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Abstract

In technical chemistry, systems biology and biotechnology, the construc-
tion of predictive models has become an essential step in process design
and product optimization. Accurate modelling of the reactions requires
detailed knowledge about the processes involved. However, when con-
cerned with the development of new products and production techniques
for example, this knowledge often is not available due to the lack of exper-
imental data. Thus, when one has to work with a selection of proposed
models and the main tasks of early development is to discriminate these
models. In this article, a new statistical approach to model discrimination
is described that ranks models wrt. the probability with which they re-
produce the data. The article introduces the new approach, discusses its
statistical background, presents numerical techniques for its implementa-
tion and illustrates the application to examples from biokinetics.
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2 1 Introduction

1 Introduction

Modelling in general has become a substantial part of process design in techni-
cal chemistry and biotechnology during the last years. Detailed and predictive
models, focusing on product properties and safety aspects, give the chance to
successfully encounter the increasing competition on the global market by multi-
objective optimization of processes and process integration models in contrast
to global mass balance modelling of former years.

This basically requires an accurate modelling of chemical kinetics, ranging from
standard mass products to sophisticated polymer products and biomolecules.
Such kinetic models describe the reactions and reaction rates between species in
a reactor on the basis of elementary reaction steps. The total reaction scheme
(including side reactions and species that are both not directly measurable by
experiments) with its rates and parameters is the essence of modelling work in
kinetics.

The type of parametric and deterministic models exclusively considered in this
article are D−dimensional initial value problems characterized by a set of or-
dinary differential equations (ODE)

d
dt

y(t) = f(y(t), θ), y(t0) = y0. (1.1)

with initial values y0 and parameters θT = (θ1, . . . , θj , . . . , θP ), which deter-
mine the dynamical behavior. f is called the right-hand-site (RHS) of the
model. This type of model is usually being used in chemical reaction kinetics,
biokinetics, systems biology or polymerization processes. Its solution at time t
is denoted by Φt

θy0.

Assume that experimental data of the system under consideration is available
at times tT = (t1, . . . , ti, . . . , tN ). The data dT = (d(t1), . . . , d(tN )) in general
corresponds to measurements of model sensors d = G(y). For simplicity one
may assume that d means some (if not all) of the components of y. In the
following all components of the data are considered. Moreover, one has to take
into account that every single measurement will have a certain measurement
error, i.e., every measurement d(ti) comes along with an error δd(ti). Typically,
this error is not known explicitly. One may interpret the measurement as a
single realization of a normally distributed random variable: its expectation
value is identified with d(ti), and the deviation δd(ti) from the expected values
is characterized by its standard deviation σd(ti). In the following, the corre-
sponding variances σ2

d are abbreviated by (σ2
d)

T =
(
σ2

d(t1), . . . , σ
2
d(tN )

)
.

However, in innovative applications, rare educt species and new production
techniques are preventing to simply employ kinetic approaches or even reaction
parameters from known processes. Even worse, in rapidly evolving fields like
biokinetics, the experience with comparable processes is very limited and in
many cases not available as quantitative knowledge. Instead, it is often neces-
sary to identify a new, reasonable model and adapt the respective parameters
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on the basis of a rather limited number of experiments - in a short cycle time.
At the very early stage of such a modelling process, the knowledge about the
kinetics is as low as the required details of a model. Consequently, the classical
textbook situation of model calibration, where merely fine tuning seems to be
necessary, is only one extreme constellation in any modelling process. The main
part of modelling, however, requires to work with model ideas, model alterna-
tives of comparable quality, rough checks of the reasonability of a modelling
approach, parameter estimation for intermediate models, or decisions about
further experiments putting doubts on certain models.

