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Abstract

We present a novel method for the identification of
the most important conformations of a biomolecu-
lar system from molecular dynamics or Metropolis
Monte Carlo time series by means of Hidden Mar-
kov Models (HMMs). We show that identification is
possible based on the observation sequences of some
essential torsion or backbone angles. In particular,
the method still provides good results even if the con-
formations do have a strong overlap in these angles.
In order to apply HMMs to angular data we use von
Mises output distributions. The performance of the
resulting method is illustrated by numerical tests and
by application to a hybrid Monte Carlo time series of
trialanine and to MD simulation results of a DNA–
oligomer.
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Introduction

The macroscopic dynamics of typical biomolecular
systems is mainly characterized by the existence of
biomolecular conformations which can be understood
as metastable geometrical large scale structures, i.e.,
geometries which are persistent for long periods of
time. On the longest time scales biomolecular dy-
namics is a kind of flipping process between these con-
formations [12, 14, 26, 25], while on closer inspection
it exhibits a rich temporal multiscale structure [21].
Biophysical research seems to indicate that typical
biomolecular systems possess only few dominant con-
formations that can be characterized in terms of a
small number of essential degrees of freedom [1]. In
many cases these essential degrees of freedom can be
identified from some torsion or backbone angles of
the molecule under consideration. Then, metastable
conformations can be characterized in terms of these
angles and can thus be identified from the molecular
dynamics time series projected onto these angles.

In this article we will discuss the application of Hid-
den Markov Models (HMM) [22, 23] to the analysis
of time series from biomolecular simulations. Numer-
ous applications of HMMs can be found in the fields
of speech recognition [22, 23], signal processing [13],
and bioinformatics [16]. Applications to the analysis
of the dynamical behavior of biomolecules is rather
rare, and mainly is concerned with the analysis of
experimental data, see [15, 29], for example. In this
article, HMMs are employed to identify biomolecular
conformations observation sequences of a few torsion
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angles given by some high dimensional time series.
An intriguing feature of HMM analysis is that the set
of essential coordinates chosen for analysis need not
enable a geometric separation of the important con-
formations. Instead, the EM [4, 3, 9] and Viterbi al-
gorithm [30] associated with a HMM extract geomet-
ric as well as dynamical properties out of the given
observation sequences, and thus allow for a separa-
tion of overlapping conformations from the dynamics
within the sequences.

Most applications of HMM use discrete or Gaus-
sian distributions as output observations. In order
to deal with continuous angular data we employ the
so-called von Mises distribution that is perfectly de-
signed to analyze Gaussian like distributions of angu-
lar data [18]. Although this distribution is encoun-
tered rarely, it has already been shown that it can
easily be included into the HMM framework [28, 27].

The conceptual basis of the proposed approach is
new: The information about which and how many
biomolecular conformations are important for the de-
scription of effective dynamics of the system under
consideration is understood as being hidden within
the time series. Thus, the available conformations are
hidden conformation states in the sense of HMMs. In
addition, the number of hidden conformation states
is automatically determined via aggregation of hid-
den states by methods proposed in [10, 11] , i.e., an
a-priori knowledge about the number of biomolecular
conformations is not needed.

Outline. We will proceed as follows: First, we
shortly review the Hidden Markov Model and the von
Mises distribution. Then, we discuss the associated
algorithms that are fundamental for the intended
conformational analysis, and particularly introduce
the combination of HMMs with the Perron cluster
analysis [10, 11] for aggregation of hidden states into
conformation states. In the last section, we first il-
lustrate the application of this novel dynamical clus-
tering technique to metastable observation sequences
by suitable numerical experiments, and finally dis-
cuss the applicability of the resulting concept to two
realistic molecular dynamics time series.

Model

Hidden Markov Models

A hidden Markov model (HMM) is a stochastic pro-
cess with hidden and observable states. The hidden
process consists of a sequence X1, X2, X3, . . . of ran-
dom variables taking values in some ”state space”,
the value of Xt being ”the state of the system at
time t”. In applications these states are not observ-
able, and therefore called hidden.

In HMM context the sequence of hidden states
is assumed to be a Markov process, that is it has
the Markov property, meaning that the conditional
distribution of the ”future” Xn+1 given the ”past”,
X1, . . . , Xn, depends on the past only through Xn.
Since the HMM state space in general is finite, we
thus are concerned with a Markov chain, which is
characterized by the so-called transition matrix P =
(pij), whose entry pij correspond to the conditional
probability of switching from the (hidden) state i to
state j. The sum over j has to be one for each i, which
means that the transition matrix is a row-stochastic
matrix.

Each hidden state causes a specific output that
might be either discrete or continuous. This output is
distributed according to a certain conditional distri-
bution (conditioned to the hidden state). Thus, real-
izations of HMM are concerned with two sequences,
an observation sequence and a sequence of hidden
states.

In our case the information initially hidden is in
which metastable subset (conformation) the molecu-
lar system is at a certain time, while the information
on the state of the selected torsion or backbone angles
is completely known. A HMM then consists of a Mar-
kov chain model for the hidden (metastable) states
that encodes with which probability one switches
from one hidden state to another, and a conditional
probability of observation of specific torsion angles
if one is in a certain hidden state. To describe the
whole system, we need to know the number of hidden
states, the transition matrix between them, an initial
distribution, and for each state a certain probability
distribution for the observation.

