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We crucially extend the novel method introduced in Horenko et al. (Multi. Mod. Sim. 2006, 5:802–
827 ) for the identification of the most important metastable states of a system with complicated
dynamical behavior from time series information. The approach represents the effective dynamics
of the full system by a Markov jump process between metastable states, and the dynamics within
each of these metastable states by diffusions that include the classes called full and overdamped
Langevin dynamics in biophysics (local SDEs). Its algorithmic realization combines Hidden Markov
Models (HMMs; for the un-observed jump process between the metastable states) with likelihood-
based estimation of the parameters in the local linear SDEs based on discrete-time observations of
the system. Despite the local linearity the approach is appropriate to handle nonlinear potentials
with several dominant wells. Compared to Horenko et al. (Multi. Mod. Sim. 2006, 5:802–
827 ), the algorithms proposed herein allow to handle arbitrary dimensions instead of just one-
dimensional local SDEs, and to extend the class of diffusions considered. Moreover, the role of the
fluctuation-dissipation relation in parameter estimation for Langevin models is discussed in detail.
The performance of the algorithms is illustrated by numerical tests and by application to molecular
dynamics time series of a 12-alanine molecule with implicit water.
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Introduction

Modelling and simulation of large molecular systems is a field of world–wide activity with applications
ranging from materials science to modelling of highly complex biomolecules like proteins and DNA.
Increasing amounts of ”raw” simulation data and growing dimensionality of molecular dynamics simu-
lation of processes in molecular systems have led to a persistent demand for modelling approaches which
allow to extract physically interpretable information out of large data-sets. Whenever time series are
concerned multidimensional statistical analysis may not be enough: whenever a physically appropriate
dynamical description of the underlying processes is required one is in need of an approach that allows
for automatized generation of appropriate physical models out of the (noisy) data. Such data–driven
approaches should be carefully distinguished from model–driven ones (like model reduction, mode elim-
ination, homogenization, or stochastic (re)modelling), which aim at reducing the dimension and/or
complexity of an analytically given model, for the context of importance herein, we refer to [1, 2, 3, 4].

This article is concerned with a novel data-driven approach to model reduction in molecular dynam-
ics. In order to understand the starting point of this approach we have to be aware that the macroscopic
dynamics of typical biomolecular systems is mainly characterized by the existence of biomolecular con-
formations which can be understood as geometries that are persistent for long periods of time. On
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the longest time scales biomolecular dynamics is a kind of flipping process between these conforma-
tions [5, 6]. Biophysical research seems to indicate that typical biomolecular systems possess only few
dominant conformations that can be understood as metastable or almost invariant sets in state or config-
uration space [7, 8, 9]. In other words, the effective or macroscopic dynamics is given by a Markov jump
process that hops between the metastable sets while the dynamics within these sets might be mixing on
time scales that are smaller than the typical waiting time between the hops. In many applications this
Markovian picture is an appropriate description of the dynamics since typical correlation times in the
system are sufficiently smaller than the waiting times between hops (and thus much smaller than the
timescale the effective description is intended to cover). The same description of the effective dynamics
is true for other complex system including, e.g., climate systems or systems from materials science.

In this article we will extend an approach to the data-driven construction of reduced models for
systems with metastable dynamics that has recently been proposed in [10, 11]. Its basic idea is to (1)
construct a finite-state Markov jump process that models the hops between the metastable conforma-
tions, and (2) for each conformation to parameterize an appropriate stochastic model that allows to
approximate the dynamics of the systems as long as it is within the respective conformation. In [10, 11]
appropriate algorithms have been derived that combine hidden Markov models (for the construction of
the unobserved jump process), and optimal, likelihood-based parameterization of the local stochastic
models. We will stick to this framework here. However, the results in [10] are limited to (A) specific
types of one-dimensional stochastic models (diffusion processes, often also called overdamped Langevin
models, for a definition see below), (B) time series with rather short lag times (=time between successive
discrete observations of the underlying system); in [11] restriction (B) has been overcome but only for
one-dimensional models of the type described in (A). The present article will remove both restrictions in
the sense that we will demonstrate how to handle (A) diffusions of the type called full and overdamped
Langevin-models in biophysics, and (B) arbitrary dimensions (whenever the available time series is long
enough).

The Langevin equations considered herein are of the following type: (i) The full Langevin equation
in form of a hypo-elliptic diffusion

Mq̈(t) = −gradU(q(t)) − γq̇(t) + σẆ (t). (1)

or, alternatively, as a first order system

q̇(t) = M−1p(t)
ṗ(t) = −gradU(q(t)) − γM−1p(t) + σẆ (t).

(2)

Here U : Rn → R denotes the interaction potential, grad stands for differentiation with respect to q,
p the momenta associated with q, W (t) is standard n-dimensional Brownian motion, γ the friction
matrix, M the mass matrix, and σ the noise intensity matrix. γ ∈ Rn×n, M ∈ Rn×n, and σ ∈ Rn×n

are positive-definite matrices; we do not assume that M is diagonal. (ii) Whenever γ is sufficiently large
or M sufficiently small then the q-dynamics given by (1) is approximately governed by the so-called
overdamped Langevin (or diffusive or Smoluchowski) dynamics:

γq̇(t) = −gradU(q(t)) + σẆ (t). (3)

Langevin models, especially the hypo-elliptic variant, seem to be of major importance here since a
series of results from the physical and biophysical literature advocate this type of dynamics or its
generalized variants as the reduced models of choice for the effective dynamics of molecular systems
[12, 13, 14, 15, 3, 16, 17, 18, 19]. Introducing standard phase-space variables z = (q, p) for positions and
momenta, we can rewrite both types of the Langevin equation, hypo-elliptic as well as overdamped, in
form of the following first order system

ż(t) = F (z(t)) + ΣẆ (t).

Putting these types of local SDEs and the jump process between conformations together, we get
reduced models of the form

ż(t) = F (i(t))(z) + Σ(i(t)) Ẇ (t) (4)
i(t) = Markov jump process with states 1, . . . , L, (5)
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where W (t) is denoting standard n or 2n-dimensional Brownian motion, (Σ(1), . . . ,Σ(L)) noise intensity
matrices, and (F (1), . . . , F (L)) appropriate force functions. We will concentrate on considering linear
force functions in which case we will use the name HMMSDE for models of form (4)&(5). As will be
discussed in detail nonlinear forces can be well approximated by HMMSDE models under appropriate
circumstances.

The general aim of the present article is to find the optimal model of HMMSDE form for a given time
series (i.e., find optimal parameters (F (i),Σ(i), μ(i))i=1,...,L and optimal transition matrix of the jump
process in a Maximum-Likelihood sense), and then to decide whether the observed dynamics locally is
close to full hypo-elliptic Langevin or overdamped Langevin dynamics, or should rather be modelled by
other types of processes in the general form of (4); thus in this article we are not interested in enforcing
the hypo-elliptic form of the Langevin model since we first want to see whether the general form (4)
if applied to position and momentum information results in something that is (locally) close to the
hypo-elliptic case. The background theory (uniqueness of solutions, sampling) of such stochastic models
like (4) is discussed under the title ”SDEs with Markovian Switching”, e.g., in the recent book [20].

Since the article [10] contains a detailed comparison of the general framework of our approach with
other approaches in the literature, we will herein concentrate on commenting on that part of the lit-
erature that is directly relevant for our specific approach to parameter-estimation for diffusions of the
above type, and related questions: most of the rich existing literature on discrete-time observations does
not apply to the case we consider, for example the case closest to the approach presented herein is [21],
however there both components, z and j, are observed while here only z is observed. Furthermore, there
are alternatives for the estimators considered herein that may allow further generalization but have not
been considered for multidimensional applications up to now [22]. In some part of the mathematical
literature on estimation of hypo-elliptic diffusions, the authors consider the case of partial observation,
compare [23]: The given time-series contains information on the positions q only, the corresponding
velocities q̇ or momenta p = Mq̇ have not been observed. Then, the velocities/momenta have to be
estimated in addition to the hidden parameters for stiffness, friction and noise intensity. In contrast, in
this article we will mainly consider the case that is typical for data coming from simulations (e.g. in
molecular dynamics): the simulation schemes provide information on positions as well as velocities and
typically rather long time series; often momenta are not available since the corresponding mass matrix
M is not known (see our example in Section 5). We will also shortly address the case in which velocities
as well as momenta are un-observed; there we will show how to generalize the results of [23].

In addition to these considerations one often is keen on certain general properties of the systems
under consideration. In molecular dynamics applications, for example, one is interested in the so-called
fluctuation-dissipation relation since it guarantees that the invariant distribution has the form of Gibbs
or Boltzmann densities. We will consider these additional aspects in detail. We will see that the
question of whether the fluctuation-dissipation relation can be assumed valid is deeply related to the
unique identifiability of all parameters.

After deriving the algorithms for optimal parametrization of HMMSDE models, and discussing its
possible pitfalls and generalizations (Sec. 1-4) we will consider two illustrative examples in Sec. 5: first, a
14-dimensional toy example that is appropriate to demonstrate the performance of the algorithms and,
second, a real-world time series originating from molecular dynamics simulations of the oligo-peptide
12-alanine with implicit aqueous solvent.
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1 Approach

We consider the following problem: An observation sequence, i.e., time series Z = {Z1, . . . , ZT } ⊂ Rn

of the system under consideration is given where Zk = (q(tk), p(tk)) denotes an observation of position,
q(tk), and momenta, p(tk), at time tk (or just position in case of the overdamped dynamics), and
τ = tk+1 − tk is the constant (wrt. k) time difference between two successive observations. We want to
find the optimal parameters (F (i),Σ(i), μ(i))i=1,...,L and optimal transition matrix of the jump process
in a Maximum-Likelihood sense) of a reduced system of form (4)&(5). Subsequently we want to decide
whether the resulting local SDEs are of Langevin form type (2) or (3).

Notation and preparations. We will first consider the local Langevin models (2) or (3). One of the
fundamental properties that they have in common is that they exhibit invariant densities of particularly
simple form (Gibbs densities),

f(q) ∝ exp (−βU(q)) , respectively f(q, p) ∝ exp
(
−β(

1
2
p�M−1p+ U(q))

)
,

whenever the fluctuation-dissipation relation γ + γ� = βσσ� holds. Here β > 0 is some arbitrary
constant, the so-called inverse temperature. The property that the invariant distribution is given by a
Gibbs density is of utmost importance in most biophysical and biochemical applications and will thus
play an important role in our considerations.

We are mainly interested in the case of a quadratic potential U(q) = 1
2 (q−μeq)TD(q−μeq), where D

is called the stiffness matrix. For physical applications, the generic case then is to combine the demand
for the fluctuation-dissipation relation to be valid with the requirement that the stiffness matrix D is a
symmetric positive definite matrix. In the subsequent, we will use the notation A > 0 iff some matrix
is positive definite, and A ≥ 0 iff A is positive-semi-definite. (Note that this does not mean that A is
symmetric, cf. Appendix A!)

Whenever the potential U is assumed to be quadratic then the two linear Langevin models to be
considered can be written as

q̇(t) = M−1p(t)
ṗ(t) = −D(q(t) − μeq) − γM−1p(t) + σẆ (t).

(6)

for the full/hypoelliptic case, and

γq̇(t) = −D(q(t) − μeq) + σẆ (t), (7)

for the overdamped case, respectively.
Introducing z = (q, p) ∈ Rn × Rn for positions and momenta, we can write the full/hypoelliptic

equation as the following first order system

ż = F (z − μ) + ΣẆ , F =
(

0 M−1

−D −γM−1

)
, Σ =

(
0 0
0 σ

)
, μ =

(
μeq

0

)
. (8)

For the overdamped dynamics we analogously have

ż = F (z − μ) + ΣẆ , F = −γ−1D, μ = μeq, Σ = γ−1σ. (9)

In the subsequent, we will always assume that the spectrum of F associated with the two linear Langevin
equations considered above is contained in the negative half plane C− = {z ∈ C|�(z) < 0} of the
complex plane C, i.e., that spec(F ) ⊂ C−, in order to guarantee that the ”deterministic part” of the
respective SDEs is asymptotically stable.

