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Molecular dynamics simulation generates large quantities of data that must be interpreted using
physically meaningful analysis. A common approach is to describe the system dynamics in terms of
transitions between coarse partitions of conformational space. In contrast to previous work that
partitions the space according to geometric proximity, the authors examine here clustering based on
kinetics, merging configurational microstates together so as to identify long-lived, i.e., dynamically
metastable, states. As test systems microsecond molecular dynamics simulations of the polyalanines
Ala8 and Ala12 are analyzed. Both systems clearly exhibit metastability, with some kinetically
distinct metastable states being geometrically very similar. Using the backbone torsion rotamer
pattern to define the microstates, a definition is obtained of metastable states whose lifetimes
considerably exceed the memory associated with interstate dynamics, thus allowing the kinetics to
be described by a Markov model. This model is shown to be valid by comparison of its predictions
with the kinetics obtained directly from the molecular dynamics simulations. In contrast, clustering
based on the hydrogen-bonding pattern fails to identify long-lived metastable states or a reliable
Markov model. Finally, an approach is proposed to generate a hierarchical model of networks, each
having a different number of metastable states. The model hierarchy yields a qualitative
understanding of the multiple time and length scales in the dynamics of biomolecules. © 2007
American Institute of Physics. �DOI: 10.1063/1.2714539�

I. INTRODUCTION

Given the large amount of molecular dynamics �MD�
simulation data available for macromolecules,1,2 models are
needed to analyze the data that capture the essential dynami-
cal features and can be physically interpreted. One approach
is a “transition network,” which encodes the transitions of
the system between a set of discrete states.3 In a transition
network, a vertex corresponds to a discrete conformational
state, and an edge corresponds to a transition between two
states. Each edge may be weighted by the associated transi-
tion rate or probability. An equivalent description is that of a
Markov state model,4 in which the interstate transitions are
defined by a transfer matrix, T���, whose elements Tij���
specify the probability of undergoing a transition from state i
to state j within time �.

Transition networks and Markov state models are also
useful in merging the combined dynamical information pro-
vided by ensemble dynamics, i.e., a large collection of rela-
tively short MD trajectories.1,2 Using such a representation,
master-equation dynamics allows the dynamics of processes
to be recovered whose characteristic time scales are much

beyond the individual simulation times.5–16 Graph-theoretical
algorithms can then be used to identify the best transition
pathways connecting, and the transition state ensemble sepa-
rating, a given pair of conformations.3 The information in the
network can also be used to alleviate the ubiquitous sampling
problem in molecular simulation by planning simulations so
as to yield the properties of interest with a reduced amount of
computing time.3,17,18

A central question when generating interstate models is
how best to partition state space into discrete states. It is
often desirable that the partition reflects the dynamical be-
havior of the system. In particular, biomolecular function
often depends on the ability to undergo transitions between
long-lived or “metastable” states. These interstate transitions
are rare events in which a molecular system stays for long
periods of time within one state, before rapidly switching to
another. From the geometrical point of view, a metastable
state corresponds to a connected subset of the state space
within which the system may vibrate or diffuse on a rela-
tively fast time scale,19 surrounded by a boundary region
across which transitions occur rarely. This is equivalent to
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stating that a metastable state corresponds to a free energy
basin surrounded by energy barriers which stabilize the sys-
tem within the basin. Analysis methods, such as master-
equation dynamics, usually require that the transitions be-
tween states are Markovian, i.e., the evolution of the system
into the next state depends only on the current state, and
there is no memory affecting the interstate transitions. The
validity of this assumption requires that the states be chosen
such that their mean lifetime is long compared to the length
of the memory, which may be due, for example, to the pres-
ence of intrastate barriers. Therefore, a good definition is one
that minimizes the flux between the states �and or maximizes
the lifetimes of the states�. Having defined metastable states
in this way, a kinetic model for the biomolecule may be
obtained by neglecting the fast motions within metastable
states and only modeling the jump process between them.

It is a common practice to define distinct discrete states
by clustering similar geometries that are visited in simula-
tion. This may be done either manually by inspecting low-
dimensional projections of the trajectory on essential, i.e.,
principal, coordinates,1,20,21 or automatically by a geometric
clustering method.4,22–27 The geometric approach is useful in
identifying dynamically metastable states only if the geomet-
ric and kinetic distances are similar for any given pair of
states. Unfortunately this condition is not always met for
biomolecules, as considerable free energy barriers may lie
between geometrically close conformational states. This is
the case, for example, in enzyme reactions, where the pro-
cess of interest is very localized and, at physiological tem-
perature, may lead to smaller geometric deviations than the
vibrational motion of the rest of the system. Furthermore,
geometrically distant conformations can be sometimes con-
nected by relatively fast transitions, as can be the case for
different unfolded states of a polypeptide.28 Thus, in order to
obtain a well-behaved kinetic model for the interstate transi-
tions, a method for identifying discrete states should be
based on “kinetic,” rather than geometric clustering.

An approach to kinetic clustering is known in the topo-
logical mapping literature where a transition network is de-
fined based on the minima and transition states of an energy
landscape. In this approach, basins are grouped together if
they are connected by low free energy barriers.7,14,28,29 For
the analysis of dynamical data, however, it is more straight-
forward to use an approach which directly makes use of the
trajectory, without having to construct a free energy surface.
Basic theory for such data-based approaches has been de-
rived in the past few years,30,31 but applications have been as
yet limited to small test systems.

In the present work, we use dynamical data-based ki-
netic clustering to decompose the dynamics of macromol-
ecules undergoing complex conformational changes. We ex-
amine the relevance of metastability in the folding dynamics
of polypeptides and whether metastability analysis is useful
in providing insight into the thermodynamics and kinetics of
such processes. The approach proposed here uses the im-
proved Perron cluster cluster analysis �PCCA� method,32,33

which merges small partitions of conformational space using
information from the Markov transition matrix so as to maxi-
mize the lifetimes of the clusters, which then represent ap-

proximations to the ideal metastable states. For this, we ex-
amine folding and unfolding processes in microsecond
molecular dynamics simulations of 8- and 12-mer polyala-
nines with charged termini. Two coordinate systems which
might in principle be useful for identifying metastable states
are compared: the backbone torsion rotamer pattern and the
hydrogen-bonding pattern. An approach for determining op-
timal numbers of metastable states is introduced. A meta-
stable state decomposition is conducted for both rotamer and
hydrogen-bond coordinate systems. For the test systems
studied here, torsional rotamers prove to be much more use-
ful for the identification of metastable states than is the
hydrogen-bonding pattern.

Transition networks describing the interstate kinetics are
constructed. For each given molecule and coordinate system,
several transition networks are computed, using different
numbers of metastable states, and a state hierarchy is thus
obtained. For both polyalanines, a complex network of meta-
stable states is identified. Use of only a few metastable states
�e.g., 2, 3, etc.� leads to the distinction between the “main
state” �the basin with the globally minimal energy and sev-
eral “kinetic traps” which are thermally accessible and have
half-lifetimes similar to, or greater than, that of the main
state. By increasing the number of metastable states the main
state is further decomposed into conformational subsets. An
interesting feature of the networks is that some states which
are structurally very similar are not kinetically contiguous,
but rather interchange via structurally very different interme-
diates. This clearly demonstrates the usefulness of the kinetic
clustering method in biomolecular simulation studies.