Therefore, a HMM formally is defined as a tuple
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λ = (S, V, P, f, π) where

• S = {s1, s2, ..., sN} is a set of a finite number N
of states,

• V ⊂ �k is the observation space,

• P = (pij) is the transition matrix, where pij =
�(Xt+1 = sj |Xt = si) describes the transition
probability from state si to state sj ,

• f = (f1, f2, . . . , fN) is a vector of probability
density functions (pdf) in the observation space,

• π = (π1, . . . , πN ) is a stochastic vector, that
describes the initial state distribution, πi =
P (X1 = si).

Often, the short notation λ = (P, f, π) is used since
S and V are implicitly included. Particularly S is
identified with the index set {1, 2, . . . , N} in the fol-
lowing.

HMMs can be set up for discrete or continuous
observations. For continuous observations the most
popular choice is to use (multivariate) normal distri-
butions for the output distributions fk. However, in
the case of circular data (like torsion angle positions
in a molecular dynamics simulation) the use of nor-
mal distributions often induces crucial problems due
to periodicity.

Von Mises Distribution

For circular data, the normal distribution can be re-
placed with the von Mises distribution, whose proper-
ties are comparable but regarding the sphere [18] in-
stead of regarding the real axis. In one dimension the
von Mises distribution M(μ, κ) is given by the follow-
ing pdf depending on the two parameters μ ∈ [0, 2π]
and κ > 0:

fμ,κ(θ) =
eκ cos(θ−μ)

2πI0(κ)
, 0 ≤ θ < 2π, (1)

where I0(κ) is the modified Bessel function of the first
kind and order zero, i.e.,

I0(κ) =
∞∑

r=0

1
(r!)2

(κ

2

)2r

. (2)

The parameters characterizing the von Mises distri-
bution are called the mean direction μ and the con-
centration parameter κ. It is unimodular, i.e., single-
peaked, and symmetrical about the mean direction.
The maximum of the pdf, the so-called mode, is at
the mean, while the minimum of the pdf (anti-mode)
is located at μ + π. The ratio of the pdf at the
mode to that at the antimode is given by e2κ, so
that the larger the value of the concentration param-
eter κ, the more pronounced the concentration of the
distributed data around the mode. In contrast, for
κ → 0 the von Mises distribution becomes uniformly
distributed. For an illustration see Fig. 1, for more
details see [18].
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Figure 1: Different von Mises distributions fμ,κ = fμ,κ(θ)
(each with mean μ = 0 and different concentration parameters
κ in comparison with a Gaussian distribution with mean 0;
here and in the following figures we display angles in terms
of degrees in the interval [−180o, 180o), simply for the sake of
convenience).

Maximum Likelihood Principle

In statistics, likelihood —unlike probability, which es-
timates the degree of belief in unknown consequences
of known causes— works backwards, from observed
results to hypothetical models and parameters. The
Maximum Likelihood Principle is the standard tech-
nique for estimating parameters in a statistical model
with respect to observed data. For the context im-
portant herein, it can be explained as follows: Let λ
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denote a set of parameters, e.g., the specification of
an HMM-model as used before, Θ = (θ1, θ2, . . . , θT )
an observed sequence of data, and p(Θ|λ) the statis-
tical model, i.e., the probability of the observation
sequence, or, depending on the state space, the den-
sity of the observation sequence, under the conditions
that the parameter set λ is given 1 . The likelihood
function then is defined as L(λ) = p(Θ|λ), i.e., we
consider the observation sequence as being given and
ask for the variation of the probability (density func-
tion) in terms of the parameters. The maximum like-
lihood principle then simply states, that the optimal
parameters are given by the absolute maximum of L.
Thus, the maximum likelihood principle is an opti-
mization problem in parameter space.

Parameter estimation. Like for the mean and
variance of a normal distribution there exist maxi-
mum likelihood estimators (MLE) for the mean and
concentration parameter of the von Mises distribu-
tion. We shortly review the results collected in [18].

Suppose that we are given T data points on the
sphere with angles (θ1, θ2, . . . , θT ) in radians, i.e.
θk ∈ [0, 2π[. The likelihood function L(μ, κ) for the
von Mises distribution is then given by

L(μ, κ) =
T∏

t=1

fμ,κ(θt) (3)

=
exp

(
κ

∑T
t=1 cos(θt − μ)

)
(2π)T I0(κ)T

.

According to the maximum likelihood principle the
optimal parameters (μ̂, κ̂) are the ones for which
L(μ̂, κ̂) is maximal. Maximization of L(μ, κ) gives

μ̂ =

{
Arctan (y/x) if x > 0,

π + Arctan (y/x) if x < 0,
(4)

with

x =
∑T

t=1 cos(θt)
T

and y =
∑T

t=1 sin(θt)
T

, (5)

1In the following, to avoid linguistic confusion, we refer to
p(Θ|λ) as probability, but always include the meaning of a
probability density function.

and [0, π[ as the range of Arctan.
The formula for the mean estimate μ̂ becomes in-

tuitively clear by observing that the cartesian coordi-
nates x̂ and ŷ are the mean values of the projection of
the data, seen as points on the unit sphere, on the x-
and y-axis, respectively. Thus Eq. (4) tells us that μ̂
is the angle of the cartesian mean (x, y), and that the
operation Arctan(·) in Eq. (4) means the inverse of
the tangent operation in the sense that it gives back
the correct angle in polar coordinates of the point
(x, y) on the unit circle. Then, setting

r̂ = (x2 + y2)
1
2 ,

we get the polar coordinate representation (μ̂, r̂) of
the cartesian mean (x, y).

The cartesian mean does not necessarily lie on the
unit circle. The length r̂ can take values between 0
and 1 and measures the clustering of the data around
the mean angle μ̂. The closer r̂ is to 1, the more
concentrated the sample is around the mean.