Obviously, the linear full/hypoelliptic Langevin equations (6) is completely characterized by the
5-tupel (M,γ,D, σ, μeq), while the linear overdamped Langevin model (7) will be identified with the
quadrupel (γ,D, σ, μeq), and the general first order system ż = F (z − μ) + ΣẆ by the tripel (F, μ,Σ).
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Our demand on the spectrum of F leads to the following definition of the classes of models to be
considered: The class of linear overdamped Langevin models is

OL(n) = {(γ,D, σ, μeq) ∈ Matn(R)3 × Rn | γ,D regular and spec(γ−1D) ⊂ C−},

and the class of linear full Langevin models

FL(n) = {(M,γ,D, σ, μeq) ∈ Matn(R)4 × Rn |M,γ,D regular and spec(F ) ⊂ C−},

where F is defined as in (8). We will say that the linear Langevin models (M,γ,D, σ, μeq) or (γ,D, σ, μeq)
satisfy the fluctuation-dissipation relation iff γ + γ� = βσσ� for some positive constant β > 0.

Optimal Parameters for the (F, μ,Σ)-model. We will construct an explicit formula for the prob-
ability p(Z|F, μ,Σ) that the time series Z = {Z1, . . . , ZT } ⊂ Rn comes from a solution path of the SDE
ż = F (z − μ) + ΣẆ . Then, we consider the likelihood L(F, μ,Σ) = p(Z|F, μ,Σ) and ask for which
parameter set (F, μ,Σ) the likelihood is maximized; this then is understood to be the optimal model
wrt. the observation. However, we will see that it is much simpler to consider the maximization of
the likelihood in terms of the unknowns (exp(τF ), μ,ΣΣT ) instead of (F, μ,Σ). The parameters that
maximize L, namely(

exp(τF̂ ), μ̂, Σ̂Σ̂T
)

= argmax(exp(τF ),μ,ΣΣT ) L

are called the optimal estimators (in the maximal likelihood sense). We will derive explicit analytical
expressions for these optimal parameters (see Thm. 2.1 in Section 2.2 below).

Langevin appropriate or not? After identifying the optimal parameters for the (F, μ,Σ)-model, we
still have to decide whether the optimal model has the form of either a hypo-elliptic or an overdamped
Langevin model, or whether it does not belong to this class of processes. We will illustrate how to
distinguish between these cases based on the structure of the optimal parameters μ̂, exp(τF̂ ), Σ̂Σ̂T (see
Secs. 4.3.1 and 5.2). However, for the sake of clarity we want to emphasize again that we do not want to
enforce hypo-elliptic or overdamped Langevin models but that, instead, we want to identify the optimal
model in the larger class of (F, μ,Σ)-models in order to then decide whether the process underlying
the time series exhibits a Langevin-type structure. This seems crucial for applications to molecular
dynamics time series since there it is not clear in advance whether a Langevin structure is appropriate
or not.

Non-uniqueness problems. The quite general explicit formula for the optimal parameters of the
(F, μ,Σ)-model is one of the key working tools of this article. However, even if the optimal parameters
(exp(τF̂ ), μ̂, Σ̂Σ̂�) have been computed we still cannot compute all involved parameters uniquely, at
least not without further considerations:

(1) Uniqueness of F̂ : Since the matrix logarithm in general is not injective (there are F1 	= F2 such
that exp(F1) = exp(F2)), how can the optimal estimator F̂ be identified from the optimal estimator
exp(τF̂ ) in a unique way? We will see that this problem can be solved whenever we have access
to exp(τF̂ ) for sufficiently many different τ . We will present preliminary algorithms for this sort of
solution in the appendix.

(2) Identifiability problem: Whenever the dynamics of interest has the form of the linear overdamped
model (γ,D, σ, μeq), then the optimal estimators (F̂ , μ̂, Σ̂Σ̂T ) do not suffice to uniquely identify all
three unknown matrices since we do only have the identities μeq = μ̂, γ−1D = F̂ and γ−1σ = Σ̂.
An analogous problem appears for the full/hypoelliptic Langevin equation as we will see later. How
can these identifiability problems be solved or circumvented?
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Fig. 1 Left: Two-well potential U = U(q) and the two harmonic approximations around its minima. Middle:

Related nonlinear force F (q) = −U ′(q) and the associated linearizations around its zeros. On both sides the
circles indicate the minima of U and the equilibrium points of F , respectively. Left: Typical solution path of
q̈ = −U ′(q) − q̇ + σẆ with σ = 0.75.

Approximation of nonlinearity. In general a linear Langevin model, whether overdamped or full,
will not be appropriate for modelling the dynamics of a molecular system in a multi-well energy land-
scape. One would like to consider nonlinear Langevin models like (1), where the potential energy
function U allows for incorporation of the multi-well dynamics. Thus, parameter estimation procedures
that allow for functions U of more general form seem attractive. However, if U is more general than a
harmonic function then its specification will need more parameters. However, the quality of the param-
eter estimation will reduce with increasing number of parameters. Because of these problems we intend
to represent the potential function U as the best possible combination of the local harmonic models.
For example, consider the situation shown in Fig. 1 and assume that the timeseries in fact comes from
the nonlinear Langevin model (1) with potential U as shown on the left of Fig. 1 and noise intensity
is small compared to the energy barrier between the two minima in the potential. Then the resulting
dynamics exhibits rare jumps between the two wells and, while remaining in one of the wells, it can
be approximated by a linear Langevin model given by the harmonic approximation on the potential
around the respective minimum. But then, a model that describes rare jumps between two otherwise
linear models is desirable. Therefore, the following type of model seems appropriate:

ż(t) = F (i(t))
(
z(t) − μ(i(t))

)
+ Σ(i(t))Ẇ (t) (10)

where i(t) is a continuous time Markov process on {1, . . . , L} that is generated by a n× n rate matrix
R. This leads us to the key problem of this article:

(HMMSDE) Can we generalize the above results for the (F, μ,Σ)-model to this case of local (F, μ,Σ)-models
even if only the time series Z = {Z1, . . . , ZT } ⊂ Rn of observations of the z-component is given
while the jump process i remains hidden, i.e., is not observed?

We will solve this problem by constructing the associated likelihood and then identifying the respective
optimal estimators (exp(τF̂ (i)), μ̂(i), (Σ̂Σ̂�)(i), R̂); this time we will not have an explicit expression
for the estimators but we will generalize the so-called expectation-maximization algorithm in order to
iteratively compute/approximate them. These results (generalization and algorithmic approximation)
are main new findings of this article.

We will proceed as follows: We will first present the analysis of the (F, μ,Σ)-model in Section 2.
Then we will solve problem (HMMSDE) in Section 3. Section 4 contains the solutions to the non-
uniqueness problems (1) and (2) while Section 5 will present our numerical experiments, and illustrate
the performance of the algorithm. In particular, it will also illustrate the procedure of deciding whether
a Langevin model is appropriate or not.
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2 Optimal Parameters for the (F, µ, Σ)-Model

Suppose again that a discrete time series Z = {Z1, . . . , ZT } is given, where Zk denotes an observation
of the state of the system at time tk and τ = tk+1 − tk is the constant (wrt. k) time difference between
two successive observations.

2.1 Likelihood of Linear Langevin Models

We are aiming at maximizing the observation probability of the sequence Z wrt. the parameters of the
linear Langevin model (8). The solution to (8) on the time interval [t, t+ τ ] is given by

z(t+ τ) = μ+ eτF (z(t) − μ) +
∫ τ

0

e(τ−s)F ΣdW (s). (11)

Thus, the probability density ρλ(Zk+1|Zk) of observation Zk+1 at time k + 1 under the condition of
observation Zk at k is proportional to a Gaussian:

ρλ(Zk+1|Zk) ∝ exp
[
−1

2
ξ�k R

−1(τ) ξk

]
, (12)

where

ξk = Zk+1 − μ− eτF (Zk − μ) , (13)

R(τ) =
∫ τ

0

esF ΣΣ�esF�
ds. (14)

Thus, we can express the joint conditional probability density of the observation of the time series Z
from our model by

P (Z|λ) =
T−1∏
k=1

ρλ(Zk+1|Zk) =
T−1∏
k=1

ρ0(τ) exp
[
−1

2
ξ�k R

−1(τ) ξk

]
(15)

ρ0(τ) = (2π)−n/2/
√

det (R(τ)). (16)

As it can be seen from (15), for fixed τ any Langevin model of type (4) or (9) can be uniquely defined
by the set of solution parameters λ of the form

λ = (μ, exp(τF ), R(τ)).

We use these parameter set instead of the perhaps more natural one, (μ, F,Σ) since it makes derivation
of explicit expressions for the optimal estimators much easier.

The integral in (14) can be solved by partial integration resulting in the following linear matrix
equation

R(τ)F� + FR(τ) = eτF ΣΣ�eτF� − ΣΣ� (17)

We define the log–likelihood function of the observation sequence as (compare [21])

L(λ|Z) = logP (Z|λ) (18)

The optimal parameters λ are those which maximize the log–likelihood function

L(λ|Z) =
T−1∑
k=1

log ρλ(Zk+1|Zk) (19)

= C − T − 1
2

log detR(τ)

−1
2

T−1∑
k=1

(
Zk+1 − μ̄− eτF (Zk − μ̄)

)�
R−1(τ)

(
Zk+1 − μ̄− eτF (Zk − μ̄)

)
.

Here C < 0 denotes a constant that collects all terms that do not depend on the undetermined param-
eters λ.
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2.2 Maximization of Likelihood

In order to compute the critical point of the log–likelihood function, we evaluate the necessary condition
dL = 0. To this end we compute the individual partial derivatives of the log–likelihood: for the matrix
exp(τF )

∂L
∂ exp(τF )

= 0 =⇒ exp(τF ) =
(
A1(μ)A−1

2 (μ)
)

(20)

A1(μ) =
T−1∑
k=1

(Zk+1 − μ) (Zk − μ)�

A2(μ) =
T−1∑
k=1

(Zk − μ) (Zk − μ)� ,

for the center of the potential

∂L
∂μ

= 0 =⇒ μ =
1

T − 1
(I − eτF )−1

T−1∑
k=1

(
Zk+1 − eτFZk

)
, (21)

and for the derivative with respect to the covariance matrix R(τ)

∂L
∂R

= 0 =⇒ R(τ) =
1

T − 1

T−1∑
k=1

dkd
�
k (22)

dk =
(
Zk+1 − μ̄− eτF (Zk − μ̄)

)
.

The optimal parameters (exp(τF̂ ), Σ̂Σ̂�, μ̂) are determined by solving the nonlinear system of equa-
tions (20)–(22) for a given observation sequence Z = {Z1, . . . , ZT }. Note the difference to the approach
presented in [24]: there the parameter μ̂ is simply assumed being zero, this clearly leads to a decou-
pled system of estimator equations which can be explicitly solved providing the closed expressions for
(exp(τF̂ ), Σ̂Σ̂�). The presence of the unknown parameter μ̂ in our case makes the task of calculating
the optimal estimators from the coupled system of equations (20)–(22) not so straightforward as in
[24] (as we will demonstrate in the appendix, also the expression for the optimal estimator of μ̂ is not
just the expectation value of the time series but gets an additional term responsible for the relaxation
behavior). We can use the fact that the equations (20)-(21) are independent of the variables R(τ) and
ΣΣT . This results in the explicit expressions for the unique solution that are given in Theorem 2.1
below which is a direct consequence of Lemma 6.3 and Lemma 6.4 of Appendix C.

Theorem 2.1 Let the running average, the covariance matrix and normalized autocorrelation of the
time series be defined by

Z̄ =
1

T − 1

T−1∑
k=1

Zk,

Cov(Z) =
1

T − 1

T−1∑
k=1

(Zk − Z̄)(Zk − Z̄)�,

Cor(Z) =
1

T − 1

T−1∑
k=1

(Zk+1 − Z̄)(Zk − Z̄)� · Cov(Z)−1.

Suppose that Cov(Z) is positive definite. Then, the optimal estimators exp(τF̂ ) and μ̂ are given by

exp(τF̂ ) = Cor(Z),
μ̂ = Z̄ − (Id − Cor(Z))−1δ.
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where δ = (ZT −Z1)/(T − 1). The estimator F̂ inherits the property spec(F̂ ) ⊂ C− iff ‖Cor(Z)‖2 < 1;
as outlined above this is the generic situation for the cases considered as long as τ > 0.

