matrix of its orthonormal
eigenvectors (no prove given here). Thus the matrix A can be written as

A = EDET , (2.15)

where E is a matrix of Eigenvectors arranged as columns and D is a diagonal matrix.

We choose the transformation matrix P in Equation 2.14 to be a matrix, where each row
of P is an Eigenvector of A = XXT . Thus P = ET and substituting P into Equation 2.15
yields

A = P TDP. (2.16)

Finally inserting A into Equation 2.14 one obtains

CY =
1

n− 1
PAP T

=
1

n− 1
P (P TDP)P T

=
1

n− 1
(PP T)D(PP T)

=
1

n− 1
(PP−1)D(PP−1)

CY =
1

n− 1
D.

With this choice of matrix P , whose rows are the Eigenvectors of XXT at the same time
being the principal components of X, we have found the transformation, which diagonalizes
CY . Furthermore, the ithdiagonal value of CY is the variance of X.

2.13 K-means Clustering

The k-means algorithm (Lloyd 1957) belongs to the group of model-free method for ob-
ject classi�cations [6]. The algorithm is also known as Linde-Buzo-Gray (LBG) or Lloyd
algorithm. The basic idea is to group the data points in such a way to m clusters that the
sum of distances between each data point and its respective cluster center is minimized.

Following assumptions are made:

• Input data has to have a naturally way of clustering (clusters have to be available in
the data).

• The total number of clusters n is known (sometimes the shortcut k is used).

• A function c is known to determine the center (centroid) for a given set of data
points.

2.13 K-means Clustering 27

The following heuristic is used to solve the k-means problem:

1. Given: data set C = {x1, . . . , xm}, total number of clusters is n and function c

2. Initialization: partition input points into n initial sets (either random or using some
prior knowledge)

3. Calculate: Use function c to calculate the center for each set ⇒ Set the cluster
centroid to this point

4. Assignment: Data points xi are associated with the nearest centroid ⇒ Data is
arranged into new partitions

5. Recalculate: Positions of centroids are recalculated for the new partitions

6. Iterate: Go to (4) until convergence (points do no longer switch clusters or centroids
are no longer changed)

7. END

An example of the mode of operation of the k-means algorithm is given in Figure 2.4.

Figure 2.4: Example for k-means algorithm: (a) Shows the initial randomized centroids
and a number of points. (b) Points are associated with the nearest centroid.
(c) Now the centroids are moved to the center of their respective clusters. (d)
Steps 4 and 5 are repeated until a suitable level of convergence has been reached.
(Picture taken from http://en.wikipedia.org/wiki/K-means_algorithm).

The k-means algorithm has following advantages:

• Algorithm is extremely fast,

• algorithm is simple.

28 2 Theory

But the k-means algorithm has the following disadvantages:

• The algorithm can get stuck in local minima, it is not guaranteed to return the global
optimum solution.

• Di�erent initial sets of clusters (random component in algorithm) for same data set
C can lead to di�erent clustering results.

• The quality of �nal solution may depends strongly on the initial set of clusters (step
2). Because the algorithm is extremely fast, a common method is to run the algorithm
with di�erent settings and return the best clustering found.

• The main drawback is that the number of cluster m has to be known beforehand. A
simple solution would be to compare the results of multiple runs with di�erent m.

• If the data set C has no natural clusters, one obtains strange results.

3 PCCA and HMM on Model Examples

This chapter is dedicated to the analysis of a model trajectory and to the comparison of
the clustering results of PCCA and HMM-VAR. A model trajectory based on a 3-basin
potential is chosen to obtain an overview of the performance as well as to get an impression
of the pitfalls which can occur during the application of PCCA and HMM-VAR.

3.1 Approach

An overview of the general approach for the evaluation and the comparison of the clustering
results is given in Figure 3.1. Based on di�erent potentials U , di�erent model trajectories
z(t) are created. These trajectories are clustered with PCCA and HMM-VAR.

First and according to the above approach, a model trajectory is investigated where cluster-
ing is successful for both PCCA and HMM-VAR. It is shown, that the correct initialization
of HMM-VAR has an serious impact on the convergence of HMM-VAR towards an optimal
solution.

Second, the investigation of a model trajectory is performed where HMM-VAR fails. The
type and shape of the potential U and thereby the kinetics of metastable states have much
in�uence on the clustering results.

3.2 Model Trajectory Generation and Potential

For the analysis a model trajectory is created, which is based on an overdamped Langevin
process

γż = −∇U(z) + σẆ .

Using Euler discretization the Langevin process can be expressed as

∆z = z(t + ∆t)− z(t) =
1
γ

(−∇U(z) + σẆ) ·∆t

z(t + ∆t) = z(t) +
1
γ

(−∇U(z) + σẆ) ·∆t. (3.1)

Here, z is a position vector depending on time t, ż is the time derivative wrt. z, U(z) is
the potential at location z, Ẇ denotes some random noise and σ is the appropriate noise
intensity.

30 3 PCCA and HMM on Model Examples

z t :complete 2-dim. trajectory

zt :microstate trajectory

zmacrot :macrostate trajectory

discretisation to
30 x 30 microstates

PCCA
HMM-VAR and
Viterbi path

selection of x-, y- or
both components

zx|y|xy t :dimension reduced trajectory

zmacrot :macrostate trajectory

ITS and
visual comparison

Figure 3.1: General approach for the evaluation and the comparison of clustering results
from PCCA and HMM-VAR for model trajectories. The left branch shows the
HMM-VAR part, the right branch shows the PCCA part.

The analysis is performed with a 2-dimensional trajectory z(t), thus z(t) =
(

x(t)
y(t)

)
. The

potential U(z) is a function U(z) : R2 → R. For the analysis a 3-well potential chosen.
Basically the potential is de�ned as a sum of Gaussian potential basins as

U(z) = U(x, y) =
p∑
i=1

−Ii · exp

(
−

((
µx,i − x

δx,i

)2

+
(

µy,i − y

δy,i

)2
))

,

where p is the number of parameter sets. Each parameter set contains I, µx, µy, δx, δy.
The parameters for the potentials are given in Figure 3.3.

3.3 3-Well Potential

3.3.1 Parameters for Trajectory Generation

According to the potential Utype(z), given in Figure 3.2, top left, a two dimensional tra-
jectory z(t) is generated based on the discretized Langevin process given in equation 3.1.

The following parameters are used for the generation of the trajectory:

• The starting point z0 = z(to) is chosen to be at z0 = (20, 10)T , thus the trajectory
starts in the bottom right minimum.

• The time step for the discretization is 0.6.

• The noise intensity σ is 1.7, the random noise Ẇ is setup as a two dimensional
Gaussian normal distribution N 2(0, 1).

3.3 3-Well Potential 31

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.2: Di�erent 3-well potentials. Top-left: 3-well potential Utype(z) with two po-
tentials basins at y = 9, which di�er in shape. Top-right: 3-well potential
Ushifted(z), where the two bottom potentials are slightly shifted to each other.
Bottom: 3-well potential Ustd(z).

32 3 PCCA and HMM on Model Examples

I µx µy δx δy Remarks

Ustd 2 15 15 20 20 global basin

1.2 9 9 5 5 bottom left basin

0.9 21 9 5 5 bottom right basin

1.0 13 21 5 5 top basin

Utype all other parameters like Ustd

2 5 di�erent potential type

5 2 di�erent potential type

Ushifted all other parameters like Ustd

7 bottom right basin is shifted in y

Figure 3.3: Parameters I, µx, δx, µy, δy in parameter sets for the di�erent potentials.

• The trajectory has 5 · 106 time steps.

The generated trajectory is displayed in Figure 3.4.