The problem of facing many proposed models – without any kind confirmation
of a single one – heavily surfaces, f.e., in the field of biokinetics. Numerous
experiments consist out of many reactions with more than two reactants and
catalytic components. Therefore, a huge pool of complex model candidates
arises, which may differ in the number of identified reactants, parameters or
catalytic components. Due to these circumstances, having an appropriate cri-
terion for model selection is necessary to discriminate dynamical models of the
form (1.1). To be more precise, if the RHS f , the initial values y0 and repeated
measurements {d(l)(t1), . . . , d(l)(tN )}m

l=1 are given, a concept of measuring the
deviation between model and data by means of a functional of the following
form

F(θ) = deviation between
(
d(t1)(l), . . . , d(tN )(l)

)T and
(
Φt1

θ y0, . . . ,Φ
tN
θ y0

)T
(1.2)

is sought. There, a deviation can be understood in a very broad sense, ranging
from, f.e., weighted residua to overlaps of probability distributions, as it will be
demonstrated in this article.

This article is organized as follows: First, the general perspective of model
discrimination is reviewed. Next, a new statistical approach to model discrim-
ination is introduced where models are judged according to their probability
to possibly describe the available data. Next, it is described how the new dis-
crimination tools can be realized algorithmically and how the resulting needs
can be integrated into available software platforms used in industrial modelling.
Finally, the new approach is applied to some simplified examples from bioki-
netics. In the appendix, a brief review about the most influential approaches
to model discrimination is presented, accompanied by some motivating remark
to use the overlap.

2 The overlap concept

2.1 Some preliminaries on model discrimination

From a more abstract point-of-view, one can characterize the existing ap-
proaches to model discrimination using the subsequent criteria [26, 31]:

(D1) Falsifiability : whether there exist potential observations that are incom-
patible with the model,
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(D2) Explanatory adequacy : whether the theoretical account of the model helps
to make sense of observed data but also established findings,

(D3) Interpretability : whether the components of the model, especially its pa-
rameters, are understandable and are linked to known processes,

(D4) Faithfulness: whether the model’s ability to capture the underlying reg-
ularities comes from the theoretical principles the model purports to im-
plement, not from the incidental choices made in its computational in-
stantiation,

(D5) Goodness–of–fit : whether the model fits the observation data sufficiently
well,

(D6) Complexity and simplicity : whether the model’s description of the ob-
served data is achieved in the simplest possible manner.

(D7) Generalizability : whether the model provides a good prediction of future
observations.

The objective of model selection is to choose the very model out of a set of
different ones (or continuum of model complexity) that performs best on future
test data. However, the different discrimination criteria (D1)–(D7) cannot be
applied simultaneously, since they differently validate model–data–deviations.
Presently, there is no and is not going to be a general master strategy: At some
point, the experimenter or modeler has to make some sort of assumption and
interpretation. We review the most prominent approaches to model discrimi-
nation in some detail in the Appendix.

In the next section, it is shown how the model–data–overlap incorporates model
sensitivity into the model ranking process and that it is a suitable tool for an-
alyzing and coping with model uncertainty settings. By assessing the model’s
ability to take on experimental data, the model–data–overlap to be presented
herein follows the discrimination strategy (D1), (D3) as well as (D5).

2.2 General statistical concept

Prior to explaining the overlap concept, some motivating arguments for its in-
troduction as well as its major features are presented.

The core idea of the overlap approach is that the sensitivity of the set of trajec-
tories {Φt

θ,ly0}n
l=1 to changes in values of the parameters θ should play a decisive

role in model selection of models of the form (1.1). This has been already pro-
posed for example in context of model validation (c.f. [35, 36, 38, 37]). However
for model discrimination, this concept is based on the following four insights:

(1) Experimental data is always subject to uncertainty (e.g. random or sys-
tematic measurement errors or variations). Hence data distributions are
better models than seemingly precise data values.
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(2) Parameter estimation can never result in precise values. There necessarily
is uncertainty which at best can be modelled by a distribution of model
parameters.

(3) When considering models of type (1.1) subject to parameter distribution
instead of precisely given model parameter values, we have to deal with
trajectory distributions instead of single trajectories.

(4) Model discrimination for cases of type (3) should be based on the sim-
ilarity between the distribution of the data and the distribution of the
trajectories. A certain measure of this similarity is the overlap to be
defined below.