In addition, the optimal noise intensity matrix estimator Σ̂Σ̂� is then determined by

Σ̂Σ̂� = −
(
(Cov(Z) + E)F̂� + F̂ (Cov(Z) + E)

)
, (23)

where E is a symmetric matrix that satisfies the Sylvester equation

Cor(Z)ECor(Z)� − E = f(Z1, ZT , Z̄), (24)

where f is just the following symmetric-matrix-valued, quadratic function

f(Z1, ZT , Z̄) = −δδ� +
1

T − 1

(
(ZT − Z̄)(ZT − Z̄)� − (Z1 − Z̄)(Z1 − Z̄)�

)
.

Whenever spec(F̂ ) ⊂ C− (24) has a unique symmetric solution E .

Let us assume that the time series comes from ż = F (z − μ) + ΣẆ and that the underlying process
is ergodic. Then, the optimal estimators are consistent (see Appendix C). That is, for T → ∞ they
converge to the values of μ, exp(τF ),ΣΣT that were used for generation of the time series.

3 HMMSDE: Switching between (F, Σ, µ)-Models

Up to now we have considered a single linear Langevin model, which approximates the entire time series
in the maximum–likelihood sense. Alternatively we could imagine that different segments of the time
series correspond to different local Langevin models, each of which is characterized by a particular set
of constant parameters λ(i) = (F (i),Σ(i), μ(i)). Switching back and forth between these local parameter
sets can be understood as one global model with parameters that are piecewise constant in time.

To this end we shall consider the problem of estimating optimal parameters within the framework of
hidden Markov models (HMM): For a prescribed number L of local parameter sets λi, i = 1, . . . L, we
assume that the switching between the different parameter sets is governed by a Markov jump process.
Thus the model consists of two related stochastic processes z(t) and i(t), where the latter is not directly
observed (hidden) (note the difference to [21]) and satisfies the Markov property. That is, our dynamical
model now has the form

ż(t) = F (i(t))
(
z(t) − μ(i(t))

)
+ Σ(i(t))Ẇ (t) (25)

where i(t) is a continuous time Markov process on {1, . . . , L} that is generated by the n×n rate matrix
R.

In general, a HMM is fully specified by an initial distribution π of hidden states, the rate matrix R of
the hidden Markov chain i(t), and the parameters of the Langevin output process λ(i) = (F (i),Σ(i), μ(i))
for each state i. For given rate matrix R, the transition probability to jump from state i(tk) = m to
state i(tk+1) = j within time τ is given by the respective entry of the transition matrix

T (m, j) = (exp(τR))mj .

Now we have to embed the problem of estimating optimal parameters for the model (25) into the
context of standard HMM. Therefore, we start with the joint probability distribution of the observation
sequence that here reads

L(λ|Z, i) = P (Z, i|λ) =
T−1∏
k=1

T (ik, ik+1)�λ(Zk+1|ik+1, Zk) , (26)

where the conditional probability �λ(·|·) is defined exactly as ρλ(·|·) in equation (12) above, except that
the parameters now depend on the hidden state ik+1 = i(tk+1). The algorithm for the identification of
optimal parameters conditional on the hidden (metastable) states comprises the following three steps:
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(1) Determine the optimal parameters θ = (π, T, λ1, . . . , λL) by maximizing the likelihood L(θ|Z, i)
associated with (26); in general this is a nonlinear global optimization problem.

(2) Determine the optimal sequence of hidden states {ik} := {i(tk)} for given optimal parameters.

(3) Determine the number of important metastable states (up to now we have simply assumed that
the number L of hidden states is given a priori).

The first two problems can be addressed by standard HMM algorithms. The parameter estimation
on the partially observed data is carried out using the expectation–maximization (EM) algorithm [25,
26, 27, 28, 29] in a specification that we will outline below. Generally, in the EM algorithm the optimal
parameters λ are identified by iteratively maximizing the entropy

S(Z) = max
λ

∑
i

L(λ|Z, i) logL(λ|Z, i) . (27)

For the identification of the optimal sequence of hidden metastable states the Viterbi algorithm [30] is
used, which exploits dynamic programming techniques to resolve the optimization problem

max
i

L(λ|Z, i)

in a recursive manner. For the details see [31] and the references therein.
It is worthwhile to mention that the above algorithmic steps all scale linearly in the length of the

time series considered.
For any algorithmic realization of the first two problems (1) and (2) one selects a specific number L of

hidden states in advance. Problem (3) means that one has to find the optimal number of hidden states
in the sense that each hidden state finally corresponds to one of the dominant metastable sets of the
system under consideration. A practical way to handle this problem is to start with a sufficiently large
number of hidden states L and then aggregate the resulting transition matrix, which gives the minimum
number of hidden states that are necessary to resolve the metastable sets [32, 33]. The aggregation
is performed by Perron cluster cluster analysis (PCCA), which exploits the spectral properties of the
transition matrix T in order to transform it to a matrix with quasi–block structure [10, 34, 35]. These
blocks then correspond to the existing metastable states.

3.1 Specification of the Expectation-Maximization Algorithm

In order to solve (1) for a predefined number of hidden states, we suggest to specify the standard
Expectation-Maximization algorithm as follows: As usual, in the Expectation step (E-step) the occu-
pation and transition probabilities for a hidden Markov–chain are calculated for the actual value of
model parameters λ and T , subsequently in the Maximization step (M-step) the values of the model
parameters are updated via the re-estimation formulas. The M-step guarantees that the likelihood does
not decrease in each single iteration. Whereas the E-step in our case is identical to a standard proce-
dure described in [10], the re-estimation formulas have to be modified: Let the parameters νk(i) be the
probabilities to observe the hidden process in the state i in the time k (as computed in the E-step and
fixed given for the M-step). In order to obtain the estimator formulas in the case of L hidden states,
in analogy to (20)-(22) we derive the individual partial derivatives of the log–likelihood in each hidden
state i while taking into account the probability νk(i) to be in this state at time k: for the matrix
B(i)(τ) = exp(τF (i))

∂L
∂B(i)

= 0 =⇒ B(i) =
(
A

(i)
1 (μ(i)))A(i)

2 (μ(i)))−1
)

(28)

A
(i)
1 (μ) =

T−1∑
k=1

νk+1(i)
(
Zk+1 − μ(i)

)(
Zk − μ(i)

)�

A
(i)
2 (μ) =

T−1∑
k=1

νk+1(i)
(
Zk − μ(i)

)(
Zk − μ(i)

)�
,
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for the center of the potential

∂L
∂μ(i)

= 0 =⇒

μ(i) =
1∑T−1

k νk+1(i)
(I −B(i))−1

T−1∑
k=1

νk+1(i)
(
Zk+1 −B(i)Zk

)
, (29)

and for the derivative with respect to the covariance matrixR(i)(τ) =
∫ τ

0
exp(sF̂ (i))(ΣΣ�)(i) exp(sF̂ (i))�ds

∂L
∂R(i)

= 0 =⇒ R(i)(τ) =
1∑T−1

k νk+1(i)

T−1∑
k=1

νk+1(i)dkd
�
k (30)

dk =
(
Zk+1 − μ(i) −B(i)

(
Zk − μ(i)

))
.

For a fixed sequence (νk) the equations (28)-(29) have a unique solution that we can write down
analytically, which gives us explicit formulas for the optimal estimators μ̂i, Σ̂Σ̂� and exp(τF̂ (i)) as
given in the following theorem which is a direct consequence of Lemmas 6.3 and 6.4 (see Appendix C).

Theorem 3.1 Let i ∈ {1, . . . , L} and let the parameters νk(i) be the probabilities to observe the
hidden process in state i in the time k. The running average, the covariance matrix and normalized
autocorrelation of the time series for state i are defined by

Z̄(i) =
1∑T−1

l=1 νk+1(i)

T−1∑
k=1

νk+1(i)Zk,

Cov(i)(Z) =
1∑T−1

l=1 νk+1(i)

T−1∑
k=1

νk+1(i)(Zk − Z̄(i))(Zk − Z̄(i))�,

Cor(i)(Z) =
1∑T−1

l=1 νk+1(i)

T−1∑
k=1

νk+1(i)(Zk+1 − Z̄(i))(Zk − Z̄(i))� · Cov(i)(Z)−1.

Suppose that Cov(i)(Z) is positive definite. Then, the optimal estimators exp(τF̂ (i)) and μ̂(i) are given
by

exp(τF̂ (i)) = Cor(i)(Z),

μ̂(i) = Z̄(i) − (Id − Cor(i)(Z))−1δ(i).

where

δ(i) =
1∑T−1

l=1 νk+1(i)

T−1∑
k=1

νk+1(i)(Zk+1 − Zk).

The estimator F̂ (i) inherits the property spec(F̂ (i)) ⊂ C− iff ‖Cor(i)(Z)‖2 < 1; as outlined above this is
the generic situation for the cases considered as long as τ > 0.

In addition, the optimal noise intensity matrix estimator (Σ̂Σ̂�)(i) is then determined by

(Σ̂Σ̂�)(i) = −
(
(Cov(i)(Z) + E(i))(F̂ (i))� + F̂ (i)(Cov(i)(Z) + E(i))

)
, (31)

where E(i) is a symmetric matrix that satisfies the Sylvester equation

Cor(i)(Z)E(i)Cor(i)(Z)� − E(i) = f (i), (32)

where f (i) is just the following symmetric-matrix-valued, quadratic function that generalizes the one of
Theorem 2.1 to a single hidden state and still vanishes if computed for an ergodic, infinitely long time
series. Whenever spec(F̂ (i)) ⊂ C− (32) has a unique symmetric solution E(i) .
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3.2 Resulting HMMSDE algorithm

The resulting overall algorithm then has the following iterative form:

1. Initialization of the EM-algorithm (set the number of hidden states L, zeroth iterates for the local
SDE parameters λ(i) = (exp(τF̂ (i)), (Σ̂Σ̂�)(i), μ̂(i)), the transition matrix T = exp(τR), and further
HMM parameters).

2. E-step: compute new iterates for occupation probabilities νk(i), i = 1, . . . , L, and transition matrix
T , based on the present iterates of the SDE parameters λ(i), i = 1, . . . , L (according to standard
HMM schemes).

3. M-step: compute new iterates for the SDE parameters λ(i), i = 1, . . . , L, based on the present
iterates for the occupation probabilities νk(i), according to Thm. 3.1.

4. Repeat steps 2 and 3 until the increase in the likelihood L(λ|Z, i) in the last iteration is smaller
than the predefined threshhold value.

5. Compute the Viteri path (according to standard Viterbi schemes).

6. Determine the optimal number of metastable states L̂ ≤ L (via PCCA as pointed out above), and
aggregate the parameter sets accodingly.

The proposed HMMSDE scheme has several nice properties: (i) the M-step (and therefore the EM-
algorithm as whole) scales linearly wrt. the length of the observation sequence Z, (ii) in order to
compute the optimal HMM parameters and the optimal estimators (F̂ (i), (Σ̂Σ̂�)(i), μ̂(i)) we do not need
to compute the estimator F̂ (i) but only the estimator of its exponential exp(τF̂ (i)).

4 Non-Uniqueness Problems

We will now discuss and solve the non-uniqueness problems indicated on page 5.

4.1 Uniqueness of F̂

Since the matrix logarithm in general is not injective (there are F1 	= F2 such that exp(F1) = exp(F2)),
how can the optimal estimator F̂ be identified from the optimal estimator exp(τF̂ ) in a unique way?
This problem affects only non-symmetric F , i.e., we do not need to consider it whenever exp(τF̂ ) is
symmetric.

In the following we assume that a sequence of correlation matrices (exp(τkF̂ ))k=1,...,L is explicitly
available for τ1 < τ2 < . . . < τL instead of just a single matrix for a single value of the lag time τ .

The resolvent. We can approximate F̂ via its resolvent:

R(s, τ1) =
∫ ∞

τ1

exp(−s(τ − τ1)) exp(τF̂ )dτ. (33)

For s > 0, we have R(s, τ1) = (s − F̂ )−1eτ1F̂ . Thus, whenever the sequence of nodes (τk)k=1,...,N is
appropriate, we can approximate R(s, τ1) by approximating the integral by numerical quadrature for
an appropriate choice of s, and then compute

F̂ = sId − eτ1F̂R(s, τ1)−1.