3.3.2 Microstate-Clustering and True Timescales

The two dimensional continuous trajectory z(t) is clustered into a total of 900 microstates,
30 states along x- and y-axis respectively, resulting in a microstate trajectory zµ(t). There-
fore, a function f : R2 → A, with A = {0, . . . , 899} and m(t) ∈ A is used, which maps each
point z(t) into its appropriate microstate. Thus the continuous trajectory is discretized
along the coordinate axis.

A transition matrix T (τ) is constructed from the microstate trajectory as described in
Section 2.3: the total number of transitions from microstate i to microstate j is counted
in

cij = | {i = m(t), j = m(t + τ)|t = 0, . . . , tmax} |
and the total number of transitions leaving microstate i is

ci :=
m∑
k=1

cik.

Thus the transition matrix entry tij is given by

tij =
cij
ci

.

In the case of 900 microstates this results in a transition matrix T (τ) being in R900×900.

For di�erent lagtimes τ the implied timescales have been calculated. By calculating the
�rst eigenvalues of T (τ) the implied timescale (ITS) is obtained as

ITSi(τ) = − τ

log λi
.

3.3 3-Well Potential 33

Figure 3.4: A plot of the trajectory z(t) for the potential Utype(z) (see Figure 3.2). Top-
left: Visited points of z(t) for t = 0 to t = 5 · 106. Top-right: Projection of the
trajectory z(t) onto the y-axis. Bottom: Projection of the trajectory z(t) onto
the x-axis.

34 3 PCCA and HMM on Model Examples

0 2000 4000 6000 8000 10000
10

4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

Figure 3.5: True timescales determined by the eigenvalues of the transition matrix T (τ).
The green curve displays the ITS calculated by the 2nd eigenvalue, the blue
curve display the ITS calculated by the 3rd eigenvalue. The slower a switching
process is, the higher is its ITS.

The resulting ITS are determined for di�erent lagtimes and are plotted in Figure 3.5.

3.3.3 PCCA: Clustering Results and Timescales.

The transition matrix T (τ) is built from the microstate or discretized trajectory. To sum
up the insights given in Section 2.11, PCCA identi�es the metastable states. A metastable
state is a set of microstates, in whom the system stays a long time before leaving that
state. Thus, given a discrete trajectory zµ(t) ∈ A = {microstates a}, PCCA determines
a partition of microstates into |C| metastable sets, such that the number of transitions
within these sets is maximized and the number of transitions to di�erent sets is minimized.
In the following C is the set of macrostates, each c ∈ C is a set of microstates {ai, . . . , aj}.
To determine the partition of microstates in macrostates PCCA transforms the transition
matrix T (τ) into block-diagonal form by permutation without changing the eigenvalues.
These blocks of the transition matrix �build� macrostates. Each of the microstates is
assigned to one of the metastable sets, thus PCCA gives an assignment A → C.

In case of the given model trajectory a total number of three macrostates is evident, since
the potential surface consists of three minima. The clustering results of PCCA are given
in Figure 3.6 and 3.7.

With PCCA delivering the assignment of microstates to macrostates a macrostate tra-
jectory zmacro(t) is constructed. This trajectory is taken to build a transition matrix
T (τ) ∈ R3×3 following the same procedure of counting transitions, but this time between
macrostates. By calculating the eigenvalues of the transition matrix for di�erent lagtimes
τ ∈ {1, 10, 100, 1000, 2000, 5000, 7000, 10000}, the implied timescales are computed, see
Figure 3.8.

3.3 3-Well Potential 35

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x
C

lu
st

er
 n

um
be

r
al

on
g

y
0 5 10 15 20 25 30

0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.6: PCCA clustering results of model trajectory for lagtime 1.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.7: PCCA clustering results of model trajectory for lagtime 1000.

0 2000 4000 6000 8000 10000
10

4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

Figure 3.8: Implied timescales for PCCA clustering of the 2nd and the 3rd eigenvalue. The
red dashed curves indicate the true timescales. Throughout the whole presen-
tation of timescales, we will indicated reference true timescales in red.

36 3 PCCA and HMM on Model Examples

3.3.4 HMM-VAR starting from "correct" Assignment of Viterbi Path

The model trajectory z(t) is taken as input for HMM-VAR. The memory p is set to one,
thus HMM-VAR is identical to HMM-SDE. This setting is kept for all clusterings made
by HMM-VAR. One of the bene�ts of HMM-VAR is its ability to work on a reduced state
space. Thus the two-dimensional trajectory z(t) is projected onto a subspace so HMM-VAR
can reveal its capability. For the sake of simplicity this subspace is either the x-component
or the y-component of the trajectory z(t). Nevertheless and for reasons of completeness,
HMM-VAR is applied to the (full) two-dimension trajectory z(t).

Initialization of HMM-VAR is either performed by an initial path, from which the HMM
parameters are estimated, or directly by HMM-VAR parameters. These parameters are a
transition matrix, an initial distribution, and for each hidden state a covariance matrix of
noise intensities and a regression matrix.

Here, we start the initialization with an initial path. The initial path, which serves as
initialization input for the HMM, is taken from the results of the PCCA clustering. PCCA
delivers a macrostate trajectory zmacro(t). This trajectory assigns each time step to one
of the C macrostate clusters, detected by PCCA. Since we expect that this macrostate
trajectory exhibits a proper assignment to macrostates, it is taken as initial path for HMM
initialization.

This expectation is con�rmed by the following facts:

• Taking the macrostate trajectory zmacro(t) as initialization of HMM the obtained
likelihood after the �rst calculation step is higher than the likelihood obtained from
an equally distributed random sequence. The generated random sequence has for
each time step an integer random number 0 ≤ r < C, with C the number of clusters.

• Taking the macrostate trajectory as initialization of HMM the obtained likelihood
after the �rst calculation step is higher than the likelihood obtained from an initial-
ization with a random Markov chain based on a transition matrix T .

After convergence of HMM-VAR the Viterbi path has been calculated. The Viterbi path
contains the same information as the macrostate trajectory zmacro(t) does for PCCA. Thus
the Viterbi path contains the most likely assignment to hidden states of the HMM-VAR
model, which represent metastable states, under the given observation z(t).

In order to obtain appropriate visualization results of the clustering by HMM-VAR we
count how often the microstate is assigned to cluster c for each microstate, which is one
of the 30× 30 microstates along x and y respectively. We denote by |A| the total number
of microstates and by |C| the number of clusters. To express the membership a matrix
M |A|×|C| is used. So, we determine the metastable state c for time step t from the Viterbi
path, retrieve the according microstate a for t from the microstate trajectory zµ(t) and
add one for the appropriate entry in the membership matrix ma,c. Finally, the entries ma,c

are rescaled such that
∑

i ma,i = 1 for each a.

A visual representation of the clustering results of HMM-VAR is given in Figure 3.9 and
3.10. The clustering results show a clean distinction of the three metastable states.

3.3 3-Well Potential 37

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x
C

lu
st

er
 n

um
be

r
al

on
g

y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.9: HMM-VAR clustering results of model trajectory for projection along x.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.10: HMM-VAR clustering results of model trajectory for projection along y.

The above clustering is executed for lagtimes τ ∈ {1, 10, 100, 1000, 2000, 5000, 7000, 10000}.
Here, we reference to the theory of this approach given in Section 2.10.1. With an imple-
mentation of that method the clustering could be performed for the above lagtimes. A
comparison of the ITS is given in Figure 3.11, which shows proper agreement between the
true timescales and those obtained by HMM-VAR.

3.3.5 Convergence of HMM-VAR from Wrong Assignment

In Section 3.3.4 we have initialized HMM-VAR from a path, which stems from PCCA.
Here, we perform the initialization by a Markov chain, which is based on a transition
matrix T. When the initialization is performed that way, the clustering results are wrong.
The Baum-Welch algorithm has converged, but the local minimum, which is found, is not
the true global minimum (see Figure 3.12). The wrong clustering results using that kind
of initialization are nearly identical for all lagtimes. An illustration of the likelihoods due
to di�erent initialization is given in Figure 3.13.