II. METHODS

A. Energy function and system setup

Equilibrium MD simulations for the peptides Ala8 and
Ala12 with zwitterionic termini were conducted at a tempera-
ture of T=300 K using temperature rescaling. The CHARMM

energy function34 was used with parameter set 19 to model
the intramolecular interactions and the solvent was modeled
with the ACE2 implicit solvent model.35 A switch function
was used to smoothly truncate the nonbonded interaction en-
ergies between 8 and 12 Å. For each system, four indepen-
dent simulations were performed in the following manner. A
starting conformation was generated by setting the backbone
� /� angles to random values. This structure was energy
minimized to a root mean square energy gradient of
10−3 kcal/mol Å in three subsequent stages: 1000 steps of
steepest descent minimization, 1000 steps of conjugate gra-
dient minimization, and, finally, 4000 steps of Newton-
Raphson minimization. The system was then heated to
T=300 K during 10 ps. A local equilibration �to relax the
system within its local conformation� was conducted for
30 ps, followed by a nonconstrained production run of 1 �s.
An integration time step of 1 fs was used with a Verlet inte-
grator. Thus, the total trajectory length was 4 �s for each
system. A coordinate set was recorded every �=50 fs and
used for the subsequent analysis, corresponding to a total
number of 8�107 structures for each system.
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The simulations above were performed in implicit sol-
vent for the pragmatic reason of quickly generating long-
time trajectories with a large number of conformational tran-
sitions so as to test the analysis methods presented in this
paper. In cases in which it is desired to make experimentally
testable predictions on the actual biomolecular system stud-
ied, a more physically motivated setup should be used, such
as an explicit solvent simulation with periodic boundary con-
ditions and Ewald summation to treat the nonbonded inter-
actions.

B. Definition of discrete microstates

In this first step of processing, the configurational space
of the molecule is divided into a relatively fine discrete and

finite set of states, called here micro-states. This term is just
used here as a convenient abbreviation for “small parts of
configuration space” and should not be confused with the
meaning of microstate as a point in phase space. Each mi-
crostate that is actually visited during the trajectories of a
given system is assigned an integer index i� �1, . . . ,m�.
Thus, each molecular configuration in the trajectory has an
associated microstate index. We transform the trajectory of
molecular configurations �x�0� ,x��� ,x�2�� , . . . � into a trajec-
tory of discrete state indices �i�0� , i��� , i�2�� , . . . �. This dis-
crete trajectory is used to construct a transition count matrix

Tc��� = � 2 # �1 → 1� ¯ #�1 → m� + # �m → 1�
� � �

#�m → 1� + # �1 → m� ¯ 2 # �m → m�
	 ,

where #�a→b� is the number of transitions from microstate
a to microstate b in the trajectory. The entries of Tc count
both the transitions and back transitions between two mi-
crostates, assuming that detailed balance holds. This ensures
that Tc is exactly symmetric and thus has only real eigenval-
ues. In fact, for all the examples used in this study, Tc was
found to be nearly symmetric, even when transitions are
counted in only one direction, indicating that the simulations
are very close to equilibrium. From the transition count ma-
trix we construct a transfer matrix T by normalizing the en-
tries of Tc such that the sum over a row is unity: Tab

=Tcab /
k=1
m Tcak. The resulting transfer matrix T �also known

as row stochastic transition matrix�,

T��� = � p�1 → 1� ¯ p�1 → m�
� � �

p�m → 1� ¯ p�m → m�
	 , �1�

contains, as element p�a→b�, the conditional probability of
moving from state a to state b within the time step � for
which T was set up, i.e.,

Tab��� = p�a → b� = p�i�t + �� = �b�i�t� = a� .

This microstate transfer matrix is used for subsequent
kinetic clustering, explained below. Like Tc, T has purely
real eigenvalues. If the transitions between microstates are
Markovian �memoryless�, then the time evolution of the
probability distribution of microstates, p�t�, can be expressed
as

p�t + �� = p�t�T��� . �2�

The choice of coordinates used to obtain the discrete
microspace is critical. These coordinates must be appropriate
for characterizing the process of interest, i.e., they should

distinguish between states that one wants to separate. In the
following two sections, two alternative choices for coordi-
nates in polypeptides will be described.

1. Torsion-rotamer-pattern microstates
and independence of coordinates

Bond and angle degrees of freedom are rather stiff. Thus,
the conformation of a polypeptide is defined mainly by its
torsional angles. For polyalanines, which are used as the ap-
plication in this study, there are no side-chain torsions, so the
� and � backbone torsions are sufficient. Before discretizing
these coordinates to obtain the microstates, it must be deter-
mined whether they are statistically dependent or not. For
statistically independent coordinates one may use indepen-
dent projections of the trajectory on the individual coordi-
nates, while for mutually dependent coordinates, a projection
on the joint coordinate space must be used for the discreti-
zation. The statistical dependencies can be checked by com-
puting normalized mutual information coefficients between
all pairs of coordinates. Here, between torsion angles x and y
we compute the measure proposed in Ref. 36,

NMIxy =
MIxy

min�Hx,Hy�
,

where the mutual information, MIxy, is defined as

MIxy = �
x
�

y

p�x,y�ln
p�x,y�

p�x�p�y�
dydx ,

where p�x ,y� is the joint distribution, and p�x� and p�y� are
the marginal distributions of x and y. The information-
theoretic entropies Hx Hy are defined as
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Hx = − �
x

p�x�ln p�x�dx .

Here, the integrals are approximated by central summa-
tion over 20 equally sized bins in the dihedral range
�−180,180�. There are several different notions of normal-
ized mutual information36,37 and the concept of a generalized
correlation coefficient,38 which all have the property that
they are bounded by �0,1�, where a value of 0 means that the
random variables x and y are uncorrelated while a value of 1
means that one is determined by the other. However, these
different correlation coefficients differ in the meaning of in-
termediate values. Here, the off-diagonal elements of NMIxy

were all below 0.1 for both Ala8 and Ala12, which gives
confidence that the torsion angle distributions are largely sta-
tistically independent of each other in the simulation. In this
case, it is possible to perform a kinetic clustering for each of
these angles individually, resulting in a set of rotamers for
each dihedral. The accessible rotamer patterns then define
the microstate space for the whole molecule.

Here, each torsion angle, �, was discretized into 36
boxes having a range of 10° each. By counting transitions
between boxes in consecutive time steps �0,� ,2� , . . . �, a cor-
responding transfer matrix T�����R36�36 was set up, each
entry T�,uv��� containing the conditional probability of a
transition from box u to box v in time �. Using the PCCA
method described in Sec. II C, T���� was clustered so as to
yield a block-diagonal form. The number of clusters �and
thus rotamers� for each torsion angle was chosen such that
the residence probability, i.e., the probability of staying
within a rotamer, was at least 0.99 for �=50 fs. This pro-
duces n� rotamers for each torsion angle, where n� turned
out to be either 1 or 2. In most cases, the result of this first
stage of clustering is identical to defining the rotamers by
splitting the angle range at the local probability maxima for
all angles. It is therefore not necessary to use PCCA in this
first stage of clustering, yet we did so to remain consistent
with the rest of the procedure.

Having identified n� rotamers for each torsion angle, and
having R torsion angles in the molecule define a torsion rota-
mer pattern space with up to 
�=1

R n� states. Out of these,
only a small number of states are actually visited during the
finite trajectory. For Ala8, 12 � /� angles had two rotamers
each, thus yielding up to 212=4096 rotamer states. Out of
these, only 457 were visited during the 4 �s dynamics tra-
jectory. Therefore each structure along the trajectory was as-
signed to one of these 457 states, yielding a trajectory of
microstate indices �i�0� , i��� , i�2�� , . . . �, from which a trans-
fer matrix �Eq. �1�� was constructed. Likewise, for Ala12, 20
� /� angles had two rotamers each, thus yielding 220�1
�106 rotamer states, out of which only 3437 were visited.