This method is known to have limited numerical accuracy (depending on whether the nodes (τk)k=1,...,N

are appropriate quadrature nodes for the unknown integrand). However, it in principle offers a way to
identify F̂ based on sufficient information on exp(τF̂ ) as functions in τ . For further details see Appendix
D.
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Spectral approach. Let us assume that F̂ is diagonalizable (non-defective), or, equivalently, that
the matrices of the sequence (exp(τkF̂ ))k=1,...,L are diagonalizable (non-defective). Then, there exists a
diagonal matrix Λ ∈ Matn(C) and some regular U ∈ Matn(C) such that U exp(τkF̂ )U−1 = exp(τkΛ).
Thus, our problem can be transformed into the problem of identifying λ = a+ ib ∈ C from the sequence
(ek)k=1,...,L, ek = exp(τkλ). While the real part a is easily uniquely identified from a = (log ‖e1‖)/τ1,
identification of b requires the solution of

find b s.t. ∀k = 1, . . . , L : cos(bτk) = �(ek)/|ek| and sin(bτk) = �(ek)/|ek|.
For the typical case τk = kτ , the solution of this problem is not unique. Instead, the complete solution
family (b̂p)p∈Z is given by b̂p = b+ 2πp/τ . However, if

{τ1, . . . , τL} = {kτ |k = 1, . . . , L1} ∪ {ls|l = 1, . . . , L2}
with τ > 0 and s > 0 such that s/τ is irrational, then the problem has just the single solution b since
there are no p, q ∈ Z such that ps = qτ . In Appendix D we will sketch an algorithm that allows to
identify F̂ along the lines of this argument.

4.2 Identifiability Problem

4.2.1 Overdamped Langevin Models

The identifiability problems are related to the following observation, here first presented for the over-
damped Langevin equation but likewise valid for the full/hypoelliptic one: Let a quadrupel (γ,D, σ, μeq) ∈
OL(n) be given. The associated solution is exactly the same for all equations of the family

Aγq̇ = −AD(q − μeq) + AσẆ , (34)

with A ∈ Matn(R) being an arbitrary regular matrix. That is, there is an equivalence relation, to be
denoted by ∼, on OL(n), defined by

(γ,D, σ, μeq) ∼ (γ′, D′, σ′, μ′
eq) ⇔ ∃A ∈ Regn(R) s.t. (Aγ,AD,Aσ, μeq) = (γ′, D′, σ′, μ′

eq),

where Regn(R) denotes the set of regular n × n matrices with real-valued entries. The associated
equivalence classes,

[(γ,D, σ, μeq)]∼ = {(γ′, D′, σ′, μ′
eq) ∈ OL(n)|(γ,D, σ, μeq) ∼ (γ′, D′, σ′, μ′

eq)},

for (γ,D, σ, μeq) ∈ OL(n) are those subsets of OL(n) that contain only models that share the same
solution process.

Thus, identification of the parameters just from observation of its solution cannot be unique but can
at most identify the associated equivalence class from which the solution originated, i.e., it has to leave
at least one full regular matrix un-identified.

We suggest to circumvent this identifiability problem by means of the following lemma (for a proof
see Appendix E):

Lemma 4.1 Let (γ,D, σ, μeq) ∈ OL(n) be given. Then for each inverse temperature β > 0 there ex-
ists a unique element, denoted (γ̂, D̂, σ̂, μ̂eq)β, in [(γ,D, σ, μeq)]∼ that satisfies the fluctuation-dissipation
relation combined with the requirement that D̂ be symmetric.

We will call the parameter tupel (γ̂, D̂, σ̂, μ̂eq)β physically generic iff D̂ > 0. Since always σ̂σ̂� ≥ 0,
validity of the fluctuation-dissipation relation also guarantees γ ≥ 0 (such that there can be no gain of
energy through friction). We will suppress the index β in (γ̂, D̂, σ̂, μ̂eq)β when the choice of the inverse
temperature is clear from the context.

This means that when interested in fitting to the overdamped Langevin dynamics to a given time
series we can always assume that the fluctuation-dissipation equation is valid since the equivalence class
of indistinguishable models from OL(n) always contains an element for which this is the case. Thus,
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having computed F̂ , μ̂ and Σ̂Σ̂� based on Theorem 2.1 and setting a certain value for β, we can identify
(γ̂, D̂, σ̂, μ̂eq)β from

−γ̂−1D̂ = F̂ , γ̂−1σ̂σ̂�(γ̂−1) = Σ̂Σ̂�, γ̂ + γ̂� = βσ̂σ̂�, μ̂eq = μ̂,

with the constraint that D̂ has to be symmetric. We will discuss in detail what it means to set a certain
value for β. Including the constraint the above equations have the (unique) solution

γ̂−1 = −β F̂ (Cov(Z) + E), (35)

D̂−1 = β (Cov(Z) + E), (36)

σ̂σ̂� =
1
β

(γ̂ + γ̂�) (37)

μ̂eq = μ̂.

Whether this parameter tupel is physically generic or not depends on whether Cov(Z) + E > 0 or
not. Whenever we assume that the time series Z = {Z1, . . . , ZT } under consideration comes from an
ergodic, infinitely long time series Z∞ = {Z1, . . . , ZT , . . .} whose associated covariance matrix Cov(Z∞)
is positive definite, then Cov(Z) → Cov(Z∞) > 0 and E → 0 for T → ∞ so that it is guaranteed that
Cov(Z)+E > 0 for large enough T and D̂ = (D̂−1)−1 does exist. Then, the parameter tupel is physically
generic, and spec(F̂ ) ⊂ C− guarantees in addition that the required matrix inverse γ̂ = (γ̂−1)−1 does
exist. (Whenever they do not exist we can take appropriate pseudo-inverses which then has an interesting
physical interpretation on its own).

4.2.2 Full/hypoelliptic Langevin Models

Above we considered models from FL(n) and how to describe time series (Z1, . . . , ZT ) where the states
Zk(qk, pk) include information on position qk and momenta pk = Mq̇k for each time k. This allowed to
construct an optimal estimator F̂ for the matrix in the associated first-order system:

F =
(

0 M−1

−D −γM−1

)
.

Unfortunately, in most applications the available time series of the system under consideration give
us positions q and velocities q̇ instead of momenta p. In this case we have to consider the following form
of the linear full Langevin equation:

q̇(t) = v(t)
v̇(t) = −M−1D(q(t) − μeq) −M−1γv(t) +M−1σẆ (t).

This parameter estimation will have to leave one of the matrices M,D, γ undetermined since the esti-
mator F̂ now estimates the matrix

F =
(

0 Id
−M−1D −M−1γ

)
,

instead of the above one.
Let a 5-tupel (M,γ,D, σ, μeq) ∈ FL(n) be given. The associated solution is exactly the same for all

equations of the family (AM,Aγ,AD,Aσ, μeq) with A ∈ Matn(R) being an arbitrary regular matrix.
That is, the equivalence relation ∼ on FL(n) here is

(M,γ,D, σ, μeq) ∼ (M ′, γ′, D′, σ′, μ′
eq)

⇔ ∃A ∈ Regn(R) s.t. (AM,Aγ,AD,Aσ, μeq) = (M ′, γ′, D′, σ′, μ′
eq),

where Regn(R) denotes the set of regular n×n matrices with real-valued entries. The associated equiv-
alence classes [(M,γ,D, σ, μeq)]∼ ⊂ FL(n) contain only models that share the same solution process.

We can again circumvent this identifiability problem:
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Lemma 4.2 Let (M,γ,D, σ, μeq) ∈ FL(n) be given. Then for each inverse temperature β > 0 there
exists a unique element, denoted (M̂, γ̂, D̂, σ̂, μ̂eq)β, in [(M,γ,D, σ, μeq)]∼ that satisfies the fluctuation-
dissipation relation combined with the requirement that D̂, and M̂ be symmetric.

The proof of this lemma can again be found in Appendix E. We will again call the parameter tupel
(M̂, γ̂, D̂, σ̂, μ̂eq)β physically generic iff D̂ > 0, and M̂ > 0.

Thus, having computed F̂ , Cov(Z) + E, μ̂, and Σ̂Σ̂� based on Theorem 2.1, we will first have to
decide whether the form of F̂ and Σ̂Σ̂� justify the use of the full/overdamped Langevin model: We will
have to decide whether they approximately satisfy the following block forms

F̂ =
(

0 Id
F̂21 F̂22

)
, Σ̂Σ̂� =

(
0 0
0 S22

)
, Cov(Z) + E =

(
C11 C12

C�
12 C22

)
.

We will subsequently assume that this is the case; however, a general strategy of how to make this
decision is not a topic of this article (see Sec. 4.3.1 below). The identity F̂ (Cov(Z) + E) + (Cov(Z) +
E)F̂� = −Σ̂Σ̂� then yields

C12 = 0, F̂21C11 + C22 = 0, F̂22C22 + C22F̂
�
22 = −S22.

This supposed and by setting a certain value for β, we can identify (M̂, γ̂, D̂, σ̂, μ̂eq)β from

−M−1D̂ = F̂21, −M−1γ̂ = F̂22, M̂−1σ̂σ̂�M̂−1 = S22, γ̂ + γ̂� = βσ̂σ̂�, μ̂eq = μ̂,

with the constraint that D̂, M̂ have to be symmetric. Including these constraints the above equations
have the (unique) solution

γ̂ = −M̂F̂22, (38)

M̂−1 = β C22, (39)

D̂−1 = β C11 = −M̂F̂21 (40)

σ̂σ̂� =
1
β

(γ̂ + γ̂�) (41)

μ̂eq = μ̂,

with E as in Thm. 2.1. Whether this parameter tupel is physically generic or not depends on whether
Cov(Z) + E > 0 or not. As above, whenever we assume that the time series Z = {Z1, . . . , ZT } under
consideration comes from an ergodic, infinitely long time series whose associated covariance matrix
Cov(Z∞) is positive definite, then Cov(Z) + E > 0 for large enough T .

4.2.3 Selection of β

Whenever the time series originates from simulations or experiments with a heat bath or a constant
thermostatic setting, like, e.g., it is the case in molecular dynamics simulations using the canonical
ensemble, the value of the temperature is given by this setting and should be used for selecting β.
However, even then we might simply set β = 1 which then means that we select specific physical units
in which this is the case.

Whenever the setting does not imply which value has to be taken then estimation of β from data will
be required. Several approaches seem possible depending on the nature of the problem: For example,
if the setting seems to allow the assumption of the equi-partition of energy as in statistical mechanics,
one may estimate β from the average energy of a small part of the system, e.g., an atom, or a single
bond. However, even purely statistical approaches have been discussed, e.g., see [23].

4.3 Further Remarks and Generalizations

4.3.1 Langevin or Not?

After identifying the optimal parameters for the (F, μ,Σ)-model, we still have to decide whether the
optimal model has the form of either a hypo-elliptic or an overdamped Langevin model, or whether if does
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not belong to this class of processes. We propose an approach along the following lines of reasoning: Let
the states in the time series Zk contain positions and momenta (or positions and velocities, respectively),
i.e., Zk = (qk, pk) ∈ Rn × Rn. Then compute (μ̂, exp(τF̂ ), Σ̂Σ̂T ) due to Thm. 2.1. If the resulting F̂
and Σ̂ are close to the structure given in (8) then the time series is accepted to allow description by
a (linear) hypo-elliptic Langevin model. If, in contrast, exp(τF̂ ) and Σ̂ are close enough to being
block-diagonal, then the time series of the positions (qk) can be approximated by an n-dimensional
overdamped Langevin model (cf. Appendix C, paragraph ”Autocorrelation for large friction”). If
neither of these conditions is satisfied to an acceptable degree then the time series belongs to some
2n-dimensional Ornstein-Uhlenbeck process that has no Langevin but a more general form. We will
illustrate this procedure in detail in the subsequent numerical experiments in Section 5.2. However, it
should be obvious, that the decisions of whether the optimal parameter matrices are close in structure
to a given form crucial depend on the uncertainty of the matrix entries. Thus, a more elaborated scheme
for these decisions should be based on advanced statistical procedures, e.g., via confidence intervals of
the parameters or in the framework of a full Bayesian approach.