But, besides the intuitive picture, the MLE for κ
can not given explicitly. Instead, by maximization of
L(μ, κ) wrt. κ and making use of properties of the
Bessel-functions, one can show that the MLE for κ
solves the expression

I1(κ̂)
I0(κ̂)

=
1
T

T∑
i=1

cos(θi − μ), (6)

where I1(κ) is the modified Bessel function of the
first kind and order one. Eq. 6 can only be solved
numerically, which is not a big obstacle as the lhs of
(6) is monotonically increasing. Our intuitive picture
remains valid in the sense that one can show that the
rhs of (6) equals r̂.

Multidimensional generalization of the von Mises
distribution are obvious as long as we simply use ten-
sor products of one-dimensional von Mises distribu-
tions. This means, that the mean direction μ has
to be replaced by a vector and the concentration pa-
rameter κ simply is replaced by a diagonal matrix.
The jth (diagonal) entries are computed from the
jth components of the data points θ ∈ �d due to (4)
and (6).
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Methods

Application of HMMs typically involves one or all of
the three problems (P1) to (P3) stated below. For our
specific task of identifying metastable conformations
we have to complement these basic problems by also
addressing problems (P4) and (P5):

(P1) Calculation of the probability p(Θ|λ) of a certain
observation sequence Θ for a given model λ =
(P, f, π).

(P2) Estimation of the best model parameters for a
given observation sequence (e.g., torsion angle
observations).

(P3) Given the model λ and an observation sequence
Θ, finding the most probable hidden state se-
quence X∗ = (x∗

1, x
∗
2, . . . , x

∗
T ).

(P4) Aggregation of hidden states to conformation
states, and clustering of the observation se-
quence into conformations.

(P5) Avoid combinatorial explosion of computational
effort for high dimensional observation se-
quences.

There are standard algorithms that allow to solve
problems (P1) to (P3) efficiently, which we will
shortly outline here; our presentation will follow
[22, 23]. Most notably, due the Markovian structure
of the hidden chain and the independence of obser-
vations given the hidden states, all algorithms run
linear in the length of the observation sequence. For
dealing with problems (P4) and (P5) no standard al-
gorithm exist. Below we will thus also outline the
novel algorithms suggested herein.

Problem (P1): Forward-Backward
Variables

The most straightforward method to calculate the
probability p(Θ|λ) of an observation sequence Θ =
(θ1, θ2, . . . , θT ) given the model λ, is computing every
possible hidden state sequence X = (x1, x2, . . . , xT )

of length T and sum up all probabilities conditioned
on the hidden sequence:

p(Θ|λ) =
∑

X=(x1,...,xT )

p(X |λ)p(Θ|X, λ).

This method involves on the order of 2TNT calcu-
lations therefore becoming infeasible even for small
numbers of hidden states N and short observation
lengths T .

Fortunately, the effort can be reduced to TN2 by
using the so-called forward and backward variables.
These divide the observation sequence Θ recursively
in partial subsequences: those from time 1 to time t
and those from t + 1 up to T . The forward variables
are given by

αt(i) = p(θ1, θ2, . . . , θt, Xt = i | λ), (7)

denoting the probability of the observation sequence
up to time t together with the information that the
system is in hidden state i at time t conditioned
wrt. the given model λ. Whereas the backward vari-
ables are given by

βt(i) = p(θt+1, θt+2, . . . , θT | Xt = i, λ), (8)

denoting the probability of the observation sequence
from time t + 1 to T , conditioned that the system is
in hidden state i at time t and on the model λ. The
computation of the probability αT (i) for the whole
sequence is possible with N2 T operations, as recur-
sive formulas can be used:

α1(i) = πifi(θ1), 1 ≤ i ≤ N,

αt+1(j) =

[
N∑

i=1

αt(i)pij

]
fj(θt+1),

1 ≤ t ≤ T − 1, 1 ≤ j ≤ N.

In the case of von Mises distributed output the
fj ’s denote the probability density functions fμj ,κj

we discussed before.
The backward variable βt(i) can be computed with

5



analogous formula:

βT (i) = 1, 1 ≤ i ≤ N,

βt(i) =
N∑

j=1

pijfj(θt+1)βt+1(j),

T − 1 ≥ t ≥ 1, 1 ≤ i ≤ N

From (7) and (8) one can compute the desired
probability for all t as

p(Θ | λ) =
N∑

i=1

αt(i)βt(i).

Forward and backward variables form the basis of the
EM algorithm.

Problem (P2): EM Algorithm

The Expectation-Maximization (EM) algorithm [9] is
a maximum likelihood approach that improves iter-
atively an initial parameter set, and converges to a
local maximum of the likelihood function. In the case
of HMMs this method was already worked out before
the general EM formulation, and is often called the
Baum-Welch algorithm [4, 3].

To apply the EM algorithm to a given observation
sequence, we have to set up an HMM by a param-
eter set λ = λ(P, f, π), assuming a finite number N
of hidden states, an output distribution function for
each of the hidden state, and the initial distribution
for the hidden Markov chain.

EM steps. There is no known way to analytically
determine the model parameters that globally max-
imize the probability of the given observation se-
quence. We can, however, estimate a λ̂ that locally
maximizes the likelihood L(λ) = p(Θ | λ). The EM
algorithm is a learning algorithm, it alternately iter-
ates two steps, the Expectation step and the Maxi-
mization step. Starting with some initial model λ(0)

the steps iteratively refine the model:

• The Expectation-step: In this step the state oc-
cupation probabilities

γt(i) = p(Xt = i | Θ, λ(k)),

and the joint probabilities

ξt(i, j) = p(Xt = i, Xt+1 = j | Θ, λ(k)),

are calculated for each time t in the sequence,
given the observation Θ and the current model
λ(k).