38 3 PCCA and HMM on Model Examples

0 2000 4000 6000 8000 10000
10

4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

0 2000 4000 6000 8000 10000
10

4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

Figure 3.11: Implied timescales obtained by HMM-VAR. Left: ITS obtained for clustering
the X-component of trajectory. Right: ITS obtained for clustering the Y-
component of trajectory.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.12: HMM-VAR clustering results of model trajectory for initialization from ran-
dom Markov process. The likelihood has converged to a local minimum, but
this minimum does not yield a proper clustering.

likelihood (initialization) likelihood (converged)

Initialization from PCCA macrostate trajectory 4317577.21 4317584.91

Initialization by random Markov process 4307543.24 4307543.30

Figure 3.13: Likelihoods obtained by di�erent initializations of HMM-VAR. If the initial-
ization is done by random Markov process the likelihood converges to a local
minimum with lower likelihood. Furthermore, the initialization by the PCCA
macrostate trajectory is nearly optimal as can be seen in the �rst row.

3.4 3-Well Potential where HMM-VAR Clustering fails 39

3.4 3-Well Potential where HMM-VAR Clustering fails

In this section the analysis is identical to that in the previous section. But instead we
investigate here a model trajectory which is based on the potential Ustd(t) (see Figure 3.2).
Clustering is done by PCCA and HMM-VAR as beforehand.

The potential Ustd(t) is chosen such, that the two bottom-most basins have the same y-
coordinate of the potential basin and additionally have an identical shape. Here, identical
shape means, that the slopes of the potentials are identical. When doing PCCA, clustering
results are expected to deliver reasonable results. The transition matrix T (τ) which is
obtained by counting microstate transitions will hardly be in�uenced by di�erent potential
shapes, so we expect PCCA to cluster reliably. But when executing HMM-VAR on the
projection onto the y-coordinate, we expect HMM-VAR to miserably fail. This is due to
the fact that the kinetics of the two bottom-most potentials do not di�er. In contrast,
the clustering of the trajectory projected onto the x-axis is expected to deliver reasonable
results, since the mean values of the potential minima di�er signi�cantly. The geometrical
distinction of potential basins allows HMM-VAR to separate the according states.

Further analysis will be performed to study the e�ect on the obtained ITS. A plot of the
true timescales is given in Figure 3.17. A comparison with the ITS obtained by PCCA and
HMM-VAR reveals the ability of the clustering algorithms to properly identify the time
scales of switching processes between metastable states. As well as we expect the visual
clustering results of HMM-VAR not to be reasonable for the y-coordinate of the trajectory,
we also expect the comparison of true timescales with timescales obtained by HMM-VAR
to detect a discrepancy in the ITS.

3.4.1 PCCA

The clustering results obtained by PCCA are given in Figures 3.15 and 3.16. The three
di�erent clusters according to the potential Ustd are cleanly resolved. With increased
lagtime τ a slight fuzziness in clustering can be observed. Especially this seems to be
apparent on the �rims� of the clustering regions.

3.4.2 HMM-VAR

Clustering of the model trajectory based on the potential Ustd by HMM-VAR is performed
in the same way as in Section 3.3.4. Therefore and from the results of the previous section,
the initialization of HMM-VAR is done by the macrostate trajectory obtained by PCCA.
The lagtimes τ are chosen identically.

The clustering results of HMM-VAR for this model trajectory are displayed in Figure 3.19
and 3.20. The clustering results for the y-projection reveal the incorrect clustering. The
two bottom most metastable can not be distinguished by their kinetics and are mangled.
A �at third state is detected, which lies geometrically in between the two bottom most
states and the top most state.

The in�uence of the wrong clustering has serious impact on the ITS as well (see Figure
3.21). Especially the implied timescales for the y-component clustering show this behavior.

40 3 PCCA and HMM on Model Examples

Figure 3.14: A plot of the trajectory z(t) for the potential Ustd(z) (see Figure 3.2). Top-
left: Visited points of z(t) for t = 0 to t = 5 · 106. Top-right: Projection of
the trajectory z(t) onto the y-axis. Bottom: Projection of the trajectory z(t)
onto the x-axis.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.15: PCCA clustering results of model trajectory for lagtime 1.

3.4 3-Well Potential where HMM-VAR Clustering fails 41

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.16: PCCA clustering results of model trajectory for lagtime 1000.

0 2000 4000 6000 8000 10000
10

4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

Figure 3.17: True timescales determined by the eigenvalues of the transition matrix T (τ).
The green curve displays the ITS calculated by the 2nd eigenvalue, the blue
curve display the ITS calculated by the 3rd eigenvalue.

42 3 PCCA and HMM on Model Examples

0 2000 4000 6000 8000 10000
10

4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

Figure 3.18: Implied timescales for PCCA clustering of the 2nd and the 3rd eigenvalue. The
red dashed curves indicate the true timescales.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.19: HMM-VAR clustering results of model trajectory for projection along x.

The ITS related to the third eigenvalue are two decades out of range in comparison to the
true timescales. This is due to the mangling of the two bottom most states.

3.5 Comprehension of Results

By the analysis of simple model trajectories with HMM-VAR and PCCA and the evaluation
of the clustering results and ITS a �rst impression of the performance is obtained and
several insights into possible problems are provided. From the clustering results based on
HMM-VAR the following conclusion of the essential results is drawn:

• HMM-VAR is sensitive to the type of the potential. Overlapping potentials (as in
the case of Utype) need to di�er substantially in order to allow a proper distinction
of metastable states.

3.5 Comprehension of Results 43

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cluster number along x

C
lu

st
er

 n
um

be
r

al
on

g
y

Figure 3.20: HMM-VAR clustering results of model trajectory for projection along y. The
clustering fails and does not determine the true clusters. On the left the two
potentials have been mangled.

0 2000 4000 6000 8000 10000
10

4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

0 2000 4000 6000 8000 10000
10

4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

Figure 3.21: Implied timescales obtained by HMM-VAR. Left: X-component of trajectory.
Right: Y-component of trajectory. The ITS obtained by the 3rd eigenvalue
for di�erent lagtimes τ are two decades below the expected results (bottom
dotted red line). The improper ITS for that process is a serious indication
that the clustering has failed.

44 3 PCCA and HMM on Model Examples

• The determination of the model parameters via the Baum-Welch algorithm, concrete
HMM-VAR, is susceptible to the initial conditions. Even though the Baum-Welch
algorithm always converges, the obtained minimum can be local. Thus to overcome
the problem of local convergence a genetic algorithm is attached to the Baum-Welch
algorithm.

4 A Genetic Algorithm to escape Local

Likelihood Maximizers in HMMs

As presented in Section 3.5 the convergence of the Baum-Welch algorithm towards local
minima is a serious drawback. In order to overcome this problem a new approach is
required. One possible approach is based on the combination of a genetic algorithm (GA)
and the Baum-Welch algorithm. This approach will be investigated here.

First, a brief introduction to genetic algorithms is delivered. The introduction contains the
de�nition of terms, the basic idea of a genetic algorithm, a description of genetic operations
and a discussion of possible termination criteria of a genetic algorithm.

Afterwards, the formulation of HMM-VAR problems within the context of GA is provided.

The application of the GA to the model trajectories of the last chapter is performed and
thus a possibility to escape local minima is presented.

Implementation details of the GA are illustrated in the last section of this chapter.

4.1 Genetic Algorithm

Genetic algorithms belong to the category of global search heuristics. Mathematically
speaking, genetic algorithms provide a possible solution to determine the global optimum
of the optimization problem f : S → R, where S denotes some search space.