2. Hydrogen-bonding-pattern microstates
and transition state hysteresis

An alternative coordinate system that may be appropri-
ate for characterizing the overall configuration of a polypep-
tide is the hydrogen-bonding pattern. This pattern forms a
discrete space if each hydrogen bond is considered to be

either formed or not formed for each acceptor-hydrogen-
donor triplet. Two practical issues need to be dealt with here.

Firstly, even stable hydrogen bonds occasionally break
and quickly reform and sometimes very unlikely hydrogen
bonds occasionally form for short times. These short “re-
crossing” events of individual H bonds do not affect the
overall structure and should thus be removed. For this, we
define a transition state hysteresis as follows. An acceptor-
hydrogen-donor triplet is characterized as follows: �a� as a
strong H-bond if the donor-acceptor-hydrogen angle is less
than 45° and the acceptor-hydrogen distance is less than
2.1 Å; �b� as a weak H bond if the donor-acceptor-hydrogen
angle is less than 90° and the acceptor-hydrogen distance is
less than 2.5 Å; and �c� as no H bond, otherwise. A contact is
“switched on” only when a strong H bond is formed, and
“switched off” only if no H bond is present. Transitions into
the weak H-bond region are ignored until this transition re-
gion is crossed completely. This creates a transition state
hysteresis which avoids taking rapid recrossings into ac-
count.

Secondly, the number of acceptor-hydrogen-donor trip-
lets is very large. To avoid obtaining too many microstates,
the number needs to be reduced to a “relevant” set of triplets
used for the definition of the microstate space. Only stable
hydrogen bonds contribute to relevant metastabilities. To re-
duce the set of contacts to a feasible size, we use only those
contacts which form hydrogen bonds at least 1% of the time.
For Ala8, this involves 11 out of 72 bonds, giving a theoret-
ical state space size of 211�2048, out of which only 295
states were visited. For Ala12, 32 out of 156 bonds are in-
volved, giving up to 232�4.3�109 states, from which
42 159 states were visited.

C. Kinetic clustering to obtain metastable states

A metastable state is a set of microstates in which the
system stays for a long time before leaving it. Following this
idea, a straightforward definition for a partition into meta-
stable states would be the following: Given a discrete trajec-
tory �i�0� , i��� , i�2�� , . . . � in space of microstates �1, . . . ,m�,
find a partition of microstates into C metastable sets, such
that the number of transitions within sets is maximized.
Since the total number of transitions in the trajectory is
given, this is equivalent to minimizing the number of transi-
tions between metastable sets. This formulation of the prob-
lem is known in graph theory as a C-min-cut problem but is,
unfortunately, NP hard, i.e., the computational cost to solving
it increases exponentially with m.39 A similar partition, how-
ever, can be obtained very efficiently with the PCCA method
which was first introduced in Ref. 40. The method is illus-
trated in Fig. 1. Its basic idea is the following: Recall that
Markov time evolution of the probability distribution, p�t�, is
given by p�T+��=p�t�T���. This equation can also be ex-
pressed in terms of an expansion in left eigenvectors of T, qi,
and corresponding eigenvalues, �i,

41
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p�t + �� = 

i=1¯m

ci�iqi,

where ci are appropriate constants which depend on the start-
ing condition, p�t�. For longer time increments, n�, this
equation becomes

p�t + n�� = 

i=1¯m

ci�i
nqi. �3�

For systems fulfilling detailed balance there is only a
single eigenvalue �1=1, while �i�1 for all i	1. Thus, for
n→
 �after infinity time�, all terms but the first one vanish
and Eq. �3� converges to

p�
� = c1q1,

where c1 is simply a normalization factor. Thus, the left ei-
genvector with the largest eigenvalue, �1=1, specifies the
stationary distribution �and has therefore only non-negative
entries�. All other eigenvectors, q2¯qm, are associated with
decaying processes, their speed of decay being determined
by the magnitudes of the associated eigenvalues. As apparent
from Eq. �3�, eigenvectors associated with eigenvalues close
to 1 correspond to processes which decay very slowly and
thus are, by definition, related to transitions between meta-
stable states. Let q2 be one such eigenvector with ��1, then
q2 has both positive and negative entries, and its sign struc-
ture can be used to identify metastable states as follows: the
microstates belonging to one metastable state have positive,

and the others negative signs in q2. The sign structure of the
next eigenvector, q3, may be used to further split the state
space into three metastable states, and so on. For systems
exhibiting metastability there is a time scale �, for which
there is typically at least one clear gap separating the C ei-
genvalues close to 1, q1 , . . . ,qC, from the rest of the spec-
trum, qC+1 , . . . ,qm, thus allowing for an appropriate choice
of C to be made. An alternative way of choosing C is intro-
duced in Sec. II D, below. In the original PCCA method,
metastable states are identified as sketched above: each pair
of microstates which shares the same sign structure in the C
eigenvectors with the largest eigenvalues belongs to the same
metastable state. Although theoretically correct, this way of
assigning microstates to metastable states has proven to be
numerically unstable because the eigenvector components
close to 0 are very sensitive to insufficient sampling.33,42 An
improved PCCA method32,33 instead identifies C representa-
tive microstates with maximum pairwise distances in the co-
ordinates of the first C eigenvectors. Each microstate can
then be expressed as a convex combination of these repre-
sentative microstates and thus be assigned a degree of simi-
larity with each representative microstate according to the
convex coordinates. Therefore, clustering is made by assign-
ing each microstate to the cluster containing the representant
with which it has the strongest similarity. This method has
shown to be more robust than standard PCCA,33 and is used
in the present study.

FIG. 1. �Color� Illustration of the
PCCA clustering procedure on a
sample potential. �a� Potential in units
of kBT, defined over a discrete coordi-
nate with 100 boxes. �b� Transition
matrix, T���, for a Markov chain sam-
pling the potential, using a lag time of
�=200 steps. Each matrix entry Tij

represents the transition probability
from cell i to cell i within time � �blue:
Tij =0, red: Tij �0.1�. The Markov
chain was generated by using a Me-
tropolis Monte Carlo where in each
step only jumps to the current and the
adjacent boxes were considered. The
nearly block-diagonal structure of T is
apparent. �c� Left eigenvectors of T
used to identify metastable states. The
first eigenvector gives the stationary
distribution. The sign structure of the
second eigenvector decomposes the
state space into two metstable states
�thick magenta line�. The sign struc-
ture of the third eigenvector further
splits the right metastable state �thin
magenta line�, obtaining three meta-
stable states. �d� The eigenvalue spec-
trum of T, indicating how many states
are metastable. There are clear gaps
after two and three eigenvalues.
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After the clustering, each microstate is assigned to one
metastable state. Thus, each structure along the trajectory can
also be assigned to one metastable state� �1, . . . ,C�. From
the trajectory of metastable states, two properties are com-
puted.

�1� A stationary probability distribution, p�
�, containing
the probability of finding the trajectory in each meta-
stable state.

�2� A transfer matrix, Tm, containing the conditional tran-
sition probabilities between pairs of metastable states.