4.3.2 Partially Observed States

We will now shortly address the case in which velocities as well as momenta are un-observed, i.e., the
given time series contains information on the positions q = (qk) only but one wants to find the optimal
full Langevin dynamics of form (8). Then, one can calculate the derivatives of the log–likelihood function
(19) (where still Zk = (qk, pk)) with respect to the momenta pk and set them to zero. Note that in
contrast to the approach presented in [23], we are dealing with the exact (i.e., without discretization
in time) form of the log-likelihood function for the full Langevin dynamics of type (8)). Therefore, the
resulting estimation scheme is more general than that presented in [23].

It is however easy to verify that, as for the approach of [23], the resulting equations for the optimal
estimators consist of T×n linear equations with T×n unknowns with a banded matrix on the right-hand
side. Consequently, the applicability of the resulting scheme is limited for large dimensions and long
time series.

4.3.3 Memory and Unresolved Scales

Our reduced model satisfies the Markov property. The original system (which yields the given time
series via observations with constant time lag τ), however, may not be Markovian. If the time scale of
its memory is τ∗, this will not result in problems whenever τ > τ∗. Thus, whenever we can choose the
time lag τ of the time series (as it is the case if it comes from simulations), then we should estimate
τ∗, i.e., by computing (partial) autocorrelations, and choose larger time lags. Whenever this is not
possible the use of the methods developed herein is not advisable and one should consider using other
approaches, e.g., via ARIMA models or reduced models with build-in memory like generalized Langevin
models [19, 36].

Similar problems may result if the time lag τ is much larger than the fastest modes in the original
system. Then, as is intuitively clear, the optimal estimators based on time lag τ may fail to reproduce
the dynamics on and mechanics of the fastest scales. Whether this can be tolerated or not depends on
the system under investigation. Compare [37] for similar considerations.

5 Numerical Examples

In this section we aim at testing the numerical performance of the suggested method on two multidi-
mensional systems. (i) The first system is constructed out of two Gaussian wells in two dimensions and
of N harmonic potentials coupled to it. This system exhibits metastable behavior in two dimensions
originating from a double–well potential for the first two of the N + 2 degrees of freedom. In order to
make the task of finding these metastable subsets more demanding, we additionally rotate the derived
potential in (N+2)–dimensional space with a randomly chosen rotation matrix. (ii) The second numer-
ical example deals with identification of the conformations in a realistic molecular system (12-Alanine).
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We use the numerical strategy presented above to identify the conformations in the time series of torsion
angles. We will compare the resulting local Langevin models and interpret the physical meaning.

5.1 Multidimensional Langevin Dynamics in a Skew Double-Well potential

As a first example we consider realizations of the Langevin equation

q̈(t) = −gradU(q(t)) − γq̇(t) + σẆ (t), (M = Id), (42)

with q = (x, y) ∈ R2 × RN and the perturbed two–hole potential

U(x, y) =
2∑

l=1

al exp
(−(x− μsys

l )TDsys
l (x− μsys

l )
)

+
1
2
y�Dbathy (43)

+δ0
(

cos(2πk(x1 + x2)) + cos(2πk(x1 − x2))
)
, (44)

where δ0 � 1 is a small perturbation parameter. The N harmonic bath variables are denoted by y,
whereas x labels the two ”metastable” dimensions that live in the plane of the double well potential.
We have chosen the following parameter values

μsys
1 = (1.8, 2.2)�, μsys

2 = (1.8, 0.8)�,

Dsys
1 =

(
1 −1
−1 3

)
, Dsys

2 =
(

1 1
1 3

)
,

a1 = −6 a2 = −6

such that we get two contiguously placed skew wells (see Fig. 3) and make identification of the metastable
sets more challenging compared to a well–separated situation. The parameter matrices Dbath and γ have
been chosen to be symmetric, positive definite, and tri-diagonal, with 10.0 on the main diagonal and
5.0 on secondary diagonals for Dbath (5.0 and 2.5 respectively for γ). The noise parameter σ was
taken as a diagonal matrix with 4.0 on the diagonal. Thus the degrees of freedom x and y are coupled
through the friction only. These parameter settings imply two important properties: (1) The system is
metastable because the barrier is sufficiently larger than the average kinetic energy in the system. (2)
The fluctuation dissipation relation is not valid here, but since the input of the algorithm consists of
positions and momenta we do not have an identifiability problem of the sort discussed above.

Simulation of the model has been realized with the Euler–Maruyama integrator (discretization time
step ΔtEuler = 0.0002) and total time length 500. Each hundredth instance of the resulting time series
has been taken for a subsequent parameter estimation (resulting in observation time step τ = 0.02) such
that T = 25.000.

Furthermore, in order to make our model system more realistic and mimic the features inherent in
biological systems, we rotate the resulting time series in the (N+2) dimensional space. We do it in such
a way, that the metastability of the system becomes hidden in all the dimensions of the system, see
Fig. 2.

Application of the HMM–Langevin method (local SDE models from FL(n)) to the time series results
in identification of two metastable states. In order to interpret the quality of the identification, we rotate
the time series back, color the elements according to the corresponding metastable state and plot them
atop of the original potential surface in (x1, x2). As we can see in Fig. 3, the local Langevin models
are correctly situated at the wells of the double–well potential in the metastable dimensions and the
elements of the time series are assigned in a proper way. Fig. 4 shows the identified parameter matrices
of the local Langevin models (after the backwards rotation to bring them in the form comparable to
(42)). We can see that all of the parameters are estimated with satisfactory accuracy and the difference
between the local Langevin models as expected only lies in first two dimensions of D (corresponding to
the metastable degrees of freedom (x1, x2)).

Finally, we test the performance of the method with respect to the spatial dimension of the problem
(see Fig. 5). We compare the relative errors for a time series of length 15.000 (τ = 0.02) generated for
different dimensions N of the oscillator bath. For all of the model parameters we have a linear growth
of the estimation error with the dimension.
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Fig. 2 Time series of the skew double–well model in N + 2 = 14 dimensions (observation step τ = 0.02,
T = 25.000, generated as described in the text, illustration after rotation).
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Fig. 3 Left: Projection of the time series shown in Fig. 2 (after back-rotation) onto the two metastable
dimensions; coloring according to assignment to the two metastable sets as resulting from the HMM–Langevin
Viterbi path. Right: Visualization of the reduced HMM–Langevin model in two metastable dimensions (also
after back-rotation).
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Fig. 4 Estimated parameters of two local Langevin models (left vs. right) resulting from the time series shown
in Fig. 2; from top to bottom: stiffness matrices Di, friction matrices γi, and noise intensity matrices σi. The
relative error in all cases is less then 0.05 in maximum norm. Here, we deliberately used the knowledge about

M = Id such that Di, γi, σi can be directly taken from the respective blocks of F̂i and Σ̂i.

5.2 Dynamics of the 12–Alanine Peptide

In order to illustrate the approach on a realistic molecular system, we choose a simulation of 12-Alanine
in water at 300K. The molecular dynamics simulation was performed with the GROMOS force–field
and implicit water box with a 2 fs time step and total length in time of 1.3 milliseconds. The time series
has been provided by Frank Noe in a form of a 22–dimensional time series describing the dynamics of
the internal (φ, ψ)–peptide angles of 12-Alanine (torsion angles corresponding to freely rotating end-
groups were neglected). The associated velocities have been computed by numerical differentiation.
The resulting time series of angles and associated velocities have been analyzed with the observation
time step τ ranging from τ = 100 fs to τ = 1 ps (which means T ranging from T = 13.000.000 to
T = 1.300.000, n = 22).

In the following we present results on the estimation of parameter matrices of processes of the form

ż(t) = F (i(t))(z − μ(i(t))) + Σ(i(t)) Ẇ (t) (45)
i(t) = Markov jump process with states 1, . . . , L.
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Fig. 5 Relative error of the parameter estimation in maximum–norm for a time series with 15.000 elements
and τ = 0.05.

We will call the SDEs (45) second order if z = (q, q̇) ∈ R2n (positions/angles and corresponding veloci-
ties), first order if z = q ∈ Rn (positions/angles only). From the optimal parameters (F̂ (i), (Σ̂Σ̂�)(i), μ̂(i))
we will try to extract the optimal parameters for FL(2n)-models (second order case; if the matrices
F̂ (i) and the associated covariance matrices have the appropriate form) or for OL(n)-models (first order
case).

The transition matrix of the Hidden Markov chain with G = 7 hidden states calculated in the
context of HMM–Langevin approach with positions/angles and their respective velocities (second order)
indicates the presence of two most pronounced metastable states (see Fig. 6). The corresponding
aggregated Viterbi–path is shown in the right panel of Fig. 6; it proves robust to changes of the initial
number of G hidden states and to changes in the initial settings of the HMM procedure. The optimal
estimator μ̂ for the two metastable states has a direct interpretation: it gives the mean configuration
of the corresponding conformation in configuration space. These configurations are visualized in Fig. 7.
From this figure it becomes visible that the second state corresponds to an α-helical structure, whereas
the first has a mean configuration that lies between α–helix and β–sheet (it is a mixture between some
misfolded and partially folded less metastable conformations that are separated from each other when
more than the two leading eigenvalues of the transition matrix are taken into account).

When checking the estimators for the optimal estimators (F̂ (i), (Σ̂Σ̂�)(i)) for the two resulting local
second order models, however, we find that the estimator F̂ (1) for the helical conformation has the
form illustrated in Fig. 8. We observe that F̂ (1) is far from the form typical for the hypo-elliptic
Langevin model. Instead F̂ (1) (and (Σ̂Σ̂�)(1), too) is almost block-diagonal which seems to indicate
that the dynamics of positions/angles q are essentially decoupled from the corresponding velocities.
This, however, means that it is justified to use first order dynamics (i.e., OL(n)-models) as local models
of the dynamics, see Appendix C (”Autocorrelations for Large Friction”) for further details.

When restarting the procedure with local OL(n)-models, we get precisely the same Viterbi-path,
almost the same transition matrix, and approximately the same mean positions μ as already computed
with second order models and illustrated in Figs. 6 and 7.

The estimators of the parameter matrices of the first order model q̇ = F (q − μ) + ΣẆ for the helical
conformation are shown in Figs. 9-10.

Fig. 9 shows the estimator F̂ (1); from comparison with Fig. 8 we observe that it is almost identical
with the upper left block of the estimator F̂ (1) computed with second order models.
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Fig. 6 12-Alanine: The spectrum of the transition matrix of the hidden Markov chain (L = 7) indicates
two metastable states (just two eigenvalues close or identical to 1, left panel); the corresponding aggregated
Viterbi–path is shown right.

Fig. 7 12-Alanine: Mean configurations of the two metastable states as computed from parameters μ̂(i)

Fig. 10 shows the estimators D̂, γ̂, and σ̂ for the local OL(n)-model

γq̇ = −D(q − μ) + σẆ ,

of the helical conformation as computed from F̂ (1), and (Σ̂Σ̂�)(1) and the corresponding covariance
matrix as explained in Section 1 (setting β = 1 herein). As a measure for the quality of the resulting
approximation we use the matrix E that we understand as an indicator for how well the covariances
have been sampled. This matrix is illustrated in the lower right panel of Fig. 10; we observe that it is
satisfactorily small.

This section is about demonstrating the performance and applicability of the proposed estimation
techniques such that we cannot go into details of the physical validation of the results. However, let
us add the following comments on possible interpretation of the results: The existence of a helical
conformation of 12-Alanine is known and expected from other investigations concerning the alanine
family; the existence of partially unfolded and mis-folded β-sheet-like conformations also. The resulting
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Fig. 8 12-Alanine: Estimator of the 44 × 44 matrix F̂ (1) for the helical conformation using a second order

diffusion model ẋ = F (x − μ) + ΣẆ with x = (q, q̇) computed via the positions/angles and their respective

velocities. F̂ (1) has been computed due to the algorithm introduced in the appendix (case II) for a series of
values of the lag time τ ranging from 100 fs to 2000 fs.
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Fig. 9 12-Alanine: Estimator of the 22 × 22 matrix F̂ (1) for the helical conformation for the first order model

q̇ = F (q − μ) + ΣẆ computed via the positions/angles only. F̂ (1) has been computed computed using the
algorithm introduced in the appendix (case II) for a series of values of the lag time τ ranging from 100 fs to
2000 fs.

stiffness matrix D̂ of the helical conformation shows that the internal alanine peptides are rather stiffly
packed while the alanine ”end-groups” can move more flexibly; its band-like structure means that the
interaction is dominated by the groups within one helical loop length. All this also is no surprise.
The structure of the friction and noise intensity matrices, γ̂ and σ̂, would have also been expected:
friction/dissipation should be largest for the internal groups while the noise intensity matrix should be
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Fig. 10 12-Alanine: estimators D̂ (left, top), γ̂ (right, top), σ̂σ̂T (left, bottom) for the parameters of the linear

overdamped Langevin model γq̇ = −D(q − μ) + σẆ parameters for the helical conformation (setting β = 1);
the fourth sub-figure (right, bottom) shows the error indicator matrix E (for details, see text).

diagonally-dominated since the stochastic excitation comes from the surrounding solvent molecules and
should be essentially local, and only neighboring groups should add internal random-like excitations.