• The Maximization-step: This step finds a new
model λ(k+1) via a set of reestimation formulas.
The maximization guarantees that L(λ(k+1)) ≥
L(λ(k)).

The two conditional probabilities of the E-step
can be calculated efficiently by using the forward-
backward variables (7)-(8), as

ξt(i, j) =
p(Xt = i, Xt+1 = j, Θ, λ(k))

p(Θ, λ(k))

=
p(Xt = i, Xt+1 = j, Θ | λ(k))

p(Θ | λ(k))

=
αt(i)pijfj(θt+1)βt+1(j)

p(Θ | λ(k))
.

We omitted the superscript k for the forward and
backward variables in order to not obscure the for-
mulas by too many indices.

With these values the probability to be in hidden
state i at time t can be expressed as

γt(i) =
N∑

j=1

ξt(i, j).

The M-step consists of reestimation formulas to
obtain an improved model λ(k+1). The estimators
for the initial distribution and the transition proba-
bilities of the hidden Markov chain are given by

π
(k+1)
i = γ1(i),

p
(k+1)
ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

,

using the probabilities computed in the E-step before.
We also need to reestimate parameters for the

probability density functions f
(k+1)
j via their maxi-

mum likelihood estimator. Hereby, the observations
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θt used to determine f
(k+1)
j have to be weighted

with the probability γt(j) to be in the hidden state
j. To estimate parameters of von Mises output dis-
tributions from torsion angle observation sequences
θ1, . . . , θT , Eqs. (5) and (6) have to be adopted as
follows [27, 28]:

x(j) =
∑T

t=1 γt(j) cos(θt)∑T
t=1 γt(j)

,

and

y(j) =
∑T

t=1 γt(j) sin(θt)∑T
t=1 γt(j)

,

and the mean parameter μ
(k+1)
j of f

(k+1)
j =

f
μ

(k+1)
j ,κ

(k+1)
j

is computed from x(j) and y(j) due to

(4). Finally, the concentration parameter is com-
puted by fitting

I1(κ
(k+1)
j )

I0(κ
(k+1)
j )

=
1∑T

t=1 γt(j)

T∑
t=1

γt(j) cos(θi − μ
(k+1)
j ).

Again we avoided the superscript (k+1) for x(j), y(j)
and γj , to reduce complexity of the stated formulas.

The E- and M-steps are iteratively repeated un-
til a predetermined maximal number of iterations is
reached or the improvement of the likelihood becomes
smaller than a given limit. As it is a property of the
EM algorithm [9] that L(λ(k+1)) ≥ L(λ(k)), we iter-
atively approximate a local maxima λ̂.

Problem (P3): Viterbi Algorithm

The Viterbi algorithm [30] computes for a given
HMM model λ and an observation sequence Θ the
most probable hidden path X∗ = (x∗

1, . . . , x
∗
T ). This

path is called the Viterbi path.
For an efficient computation we define the highest

probability (density) along a single path, for the first
t observations, ending in the hidden state i at time t,

δt(i) = max
x1,x2,...xt−1

P (x1, x2, . . . , xt = i, θ1, θ2, . . . , θt|λ).

This quantity can be computed recursively by

δt(i) = max
1≤j≤N

[δt−1(j)pji]fi(θt). (9)

In addition, we assign to ψt(i) the argument that
maximizes (9), in order to actually retrieve the most
likely hidden state sequence. These quantities are cal-
culated for each t and i, afterwards the most probable
hidden state sequence can be retrieved from δ and ψ
by backtracking, as shown in the Viterbi algorithm
scheme:

1) Initialization:

δ1(i) = πifi(θ1), 1 ≤ i ≤ N

ψ1(i) = 0

2) Recursion:

δt(i) = max
1≤j≤N

[δt−1(j)pji]fi(θt),

ψt(i) = argmax
1≤j≤N

[δt−1(j)pji],

2 ≤ t ≤ T, 1 ≤ i ≤ N

3) Backtracking:

x∗
T = argmax

1≤j≤N
[δT (j)]

x∗
t = ψt+1(xt+1), t = T − 1, T − 2, . . . , 1.

The mapping of the T observation states to N hid-
den states provided by the Viterbi path X∗ results in
a dynamical clustering of the data.

Problem (P4): Aggregation into Con-
formation States

The term “biomolecular conformation” is used in dif-
ferent meanings. We will herein use it in the follow-
ing sense: A conformation is a kind of “global state”
of the molecule, in which the large scale geometric
structure is understood to be conserved, while the
molecule locally exhibits metastability. Such a con-
formation is called metastable if a transition from it
to other large scale geometric structures is rare. As
an intuitive picture for the occurrence of metastable
conformations might serve the vicinity of a deep mini-
mum of the (free) energy landscape, defining the large
scale geometry, together with all neighboring relative
minima, contributing to local flexibility.
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The problem of finding these metastable conforma-
tions can be formulated as the problem of aggregating
molecular states into conformation states (i.e., clus-
tering states that belong to the same metastable con-
formation). The identification of an optimal aggrega-
tion from observation of the dynamical behavior, e.g.,
MD-trajectories, is a difficult algorithmic problem.