D. Choosing the number of metastable states

A direct way to choose the number of clusters is to count
the number of eigenvalues of the transfer matrix that are
close to 1 �see Sec. II C above�. This method has the implicit
assumption that the dynamics is truly Markovian on time
scale �, because otherwise the relative order of eigenvalues
may change with the time � for which the transfer matrix
T��� is constructed and hence the spectral gap between
“slow” and “fast” processes would then be not well defined.
Here, we introduce an alternative method for selecting the
number, C, of metastable states, which does not require the
Markovian assumption and produces selections of C which
agree remarkably well with the spectral gaps in ranges of �
within which the dynamics is Markovian. An indicator of the
quality of a partition into states is the probability of transi-
tions between metastable states, pinter. pinter is given by the
sum over the individual transition probabilities between pairs
of different metastable states,

pinter = 

i�j

pi�
� · Tcij .

The corresponding mean transition time between meta-
stable states, L�C�, is then given by

L�C� =
�

pinter
,

where � is the time step length. In contrast to the eigenval-
ues, L�C� is no longer strictly monotonic with respect to C
�see Fig. 2�. Nevertheless L�C� has a direct physical interpre-
tation and exhibits very clear gaps. Moreover, L�C� is pro-
portional to the total number of transitions which should be
high for a partition into metastable states �see Sec. II C,
above�. In the present case, we chose the numbers, C, of
metastable states, such that there is a large gap between the
mean transition times corresponding to partitions into C and
C+1 states. For torsion rotamer coordinates, these are C
=4,6 ,10 for Ala8 and C=4,6 ,8 for Ala12. For hydrogen-
bond coordinates, these are C=2,3 ,5 for both Ala8 and
Ala12.

E. Quantitative characterization of metastable states

A number of quantitative properties of the metastable
states can be computed from the trajectory after clustering.
Of particular interest are the probability or free energy, the

entropy, and the mean lifetime of each metastable state. Here
we describe how these properties and their uncertainties due
to insufficient sampling can be estimated.

1. Probability, free energy, and entropy

The probability, pi, of being in metastable state i is esti-
mated by

pi =
Ni

N
,

where Ni is the number of time steps in which metastable
state i is visited, and N the total number of time steps. The
distribution of pi measured from different simulations �or
different subsets of the same simulation� is nonsymmetric
because pi is bounded by 0 and 1. Thus, it is nontrivial to
estimate uncertainties in pi. However, instead of the prob-
ability we can equivalently specify the free energy differ-
ence, �Ai, of state i with respect to some arbitrary reference
state j �which is chosen here to be the most visited state in
the trajectory of metastable states�,

�Ai = − kBT ln
pi

pj
,

where kB is Boltzmann’s constant and T is the temperature.
�Ai is not bounded and therefore more likely to have a sym-
metric distribution. To estimate the uncertainties in �Ai, we
must consider that due to the metastabilities in our system,
subsequent time steps are correlated. An estimate of the cor-
relation time for thermodynamic variables is the slowest re-
laxation time, �corr, in the system. �corr is approximately the
mean lifetime of a metastable state for the case where the
system is partitioned into two states, and thus estimates the
global equilibration time of the system. In the present test
simulations this slowest relaxation time is for two metastable

FIG. 2. Mean transition time for state decompositions using the Ala8 and
Ala12 dynamics.
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states of torsion rotamers in Ala12: �corr=274 ns �see Fig 2�.
Therefore, we divided the trajectories into nslabs=10 blocks
of 400 ns each and computed an estimate �Ai,s for each
block s. The standard error on �Ai, ��Ai�, is estimated using
the standard deviation of the set of individual estimates as
follows:


��Ai� �
1

�nslabs


��Ai,1, . . . ,�Ai,nslabs
� .

The potential energies from the simulation are averaged
over all members of a metastable state, giving rise to a mean

potential energy difference, �Ūi, calculated relative to the

free energy minimum for which we define �Ūi=0. The un-
certainties of the mean potential energies may be computed
the same way as the uncertainties of the free energies. For
the small systems studied here, however, they are negligible
compared to uncertainties in the free energies, and so they
are not specified. Given both the free and the mean potential
energies, the entropy, T�Si, of a metastable state can directly
be computed as

T�Si = �Ūi − �Hi.

2. Mean lifetime

If the escape from a state, i, behaves like a first-order
transition and no return to the state is considered, then the
probability of being in the state for a time, t, is given by

pi�t� = exp�− kescape,it� = exp�− t/L̄i� , �4�

where kescape,i is the escape rate and L̄i the mean lifetime of
state i. For short time steps �, a good discrete approximation
of pi�t�, pi�n��, can be generated for each state i from the
simulations given the sorted series of lifetimes
�Li,1 ,Li,2 , . . . ,Li,m� with Li,1�Li,2� ¯ �Li,m.

pi�n�� = 1 −
1

m


m

s�Li,j,n��, j = 0, �5�

where s�t , t0� is a step function defined by

s�t,t0� = �0, t � t0

1, t � t0.
�

For the metastable states in the dynamical trajectories
analyzed here, the simple escape kinetics suggested by Eq.
�4� is indeed a good model, after a nonexponential initial
phase �see Fig. 3 for some examples�. For all metastable
states used in this study, the nonexponential part dies after
10% of the longest lifetimes observed for the state. We thus
ignore all visits shorter than these first 10% and determine
�life,i by linear regression to the rest of the curve. The errors
are estimated from the standard deviation of a series of decay
times �life,i,k from ���� partitions of the lifetime series �,


��life,i� � ���−1/4
��life,i,1, . . . ,�life,i,����� .

F. Testing for the Markov property

Many analysis methods for transition networks rely on
the assumption that the interstate dynamics has no memory,
i.e., they exhibit the Markov property. It is therefore desir-
able to find a state definition which exhibits the Markov
property as clearly as possible. Here we review an indicator
for the Markov property that has been introduced in Refs. 2
and 43. It is used in the Results section to compare the dif-
ferent metastable state decompositions. Note that other ap-
proaches to testing the Markov property exist.23,44

For a Markov process, the population of the states at
some time t+n� can be expressed by applying the transfer
matrix n times to a population at a previous time t, which
leads to the Chapman-Kolmogorov equation41

p�t + n�� = p�t��T����n = p�t�S�n�� ,

where we have defined S�n��ª �T����n. Using the
eigenvalue-eigenvector equation,

Q� = T���Q , Q��n� = S�n��Q ,

where Q is the matrix of eigenvectors Q= �q1¯qm� and �
and ��n� are diagonal matrices with eigenvalues �1 , . . . ,�m

and �1�n� , . . . ,�m�n� on the diagonal, respectively. We can
write

�T����n = Q�Q−1 = Q��n�Q−1 = S�n�� ,

and hence the eigenvalues �i of T��� are related to the eigen-
values �i�n� of S�n�� by

�i�n� = �i
n.

This relation can equivalently be transformed to

�i
*
ª −

n�

ln �i�n�
= −

�

ln �i
, �6�

where �i
* is the characteristic time scale corresponding to the

decay of eigenmode i. According to this equation, if the pro-
cess associated with eigenmode i is Markovian, then �i

* is

FIG. 3. Examples of decay curves of metastable state populations. The
brown circles and crosses show the fraction of the initial population remain-
ing in a given state for a given time. The selected states are the global
energy minima of following metastable state partitions: Ala8: ten states for
torsion microstates and five states for hydrogen-bond microstates; Ala12:
eight states for torsion microstates and five states for hydrogen-bond
microstates.
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constant and thus independent of n. For many processes, this
is true only for some minimum time scale n�	�mem, after
which the memory pertaining to the interstate dynamics has
disappeared. In this case, the Markov model of the system
must employ the Markov matrix S�n�� instead of T���. The
time n� which is used to set up the Markov matrix is referred
to as lag time. It is desirable to find a definition of states such
that the lag time is minimal, i.e., such that there is minimal
memory in the system.