In order to conclude our discussion of 12-Alanine, we present in Fig. 11 the comparison of the
correlation matrices CorT (for definition see Appendix C) for different values of τ or T , respectively,
with the correlation matrices exp(τF̂ ) computed from the overdamped linear Langevin dynamics for
the helical conformation. When computed from the HMM-Langevin estimators with second order local
models the results look identical (deviations between second order and first order smaller than 0.1%).

6 Concluding Remarks

In this article we presented the HMM-Langevin approach to model reduction and parameter estima-
tion of metastable systems based on time-series with constant lag time between observation resulting
from long simulation runs that contain information on ”positions” q as well as corresponding ”veloc-
ities” q̇. We in detail considered the appearing identifiability problems, shed light on the role of the
fluctuation-dissipation relation, and illustrated possible reduction to overdamped Langevin / diffusion
models that typically occur in application from biology, biophysics, or biochemistry. We demonstrated
the applicability to realistic time series from molecular dynamics simulations and discussed the resulting
performance of the novel approach.

In general, the novel approach has no restriction on the dimensionality of the system (scaling d3 with
dimension), on the length T of the time series (linear in T ), or on the lag time (need not be ”small”).
However, we already discussed the possible pitfalls in computing the Jacobian F̂ from the estimator
exp(τF̂ ) (see last section of the appendix). Furthermore, we ignored the fact that the given time series
might not be Markovian (in the sense that its partial autocorrelation time might be larger than the lag
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Fig. 11 12-Alanine: Dependence of the matrix CorT (blue solid lines) on the lag time τ and comparison with

exp(τ F̂ ) (red dashed lines) for four randomly chosen entries of the respective matrices. Top panel: CorT,2,2 and

exp(τ F̂ )2,2 (left) and CorT,2,5 / exp(τ F̂ )2,5 (right). Lower panel: CorT,6,8 and exp(τ F̂ )6,8 (left) and CorT,21,19

and exp(τ F̂ )21,19 (right).

time). This case definitely needs careful consideration but is postponed to future investigations (here
we can ”always” avoid it by sub-sampling the given time series with some ”large enough” lag time).

Appendix A: Positive Definite Matrices

A matrix A ∈ Matn(R) is called positive definite iff ψ�Aψ > 0 for all 0 	= ψ ∈ Rn. We then write
A > 0. Positive definiteness is often only defined for symmetric matrices. We here have that for some
(possibly non-symmetric) A ∈ Matn(R)

A > 0 ⇔ Asym =
1
2
(A+A�) > 0 ⇔ min spec(Asym) > 0.

It is important to note that in general �spec(A) > 0 does not imply A > 0. The 2 × 2-matrix

A =
(

0 −1
1 1

)

may be an example: its eigenvalues all have positive real part but for e = (1, 0)� we have e�Ae = 0
since Asym has 0 as an eigenvalue.

The following lemma collects some results on positive (semi-)definite matrices:
Lemma 6.1 Let A ∈ Matn(R). Then A > 0 implies that

1. A is regular and A−1 > 0,

2. there is exactly one matrix B ∈ Matn(R) with B > 0 such that A = B2,

3. if also B > 0 then A+B > 0,
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For symmetric A ∈ Matn(R) we have A > 0 if and only if there exists a regular B ∈ Matn(R)
such that A = BB�. If A ∈ Matn(R) is just symmetric, positive semi-definite (i.e. ψ�Aψ ≥ 0 for all
0 	= ψ ∈ Rn) of rank r, then a B ∈ Matn(R) of rank r such that A = BB�.

Appendix A: Solution to the Sylvester Equation

Linear matrix equations of the form

AX +XB = C, (46)

where A,B,C are (in our case square) given matrices and X is the sought-after solution matrix, are
called Sylvester equation. It is well-known [38] that (46) has a unique solution if and only if

α+ β 	= 0 ∀α ∈ spec(A), β ∈ spec(B), (47)

where spec(·) denotes the spectrum of a matrix. This general result yields the following two consequences
that are important herein:

Lemma 6.2 Let F be a square matrix whose spectrum is contained in the left half plane of the
complex plane, i.e.,

spec(F ) ⊂ C− = {z ∈ C : �(z) < 0}.
Then the two Sylvester equations

XFT + FX = C (48)

XeτF T − e−τFX = E (49)

have unique solutions for arbitrary square matrices C and E, and τ > 0. Moreover, whenever F has
the form

F =
(

0 M−1

−D −γM−1

)
,

with some positive definite square matrix γ then spec(F ) ⊂ C−.
Proof: The last statement directly follows from [39]. The uniqueness for (48) is guaranteed since for

arbitrary α ∈ spec(F ) ⊂ C− and β ∈ spec(FT ) = spec(F ) ⊂ C− we have

�(α+ β) < 0 such that α+ β 	= 0.

In analogy the uniqueness for (49) results since for arbitrary α ∈ spec(−e−τF ) and β ∈ spec(eτF T

) we
find λ, ν ∈ spec(F ) such that α = −e−τλ and β = eτν such that

α+ β 	= 0 if and only if exp(τ(λ + ν)) 	= 1
if and only if λ+ μ 	= 0,

which is again valid since spec(F ) ⊂ C−.
Under certain conditions, the solution of (49) is easily available: Let us denote (49) in the form

E = XA� −A−1X, A = eτF , (50)

and assume that A allows complex diagonalization of the form:

A = JΛJ−1 (51)

where Λ ∈ Cn×n is a complex diagonal matrix with non-vanishing entries, and J ∈ Cn×n invertible.
Inserting (51) into (50) and multiplying both sides of the equation with J−1 from the left and J−� from
the right we get:

J−1EJ−� = Y Λ − Λ−1Y (52)

Y = J−1XJ−� (53)
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It is easy to see that a componentwise solution of (52) can be written as

Yij =

(
J−1EJ−T )

ij

Λ�
j − Λ−1

i

(54)

Then the solution of (50) is

X = JY J� (55)

Appendix C: Explicit Expressions for Optimal Estimators

Autocorrelations

We again consider

ż = F (z − μ) + ΣẆ . (56)

We subsequently assume that the spectrum of F lies in the left half plane {z ∈ C : �(z) < 0} of the
complex plane. This assumption is satisfied, e.g., in the case of

F =
(

0 M−1

−D −γM−1

)
, or F = −γ−1D (57)

with γ and D being positive definite.
In order to compute the autocorrelation of the process z (as they are needed to determine the optimal

estimators) we first transfer to new coordinates

ξ = z − μ

such that the equation of motion reads

ξ̇ = Fξ + ΣẆ .

Then by standard techniques we get the following expression for the un-normalized autocorrelation

〈ξ(t)ξ(0)T 〉 =
1
2π

∫ ∞

−∞
(−F + iωId)−1ΣΣT ((−F + iωId)H)−1eiωtdω.

We now evaluate this integral by considering the following sequence of integrals in the complex plane:

Cr(t) =
1

2πi

∫
C(r)

(−F + zId)−1ΣΣT (−FT − zId)−1eztdz,

where C(r) denotes the closed curve that is composed of the path from −ir to ir along the imaginary
axis and the half circle {z ∈ C : z = r exp(iφ), φ = π/2, . . . , 3π/2}. For large enough r the spectrum of
F is contained in the interior of C(r). Moreover, for t > 0 and large enough r, the integrand I(z) decays
like |I(r exp(iφ))| < Mr−k for some constants M > 0 and k > 1 such the the contribution of the half
circle to the integral Cr(t) vanishes for r → ∞. This means that

lim
r→∞

Cr(t) = 〈ξ(t)ξ(0)T 〉.

In order to evaluate the integral Cr(t) for large r, we first observe that

(zId − F )−1ΣΣT (−FT − zId)−1 = (zId − F )−1A+A(−FT − zId)−1, (58)

where the square matrix A is the unique solution of

AFT + FA = −ΣΣT . (59)
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Uniqueness and specific forms of the solution will be discussed below. This decomposition of the integral
yields

Cr(t) =
1

2πi

(∫
C(r)

(zId − F )−1eztdz A−A

∫
C(r)

(zId + FT )−1eztdz

)
.

For large enough r, the spectrum of F is contained in the interior of C(r), while the spectrum of −FT

entirely lies in its exterior. Thus, typical residue theorems yield

lim
r→∞

Cr(t) = exp(tF )A.

Putting everything together we find that the autocorrelation satisfies

〈(z(t) − μ)(z(0) − μ)T 〉 · 〈(z(0) − μ)(z(0) − μ)T 〉−1 = exp(tF ). (60)

Let us return to the uniqueness and specific form of A. The uniqueness obviously follows from Appendix
A, since the spectrum of F and FT are contained in the left half plane of C. In addition, we observe
that the equation for A is identical with the equation (17) for R(∞), i.e., A = R(∞), the asymptotic
limit of the covariance of the centered process ξ = z − μ.

Let us furthermore consider the typical case that γ and D, both, are positive definite matrices, that
D is symmetric in addition, that

Σ =
(

0 0
0 σ

)
, (61)

and that the fluctuation dissipation result holds, i.e., that

γ + γ� = βσσT ,

for some positive inverse temperature β. Then we uniquely have

A =
1
β

(
D−1 0

0 M

)
.

For the case of overdamped linear Langevin dynamics (F = −γ−1D,Σ = γ−1σ) we find A = D−1/β.

Autocorrelations for Large Friction γ

As we have seen the time dependence of the autocorrelation is given by the exponential of F . The
following result is shown in [40] based on higher order linear perturbation theory:

exp(t
(

0 M−1

−D −γM−1

)
) =

(
exp(−tγ−1D) 0

0 exp(−tγM−1)

)
+ O(

1
‖γ‖).

This means, that for large enough friction γ the autocorrelation matrix of the full Langevin dynamics
is approximately block-diagonal with blocks given by the autocorrelations of

γq̇ = −D(q − μ) + σẆ ,

which is overdamped Langevin dynamics, and

ṗ = −γM−1p+ σẆ ,

which is the analogue for the momentum part of full Langevin dynamics.
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Properties of the Estimator

Suppose that an observation sequence Z = (Zt)t=1,2,... and the occupation probabilities νk(i), i =
1, . . . , L of the hidden Markov chain are given. Then, denote the mean and covariance of the subse-
quences (Z1, . . . , ZT ) (first T steps of the given time series) in the state i by

Z̄
(i)
T =

1∑T−1
k=1 νk+1(i)

T−1∑
k=1

νk+1(i)Zk

Cov(i)
T (Z) =

1∑T−1
k=1 νk+1(i)

T−1∑
k=1

νk+1(i)(Zk − Z̄
(i)
T )(Zk − Z̄

(i)
T )�.

In all of the following, we assume that for large enough T the covariance Cov(i)
T is a positive definite

matrix.
Furthermore, let the one-step correlation be defined as

Cor(i)T (Z) =
1∑T−1

k=1 νk+1(i)

T−1∑
k=1

νk+1(i)(Zk+1 − Z̄
(i)
T )(Zk − Z̄

(i)
T )� · Cov(i)

T (Z)−1,

and, for given μ(i) also

A
(i)
1 (T, μ(i)) =

1∑T−1
k=1 νk+1(i)

T−1∑
k=1

νk+1(i)(Zk+1 − μ)(Zk − μ(i))�.