However, if a suitable trajectory and a box dis-
cretization, which is a collection of nonoverlapping
sets (boxes) B1, . . . , BN covering the whole observ-
able space, is at hand, optimal aggregates can be
identified via the spectral properties of a stochas-
tic transition matrix P̃ . This transition matrix P̃ =
(p̃ij), containing the overall transition probabilities
between all discrete states of the system under con-
sideration, can be obtained by counting transitions
in the trajectory between the discrete states:

p̃ij =
#{θt ∈ Bi θt+1 ∈ Bj}

#{θt ∈ Bj} ,

where t is meant to vary from 1 to T − 1.
The identification of an optimal aggregation from

the spectrum of the transition matrix P̃ is possi-
ble, as the number of metastable sets, correspond-
ing to metastable conformations, equals the number
of eigenvalues close to one, while the metastable sets
themselves can be obtained from the structure of the
corresponding eigenvectors [8, 25]. This has led to the
construction of an aggregation technique called “Per-
ron Cluster Cluster Analysis” (PCCA) [10, 11]. Of
course, the technique depends on extracting a suit-
able set of observables from a given trajectory and
finding an appropriate discretization of the observ-
able space. Both problems are non-trivial and solu-
tions often depend on a mixture of insight and pre-
liminary analysis, an algorithmic scheme is described
in [7].

While PCCA can detect the number of (hidden)
metastable sets by the spectrum of the transition ma-
trix, HMM methods have the drawback that for a
given observation sequence one is always confronted
with the task to select in advance the number of hid-
den states. On the other hand PCCA crucially de-
pends on geometrical separation of metastable sets in
the observable space, as otherwise no appropriate box
discretization can be found, while HMM can identify

overlapping distributions. To harvest the benefit or
both methods, we will use PCCA within the HMM
framework as follows: Start the HMM algorithm with
some sufficient number of hidden states, say N , that
should be greater than the expected number of con-
formation states (keeping in mind that the algorith-
mic effort will increase like O(N2T )). After termina-
tion of the EM algorithm, take the resulting transi-
tion matrix P̂ and aggregate the N hidden states into
M ≤ N conformation states by means of PCCA, i.e.,
by means of analyzing the spectrum of P̂ . Note, that
we replaced the transition matrix P̃ , obtained from
counting transitions in the trajectory, by the tran-
sition matrix P̂ , obtained from the estimated HMM
model. By aggregating the Viterbi path according
to the outcome of the PCCA analysis , we obtain a
clustering of the observation states into metastable
sets. This novel combination of HMMs with PCCA
will be exemplified in the next section.

Problem (P5): High Dimensions and
Viterbi-Clustering

In large biomolecular systems the dimension of each
state in the observation sequence may be large, say
d. The number of free parameters of each output dis-
tribution will typically increase with d more than lin-
early. A full d-dimensional Gaussian or von Mises dis-
tribution, for example, has O(d2) free parameters in
the covariance matrices. However, for increasing di-
mensions of the parameter space the likelihood max-
imization via the EM algorithm will converge more
and more slowly (and eventually fail to detect the
maximum) if the dimensions get too large. In or-
der to overcome this “curse of dimension” we suggest
the following novel algorithmic scheme for which the
name Viterbi-clustering seems appropriate:

First, the high dimensional state space V of the
observation sequence is decomposed into a sequence
of low-dimensional subspaces V (1), . . . , V (k). For ex-
ample, V could be the state space of all torsion angles
of the system under consideration, and V (j) the sub-
space of a single torsion angle. By choice of the V (j),
j = 1, . . . , k, and projection onto each one, we get k

low-dimensional time series Θ(j) = θ
(j)
1 , . . . , θ

(j)
T out
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of the original time series θ1, . . . , θT .
Second, each of these low-dimensional time series

is separately analyzed by means of the above HMM
procedure, i.e. by approximating the model with the
EM-algorithm and afterwards obtaining the Viterbi
path with the Viterbi algorithm, and finally aggregat-
ing with PCCA. This results in k aggregated Viterbi
paths X(j) = (x(j)

1 , x
(j)
2 , . . . , x

(j)
T ) that represent the

conformational dynamics as detected from the in-
formation contained in the single time series Θ(j),
j = 1, . . . , k. Observe, that by using HMMs we
are able to discretize the low-dimensional projections
even if the metastable sets are overlapping in the pro-
jected space, as the output distributions of the HMM
are allowed to overlap.

Third, these single Viterbi paths can be combined
into a global Viterbi path X : at instance t its state
is xt = (x(1)

t , . . . , x
(k)
t ). This global Viterbi path

can be seen as a time series originating from a sys-
tem with discrete states from S = ×k

j=1S
(j), where

S(j) denotes the state space of the jth Viterbi path.
The combined global Viterbi path has finitely many
states such that we can directly compute the as-
sociated transition matrix. Fourth, the metastable
states of this transition matrix are identified, again by
means of PCCA. Based on these metastable states,
the global Viterbi path is aggregated into an clus-
tered global Viterbi path whose resulting discrete
states finally are interpreted as the global conforma-
tion states of the original full-dimensional time series
θ1, . . . , θT .

Results and Discussion

We first illustrate the fundamental features and per-
formance of the algorithms. Then, we demonstrate
how conformation states can be identified from a
hybrid Monte Carlo simulation of trialanine and of
a specific DNA-oligomer by analyzing torsion angle
time series.