Inspired by evolutionary biology and by the use biological principles such as inheritance,
mutation, crossover and selection, a variety of solution candidates within the search space
are created by the genetic algorithm. Thus solution candidates with a high quality or
goodness of the solution are obtained[5].

Gene 1 Gene 2 Gene 3

Chromosome

Individual Fitness

Figure 4.1: Diagram of an individual, which is the basic entity of a genetic algorithm.
The individual consists of a chromosome, which itself contains genes. Each
individual has a �tness, describing the ability of the individual to survive.

46 4 A Genetic Algorithm to escape Local Likelihood Maximizers in HMMs

I 1 : 200 I 2 : 188 I3 : 187 I 4 : 165 I 5 : 151 I 6 : 130 I 7 : 129 I 8 : 99

keep

I 1 : 200 I 2 : 188

select

I 4 : 165 I 5 : 151

parents for crossover
individuals for mutation

I 1 + I 3 : ? I 1 + I 4 : ? I 2 (MU): ? I 4 (MU): ?

generation

new generation

kept individuals

selected individuals

individuals by crossover

individuals by mutation

Figure 4.2: Illustration of the creation process of a new generation based on the genetic
operations selection, crossover and mutation within a genetic algorithm.

Within the context of genetic algorithms a solution candidate is called individual (see
Figure 4.1). Several individuals form a generation. Each individual has a chromosome,
which consists of a set of genes. The chromosome is decoded such that it represents one
element within the search space. Staying in the context of GA the optimization problem
f delivers a measure for the quality of an individual. This function f is called the �tness
of an individual, the higher the �tness, the greater the chance of an individual to survive.

Implementation centric, genetic algorithms simulate the evolution of generations of indi-
viduals. The evolution usually starts from a population of randomly generated individuals
and takes places in newly created generations. In each generation, the �tness of every
individual in the population is evaluated, multiple individuals are stochastically selected
from the current population (based on their �tness), and modi�ed (recombined and pos-
sibly randomly mutated) to form a new population. The new population is then used in
the next iteration of the algorithm.

4.1.1 Basic Algorithm

Basically, a genetic algorithm is based on the following steps

4.1 Genetic Algorithm 47

1. Generate / choose initial generation consisting of n individuals.

2. Repeat

a) Calculate the �tness of each individual of the current generation

b) Create new generation (see Figure 4.2) by application of genetic operations
selection, crossover and mutation.

c) Make the new generation current.

3. Until termination criterion is satis�ed.

The initial generation of individuals is direct input of the genetic algorithm. An alterna-
tive is to input just one individual and to create the remaining individuals of the initial
generation by mutation of that individual.

4.1.2 Genetic Operations

Genetic operation are the foundation of a genetic algorithm. Like in evolutionary biol-
ogy o�springs or new individuals are replicated by combination of parental genes, the so
called crossover and su�er from selection and mutation through the environment. A ge-
netic algorithm now simulates the evolution of individuals based on these three genetic
operations.

In order to mimic the biology selection refers to the survival of the �ttest. With each
individual having its �tness function, which re�ects the survivability of this individual, the
selection is based on exactly that �tness function. Thus a higher �tness function yields a
higher chance of an individual to survive. Algorithmically, selection can be performed by
several approaches. The selection of one individual is usually performed by:

• Random selection from the �rst n �ttest individuals of one generation.

• Roulette-wheel selection based on a selection probability pi = fi

ΣN
j=1fj

of an individual

i, which depends on the individuals �tness fi.

• Tournament based selection

� Set tournament size k, selection probability p and select k individuals.

� Sort k individuals according to their �tness.

� Choose individual i with probability (1− p)i−1 · p. If chosen, return that indi-
vidual, otherwise continue with next individual i + 1. The returned individual
represents the �winner� of the tournament.

The crossover operation generates o�springs by combination of parental genes. Algo-
rithmically, individuals of the next generation are created by combining genes of parental
individuals of the current generation (see Figure 4.2, green arrows). For the decision which
genes to take from the parental generation, two strategies are normally used:

48 4 A Genetic Algorithm to escape Local Likelihood Maximizers in HMMs

Gene 1 Gene 2 Gene 3

Parent individual (mother)

Gene 1 Gene 2 Gene 3

Parent individual (father)

Gene 2

Offspring

Gene 1 Gene 3

Figure 4.3: Crossover of individuals. Two genes of the o�spring are taken from the mother,
while one gene is taken from the father.

• The genes of the o�spring are taken alternately from the mother and father, thus the
�rst gene stems from the mother, second from the father, third from the mother and
so on.

• For each gene it is randomly chosen, whether it is taken from the mother or from the
father.

The choice, which parental individuals to use for o�spring generation, is usually performed
by a tournament based selection.

Mutation is the third of the genetic operations (see Figure 4.4). Like in a real environment
individuals su�er from mutation. Mutation in the context of genetic algorithms means the
altering of the chromosome by mutation of one or several genes.

Within the creation process of a new generation some individuals are mutated in some or
all of their genes. These mutated individuals are added to the new generation, this process
is illustrated in Figure 4.2, see brown dashed arrows.

The mutation operation can be performed by two approaches.

• If the data of the gene is coded as a string of bits, mutation is done by randomly
�ipping a certain amount of bits, depending on the amount of mutation.

• If the data of the gene can be interpreted as a number, mutation is done by adding
some random value. The strength of mutation depends on the range, the random
value is picked from.

When performing mutation operations, care has to be taken not to create invalid genes.
Here, invalid gene means either that the search space of the problem has been left, since
the whole chromosome has become invalid. Or it means, that the gene is no longer a valid
representation of the problem.

4.1 Genetic Algorithm 49

Gene 1 Gene 2 Gene 3

Individual

Gene 1 Gene 2 Gene 3

Mutated individual

Figure 4.4: Mutation of an individual.

4.1.3 Termination Criteria

Basically, step 2 of the genetic algorithm (see 4.1.1) can be repeated as long as necessary.
With each new generation individuals can be created, which provide better solutions ac-
cording to their �tness. Unfortunately, there exists no guarantee, that this is going to
happen. Instead it is also possible, that either no individuals are created which provide a
better �tness, or that a certain set of chromosomes has established, which does not deliver
a better solution. It is even imaginable, that by mutation and crossover only individu-
als are created which are worse then individuals of previous generations. Nevertheless, a
reasonable termination criterion has to be set.

Several di�erent termination criteria of a genetic algorithm are possible. Here, we just list
some. Depending on the type of the problem a reasonable termination criterion has to be
chosen.

• The GA can be terminated after a certain number of generations has been reached.
This is by far the most simple abort criterion.

• Furthermore, the genetic algorithm can be terminated after a certain �tness threshold
has been reached. This criterion makes sense, when a concrete �tness is su�cient for
the problem solution.

• A further abort criterion can be triggered, if no improvement has been achieved
during the last m generations. Explicitly, this is calculated as

1
m

n∑
i=n−m

fbest(i) = fbest(n),

if n is the current generation and fbest(i) is the best �tness of all individuals in
generation i.

• A further abort criterion can be de�ned as follows: the average improvement of the
current generation compared to the previous generation is below a certain threshold.

If the termination criterion is ful�lled, the genetic algorithm returns the individual with
the best �tness of the current generation.

50 4 A Genetic Algorithm to escape Local Likelihood Maximizers in HMMs

4.2 Example of Genetic Algorithm with HMM-VAR

According to the proposal given in Section 3.5, a genetic algorithm will be applied to
HMM-VAR. This approach delivers a possibility to overcome the problem of getting stuck
in local minima during convergence of the EM algorithm.