Note that �i
* being constant is a necessary but not a suf-

ficient condition for Markov behavior, although it seems to
be a rather reliable indicator and helps us to identify a range
of lag times for which Markovian behavior may be present.
Ultimately, the best test for the model is to compare the
molecular dynamics simulations to the predictions of the
Markov dynamics produced with the transition network
model.45 Here, this is done as follows: First, a lag time n� for
which the �i

* are approximately constant is selected. Then the
Markov matrix S�n�� is computed. A Markov dynamics tra-
jectory is computed for each of the C metastable states as
follows: In each dynamics run, the initial population is cho-
sen such that one of the metastable states has population 1
and the others have population 0. Then, the dynamics trajec-
tory of a total length of T=mn� is computed by successively
applying

p�t + n�� = p�t�S�n�� ,

m−1 times. This will relax the initial population towards
equilibrium. The relaxation curve of the state k which was
initiated with population 1, pMarkov,k�t�, is of particular inter-
est. For comparison, a relaxation dynamics can be obtained
from the molecular dynamics simulation as follows: After
defining the C metastable states, the trajectory can be ex-
pressed in terms of a series of indices of metastable states,
say, �s�0� ,s��� , . . . ,s�N���. From this trajectory, windows of
length T are sampled each and with a time resolution of n�,
such that nw=N /n−m windows are obtained, window i being
Wi= �s�i� ,s�i+n�� , . . . ,s�i+mn���. The relaxation curve is
computed for state k, pMD,i�t�, by average over all nk win-
dows which start at state k,

pMD,k�t� =
1

nk



i=1¯nk

�1 for Wi�t� = s

0 otherwise,
�

Wi0 = k .

It is then compared whether

pMarkov,k�t� � pMD,k�t� ,

i.e., whether the relaxations of the population of the indi-
vidual metastable states k predicted by the Markov model
resemble those observed in the molecular dynamics simula-
tions.

G. Hierarchical transition network analysis

A transition network consists of vertices connected by
edges. The vertices correspond to the metastable states re-
sulting from the kinetic clustering. An edge �u ,v� is present
in the network if there is at least one transition u→v or v

→u in the trajectory of metastable states. For simulations
that are close to equilibrium and short time steps �, the re-
sulting connectivity of the network represents neighborhoods
in configuration space. A network is said to be connected if
each metastable state can be reached from each other meta-
stable state by some pathway. It is said to be fully connected
if all vertices are directly connected by an edge.

For each system �Ala8 and Ala12� and each microstate
system �torsional rotamers and hydrogen bonds�, three ki-
netic clusterings with different numbers of metastable states
were computed �see Sec. II D�. These three networks define a
three-level hierarchy of the conformational dynamics of the
system. For example, the Ala8 torsion rotamer network, and
the C=4 and C=6 networks are related in that state a for
C=4 splits into states a, f , and g for C=6 �see Fig. 4�. Such
a split is not always “perfect,” i.e., in some cases, the bound-
aries of the higher-order network do not remain the same
when going to the lower-order network because some of the
microstates have been traded between the split vertex and its
neighbors. This is because the kinetic clustering is performed
independently for each value of C and does not use the re-
sults of the higher-level clustering for a lower value of C. To
visualize the relationships between different order networks
of the same class, in the figures presented here an arrow is
drawn to each vertex from the main contributor in the higher-
order network.

III. RESULTS

In this section, no attempt is made to reproduce experi-
mental results or to predict the structure of oligoalanines but
rather the systems are used to examine the utility of the
methodological approach and to test whether the state de-
composition can be used to construct a kinetic model that
itself reproduces the observations from the molecular dy-
namics simulations. However, some background on the
known conformational preferences of polyalanines is useful.
Polyalanines have been frequently studied both experimen-
tally and theoretically �Ref. 12 and references therein�. Ala-
nine is believed to be the amino acid with the highest helical
propensity.46 Nevertheless the identity of the most stable
state of polyalanines in aqueous environment is not fully
agreed upon, as experiments are rendered difficult by the fact
that polyalanines tend to aggregate. Simulation results
differ.9,47 However, most studies do indicate that solvated
polyalanines longer than some minimum length prefer the
�-helical structure. This propensity may be modified by mu-
tating individual sites, modifying the terminal charges, or, in
simulation, changing the solvent representation.12 Most
simulations involve capped �neutral� termini. In the present
study, we use charged �NH3

+ and COO−� termini instead, be-
cause �1� it is generally accepted that polypeptides in solvent
exist in a zwitterionic form and �2� the presence of oppo-
sitely charged termini may lead to richer �and thus more
“interesting”� metastability. Transition networks and Markov
state models between metastable states for Ala8 and Ala12

were constructed as described in Sec. II and are analyzed in
the present section.
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TABLE I. Quantitative description of the metastable states found by grouping backbone torsion rotamers in Ala8. s, name of the state. �A, free energy

difference with respect to the free energy minimum �state a� and its error. �Ū, potential energy difference. T�S=�Ū−�A is the free energy difference due

to entropy. All energies are given in kcal/mol, the uncertainties in �Ū are negligible, and thus the uncertainties in T�S are identical to the uncertainties �A.

L̄, mean lifetime of the state in picoseconds and its error. n, number of visits in the state long enough to be useful to fitting the mean lifetime. The lines are
ordered so as to indicate how states split when going to a network with more metastable states, e.g., state a for C=4 splits up into a, f , and g for C=6.

Four clusters Six clusters Ten clusters

s �A �Ū T�S L̄ n s �A �Ū T�S L̄ n s �A �Ū T�S L̄ n

a 0 0 0 �2.6±0.9��105 10 a 0 0 0 �8.8±1.8��104 29 a 0 0 0 �1.2±0.1��104 105
b 4.8±0.5 −2.7 −7.6 95±18 10
c 3.1±0.7 −4.9 −8.0 216±20 45
d 4.9±? −4.4 −9.3 187±26 4
e 2.0±0.1 −1.9 −3.9 339±50 148

f 3.6±0.9 −5.8 −9.5 117±7 19 f 3.6±0.8 −5.9 −9.5 117±7 19
g 2.5±0.6 −4.9 −7.4 297±40 59 g 2.7±0.5 −3.9 −6.6 223±20 89

h 3.8±0.9 −5.8 −9.6 768±135 7 h 3.8±0.9 −5.8 −9.6 768±135 7 h 3.8±0.9 −5.8 −9.6 768±135 7
i 5.7±? −4.9 −10.6 278±? 1 i 5.7±? −4.9 −10.6 278±? 1 i 5.7±? −5.0 −10.7 278±? 1
j 3.6±1 −4.0 −7.4 839±164 7 j 3.6±1 −4.0 −7.7 839±164 7 j 3.7±0.8 −4.1 −7.8 1418±219 4

FIG. 4. �Color� Hierarchical transition network analysis
for the Ala8 peptide based on backbone torsion rotamer
microstates. Each bullet and the structure next to it cor-
responds to one metastable set of backbone torsion rota-
mer patterns. The bullets contain the state name �a let-
ter�, the free energy in kcal/mol �upper number�, and
the mean lifetime in picoseconds �lower number�. Each
structure is shown by a few representative tubes and an
overlay of 100 examples randomly drawn from the en-
semble of structures of each state, shown as line repre-
sentations of the backbone. A pair of states is connected
if at least one transition between these states was ob-
served in the trajectory. The hierarchical relationship
between the three networks for C=4, 6, and 10 meta-
stable states is indicated by the dotted arrows. Each
arrow starts at the metastable state in the higher-order
network which contains the majority of microstates in
the state the arrow points to. For example, the mi-
crostates of state a in the C=4 network are split into
three substates, a, f , and g, in the C=6 network.
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A. Octaalanine