Illustrative Examples

In order to generate data sets for illustrative means,
we computed time series from direct realizations of

fully specified HMM models, i.e., for given param-
eters (P, f, π). Based on the observation sequence
of such realizations we tried to re-identify the pa-
rameters by application of the EM and Viterbi al-
gorithms. A Realization of an observation sequence
Θ = θ1, . . . , θT for a given HMM (P, f, π) is easily ob-
tained: One starts in a single hidden state randomly
chosen from π, say j, and draws the first output state
θ1 from the associated distribution fj . Then the next
hidden state is chosen according to the transition
probabilities given by the j-th row of the transition
matrix P . This procedure is iterated T times.

We considered four parameter sets, in which P al-
ways is a 2 × 2 stochastic matrix, i.e., there are two
hidden states, and the output pdfs fμi,κi , i = 1, 2 are
von Mises distribution pdfs. The parameters of the
four test cases are given in Table 1.

case (μ1, κ1) (μ2, κ2) P

(a) (−π/2, 1) (π/2, 3)
(

0.95 0.05
0.02 0.98

)
(b) (−π/2, 1/2) (π/2, 1)

(
0.95 0.05
0.02 0.98

)
(c) (−0.5, 1) (0.5, 3)

(
0.95 0.05
0.02 0.98

)
(d) (−π/2, 1) (π/2, 3)

(
0.6 0.4
0.45 0.55

)
Table 1: Von Mises parameters and transition matrices of the
four HMMs used for generation of the observation sequences.

These four cases (a)-(d) have been chosen to illus-
trate the following scenarios (see Fig. 2):

(a) In this case the two von Mises distributions show
no significant overlap since the means are well
separated and the concentration parameters are
large enough. In addition, the transition matrix
is clearly metastable such that the period of time
in which the system remains within one hidden
state is long. Therefore this is expected to be an
easy case for the identification algorithm.

(b) This case differs from the first case by smaller
concentration parameters broadening the two
von Mises distributions, thus introducing sa ig-
nificant overlap.
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(c) This case differs from the first only by closer
means of the von Mises distributions, thus also
introducing a significant overlap.

(d) The last case differs from the first only by
the fact that the transition matrix is no longer
metastable.

          
0   

 0.5

          
0     

  0.5 

          
0   

 0.5

180  90  0    90   180 
0    

 0.5 

θ [˚]

case (a)

case (b)

case (c)

case (d)

Figure 2: Von Mises probability density functions fμ1,κ1 and
fμ2,κ2 for each of the four test cases (a)-(d), specified in Ta-
ble 1.

The problematic cases for parameter identification
by the EM algorithm should be obvious: If there are
two (or more) hidden states with overlapping distri-
butions, then, with input of the observation sequence
alone, the algorithm may have trouble to detect or re-
liably identify the two states.

Based on an observation sequence of length T =
2000 for each of the four HMMs, the EM algorithm
has been started with the same generic initial param-
eters independent of the observation sequence. The
EM iteration has been automatically stopped after
some iteration steps (denoted by M in Table 2) ac-
cording to a pre-selected termination criterion that
is based on the increase in the likelihood function.
In all four cases the estimated parameters are good
approximations of the original model parameters (see
Table 2).

To furthermore illustrate the performance of the
Viterbi algorithms for our four test cases, we com-

case (μ̂1, κ̂1) (μ̂2, κ̂2) P̂
(a)

M = 8 (−1.54, 1) (1.57, 3.1)
(

0.96 0.04
0.02 0.98

)
(b)

M = 26 (−1.58, 0.5) (1.59, 1.01)
(

0.95 0.05
0.02 0.98

)
(c)

M = 17 (−0.53, 1) (0.51, 32)
(

0.96 0.04
0.02 0.98

)
(d)

M = 13 (−1.54, 1.3) (1.62, 2.6)
(

0.60 0.40
0.45 0.55

)
Table 2: Parameters estimated (up to two digits) by the EM
algorithm after M steps based on the observation sequences
from the four test cases (a)-(d).

pared for each case the information about the origi-
nal hidden state sequence with the Viterbi path com-
puted by the Viterbi algorithm based on the esti-
mated HMM given in Table 2. Figure 3 illustrates the
differences in the hidden state sequences for the sce-
narios (a) and (b). The quality of the Viterbi paths
is astonishingly good; most mismatches only occur
during transitions between hidden states.

0 500 1000 1500 2000
180 

 90 

 0   

 90  

 180 

θ(a
) [˚

]

0 500 1000 1500 2000
 180 

  90 

 0   

 90  

 180 

θ(b
) [˚

]

Steps

Figure 3: Observation sequences θ(a) and θ(b) for the test cases
(a) and (b). The colors (or greyscales) represent the two hid-
den states according to the Viterbi path; all instances with
mismatches between the original hidden state sequence and
the Viterbi path have been marked with circles and diamonds.
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Application to Molecular Data

Time series from molecular dynamics and Metropolis
Monte Carlo simulations of biomolecules are often an-
alyzed in terms of some essential torsion angles. We
will demonstrate that even in the case of overlapping
marginal distributions such torsion angle time series
possess sufficient characteristics to make an identifi-
cation of conformational substates by HMM models
possible. It should be noted that it is in general a
difficult task to extract a meaningful set of collective
observables or reaction coordinates from a molecular
system. In many cases system-dependent insight is
needed. This difficulty can not be solved in general
by the algorithmic scheme we propose, but the use
of HMM methods allows to extract information even
if the observables chosen only reflect somehow the
global changes. So recent research suggests that it is
possible to get information about water clusters from
the torsion angles of a solvated molecule by a HMM
based analysis [20].