4.2.1 Prerequisites

Before a genetic algorithm can be applied to HMM-VAR it has to be clari�ed

• which HMM-VAR parameters form the chromosome of an individual,

• how the coding of chromosomes and genes is chosen to represent HMM-VAR param-
eters and

• how the �tness of an individual corresponds to the likelihood obtained by HMM-VAR.

The last aspect is answered directly. Each individual has a �tness, which is the higher,
the �better� the individual is. The chromosome of an individual represents a point in the
search space and serves as initialization for HMM-VAR. Here, we have not said how the
chromosome represents the initialization input of HMM-VAR. But the maximum-likelihood
of HMM-VAR, or to be more precise of the EM algorithm, can be directly used as the �tness
of an individual.

HMM-VAR can be either initialized by an initial path or by model parameters. The initial
path has the same length as the length of the input trajectory. If initialization is done
by an initial path, a chromosome represents such a path and each individual has such a
chromosome. First, mutation and crossover operations on paths are tedious and need to be
carefully designed. Second, a path consisting of T time steps assigning to one of C states
has a variety of CT di�erent representations. This requires even more elaborated genetic
operations. Additionally, the memory consumption is high, since each individual has to
keep one path, which requires a clever encoding. Nevertheless, the use of an initial path as
initialization can have the bene�t, that HMM-VAR is more unlikely to run into regions of
bad model parameters. Bad means here, that these parameters cause numerical problems
due to bad conditioning.

The model parameters of HMM-VAR are a transition matrix T , an initial distribution π
and covariance matrix Σi and a regression matrix Φi, the last two each per hidden state. If
the initialization is performed by model parameters, these parameters have to be encoded
in the chromosome of the individual. Here, we choose an obvious approach, which exposes
a relatively high granularity of genes. Each of the parameters like transition matrix, initial
distribution, etc. is put into a single gene. High granularity here means, that one single
gene is chosen to represent a matrix. A low granularity would mean, that each single entry
of a matrix is represented as gene. Due to several constraints which are present for the
HMM-VAR parameters the approach of high granularity is taken.

This choice of genes results in a total of 2 + 2n genes, if n is the number of hidden states
for the hidden Markov model. As illustration of the total number of single parameters

4.2 Example of Genetic Algorithm with HMM-VAR 51

for an one-dimensional trajectory and using HMM-VAR with a memory of p = 1 (which
is equivalent to HMM-SDE) one obtains: transition matrix has n · n parameters, the
initial distribution has n parameters and per hidden state we have 2 parameters for the
regression matrix and 1 parameter for the noise intensity. Adding up we obtain a total of
n · n + n + 3n = n2 + 4n parameters. For 3 hidden states, that results in 21 parameters.

4.2.2 Mutation of Genes representing HMM-VAR Parameters

Special care has to be taken during the application of genetic operations on genes, which
represent HMM-VAR parameters. The crossover operation is not critical here due to the
high granularity of genes. By the crossover operation only genes as a whole are combined
to setup the chromosome of an o�spring. So, the genes are not modi�ed internally.

But the mutation operation is critical. The mutation operation has to applied such, that
the mutated gene is a valid gene.

Transition matrices are stochastic matrices, so each entry tij of such a matrix T has to
be 0 ≤ tij ≤ 1, and the row sum

∑
i tij equals 1. These constraints have to be taken

into account, when applying the mutation operation. Exactly, we have a mutation by a
random number r within the range s, so −s ≤ r ≤ s. After the mutation of an entry tij
the mutated entry is tij + r. The �rst constraint is 0 ≤ tij + r ≤ 1, while the row sum
requires to modify a di�erent entry ti′j within the same row of the matrix, whose value is
set to ti′j− r, such that the row sum equals 1. Algorithmically, �rst an entry of the matrix
is randomly selected. Then, a di�erent entry within the same row is randomly selected.
After generation of a random number r it is checked if all constraints can be ful�lled. If
so, the mutation is applied. Otherwise, a new random r is generated. This is repeated,
until an appropriate random r is found.

When mutating the noise intensity covariance matrix and the regression matrix di�erent
constraints have to be considered, f.e. the noise intensity matrix has to be positive de�nite,
that is zTΣz > 0 for all z ∈ Rn or equivalently all eigenvectors or Σ have to be real and
positive.

We have performed the genetic algorithm with HMM-VAR and a memory of p = 1 on a
one-dimensional trajectory. Therefore, the noise intensity matrix Σi reduces to a scalar
and the regression matrix Φ is in R2×1. This is a serious simpli�cation.

If the trajectory has higher dimension a possible violation of these constraints by mutation
has to be avoided. More importantly, an elaboration of a valid parameter space for the
regression matrix has to be performed.

4.2.3 Simple Test Cases

A simple test of the GA has been performed with the Rosenbrock function

frosen(x, y) = (1− x)2 + 105 · (y − x2)2,

which has a global minimum at (1, 1). The chromosome of the individuals here is chosen
to consist of two genes, one gene for x and one gene for y. Mutation of genes is simply

52 4 A Genetic Algorithm to escape Local Likelihood Maximizers in HMMs

achieved by addition of a random number r. Crossover is performed as described in Section
4.1.2. A generation size of 100 individuals is chosen, termination criterion is �no change of
best individual� within the last 10 generations. The starting point for the genetic algorithm
is set to (−5, 5). With that setup of the GA, the global minimum at (1, 1) is found after
23 generations.

In order to get an impression of the dependence of the parameter/gene number on genetic
algorithms another basic test function fharm : R21 → R is used:

fharm(~x) = ~x · ~x,

which has a global minimum at (0, . . . , 0). Here, for each component of the vector ~x a
single gene is setup. The setup of mutation and crossover is like in the test case above.
Termination criterion is �no change of best individual� within the last 100 generations.
The generation size is set to 1000 individuals. After approximately 250 generations the
minimum is found.

For both examples the �tness function of the individuals was chosen to be f�tness = −frosen
and accordingly f�tness = −fharm.

4.2.4 Application to HMM-VAR on Model Trajectory

In Section 3.3.5 it has been shown that HMM-VAR does not converge to a global optimum.
Instead it converges to a local optimum, which does not deliver reasonable clustering
results. We focus our analysis of the genetic algorithm to that case.

The x-component of the trajectory ztype is the observation sequence for the HMM-VAR. For
the application to this model trajectory, an initial individual and thus a set of HMM-VAR
parameters needs to be provided. A pure guess of the model parameters seems impossible.
Not only does the estimation of the parameters require some previous knowledge, but also
is HMM-VAR sensitive to parameters which are too far o� from sensible value. Instead
a di�erent approach is taken: the parameters of the initial individual are obtained by a
single initial HMM-VAR run. This HMM-VAR run is initialized by a random Markov
chain based on a transition matrix T. The transition matrix has 0.98 on its main diagonal,
all o�-diagonal value are 0.01. As a remark here: the estimated transition matrix obtained
by HMM-VAR for proper clustering (see Section 3.3.4) has 0.9991 on its main diagonal for
lagtime 1. The estimated parameters after the convergence of HMM-VAR run are taken
as parameters for the initial individual. The remaining individuals of the �rst generation
are obtained by mutation of that initial individual.

In order to calculate the �tness of an individual the likelihood of HMM-VAR is used. Three
di�erent strategies for the application of an genetic algorithm on top of HMM-VAR are
possible:

1. The �tness calculation is directly based on the likelihood for given model parame-
ters λ. This strategy completely leaves out the Baum-Welch algorithm. Given the
parameters λ from the chromosome of an individual the likelihood L(O|λ) can be
computed and is taken as �tness.

4.3 Comprehension 53

2. The �tness calculation is based on the Baum-Welch algorithm. Instead of the sole
computation of the likelihood like before, here, the Baum-Welch algorithm is used.
The Baum-Welch algorithm is an instance of the Expectation-Maximization algo-
rithm. Starting with the given model parameters by the individual, the maximum
likelihood obtained by the EM algorithm is taken as �tness.