The Ala8 rotamer microstates were clustered into num-
bers, C, of four, six, and ten metastable states �Fig. 4 and
Table I�. The global free energy minimum, a, is a highly
entropic state consisting of mostly unfolded conformations
the mean lifetime of which ranges from more than 250 ns
�for C=4� down to around 10 ns �for C=10�. For C=4, three
metastable states, h, i, and j, are distinguished from state a.
The structures of h, i, and j are coils in which the negatively
charged C terminus is in contact with three or four backbone
amide hydrogens, thus bending the chain. As this type of
structure is quite common in the present simulations, we
name it � loop, due to its similarity with the Greek letter. i
and h are structurally well-defined low-entropy � loops in
which the C terminus interacts with different positions of the
chain and which interchange either via the main state, a, or
the less-ordered intermediate, j. h, i, and j have free energies
of 3.6 kcal/mol or more above the main state, a. h and j are
visited only seven times each and have an estimated mean
lifetime of over 700 ps. i was visited only once and was
stable for nearly 300 ps. We therefore define h, i, and j as
kinetic traps �see Fig. 5 for an illustration of the concept�.

For higher numbers of metastable states, further � loops
and similar coil structures are split off from the main state a,
all of which are at least 2 kcal/mol above state a and have
lifetimes between 95 ps and 1.5 ns. Most of these loops have
relatively well-defined structures and very low entropies
�state e being the only exception, which has an entropic con-
tribution of T�S=−3.9 kcal/mol with respect to a�, whereas
the main state a is structurally rather disordered even for C
=10, consistent with its large entropy.

The topology of the networks is quite nonuniform. While
the global minimum, a, is the vertex with the most connec-
tions, some vertices serve as intermediates on some pathway,
thus having only two neighbors. State d is even a dead end,
having only one neighbor. The network hierarchy indicates
the presence of a single free energy basin, as for increasing
C, states are always split off from the main state a which gets
subsequently smaller.

For the hydrogen-bonding pattern dynamics of the same
system, a rather different picture arises �Fig. 6 and Table II�.
In the hierarchical transition network analysis for C=2, 3,
and 5 metastable states, there is again a global free energy
minimum, a, from which the other metastable states split off
in the lower-order networks. State a is very disordered for
C=2, comprising many different structures. In general, the
structures are quite dissimilar from the structures in the tor-
sion angle networks. In contrast to the structurally well-
defined � loops in the torsional rotamer network, the meta-

TABLE II. Quantitative description of the metastable states found by grouping hydrogen-bonding patterns in Ala8. See Table I for a complete description.

Two clusters Three clusters Five clusters

s �A �Ū T�S T n s �A �Ū T�S T n s �A �Ū T�S T n

a 0 9958±921 180 a 0 0 0 1680±129 487 a 0 0 0 1176±65 935
b 2.5±0.1 −2.5 −5.0 2.2±0.05 6 261

c 1.3±0.1 −2.6 −4.0 4.0±0.1 17 398 c 1.4±0.1 −2.6 −4.0 4.1±0.05 16 811
d 3.2±0.1 −2.3 −5.6 1.3±0.03 4 001

e 1.7±0.1 −4.1 −5.8 7.3±0.2 3627 e 2.1±0.1 −4.1 −6.3 10.4±0.3 2 750 e 2.1±0.1 −4.2 −6.3 10.4±0.3 2 750

FIG. 5. Scheme illustrating the concept of a kinetic trap in the absence of a
predefined native structure. The free energy minimum is understood as the
“native state” while high-energy minima that are separated from the main
basins with high barriers are defined as “kinetic traps.” Such traps are rarely
visited, but when they are visited, they are stable for a long time.

FIG. 6. �Color� Hierarchical transition network analysis for the Ala8 peptide
for two, three, and five metastable sets containing hydrogen-bonding pattern
microstates. See caption of Fig. 4 for a complete description.
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stable states split off from the global minimum are
structurally more disordered, and are characterized by a few
stable hydrogen bonds. The most striking difference is per-
haps that the lifetimes in the hydrogen-bond metastable
states are two orders of magnitude smaller than those of the
torsion rotamer metastable states. As it is desired to obtain
metastable states with a maximum lifetime, this result shows
that for Ala8 torsion rotamer coordinates are more useful for
detecting metastable states than hydrogen bonds.

Another indicator for the fact that hydrogen-bond coor-
dinates are less able to distinguish kinetically separated
states is the network connectivity: The hydrogen-bond net-
work for Ala8 is fully connected, while this is not the case
for the torsion rotamer network. The hydrogen-bond coordi-
nates are thus not able to satisfactorily resolve the boundaries
between metastable states. This indicates that the hydrogen-
bond coordinates are “coarser,” i.e., different rotamer pat-
terns generate the same hydrogen-bonding pattern, which is
also reflected by the fact that 457 rotamer microstates were
used, but only 295 hydrogen-bond microstates. Figure 7 il-
lustrates this problem. For Ala8, the dynamics appears thus
to be dominated by switching dynamics between rotamer
states, which is due to a combination of torsional potentials
and nonbonded interactions between neighboring residues,
rather than by formation of hydrogen bonds.

Figures 11�a� and 11�b� show the time scales �i
* implied

by the eigenvalues of the transfer matrices set up for various
lag times, n� �see Sec. II F and especially Eq. �6��. Most of
the �i

* for the torsion angle coordinates level off around
100�–200�, corresponding to a lag time of 5–10 ps, indicat-
ing that near-Markovian behavior may be found from that
time scale and longer. In contrast, none of the implied time
scales computed for the states defined by hydrogen bonds
converges within 1000� �50 ps�, showing that these coordi-
nates are much less useful for obtaining a good Markov state

model. This finding is confirmed by Figs. 12�a� and 12�b�
which show the comparison of the relaxation dynamics for
individual metastable states predicted by the Markov model
with the observations from the molecular dynamics simula-
tions �see Sec. II F�, constructed for a lag time of 1000�
�50 ps�. While the Markov state model for the hydrogen-
bond states produces dynamics that are completely different
from the molecular dynamics simulation, the Markov state
model based on the torsion angle states agrees reasonably
well with the molecular dynamics simulations for large
enough populations and for states that are frequently visited.
The deviations observed at low populations and for those
states that are rarely visited are most likely due to insuffi-
cient sampling in the molecular dynamics simulations, and
much longer simulations would be required to obtain ap-
proximate agreement for the relaxation dynamics of these
states.

B. Dodecaalanine

The Ala12 rotamer dynamics was clustered into four, six,
and eight metastable states �Fig. 8 and Table III�. As in Ala8,
the global free energy minimum, a, corresponds to a large set
of conformations, containing different secondary structures,
yet a is not the state with maximum entropy. State a has a
mean lifetime of 456 ns for C=4. For C=6 and C=8, the
mean lifetime is subsequently reduced as other metastable
states are split off, with a mean lifetime of 87 ns for C=8.
For C=4, the states f , g, and h are visited only three, two and
one times, respectively, but are stable for nanoseconds, thus
representing kinetic traps. Their free energies are more than
3 kcal/mol above the global minimum. f and g are � loops
similar to those found for Ala8. The metastable states split
off from the main state for C=6 and 8 contain significant
segments of secondary structure, involving both � helices
and � hairpins. As in the Ala8 torsion rotamer network, the
hierarchy between C=4 and C=8 indicates a single free en-
ergy basin, with state a as a central state from which meta-
stable states are subsequently split off.