The use of von Mises output distributions in appli-
cation of HMMs to torsion angle time series, is moti-
vated by (a) the fact that the von Mises distribution
is the simplest peaked distribution for circular data,
in the sense that it is completely determined by the
first two moments (as in the planar case the Gaussian
distribution is), (b) the observation that torsion angle
distributions can almost ever be interpreted as mix-
tures of Gaussian-like peaks; since the HMM embed-
ding allows to couple single von Mises distributions
into mixtures this seems to be an appropriate choice,
and (c) by the observation that HMMs with Gaussian
output distributions fail to reproduce certain aspects
of the system whenever periodicity is relevant.

In addition, other (non-stationary) output distri-
butions are well possible, as described in, e.g., [19].

Trialanine. In the following we present results
from the application of the proposed HMM frame-
work to trialanine, a small peptide composed of three
alanine amino acid residues.

For the simulation of trialanine we employed the
Gromos96 vacuum force field [17], in which trialanine
is represented by 21 united atoms. The structural
and dynamical properties of this molecule are mainly

determined by two central peptide backbone angles
Φ and Ψ. In addition, at very high simulation tem-
peratures the otherwise planar peptide bond angle
Ω, may also undergo some conformational transition
(see Fig. 4).

The time series of 50000 steps has been generated
by means of a Hybrid Monte Carlo (HMC) [6] scheme
at a temperature of 700 K. That means at each step
momenta were randomly drawn from a maxwell dis-
tribution, according to the temperature, and pro-
posal steps were generated by integration in time for
500 fs, using the Verlet integration scheme based on
a 1 fs time step. This yielded an acceptance rate of
about 93 percent.

Figure 4: The trialanine molecule shown in ball-and-stick rep-
resentation. Typically, the overall structure of trialanine is
sufficiently described by the two torsion angles Φ and Ψ, but
at higher temperatures one should also take into consideration
changes of the peptide bond angle Ω.

 −180  −90   0     90    180  
−180 
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 90  

 180 

Ψ[°]

Φ
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]

Figure 5: Ramachandran plot in Φ and Ψ of the time series
obtained from HMC simulation at 700K.
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Figure 6: Observation sequences of the three torsion angles
Φ, Ψ, and Ω (from top to bottom) of trialanine at 700 K.
We observe conformational changes in Ω that are correlated
to the dynamical behavior of Ψ and Φ. The three colors (or
greyscales) correspond to the aggregated Viterbi path from the
HMM analysis of the two-dimensional observation sequence
given by Φ and Ψ.

From this time series we computed the observa-
tion sequences in Φ, Ψ, and Ω. Fig. 5 shows the
obtained data points projected on the (Φ, Ψ)-plane,
the so-called Ramachandran plot. We observe that
the (Φ, Ψ)-plane has been explored rather intensively
due to the high temperature of 700 K. Furthermore
we observe transitions between substates of the tor-
sion angle Ω (see Fig. 4) that we do not observe in
300 K simulations of this length. As one can see in
Fig. 6, these transitions introduce additional features
of conformation dynamics. Thus, by raising the sim-
ulation temperature, we obtained an intriguing test
of the novel HMM technique whether it can identify
this additional structure based on the observation se-
quences of the peptide angles Φ and Ψ alone.

Therefore we used the two-dimensional observation
sequence given by Φ and Ψ to estimate a HMM with 7
hidden states, each with a two-dimensional von Mises
output distribution. After successful termination of
the EM algorithm (after 28 iteration steps) we got
the following transition matrix:
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Figure 7: Ramachandran plot in Φ and Ψ colored according
to the three aggregated hidden states as computed by the EM
and Viterbi algorithms. Top left: all observation points colored
according to the aggregated Viterbi path. Top right, bottom
left, and bottom right: output from each of the aggregated
hidden states plotted separately.

P̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.81 0.01 0.01 0.00 0.00 0.17 0.00
0.20 0.59 0.01 0.00 0.02 0.16 0.02
0.00 0.00 0.77 0.02 0.00 0.00 0.21
0.01 0.00 0.19 0.72 0.05 0.00 0.03
0.00 0.01 0.01 0.03 0.95 0.00 0.00
0.50 0.05 0.00 0.00 0.00 0.45 0.00
0.00 0.00 0.45 0.01 0.00 0.00 0.54

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Now we use the PCCA algorithm [10, 11] as ex-

plained in the discussion of problem (P4), which
yields into aggregation of the hidden states S1, S2, S6

and S3, S4, S7 into two new hidden aggregated states.
This aggregation results in the following 3 × 3 tran-
sition matrix between the aggregated hidden states:

aggr(P̂ ) =

⎛⎝ 0.99 0.00 0.01
0.01 0.95 0.04
0.01 0.00 0.99

⎞⎠
As it can be seen from the diagonal, all three aggre-
gated states are metastable in the sense that there
is a high probability to stay within a state the next
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time step. We thus end up with three hidden states,
each being the combination of some of the 7 origi-
nal states. Therefore, we can simply aggregate the
7-state Viterbi path into a new 3-state Viterbi path.
This path is shown in Fig. 6 by coloring all states in
the observation sequence of Φ, Ψ, and Ω according
to their assignment to one of the hidden aggregated
states. We observe that the conformations and the
associated jumps between different phases of the sim-
ulation perfectly agree with the rare transitions in Ω,
while Fig. 7 shows the overlap of conformations in
the (Φ, Ψ) plane.