Without information about the shape of the distribution of the parameters,
model discrimination, based on pure comparison of best fits of the competing
models to the available data, is unsatisfactory and constructions like confidence
intervals or experimental design are even unconvincing. Therefore, the authors
conclude that for model selection approaches that employ distributed parame-
ters, the model parameters θ and at least their variances have to be estimated
within the same step. This is a systematic difference to the so called textbook
model discrimination, e.g. the residuum concept (see appendix) and will be
illustrated in the next figure. The authors call the parameters of distribution
of the model parameters θ the hyper-parameters of the model.

residuum concept:

overlap concept:

data without uncertainty

data with uncertainty

parameter estimation

estimation of parameter distribution

confidence intervals

data uncertainty

model discrimination

model discrimination

Figure 2.1: scheme of overlap concept

The assumption of distributed model parameters θ seems to be quite natural.
In new experiments f.e. some parameters might be hitherto unknown and hence
uncontrolled. Then there is no guarantee to have invariant parameters during
the same measurement. Other parameters might show local inhomogeneities
or are perturbed by non-stationary noise. If the experimenter has accepted
distributed model parameters the systematic difference between measurement
errors as a data property and data deviations by parameter distributions van-
ishes.

2.2.1 Introduction of the overlap-concept

Suppose the measurement process does not provide fixed values for all observed
quantities but statistical distributions instead. This may come from physical or
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chemical properties of the dynamical system, from the required effort in time or
the financial implications of repeated measurements. Consequently if repetition
of the measurement is not advisable or will not improve the result, one should
implement statistical aspects into the models under consideration also. There-
fore, one has to introduce a density πθ governing the statistics of the parameters
in subsequent realizations. The family of densities πθ should be carefully chosen
on basis of prior experiences with the investigated dynamical system. In each
single realization, θ is selected due to πθ resulting in a single trajectory Φt

θy0.
Thus, the parameter density πθ induces a distribution of trajectories Φt

θy0 in
the state space, developing simultaneously from the joint initial state y0. This
model variability, denoted Mt in the following, then has to be compared to the
variability Dt of the measured data.

The expression model variability shall reflect the general ability of the model’s
trajectory to change by means of parameter as well as initial values perturba-
tions. Mt is a positive measure defined as (c.f. [29])

M : Γ × R → [0, a] a ∈ R
+ \ {0}

Mt(A) =
1

C(t)

∫
Θ

1A(Φt
θy0)πθ dθ (2.3)

for any set A ⊂ Γ, where Γ denotes the entire state space, πθ the parameter
density. The characteristic function 1A(x) is given by

1A(x) :=

{
1 if x ∈ A
0 else

In order to interpret (2.3) later as a distribution, one needs to normalize the
a function C(t) ∈ L∞1. By that, one also attaches a stochastic interpretation
to the purely deterministic ODE-setting of (1.1). The definition of Dt is analo-
gously to that of Mt, but realized by means of data variances. For illustration
consider figure 2.2.

t

y(t)

Figure 2.2: Model variability validates model–data–reproducibility: The black dots are mea-
sured data d(t) with attached error bars representing some confidence interval of the data
variability Dt. Each measured data point can be explained by a single trajectory, representing
a realization for θ from πθ. Additionally, these trajectories also ”pass” through confidence
intervals of other data points and therefore validate the corresponding data also.

1It will be specified later in section 2.2.2.
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Matching model variability and data spread reveals the local information of
a proper model–data–fit. In other words, the overlap of the model variabil-
ity Mt and the data variability Dt describes the goodness of data–model–
reproducibility. Having a pool of proposed models, one can discriminate be-
tween them by picking the one with the highest overlap value.

overlap

data

z

variability Mt

density
model

variability Dt

Figure 2.3: Overlap of model variability Mt and data variability Dt of measured data at a
single time t. As described in section 2.2.2 Mt and Dt are normalized wrt. the Euclidean
norm.

Consequently at the very beginning of the modelling process the overlap ap-
proach is useful to guide a refinement procedure, starting with some noisy data
and a bunch of candidate models: Usually one wants to estimate the parameters
for each model, perform additional experiments and investigate the changes of
the model–data–fit, when new data is added. According to the overlap approach
one can thin out the set of models step by step by estimating the parameter
distributions and comparing the changes of the model–data–overlap for each
candidate model.