3. The third strategy is identical to the second one expect for the fact, that here the
estimated model parameters obtained by the EM algorithm are written back to the
genes of the individual.

4.2.5 Results and Performance

With the above retrieval of HMM-VAR parameters, through an initial run of HMM-VAR,
an individual is setup. First generations individuals are created through mutation of that
individual.

The mutation amount is selected empirically. Initial tests have shown, that a high mutation
amount easily leads to parameter regimes, where numerical problems occur in HMM-VAR
calculations or where parameters are far o� from the optimal parameters. A low mutation
amount on the other hand has the consequence not to sample the search space exhaustively
enough. This results in �nal solutions of the genetic algorithm which are not optimal.

In general it is di�cult to set the parameters which in�uence the genetic algorithm. These
parameters are individuals per generation and parameters for genetic operations, like mu-
tation amount, crossbreed ratio, selection ratio etc. These values for genetic operation are
mainly untouched, we have used parameters for the genetic algorithm which have worked
for the test cases above. We have focused the variation to mutation amount and number
of individuals per generation and have used parameters which seem reasonable after initial
tests.

The application of the genetic algorithm on top of HMM-VAR is performed for two of the
above strategies.

The sole computation by strategy 1 is detected to need too much computation time. Com-
pared to the test case for the function fharm, a size of 1000 individuals per generation
seems necessary. Analogously a total number of 250 generations is estimated to get to
the optimum solution. A simple likelihood calculation takes around 10 seconds. Thus
2.5 · 107 secs ∼ 29 days are required. We have performed the analysis with a reduced
generation size, but have not reached to optimal solution thereby.

Second, we have analyzed strategy 2. The genetic algorithm is adjusted to have 20 indi-
viduals per generation. Termination criterion is �a non-changing best individual� for 10
generations. With that setup we have found the optimal solution after a computation time
of ∼ 3 days. The results of the convergence towards the optimal likelihood are plotted in
Figure 4.5.

4.3 Comprehension

Genetic algorithms provide one possibility to locate a global optimum within some land-
scape. The successful application of the genetic algorithm on top of HMM-VAR has been

54 4 A Genetic Algorithm to escape Local Likelihood Maximizers in HMMs

2 4 6 8 10 12 14 16 18

Opt. Lik.

Generation

Li
ke

lih
oo

d
/ a

.u
.

Figure 4.5: Optimization results of the genetic algorithm combined with the Baum-Welch
algorithm on HMM-VAR. The blue curve displays the �tness of the best indi-
vidual per generation. The green curve displays the generations �tness mean.
After 20 generations the x-axis is cut, since there is no improvement in the
�tness of the best individual.

shown to obtain an optimal clustering, where the sole Baum-Welch has failed and got stuck
in a local maximum. The obtained clustering result is here optimal in that sense, that no
better likelihood has been found.

By far, this does not prove the general reliability and performance of genetic algorithms, but
the results have provided a �rst step into the successful combination of genetic algorithms
and HMM-VAR.

Even though genetic algorithms seem to include a high power in the determination of
global optima, they su�er from certain facts. First, no guarantee exists to really determine
the global optimum. Absolute guarantee of a global minimum exists only, if the whole
parameter space has been sampled. But even though genetic algorithms are just heuristics,
they provide a powerful way to explore the parameter space and restrict to essential regions
in that parameter space.

Especially when applied to HMM-VAR additional problems have to be taken into account:

• The parameter space of HMM-VAR parameters is large,

• numerical instabilities and problems due to improper parameters can occur during
HMM-VAR calculations,

• mutation of HMM-VAR parameters is di�cult,

• the likelihood landscape is far from being �nice�.

4.4 Implementation Details 55

4.4 Implementation Details

The implementation of the genetic algorithm is strictly object-oriented (OO). Therefore,
the implementation of the genetic algorithm can be easily applied to various problems
without the requirement for major program code modi�cations. With the OO approach,
the exchange of individuals, which are adapted to speci�c problems, can be performed by
the implementation of subclasses of the class Individual. The appropriate set of genes,
accessible by the chromosome, can as well be exchanged by subclasses of the superclass
gene and thereby allows easy adaptation to new problem instances.

The basis is formed by the class GeneticAlgorithm. The relationship between the classes
is given as a class diagram in Figure 4.6. The subclassing of the class Individual is shown
in Figure 4.7.

56 4 A Genetic Algorithm to escape Local Likelihood Maximizers in HMMs

Figure 4.6: Class diagram representing the classes required for the implementation of the
genetic algorithm. The basis is build by the class GeneticAlgorithm. In its
member variable generation the set of Individuals is held, which builds the
current generation. Each Individual has a Chromosome, the calculation of
the �tness function is directly performed in subclasses of the Individual. A
Chromosome holds the di�erent Genes it its member variable genes.

4.4 Implementation Details 57

Figure 4.7: Subclasses of Individual. Shown are the subclasses HMMVarIndividual for the
application to HMM-VAR problems, HMMGaussianIndividual for the applica-
tion to HMM-Gaussian and MultiVarIndividual for the application to arbitrary
functions f : RX → R. MultiVarIndividual was used for the application of the
genetic algorithm to the test cases fharm and frosen. Each of the classes uses a
problem speci�c, related set of genes. These genes are subclasses of the class
Gene.

58 4 A Genetic Algorithm to escape Local Likelihood Maximizers in HMMs

5 PCCA and HMM on Molecular

Trajectories

5.1 MR121-GSGSW Peptide

The MR121-GSGSW peptide is a small glycine-serine repeat modi�ed with the oxazine
derivative MR121 (a �uorescent dye) and tryptophan residue (a speci�c quencher) at the
terminal ends -MR121-GSGSW (see Figure 5.1) [15]. In proteins, the glycine-serine motif
is frequently found in hairpins and loops, and hence glycine-serine-based peptides are com-
monly used as model systems for studying end-to-end contact formation in unstructured
polypeptide chains [10].

Figure 5.1: Structure of the MR121-GSGSW peptide. The dye MR121 is in green, the
backbone of glycine-serine is colored per element (gray for C, blue for N and
red for O) and the tryptophan is colored red.

5.2 Approach

Using GROMACS [19] for molecular dynamics simulation a trajectory of the MR121-
GSGSW has been calculated. The molecular dynamics simulations are itself based on

60 5 PCCA and HMM on Molecular Trajectories

z t :complete trajectory

zPCAt :dimension reduced trajectory

zt :microstate trajectory

zmacrot :macrostate trajectory

k-means clustering
with 200 clusters

PCCA

PCA and selection of
first 12 dimensions

HMM-VAR and
Viterbi path

selection of first
n=1,2,3,5 dimension

zPCAnt :dimension reduced trajectory

zmacrot :macrostate trajectory

Comparison by
error function

Figure 5.2: Approach for the evaluation and comparison of clustering results for the
MR121-GSGSW system.

modeling and presentation by classical mechanics and force �elds. The simulation was
performed with the GROMOS96 force �eld [20]. The trajectory contains T = 5 · 106

time steps with each time step of 2 · 10−13s = 200fs length, thus the whole trajectory
simulation covers the time of 10−6s = 1µs. The MD simulation is performed with explicit
water solvent.

Regarding the trajectory, the system consists of 81 atoms. With three positional degrees
of freedom there are N = 243 dimensions. So the whole trajectory z(t) is a function
z(t) : R → R243.

5.3 Clustering with PCCA

The approach for the execution of the clustering via PCCA is given in the right branch
of Figure 5.2. First, a dimension reduction is done by the principal component analysis
(PCA).