The results for the hydrogen-bonding pattern dynamics
of the same system are not as different from the torsion angle
dynamics as was the case with Ala8 �Fig. 9 and Table IV�.
The � loop in metastable state e is similar that in metastable
state f of the torsion network. However, the relative free
energy of e is lower and its lifetime shorter than those of f in
the torsion network. This indicates again that state e is not
cleanly separated from the main state in a kinetic sense but is
actually a mixture of the two different metastable states. In
the C=3 network, � and � secondary structures separate out
into two different branches of the network.

The difference in lifetimes between the Ala8 torsion
angle and hydrogen bonding networks is still considerable,
though not as large as in the Ala8 case. This indicates that
using the hydrogen bonds to indicate the metastabilities of
the Ala12 dynamics is still not as good as using the torsion
angles, but much better than in the Ala8 case. As for Ala8, the
Ala12 hydrogen-bonding network is fully connected, while
the torsion network is not.

Finally, we computed another transition network for

FIG. 7. Scheme illustrating why some definitions of microstates are better
than others. Set �a� is optimal because, when partitioned into metastable
sets, it splits exactly on the transition state. Set �b� is inappropriate because
one of its states reaches across the transition state, including states from both
basins. Such a definition yields shorter lifetimes because transitions into and
out of cell x are frequent from both basins, even though no actual transition
may occur. This also produces apparent connections between metastable
states that are actually not directly connected.

155102-11 Conformational dynamics of biomolecules J. Chem. Phys. 126, 155102 �2007�

Downloaded 23 Apr 2007 to 160.45.116.89. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



TABLE III. Quantitative description of the metastable states found by grouping torsion rotamers in Ala12. See Table I for a complete description.

Four clusters Six clusters Eight clusters

s �A �Ū T�S T n s �A �Ū T�S T n s �A �Ū T�S T n

a 0 0 0 �4.5±1.6��105 6 a 0 0 0 �1.2±0.4��105 20 a 0 0 0 �8.7±2.2��104 27
b 3.3±0.7 7.2 3.9 659±192 18
c 2.6±0.3 4.0 1.3 423±48 30

d 3.7±0.9 10.1 6.5 739±216 6 d 3.7±0.9 10.2 6.6 739±216 6
e 3.2±0.6 5.6 2.4 475±69 27 e 3.3±0.7 5.4 2.2 505±83 23

f 3.0±? 9.4 6.3 3521±? 3 f 3.1±? 9.4 6.4 3521±? 3 f 3.0±? 9.5 6.5 3521±? 3
g 3.4±1.3 7.8 4.4 6527±? 2 g 3.4±1.3 7.9 4.5 6527±? 2 g 3.4±1.3 8.0 4.5 6527±? 2
h 5.2±0.6 2.3 −3.0 570±? 1 h 5.2±1.2 2.3 −3.0 570±? 1 h 5.2±1.3 2.4 −2.8 570±? 1

FIG. 8. �Color� Hierarchical transition network analysis for the Ala12 peptide for two, six, and eight metastable sets containing backbone torsion rotamer
microstates. See caption of Fig. 4 for a complete description.
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Ala12 using torsion coordinates and C=20 �see Fig. 10�. This
state partitioning can be thought of dissecting the bottom of
the main free energy basin, as it bifurcates into two main
branches when going from C=8 to C=20: State c splits into
k, l, m, n, and c and state a splits into c, o, p, q, r, s, a, and
t.

Several states that are structurally similar are not directly
kinetically connected, but rather via a structurally distant in-
termediate. Examples of these are the � loops, f , p, and e,
which are connected via the global minimum a, and p, b, and
o, which are connected via the �-helix state, t. It is possible
that there are high-energy pathways which directly connect
these � loops and were not sampled in the 4 �s trajectory.
However, the fact that these states are distinguished with the
present clustering method displays the strength of the
method over geometric clustering, with which it would be
difficult to separate these structurally very similar states.

Like for Ala8, Figs. 11�c� and 11�d� and Figs. 12�c� and

12�d� confirm that the torsion angle states are a better choice
for constructing a Markov state model for the Ala12 dynam-
ics used here than the hydrogen-bond states. Most of the �i

*

for torsion angle coordinates level off at a lag time of around
100� �5 ps�, while they do not converge within 1000� for the
hydrogen-bond based states. The relaxation dynamics for in-
dividual torsion angle metastable states predicted by the
Markov model constructed for a lag time of 1000� agrees
well with the observations from the molecular dynamics
simulations for large populations and frequently visited
states. In contrast, the Markov state model based on
hydrogen-bond states produces relaxation dynamics which
strongly deviate from the MD results for all states, indicated
that this state definition was not successful in producing a
valid Markov state model.

IV. CONCLUSIONS

Metastability analysis is useful for understanding the
thermodynamics, kinetics, and topology of complex molecu-
lar free energy surfaces. The PCCA approach employed here
allows a predefined number of conformational states to be
identified which are maximally kinetically separated. This
kinetic separation is not achieved by methods that rely on
geometric clustering. There is no “correct” or “incorrect”
number of conformational states, and this number has to be
chosen by the user, depending on how much “resolution” of
the process is desired. However, a reasonable choice can be
made by selecting numbers of states, C, such that there is a
large gap between the mean transition times corresponding to
partitions into C and C+1 states. The mean transition time is
computed as the inverse of the interstate transition flux for
each possible state decomposition. The rationale for choos-
ing the number C in this way is that, at the time scale of the
mean transition time corresponding to C, the dynamics de-
composes into C states.

By computing the free energies, energies, entropies, and
mean lifetimes of the metastable states, and connecting pairs
of states between which transitions exist, one obtains an in-
formative transition network between metastable states. Such
a network yields a comprehensive picture of the interstate
dynamics at any given resolution of states. For a long enough
simulation and a short observation interval �, the connectiv-
ity of the network resembles the neighborhoods of the meta-
stable states in configurational space. Insights into the hier-
archical structure of the free energy surface are gained when
networks with different numbers of metastable states for the
same system are connected in a network hierarchy. For meta-

TABLE IV. Quantitative description of the metastable states found by grouping hydrogen-bonding patterns in Ala12. See Table I for a complete description.

Two clusters Three clusters Five clusters

s �A �Ū T�S T n s �A �Ū T�S T n s �A �Ū T�S T n

a 0 0 0 113 807±32 879 21 a 0 0 0 2153±125 412 a 0 0 0 1180±56 764
b 2.4±0.5 11.0 8.6 5.0±0.1 3743

c 1.1±0.5 5.5 4.3 1172±133 143 c 1.8±0.6 5.4 3.6 28.3±1.7 822
d 1.2±0.4 5.6 4.3 494±45 124

e 1.3±0.8 9.0 7.7 748±138 152 e 1.2±0.9 9.8 8.6 744±138 151 e 1.2±0.9 10.0 8.8 748±138 152

FIG. 9. �Color� Hierarchical transition network analysis for the Ala12 pep-
tide for two, three, and five metastable sets containing hydrogen-bonding
pattern microstates. See caption of Fig. 4 for a complete description.
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stable states based on torsion angle coordinates we have con-
structed a Markov state model which is successful in repro-
ducing the dynamics from molecular dynamics simulations
at least for large populations and frequently visited states.
The deviations at low populations and rarely visited states
are most likely due to insufficient sampling in the molecular
dynamics simulation, giving us confidence that successful
Markov state models can be build based on the techniques
introduced here.