Torsion dynamics of a B-DNA oligomer in wa-
ter. Finally, we consider a time series originating
from a long term molecular dynamics (MD) simu-
lation of a 15-AT B-DNA oligonucleotide with the
sequence GT (AT )6C, see Fig. 8. The 100 ns AM-
BER96 force field simulation with explicit water and
potassium ions was conducted in the group of J. Mad-
docks (EPFL), the computation protocol is described
in detail in [5]. The MD simulation delivers a time se-
ries of the cartesian coordinates of all atoms (about
23.000 atoms, including solvent). The MD trajec-
tory was sampled every picosecond, which is rather
large compared to the fastest time scales (1 fs) of the
underlying dynamics, resulting in a time series of 105

data points. As observables we have chosen the physi-
cally motivated projections of the original data onto a
sets of 84 torsion angle coordinates [24], arising from
six backbone torsion angles for each of the fourteen
base-pairings (junctions) in the sequence, see Fig. 8.

Fig. 9 (top panel) shows, as an example, three of
the extracted torsion angles of a single base-pair junc-
tion. As it can be seen the torsion angles exhibit a
metastable behavior with sharp transitions between
the metastable states. We started our analysis, by
analyzing each of the 84 dimensional torsion angle
time series separately, i.e. doing an HMM analyis
assuming three hidden states for each of the torsion
angles and aggregating afterwards with PCCA. Thus,
we get, by application of our HMM-PCCA analysis,
a set of 84 aggregated Viterbi paths describing the
conformational change between the metastable states
(for examples, see Fig. 9). As a threshold value for

��

��
��

�2

�2 �2

Figure 8: Left: Illustration of the 15-AT B-DNA oligonu-
cleotide in atomic resolution. The attached violet (grey) stings
indicate the backbones of the helix (strands). The molecular
dynamics simulation referred to herein includes solvent (water
and counter-ions) which is not shown here. Right: A single
base pair junction (adenine-thymine) attached to a backbone
piece. Marked are the six (backbone) torsion angles which we
used as observables in the analysis.

the PCCA analysis, i.e. the all eigenvalues of the
transition matrix above the threshold are supposed
to indicate metastability, we used 0.97 (we tested our
analysis with less strict threshold values and obtained
similar results).

The full set of 84 aggregated Viterbi paths is a
coarse–grained description of the original time series
and encapsulates the dynamical information about
the process of the conformation change in the full
84-dimensional torsion angle space. As explained
in Problem (P5) we extract a global Viterbi path
of the 84 aggregated paths by superposition of all
paths, i.e. we assign to each different pattern
(x(1)

t , . . . , x
(84)
t ), 1 ≤ t ≤ 100000 a different global

state. This yields 496 different global states, which
is quite impressive, as theoretically there could be
about 4 · 1011 different states.
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Figure 9: Time series of the 1st strand α, β, γ-backbone torsion
angles for junction 2 (upper panel). Lower panel: Correspond-
ing aggregated Viterbi paths as derived from the independent
HMM analysis of these three torsion angle time series with an
eigenvalue threshold of 0.97.

Upon this global state space we set up a transition
matrix by counting the transitions between the global
states in the given time series. Fig. 10 represents the
dependence of the eigenvalues of the transition ma-
trix as a function of the lag time τ used to count
transitions, i.e. lag time τ = lΔt means that the
transition matrix counts l-step transitions between
instances t and t + lΔt along the given time series.
Increasing τ means decreasing correlation between
successive time steps and therefore a more informa-
tive spectrum. As it can be seen, the first eigenvalue
gap can be identified after the first four dominant

0 100 200 300 400 500
0,95

0,96

0,97

0,98

0,99

1

lag time τ (ps)

ei
ge

nv
al

ue
s

First gap

Figure 10: The largest twenty eigenvalues of the global transi-
tion matrix as a functions of the lag time τ along the respective
global Viterbi path.
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Figure 11: Different global Viterbi paths, resulting from the
first four, resp. six and eight (top to bottom) eigenvalues of
the global transition matrices.

eigenvalues for all θ, which indicates a presence of
four metastable sets in 84 dimensional space of tor-
sion angles. However, for a more detailed level of
description a choice of 6 or 8 eigenvalues would be
also reasonable.

In Fig. 11 we present the aggregated global Viterbi
path based upon the assumption of 4 metastable
states, in comparison with the global Viterbi path
based upon the assumption of 6 and 8 metastable
sets. It can be seen how the assumption of more
metastable states hierarchically resolves the time se-
ries. In Fig. 12 we visualize two metastable states, as
obtained from the analysis assuming 4 methastable
states.
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Figure 12: Flexibility plots of 2 (out of 4) obtained global
states for the DNA molecule. The plot is obtained by aligning
the molecule wrt. the backbone (blue) and coloring the regions
where to find the backbone with high probability. The different
states are distinguished by different coloring (red and green,
belonging to index 1, resp 2, in Fig. 11). As it can be seen,
the two shown conformations differ in that the strands depart
at the end. Visualization based on AMIRA-software [2].

Conclusion

We presented an HMM algorithm with von Mises dis-
tributed observations that can be employed to iden-
tify metastable conformations from molecular dy-
namics time series based solely on observation of
some torsion angles. An outstanding feature of the
HMM approach is a reliable detection of biomolecu-
lar conformations even if the conformations strongly
overlap in the chosen set of torsion angles. Since com-
putational complexity only depends on the number of
torsion angles to be analyzed and the number of hid-
den states in the model, the presented technique is
in principle applicable to arbitrary high dimensions.
Yet, for a high number of hidden states the EM step
of the algorithm will become computationally expen-
sive, and for an increasing number of torsion angles
the complexity of the likelihood landscape (i.e., pa-
rameter space) is hard to judge. Therefore, an addi-
tional scheme for use with high dimensions has been
devised. Its performance has been illustrated by ap-
plication to a DNA oligomer.
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