Using PCA the trajectory is reduced to the 12 �rst principal components, thus zPCA(t) :
R → R12. The choice of the �rst 12 dimensions of PCA for further analysis is by far not
random. PCA exhibits within these number of components a signi�cant variance in the
molecular trajectory, while PCA components above 12 seem not to deliver any signi�cant
contribution in terms of variance.

The k-means algorithm was applied to the dimension-reduced trajectory zPCA in order to
obtain microstates. Here, the k-means algorithm was performed with a total number of

5.4 Clustering with HMM-VAR 61

C = 200 clusters. Interpreting the microstate trajectory as a function it maps every time
step of the trajectory to one of the C microstates. The microstate trajectory zµ(t) : R → R
contains for each time step t one microstate of the C clusters.

The number of microstates of 200 is chosen1, since

• the number is su�cient to describe the dynamics,

• this number does not destroy the dynamics by accidentally joining energy-separated
microstates.

In order to be able to apply PCCA a transition matrix needs to be constructed. This
transition matrix is constructed by evaluation and counting transitions in the microstate
trajectory zµ(t). Thus, the obtained transition matrix Tµ(τ) is of dimension R200×200. Here,
we used the marker µ to denote that T is related to microstates.

5.4 Clustering with HMM-VAR

The approach for the execution of the clustering with HMM-VAR is given in the left branch
of Figure 5.2. The trajectory z(t) is dimension reduced via PCA to the �rst twelve PCA
components, resulting in zPCA(t). From this trajectory the �rst 1, 2, 3 or 5 dimensions
are taken as observation input for HMM-VAR, denoted as zPCAn(t). The initialization
of HMM-VAR is performed by an initial path, for which the macrostate trajectory zm(t)
obtained from PCCA is taken.

With this initialization the HMM-VAR clustering is performed for each of the dimensions
above in combination with the lagtimes τ ∈ {1, 10, 100, 500, 1000, 2000, 5000, 10000}. The
EM algorithm is started with these input parameters. With the convergence of the EM
algorithm, the Viterbi path is calculated from the hidden Markov model according to the
HMM-VAR model parameters and given observation zPCAn(t).

5.5 Comparison of Clustering Results

The evaluation of the quality of the clustering results of PCCA and HMM-VAR is extremely
di�cult. The �rst problem is the missing availability of a reference clustering, thus a
clustering which can be regarded as optimal in the sense of metastable states. Since this
reference system is not available the only possibility to compare the obtained clustering
results is to de�ne a measure which compares the di�erent clustering results of PCCA and
HMM-VAR with respect to the membership assignment.

A visual representation and comparison of the clusters is not possible. Instead we compare
the Viterbi path of HMM-VAR with the macrostate trajectory of PCCA by a comparison
error function, which is derived below.

The second reliable comparison criterion available are the implied timescales, which deliver
information about the timescales of switching clusters / metastable states.

1Basically, a serious analysis on the number of required microstates has to performed. This work has

already been done by Jan Wigger during his investigation of the MR121-GSGSW system.

62 5 PCCA and HMM on Molecular Trajectories

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

lagtime (τ) / a.u.

er
ro

r
/ a

.u
.

dim 1
dim 2
dim 3
dim 5

Figure 5.3: Error of agreement between Viterbi path of HMM-VAR for dimensions
{1, 2, 3, 5} and macrostate trajectory obtained by PCCA, measured with the
error function E.

5.5.1 Measure for Comparison of Clustering Results

A membership assignment is represented as a matrix M ∈ RT×C . This matrix has T
rows according to the length of the trajectory. Each row of the matrix has C entries and
represents the cluster assignment at time step t, with 0 < t < T . So, an entry Mij denotes
the membership at time t = i for a cluster j. Furthermore, the membership for a certain
time step i sums up to 1 as

C∑
j=1

Mij = 1.

In order to compare two membership assignments with each other, a function is derived
which delivers a reliable measure. Fur further analysis the following measure

E(M,M ′) =
1
T

T∑
i=1

1
2

C∑
j=1

|Mij −M ′
ij |

 (5.1)

is chosen, where both matrices M and M ′ are of dimension RT×C . This error measure
E(M,M ′) delivers values between 0 and 1: 0 for the case that the assignments of M and
M ′ agree for every time step, 1 if the membership assignment totally mismatches.

The macrostate trajectory from PCCA and the Viterbi path of HMM-VAR have been
compared by this error measure E. Precisely, the Viterbi path of HMM-VAR for each of
the input dimensions {1, 2, 3, 5} has been compared with the PCCA macrostate trajectory.
This comparison was performed for each lagtime τ .

5.5 Comparison of Clustering Results 63

Since the numbering of metastable states is arbitrary for PCCA and HMM-VAR a direct
comparison of the membership matrices with the above error function E is not possible.
Thus, it is not possible to say which metastable state i of PCCA corresponds to which
metastable or hidden state j of HMM-VAR. Thus, an assignment of each state i to exactly
one state j is required. The �correct� assignment will result in the lowest error of E.

A �rst attempt to try all permutations of assignment must be given up due to the long
computation time of O(n!), with n being the number of clusters. In our case n is 10.

Therefore, we have used the Hungarian algorithm [14], which is an optimization algorithm
to solve assignment problems in O(n3). The Hungarian algorithm uses a (cost) matrix D
as input, which de�nes in its entry dij the costs to assign i to j. In order to construct this
matrix, each entry is calculated as follows (compare Equation 5.1):

dij =
1
T

T∑
k=1

(
1
2
|Mki −M ′

kj |
)

.

The output of the Hungarian algorithm is the best assignment with minimal costs. Here,
it is the best assignment of metastable states i to hidden/metastable states j.

The results are shown in Figure 5.3. The results show a signi�cant discrepancy between
HMM-VAR and PCCA, the agreement of clusters lies slight below 50%, since the error is
above 0.5. The error is neither heavily in�uenced by the lagtime τ nor by the number of
dimensions for HMM-VAR.

5.5.2 Timescales

The true timescales are obtained by the calculation of the eigenvalues of the transition
matrix Tµ(τ). The transition matrix is setup from the microstate trajectory zµ(t), which
was obtained from k-means clustering of state space coordinates. The true timescales are
plotted in Figure 5.4.

The implied timescales are calculated from the macrostate trajectory zm(t), which is the
result of PCCA clustering. As can be seen from Figure 5.4, PCCA underestimates the
implied timescales for the investigated lagtimes τ . But for increased lagtime τ the implied
timescale converge to the true timescales.

A plot of the implied timescales from HMM-VAR clustering is given in Figure 5.5. For
low-dimensional projections of dimension 1 and 2, the implied timescales are reasonable.
With increased dimension the ITS drifts down to a regime of faster processes. At this
point we believe, that this may be due to the approximation of conformational states via
Gaussians within HMM-VAR. The description through that model can possibly be not
appropriate. Second, we reckon, that due to the increasing number of �t parameters in
higher dimensions the correct parametrization becomes more di�cult.

64 5 PCCA and HMM on Molecular Trajectories

0 2000 4000 6000 8000 10000

10
3

10
4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

0 2000 4000 6000 8000 10000

10
3

10
4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

Figure 5.4: Left: True timescales obtained by the eigenvalues 2-9 of the transition matrix
Tµ(τ). Right: Timescales for PCCA, obtained by eigenvalues 2-9 of the transi-
tion matrix Tm(τ). The transition matrix is constructed from the macrostate
trajectory zm(t), which is the result of PCCA clustering.

0 2000 4000 6000 8000 10000

10
3

10
4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

0 2000 4000 6000 8000 10000

10
3

10
4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

0 2000 4000 6000 8000 10000

10
3

10
4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

0 2000 4000 6000 8000 10000

10
3

10
4

10
5

lagtime (τ) / a.u.

im
pl

ie
d

tim
es

ca
le

 /
a.

u.