In the present peptide torsion rotamer networks, the con-
version from networks with few metastable states to those
with more is mostly characterized by clean splits of existing
metastable states. This means that, in going from a network
with C metastable states to a network with C+1 metastable
states, in most cases a single state is split into two substates
while the boundaries of all other states remain the same. This
is an indicator for the existence of a hierarchy of clear bar-
riers in the system. In other words, it is possible to find
meaningful metastable states in the simulations of biomol-
ecules studied here. Moreover, these states have relatively
long lifetimes, on the order of hundreds of picoseconds to
nanoseconds, a fact that is not apparent when visualizing the
trajectory graphically, as no stable states are clearly seen.
The method is successful in distinguishing states that are
kinetically separated even when they are structurally similar,
provided that the microstates are chosen finely enough to
distinguish them, which is a clear advantage over geometry-
based clustering methods.

Another feature found for both systems, Ala8 and Ala12,
is that they have a number of kinetic trap states which are

rarely visited, but very long lived. Typically, these traps are
structurally well defined, i.e., they are characterized by low
entropy. In free energy surface plots these traps are likely to
be invisible, because they are not strongly populated. In
agreement with another recent study48 this finding indicates
that the thermodynamics and kinetics of peptide folding �and
possibly also of proteins� may often be much more complex
than free energy projections on one or two order parameters,
such as principal components, number of native contacts, or
root-mean-square deviation to native structure, suggest.

Clearly, the force field, the solvent model, and the ther-
mostat being used to produce the molecular dynamics simu-
lations will affect the thermodynamics, kinetics, and topol-
ogy of the resulting transition networks. To obtain an
accurate model, the simulation setup should be validated by
comparing experimental observables computed from the
model with experimental measurements, if available. How-
ever, there may still be a number of different models that fit
well to the experimental findings but perform differently
from a theoretical point of view. For this, the treatment of the
solvent is an important factor. In the present study, an im-
plicit solvent model that does not incorporate solvent viscos-
ity was employed. While this setup will lead to errors in the
system kinetics, it is not clear how modeling the viscosity
�by a Langevin thermostat or by explicit solvent� would
change the quality of the Markov state model. Inclusion of
friction would probably reduce transitions between meta-
stable states �due to both the presence of friction and the
increased computational costs leading to shorter trajectories�.
This would increase the uncertainties in the transfer matrix

FIG. 10. �Color� Transition network analysis for the Ala12 peptide for 20 metastable sets containing backbone torsion rotamer microstates. See caption of Fig.
4 for a complete description.
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and hence decrease the quality of the model. On the other
hand, the presence of solvent viscosity is likely to reduce the
memory of the system and thus increase the Markovian na-
ture at a given time scale �. The study of the effects of the
solvent model or other setup parameters on transition net-
works and Markov state models is an interesting problem for
the near future.

One of the main findings in the present study is that the
choice of microstates that are used to be grouped into meta-
stable states is crucial. We have compared the use of the
backbone torsion rotamer states versus the pattern of the
most frequently formed hydrogen bonds for both systems,
Ala8 and Ala12. The results indicate that the backbone torsion
rotamers are considerably more successful in separating ki-
netically separated states. This is indicated by �1� the longer
lifetimes for the metastable states constructed from torsion
rotamers than those constructed from hydrogen-bonding pat-
terns, �2� the fact that the torsion rotamer networks are rather
sparsely connected while the hydrogen-bonding networks are
fully connected, and �3� the fact that a Markov state model
constructed with metastable states based on torsion angles
reproduces the dynamics observed in the molecular dynam-
ics simulations much better than a Markov state model con-
structed with the hydrogen bond metastable state does. This
relative failure of hydrogen-bonds is consistent with the re-
sults of Ref. 1 where macrostates defined for a � peptide by
hydrogen-bonding patterns were not successful in producing
Markovian behavior. However, one cannot conclude that hy-

drogen bonds are generally inappropriate in defining meta-
stable states. The clear votum in the present study is certainly
due to the fact that there are few long-lived hydrogen bonds
in the simulated dynamics of these short peptides. The results
for Ala12, in which the hydrogen-bond based analysis fares
better than for Ala8, support the idea that hydrogen bonds
become a better indicator for metastability as the system
lengthens and contains more stable hydrogen-bond struc-
tures. Moreover the hysteresis used here to switch between
hydrogen-bonded and hydrogen-nonbonded states introduces
some artificial memory into the dynamics which may con-
tribute to the relative failure of metastable states defined by
the hydrogen-bonding pattern in the Markovity test �3�.

For the dynamics of a protein in its native state, hydro-
gen bonds might be a better choice than torsion rotamers, as,
for example, shear motions of secondary structure elements
relative to each other may happen without a significant
change in torsion angle space, while being clearly related to
changes in the hydrogen bonds on the interface. Moreover,
unlike in the present case, torsions in proteins are typically
not statistically independent but move rather in a concerted
fashion so as to preserve the backbone chain closure. In this
case, sets of mutually correlated angles must not be clustered
independently, but rather using, for example, a multidimen-
sional grid in the configuration space spanned by these
angles, which makes the use of torsional coordinates more
difficult.

An appropriate discretization of distance-based coordi-

FIG. 11. �Color� The implied time
scales of the processes associated with
individual eigenvectors, depending on
the lag time n�, computed as �i

*�n��
=n� / ln��i�n���, where �i is the ith ei-
genvalue. The implied time scales for
the torsion rotamer states, ��a� and �c��
become flat for most processes at
around 100�=5 ps, which is much be-
low the lifetimes of the metastable
states, indicating that the interstate
transitions are Markovian. This is not
the case for the hydrogen-bond state
definition, ��b� and �d�� whose time
scales do not converge within 1000�.
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nates �which may require states intermediate to “close” and
“far” like in hydrogen-bonding patterns� may be generally
useful in identifying the metastabilities of the system, in-
cluded for cases studied here. A first approach to this is made
in the accompanying paper by Chodera et al. in this issue.49

Apart from the selection of an appropriate coordinate
set, the actual choice of which states to distinguish is, for
complex systems, likely to be related to the process or quan-
tities of interest. Proteins, for example, contain dynamical
processes with a large range of time scales, ranging from fast
methyl rotations to internal side-chain repacking processes
which may last longer than the lifetime of the folded state.50

The time scale of interest is determined by the process or
quantities of interest which then determines how many meta-
stable states may be distinguished at this time scale. How-
ever, it may not be necessary to actually distinguish all these
metastable states in the model, because some slow processes
may not be coupled to the process of interest. Consider the
example of side-chain flips or repacking in proteins, which
may occur on any time scale from picoseconds to the life-
time of the native state. If the dynamics of some ligand re-
lease is the process of interest, then there may be side-chain
motions in regions that are distant from the binding site
which are not significantly coupled to the product release
process. Thus a good kinetic model for the product release
process would not require the explicit treatment of these un-
coupled processes. In fact, treating them explicitly is unde-
sirable because each uncoupled process will at least double

the number of states to be distinguished in the model and
therefore would lead to worse statistics in each individual
state. It may thus be generally desirable to distinguish states
according not only to their lifetimes but also to their corre-
lation with some user-defined target properties. The develop-
ment of such an adaptive analysis method is one of the meth-
odological challenges for the future.
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