A
(i)
2 (T, μ(i)) =

1∑T−1
k=1 νk+1(i)

T−1∑
k=1

νk+1(i)(Zk − μ(i))(Zk − μ(i))�,

Then, the equations (28) and (29) that determine the optimal estimators B(i), μ̂(i) based on subsequence
(Z1, . . . , ZT ) read

B(i) = A
(i)
1 (T, μ̂(i)) ·A(i)

2 (T, μ̂(i))−1 (62)

μ̂(i) = Z̄
(i)
T + (Id −B(i))−1δ

(i)
T , (63)

where δ(i)T for the sake of convenience denotes

δ
(i)
T =

1∑T−1
k=1 νk+1(i)

T−1∑
k=1

νk+1(i)(Zk+1 − Zk).

note that in the case of a single hidden state (i. e. for the case when ν1 = ν2 = · · · = νT = 1 ) the
expression for δ can be further simplified resulting in

δ
(i)
T =

ZT − Z1

T − 1
.

We easily observe now that

A
(i)
1 (T, μ̂(i)) = Cov(i)

T (Z) + (Z̄(i)
T − μ̂(i)) · (Z̄(i)

T − μ̂(i))�

A
(i)
2 (T, μ̂(i)) = Cor(i)T (Z)Cov(i)

T (Z)

+(Z̄(i)
T − μ̂(i)) · (Z̄(i)

T − μ̂(i))� + δ
(i)
T · (Z̄(i)

T − μ̂(i))�.

This immediately shows that A(i)
1 (T, μ̂(i)) is positive definite for all μ̂(i) since Cov(i)

T is. Therefore, the
inverse in equation (62) is justified. In order to check whether (62) makes sense as a whole, let us
introduce the further abbreviation

Δ(i)
T = Z̄

(i)
T − μ̂(i)
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and observe that (62) and (63) can be written as

B(i) = (Cor(i)T Cov(i)
T + Δ(i)

T (Δ(i)
T )�

+δ(i)T (Δ(i)
T )�) · (Cov(i)

T + Δ(i)
T (Δ(i)

T )�)−1 (64)

δ
(i)
T = −(Id −B(i))Δ(i)

T . (65)

With the assumption that Cov(i)
T is positive definite we get from (64) that

(Id −B(i))(Cov(i)
T + Δ(i)

T (Δ(i)
T )�) = (Id − Cor(i)T )Cov(i)

T − δ
(i)
T (Δ(i)

T )�.

Inserting (65) this directly yields

B(i) = Cor(i)T .

Then, using (65) again, we find

Δ(i)
T = −(Id − Cor(i)T )−1δ

(i)
T .

Thus, we have

Lemma 6.3 Let Cov(i)
T be positive definite. Then the solution of (64) and (65) satisfies:

B(i) = eτF̂ (i)
= Cor(i)

T , (66)

Δ(i)
T = −(Id − Cor(i)T )−1δ

(i)
T . (67)

Consequently, whenever ‖Cor(i)
T ‖ < 1 we have that F̂ (i) is well-defined and its spectrum satisfies

spec(F̂ (i)) ⊂ C−.
In the case of a single hidden state there are the following direct consequences of this lemma: When-

ever we can assume the subsequent convergence for T → ∞ (compare [41, 42], but be aware that one
has to expect extremely slow rates of convergence for large values of the lag-time τ):

CovT → Cov∞, δT → 0, CorT → Cor∞, Z̄T → Z̄∞,

then (62) and (63) yield that for T → ∞
μ̂T → Z̄∞ (68)

eτF̂T → Cor∞. (69)

If the SDE (56) satisfies appropriate ergodicity assumption and (Zt)t=1,2,... results from τ -sampling
the corresponding solution process, then in probability CovT → Cov∞, δT → 0, and especially

Z̄T → μ,

CorT → 〈(z(τ) − μ)(z(0) − μ)�〉 · 〈(z(0) − μ)(z(0) − μ)�〉−1,

such that for T → ∞
μ̂

(i)
T → μ (70)

F̂T → F . (71)

where the last convergence follows from

eτF̂T → 〈(z(τ) − μ)(z(0) − μ)�〉 · 〈(z(0) − μ)(z(0) − μ)�〉−1 = eτF .

Moreover, for several hidden states, if spec(F̂ (i)) ⊂ C− and τ → ∞ then

exp(F (i)τ) → 0,

μ(i) → 1∑T−1
k=1 νk+1(i)

T−1∑
k=1

νk+1(i)Zk+1
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and

R(i)(τ) → 1∑T−1
k=1 νk+1(i)

T−1∑
k=1

νk+1(i)(Zk+1 − μ(i))(Zk+1 − μ(i))�

which means that the likelihood function and estimators considered herein converge towards the likeli-
hood and estimators of the HMM coupled to multivariate Gaussian distributions as derived by Liporace
et. al [43] and corresponding limiting expressions for μ andR become respectively the optimal estimators
of expectation value and covarince matrix of the multidimensional Gaussian distribution. This means
that for τ → ∞ the SDE–dynamics reaches its equilibrium and the conditional probability distribution
(15) approaches the multivariate Gaussian distribution unconditioned on the previous observations, i. e.
system loses the memory about its previous positions. In this case the expressions above demonstrate
that the HMM-SDE algorithm becomes equivalent to the HMM-Gaussian approach from [43].

Finally, we will consider the consequences of these observations concerning the estimator Σ̂Σ̂� of the
noise intensity matrix for which we have to solve equation (22). Combining (22) with (17) gives a linear
matrix equation for the optimal noise intensity matrix estimator

e−τF̂W (F̂ ) = Σ̂Σ̂�eτF̂� − e−τF̂ Σ̂Σ̂�, (72)

where

W (F̂ ) =

(
1

T − 1

T−1∑
k=1

d̂kd̂
�
k

)
F̂� + F̂

(
1

T − 1

T−1∑
k=1

d̂kd̂
�
k

)
, (73)

d̂k =
(
Zk+1 − μ̂− eτF̂ (Zk − μ̂)

)
.

We present the derivation for a single hidden state; for several hidden states the definition of W (F̂ )(i)

for state i just includes the occupation probabilities in a way analogous to what we discussed above.
Under our main assumption spec(F̂ ) ⊂ C−, equation (72) for Σ̂ has a unique solution (see Appendix

B, Lemma 6.2).
With the help of

dk = (Zk+1 − Z̄T ) − CorT (Zk − Z̄T ) + (Id − CorT )(Z̄T − μ̂T ).

and our above abbreviations we then get

1
T − 1

T−1∑
k=1

dkd
�
k = CovT − CorT CovT Cor�T − δδ�

+
1

T − 1
(
(ZT − Z̄T )(ZT − Z̄T )� − (Z1 − Z̄T )(Z1 − Z̄T )�

)
.

Since CorT = eτF̂T this can be decomposed into

1
T − 1

T−1∑
k=1

dkd
�
k = DT + f(Z1, ZT , Z̄)

DT = CovT − eτF̂T CovT e
τF̂�

T ,

f(Z1, ZT , Z̄) = −δδ�

+
1

T − 1
(
(ZT − Z̄T )(ZT − Z̄T )� − (Z1 − Z̄T )(Z1 − Z̄T )�

)
. (74)
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Inserting these results into (73) lets us infer that

eτF̂T Σ̂T Σ̂�
T e

τF̂�
T − Σ̂T Σ̂�

T = DT F̂
�
T + F̂TDT + ηT F̂

�
T + F̂T ηT ,

= CovT F̂
�
T + F̂T CovT

−eτF̂T

(
CovT F̂

�
T + F̂T CovT

)
eτF̂�

T

+f(Z1, ZT , Z̄)F̂�
T + F̂T f(Z1, ZT , Z̄).

This shows that the estimates satisfy the approximate fluctuation-dissipation result

−Σ̂T Σ̂�
T = (CovT + ET )F̂�

T + F̂T (CovT + ET ), (75)

with some symmetric matrix ET that is the solution of

f(Z1, ZT , Z̄) = ET − eτF̂TET e
τF̂�

T .

Again this solution is unique if spec(F̂ ) ⊂ C−.
We summarize:
Lemma 6.4 Suppose the correlation matrix CorT = exp(τF̂ ) exists and ‖CorT ‖ < 1 be satisfied.

Then the optimal estimator of the noise intensity matrix has the form:

−Σ̂T Σ̂�
T = (CovT + ET )F̂�

T + F̂T (CovT + ET ),

with a symmetric matrix ET that is the unique solution of

f(Z1, ZT , Z̄) = ET − eτF̂TET e
τF̂�

T ,

with f being defined in (74).
The following is worth emphasizing: the fluctuation-dissipation theorem –due to the above results–

can be written in the following general form

Cov∞F� + FCov∞ = −ΣΣ�. (76)

where Cov∞ is the analytical covariance matrix of the invariance measure of the model (F,Σ, μ). Eq.
(76) indeed justifies to call (75) an approximate fluctuation-dissipation result.

In addition we observe that ET will vanishes for T → ∞ along an ergodic, infinitely long time series.
Thus, the exact fluctuation-dissipation result is recovered in the limit. In this case, we finally get
consistency for the noise intensity estimator

Σ̂T Σ̂�
T → ΣΣ�.

Error Estimation. Since the estimators result from a likelihood optimization, we can always estimate
their statistical uncertainty by computing the corresponding variance of the likelihood understood as
a probability distribution in parameter space. This can be done via Monte Carlo, Gibbs, or Langevin
samplers that at most need the first derivative of the likelihood wrt. the parameters (which is what we
already computed above). In the subsequent example we will compute the variance of the likelihood
relative to a flat prior (i.e., prior distribution is uniform/Lebesgue measure). If non-uniform prior
information is available (e.g., local stationarity, or the fuctuation-dissipation relation holds) then this
should be considered by taking an appropriate non-uniform prior. Alternatively, one could also apply
the Fisher information matrix, cf. [44]. These options are not further discussed herein; they are topics
of further investigation.

In order to illustrate the dependence of the error/uncertainty of the optimal estimators, we will now
give a scalar example for one hidden state (thus the parameter space is three-dimension consisting of
(B,R, μ) or (F,Σ, μ)).
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Fig. 12 Dependence of estimators (indicated by circles) and their standard variation (indicator by vertical
bars) on τ for the scalar test case described in the text. For all τ the number of instances are fixed (N = 5.000).

From left to right: D̂ and ΔD̂, Σ̂ and ΔΣ̂, and μ̂/Δμ̂. The blue dashed lines indicate the values for D, Σ, and
μ in the original SDE.
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Fig. 13 Dependence of estimators (indicated by circles) and their standard variation (indicator by vertical bars)
on τ for the scalar test case described in the text. For all τ all available instances are taken (from N = 2.000 for

τ = 5 up to N = 100.000 for τ = 0.1). From left to right: D̂ and ΔD̂, Σ̂ and ΔΣ̂, and μ̂/Δμ̂. The blue dashed
lines indicate the values for D, Σ, and μ in the original SDE.

To this end, we first computed a realization of the dynamics given by q̇ = −Dq + ΣẆ with one-
dimensional q, D = −0.5 and Σ = 1. The realization has been computed by means of the Euler–
Maruyama discretization with timestep dt = 0.001 and total length 10.000. By subsampling the resulting
time series with lag times τ = m · 0.1 for m = 1, . . . , 50 we produced 50 different time series with
respective total lengths ranging between 2.000 and 100.000 instances. When computing an estimator E
and its standard deviation ΔE (the square root of its variance), we have to understand both quantities
as variables of the lag time, τ , and the number of instances, N , that have been taken into account:
E = E(τ,N), ΔE = ΔE(τ,N).

Figure 12 illustrates the dependence of the estimators on τ when the number of instances N = 5000
is fixed (that is, for τ = 0.1 only the first 5.000 instances of the available time series of length 100.000
have been considered; for τ = 2 all available 5.000 instances). Figure 12 allows to observe that the
standard deviations of the estimators do not increase with τ (rather decrease) as long as the same
number of observations is available. As observed in standard theory of SDE parameter fitting, the
standard deviation of the drift parameter D̂ increases for τ → 0 and N fixed but rather decreases for Σ̂.

In real world cases, the situation will mostly be characterized by the availability of a time series of
given length Ntot with lag time τmin any subsampling of which with some other lag time τ = jτmin,
j ∈ N, will produce a time series whose number of instances N = Ntot/j = Ntot · τmin/τ depends on
τ . This scenario and the resulting dependence of the standard deviation on τ is illustrated in Fig. 13
which illustrates the obvious consequence: the standard deviation increases with decreasing number of
instances and increasing τ .
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Fig. 14 Dependence of the matrix CorT (blue dashed lines) on the lag time τ as computed from sub-sampling
a given time series of fixed length with lag time τ and comparison with exp(τF ) (red lines). Top panel: CorT,11

and exp(τF )11 (left) and CorT,24 / exp(τF )24 (right). Lower panel: CorT,32 and exp(τF )32 (left) and CorT,44

and exp(τF )44 (right).