Figure 5.5: Timescales obtained by HMM-VAR for dimension 1 (top left), dimension 2 (top
right), dimension 3 (bottom left) and dimension 5 (bottom right).

6 Conclusion

The analysis, evaluation and comparison of the two dynamically clustering methods PCCA
and HMM-VAR is the main purpose of this thesis.

By the successful application of PCCA and HMM-VAR on several model trajectories and
on a molecular dynamics trajectory of the MR121-GSGSW system, this aim is achieved.

Therefore, a new implementation of HMM-VAR was tested on model trajectories and com-
pared with results of an old implementation. Afterwards, the HMM-VAR implementation
was extended to calculate the maximum likelihood for multiple trajectories simultaneously,
thus allowing the application of HMM-VAR to a trajectory for di�erent lagtimes τ .

The extended HMM-VAR for multiple trajectories was applied to model trajectories. Fail-
ures in clustering of HMM-VAR were shown and investigated. A comparison with clustering
results of PCCA was performed.

The problem of the convergence of the Baum-Welch algorithm to local minima during
likelihood optimization was analyzed. A resort with the use of Genetic Algorithm was
investigated. A fully object-oriented implementation of a genetic algorithm was established
and integrated into the MolTools framework. Furthermore, the genetic algorithm was
implemented, such that it could be applied to HMM-VAR problems. Then the genetic
algorithm, placed on top of the Baum-Welch algorithm, was successfully applied to a model
trajectory and showed the possibility to escape the local minima convergence problem.

The results of an molecular dynamics simulation for the MR121-GSGSW peptide were
clustered using HMM-VAR and PCCA. A comparison of the clustering results was per-
formed.

6.1 Outlook

Several aspects seem to be worth further investigations.

During the comparison of clustering results of the MR121-GSGSW system it was apparent
that the lack of a reference system, which is reliably clustered in the sense of metastability,
is a real obstacle. Such a reference system would allow absolute statements about the
quality of clustering methods.

While searching for a reference a second approach could be the combination and comparison
with experimental results.

Due to long expected calculation times it was not possible to apply the genetic algorithm
on top of HMM-VAR to the MR121-GSGSW peptide. Since the genetic algorithm seems
to be a promising candidate the quality of clustering results can be hopefully improved.

66 6 Conclusion

Nevertheless the approach of directly using HMM-VAR parameter as individual genes for
the genetic algorithm seems questionable. The HMM-VAR is sensitive to these parameters
and �bad� parameters cause serious numerical problems. So instead of the use of these
parameters the individuals of the genetic algorithm could use Markov chains of the length of
the observation and apply genetic operations to that Markov chains. This would hopefully
circumvent numerical problems.

Instead of using a genetic algorithm, the method of simulated annealing seems promising
in combination with HMM-models.

From the mathematical point of view a clean derivation of the likelihood and estimators
for HMM-VAR with multiple trajectories is desirable.

Bibliography

[1] J. Bilmes. A gentle tutorial on the em algorithm and its application to parameter
estimation for gaussian mixture and hidden markov models, 1997.

[2] R.E. Ca�isch. Monte carlo and quasi-monte carlo methods. Acta Numerica, 7:1�49,
1998.

[3] P. Deu�hard and M. Weber. Robust perron cluster analysis in conformation dynamics.
ZIB Report, 03-09, 2003.

[4] S. P. Elmer, S. Park, and V. S. Pande. Foldamer dynamics expressed via markov state
models. ii. state space decomposition. J. Chem. Phys., 123:114903, 2005.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, January 1989.

[6] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm.
Applied Statistics, 28(1):100�108, 1979.

[7] I. Horenko, E. Dittmer, A. Fischer, and Ch. Schütte. Automated model reduction for
complex systems exhibiting metastability. Multiscale Model. Sim., 5:802�827, 2006.

[8] I. Horenko, C. Hartmann, C. Schütte, and F. Noé. Data-based parameter estimation
of generalized multidimensional Langevin processes. Phys. Rev. E, 76:016706, 2007.

[9] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671�680, 1983.

[10] F. Krieger, B. Fierz, O. Bieri, M. Drewello, and T. Kiefhaber. Dynamics of unfolded
polypeptide chains as model for the earliest steps in protein folding. J. Mol. Biol.,
332:265�274, 2003.

[11] W. J. Krzanowski, editor. Principles of multivariate analysis: a user's perspective.
Oxford University Press, Inc., New York, NY, USA, 2000.

[12] G. F. Lawler. Introduction to Stochastic Processes. Chapman and Hall, Boca Raton,
FL, USA, 2006.

[13] E. Meerbach and C. Schuette. Sequential change point detection in molecular dynam-
ics trajectories, 2008, to be published.

[14] J. Munkres. Algorithms for the assignment and transportation problems. Journal of
the Society of Industrial and Applied Mathematics, 5(1):32�38, March 1957.

68 Bibliography

[15] F. Noe, I. Daidone, J. C. Smith, A. di Nola, and A. Amadei. Solvent electrostriction-
driven peptide folding revealed by quasi-gaussian entropy theory and molecular dy-
namics simulation. Journal of Physical Chemistry B, 112(35):11155�11163, 2008.

[16] C. Schuette and I. Horenko. Likelihood-based estimation of multidimensional langevin
models and its application to biomolecular dynamics, multiscale modeling and simu-
lation, 2007, to appear.

[17] C. Schütte, A. Fischer, W. Huisinga, and P. Deu�hard. A direct approach to con-
formational dynamics based on hybrid monte carlo. J. Comp. Phys., 151:146�168,
1999.

[18] A. Tarantola. Inverse Problem Theory and Methods for Model Parameter Estimation.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2004.

[19] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berend-
sen. GROMACS: Fast, Flexible and Free. J. Comp. Chem., 26:1701�1718, 2005.

[20] W. F. van Gunsteren and H. J. C. Berendsen. Computer simulation of molecular
dynamics: Methodology, applications and perspectives in chemistry. Angew. Chem.

Int. Ed. Engl., 29:992�1023, 1990.

[21] N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, Ams-
terdam, 4th edition, 2006.

[22] M. Weber. Improved perron cluster analysis. ZIB Report, 03-04, 2003.

[23] M. Weber. Meshless Methods in Conformation Dynamics. PhD thesis, Freie Univer-
sitaet Berlin, 2006.

Acknowledgments

I want to thank everybody who made this thesis possible. Especially my gratitude involves:

• Dr. Frank Noe for being a superb supervisor. His 24/7 availability in all concerns
was of great use and needs to be mentioned explicitly.

• Prof. Dr. Cristof Schütte and Dr. Frank Noe for giving me the chance and possibility
to perform this thesis.

• Eike Meerbach for feeding me with the mathematical background of HMM-VAR.

• Jan-Hendrik Prinz for sharing his experience and knowledge of PCCA.

• Martin Held for fruitful discussions and help in many �elds.

• JanWigger for providing his knowledge and experience of coarse-graining the MR121-
GSGSW system.

• My roommate Arash Ashand for many interesting discussions, which have illuminated
the theoretical physical background of stochastic processes.

• Axel Rack and Christopher Ozdoba for their help and experience with issues related
to software architecture and design.

• Everybody out of the BioComp Group for being part of such a wonderful working
group, whose social climate and environment is so pleasant due to the excellent
cooperation of its members.

• Last, but most important, to my friends, to my family and to Julia for their patience
and con�dence and their support in all concerns.

70 Bibliography

A�rmation

Hereby I, Martin Fischbach, declare that the submitted diploma thesis is the result of my
own work and has been conducted independently. Furthermore, I declare, that no other
sources than those indicated were used. The thesis has not been presented to any other
examination committee before nor has the thesis been published before.

Date ..

Signature ..