Appendix D: Determination of F

Let us now consider the linear, two-dimensional Langevin dynamics Mq̈ = −Dq − γq̇ + σẆ with

M = Id, D =
(

3 0
0 2

)
, γ =

(
0.5 0.2
0.2 0.1

)
, σ = 0.3Id, μ = (0, 0, 0, 0)�.

We used an appropriate second order discretization in time [45] and produced a time series {Z(tk)}k=1,...,N

consisting of positions and momenta by simulation of the dynamics with time step Δt = 0.001 from
time t = 0 to t = 5000, i.e., with N = 5 · 106 integration steps. By sub-sampling of this time series with
different lag times τ , in this case for τ = m · 0.25, m = 1, . . . , 120, we get 120 time series with different
lag times τ and of different total lengths T = 5000/τ . For each of these we computed Z̄T and CorT as
defined above. In Fig. 14 we compare the results for CorT with its limit value exp(τF ); we observe that
the agreement is remarkably good over the entire range of τ -values considered.

However, when computing the estimate F̂ = log(CorT )/τ for different lag times τ using the matrix
logarithm as it is implemented in Matlab, for example, we find the artifacts shown in Fig. 15: For
very small τ the results are satisfactory. However, for larger τ we observe periodically repeated bursts
of deviation between F̂ and F with the effect that F̂ is totally misleading even for medium size τ .

The reason for this lies in the properties of the principal matrix logarithm [46]: the eigenvalues of
exp(τF ) have the form exp(τ(a + ib)) with real a < 0 and b such that, as functions of τ , their graphs
are spirals around the origin in the complex plane. However, the principal matrix logarithm seeks to
compute a matrix F̂ with eigenvalues τa+ iξ where ξ ∈ [0, 2π] such that ξ+ 2mπ = τb for some integer
m. Thus exp(τF̂ ) is a good approximation of exp(τF ) but F̂ may be far from F since the matrix
function log cannot have information about the right Riemann plane as long as CorT is given for one
value of T , or τ only, and thus chooses the principal one.

Let us address three options for dealing with this problem:
(I) We can compute F̂ based on ”small enough” values of τ ; however, small enough τ may not be

available and/or we can never know whether specific values of τ are small enough or not.
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Fig. 15 Estimator F̂ (blue solid lines) computed via the matrix logarithm from CorT for different as determined
from sub-sampling a given time series of fixed length with lag time τ and comparison with the original matrix

F (red dashed lines). Top panel: F̂11 and F11 (left) and F̂24 / F24 (right). Lower panel: F̂32 and F32 (left) and

F̂44 and F44 (right).

(II) We can approximate F via its resolvent as already discussed in Sec. 4.1: Therefore the integral
expression for the resolvent

R(s, τ∗) =
∫ ∞

τ∗
exp(−s(τ − τ∗)) exp(τF̂ )dτ,

needs to be discretized by an appropriate quadrature rule. Whenever we explicitly have B(τk) =
exp(τkF̂ ) for a sequence of τ ’s, e.g., τk = τ∗ + kΔτ , k = 0, . . . , L, and some appropriate s > 0 has been
selected then we can use the interpolating matrix function for τ ∈ [τk, τk+1]:

B(τ) = B(τk) +
τ − τk
Δτ

(B(τk+1) −B(τk)),

to approximate the resolvent by

R̃(s, τ∗) =
∫ ∞

τ∗
exp(−s(τ − τ∗))B(τ)dτ,

=
L−1∑
k=0

∫ τk+1

τk

exp(−s(τ − τ∗))
(
B(τk) +

τ − τk
Δτ

(B(τk+1) −B(τk))
)
dτ

+
∫ ∞

τL

exp(−s(τ − τ∗))B(τL)dτ,

where the integrals in the last expression can all be evaluated explicitly. Having computed R̃ we then
set

F̂ = s − B(τ∗)R̃(s, τ∗)−1.

For the case considered above we compute (s = 1/5, τ∗ = 0):

F̂ =

⎛
⎜⎜⎝

−0.0373 −0.0001 1.0052 −0.0026
−0.0032 0.0220 −0.0095 1.0207
−3.0351 −0.0068 −0.4897 −0.1891
0.0038 −1.9992 −0.2019 −0.1307

⎞
⎟⎟⎠ ,
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which is a reasonably good approximation of F with an error of ‖F − F̂‖ = 0.05. For s = 1/5, τ∗ = 4
we get ‖F − F̂‖ = 0.15. However, in many cases approximation via the resolvent is unreliable and can
even be totally misleading. The reason for this lies in the effect of the noise and different scales on the
quality of the numerical quadrature.

(III) Option (I) will not cure our problem if τ0 is too large or the length of the observation sequence
is too short. In the first case the numerical calculation of the resolvent integral in (33) gets more
and more inaccurate when the discretization step Δτ gets longer and the total number of available
discretization points for quadrature of the integral decreases. In the second case the variance of the
error in the exp(τF̂ ) estimation increases when the length of the observation decreases which leads to
the growing ”noise” in the sub–integral function. Both of the problems can emerge in the analysis of
realistic processes if the observation is available for a rather ”short” total time with ”long” lags between
the single observations. In this case an alternative algorithm is needed where neither τ0 nor Δτ are
assumed to be particularly small.

In order to handle such scenarios we suggest to use an alternative method based on the spectral
structure of the matrices exp(τF̂ ), as already discussed in Sec. 4.1. For increasing τ , the real-valued
eigenvalues of this matrix are exponentially decaying whereas its complex eigenvalues exhibit a mixture
of exponential decay with rotation in the complex plane. The rotation frequency is proportional to the
imaginary part of the underlying matrix F̂ .

The basic idea of the alternative algorithm is as follows: Calculate the spectrum of exp(τF̂ ) for
different values of τ , filter out the imaginary eigenvalues and determine the corresponding frequencies of
rotation; then we can directly get access to the eigenvalues of F̂ . Due to the fact that the eigenvectors
of exp(τF̂ ) are (approximately) identical with the eigenvectors of F , this will open the way to calculate
matrix F̂ itself. In order to realize this idea we need an algorithm that approximates the sequence of
eigenvalues of the matrices exp(τF̂ ) with spirals around the origin of the complex plane (i.e., we need
an optimal approximation algorithm). The main problem connected with such kind of approach is that
if the matrix F has more then one pair of complex eigenvalues and it is not clear which eigenvalues
corresponds to which spirals since the ordering of the spectrum of exp(τF̂ may be changing with τ .
We suggest to solve this problem in two steps: (i) Divide the complex eigenvalues of exp(τF̂ ) with
their absolute values in order to get rid of the exponential decay (we denote the resulting values with
λ̄t

i, t = τ1, . . . , τL) and (ii) fit the resulting points in the three dimensional space (spanned by the real
and imaginary parts of the normalized eigenvalues and the time τ) through J spirals (where J is the
number of complex eigenvalues of F ). The last step can be solved by minimization of the following
functional:

Lω =
J∑

k=1

J∑
i=1

L∑
l=1

νki(l)
(
(�λ̄τl

i − sin(τlωk))2 + (�λ̄τl
i − cos(τlωk))2

)
, (77)

where νki(t) is the probability for the complex eigenvalue i for τ = tτ0 to be described by the spiral
number k with rotation frequency ωk, and � and � denote real and imaginary parts. Assuming for a
moment the probabilities νki(t) to be fixed and known, we can calculate the optimal spiral parameters
by differentiating the functional (77) wrt. ωk and setting the resulting derivative to zero. We get:

J∑
i=1

L∑
l=1

νki(l)τl
(�λ̄τl

i sin(τlωk) −�λ̄τl

i cos(τlωk)
)

= 0 (78)

One can use a Newton–method to calculate ωk for given νki(l) and λ̄. In order to define ωk and the
probabilities νki(l) we can once again apply the standard form of the EM–algorithm as described before.
As a starting point for optimization one can take the frequencies derived from the estimation of F̂ with
help of the resolvent as described in case (II).

To illustrate the proposed method we take the half of the time series used in the previous examples
(i.e., we take the time series from t = 0 to t = 2500; this should increase the variance of the exp(τF̂ )
estimation error) and calculate the estimation of F̂ based on 6 different values of exp(τF̂ ) with τ being
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−1
0

1

−1−0.500.51
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Re(λ
i
t)Im(λ

i
t)

τ

Fig. 16 Optimal fit of the normalized eigenvalues of the matrix CorN/τ with four spirals as resulting from the
application of EM algorithm for J = 4 (τ = [2.3, 2.5, 2.7, 2.9, 3.1, 3.3]).

[2.3, 2.5, 2.7, 2.9, 3.1, 3.3]. The resulting matrix F̂ as derived from the resolvent calculated from the
third-order spline interpolated sub–integral function in (33) is

F̂ =

⎛
⎜⎜⎝

−1.1229 −0.0012 0.9292 0.0311
−0.0250 1.2749 0.0092 0.8536
−2.8488 −0.0568 −1.6451 −0.2066
0.0135 −1.7121 −0.1444 −1.3434

⎞
⎟⎟⎠ ,

As it can be seen, the result is wrong. Applying the EM–based minimization of the functional (77) to
the same data we get:

F̂ =

⎛
⎜⎜⎝

0.0037 0.0010 1.0009 0.0010
−0.0113 0.0053 −0.0128 0.9966
−3.0656 −0.0043 −0.5540 −0.2174
0.0245 −1.9992 −0.1733 −0.0933

⎞
⎟⎟⎠ ,

which is a reasonable approximation of F with an error of ‖F − F̂‖ = 0.08. The identified spirals are
shown in Fig. 16.

Appendix E: Proofs of Identifiability Lemmas

Proof of Lemma 4.1

Let (γ,D, σ, μeq) ∈ OL(n) and an arbitrary inverse temperature β > 0 be given. Every other element
of [(γ,D, σ, μeq)]∼ has the form

(Aγ,AD,Aσ, μeq) ∈ OL(n)

with some A ∈ Regn(R). The fluctuation-dissipation relation is valid for the respective model iff

Aγ + γ�A� = βAσσ�A�.
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We have to show that there is exactly one such A under the additional condition that AD be symmetric.
Multiplying the above equation by γ−1A−1 from the left and (A�)−1(γ�)−1 from the right gives

(A�)−1(γ�)−1 + γ−1A−1 = βΣΣ�,

where Σ = γ−1σ. By setting B = AD and F = −γ−1D this yields

(B−1)�F� + FB−1 = −βΣΣ�,

which we can further simplify by exploiting the constraint (B = B�):

B−1F� + FB−1 = −βΣΣ�. (79)

This is a Sylvester equation for B−1 with F satisfying spec(F ) ⊂ C−1. Lemma 6.2 (see Appendix B)
states that equations of the form of (79) have unique symmetric solutions. In addition it is easy to see
that B−1 is regular, such that we have just proved that there is a unique symmetric B = AD that
satisfies equation (79) and thus there is a unique A such that the fluctuation-dissipation relation is valid
and AD is symmetric.

Proof of Lemma 4.2

We will follow the same line of arguments as in the proof of Lemma 4.1. Let (M,γ,D, σ, μeq) ∈ FL(n)
and an arbitrary inverse temperature β > 0 be given. The fluctuation-dissipation relation is valid for
the model (AM,Aγ,AD,Aσ, μeq) from the respective equivalence class iff

Aγ + γ�A� = βAσσ�A�,

for A ∈ Regn(R). With A = AM this yields

M−1γ(A−1)� +A−1γ�(M−1)� = βM−1σσ�(M−1)�. (80)

By setting

B =
( AM 0

0 AD
)
.

together with the required symmetry of A and AD, and equation (80) we find

(B−1)�F� + FB−1 = −βΣΣ�,

which we can further simplify by exploiting the constraint (B = B�):

B−1F� + FB−1 = −βΣΣ�. (81)

As above this is a Sylvester equation for B−1 with F satisfying spec(F ) ⊂ C−1 of which Lemma 6.2
(see Appendix B) states the existence of a unique symmetric solution.
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