Within the overlap approach, the local parameter estimation is an embedded
part within model validation and discrimination. The hyper-parameters of the
density πθ of model parameters are chosen, such that the overlap between data
and model FO

FO = overlap of data and model variability (2.4)

is maximal. In contrast to the well established parameter estimation methods
as least-square or maximum likelihood estimation, not the global sum of point-
wise distance between the model’s trajectory and data is considered, but local
matching of the corresponding distributions.

In the following one has to distinguish between the residual case and the overlap
case. Let θR be the optimal model parameters in the sense of FR, the deviation
functional in the sense of (1.2) of the least-square approach2. Associated with

2This and others goodness–of–fit functionals are introduced in the Appendix
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them is a single trajectory, yR(t) = Φt
θRy0. In contrast, one has to consider

the optimal distribution Mt(πO) resulting from the optimal parameter of the
density πO of model parameters. If one wants to select a single trajectory
representing this distribution, one should take the average trajectory

yO(t) = E
[Mt(πO)

]
, (2.5)

where the expectation E[·] is taken for each instance t separately.

To illustrate the conceptual difference between the overlap FO and the classical
residual approach FR, consider two different proposed models like in figure 2.4.

x(t)

t

better overlap (FO)

better residuum (FR)

Figure 2.4: Different residual and overlap interpretation: The 95 %-confidence intervals of
the data variability Dt are symbolized by error bars, the inner 95 %-quantile of the model
variability Mt(πO) by dashed strips around each fitted trajectory. A smaller residuum (lower
model) does not imply a large model–data–overlap (upper model) and vice versa.

The lower one of the proposed models shows the smaller residuum, but due
to its low model variability, it does not reproduce the data distributions as
well as the other one. In the residual framework, that model is preferred. In
the overlap interpretation, however, one would prefer the other one with the
higher model variability. Due to its higher model variability it matches the data
distribution better and has therefore the higher capability of reproducing the
data distributions.

Compared to figure 2.4, a more extreme setting is shown in figure 2.5. Due to
non-existing model variability for the left model at the measuring point t = 1,
there is a vanishing probability to reproduce any data given by Dt=1. Assuming
a negligible measurement error, the deviation of the deviation between the
model and data means cannot be explained by parameter sensitivity. This
interpretation challenges the quality of the model. On the other hand, the
right model is capable of taking values that can be justified by Dt=1.
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Figure 2.5: In both examples, the residuum is the same. The ability to reproduce the data is
not given in the left, but in the right model.

Both illustrations show that the distance between data and model alone does
not give sufficient information about the quality of the model–data–fit in the
sense of reproducibility.

Next, a general advantage of the overlap approach in comparison to the
distribution-free least square method is described. Consider the variance of
the least-square-estimator, as introduced in (A.34):

Var(θ̂) =
(
JTΣDJ

)−1

Since the variance-covariance matrix ΣD of the data is symmetric and the
variance is invariant under orthogonal transformation, one can express Var(θ̂)
by means of the eigenvalues of

(
JTΣDJ

)−1. Hence the variance of the estimator
θ̂ is proportional to the empirical variance of column entries of J (c.f. [5]).
Suppose now one has to minimize FR(θ) with the least square method. Than for
least square approaches, the influence of data variances σd,j(ti) on the estimator
θ̂j is the same for all i during the optimization, whereas the overlap method will
conduct a local optimization of the objective functional for every single time
step ti. Hence the optimization solution within the residual framework, but not
the overlap approach, is sensible to outliers.

2.2.2 Overlap notation

Analytically, the overlap will be defined as the scalar product of two measures:
the model variability Mt and data variability Dt at time t. To this end, it is
claimed that the first and the second moment of Mt and Dt exist and that the
scalar product of the measures is limited by 1. Consequently, it is imposed that
Mt,Dt ∈ L2. Therefore by the Cauchy-Schwarz inequality one gets

FO(t) := 〈Mt,Dt〉2 ≤ ‖Dt‖2 ‖Mt‖2 ≤ 1. (2.6)
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To ensure the required normalization, for the model variability Mt at time t
introduced in section 2.2.1

Mt(A) =
1

C(t)

∫
Θ

1A(Φt
θy0)πθ dθ, (2.7)

the function C(t) is chosen such that ‖Mt‖2 = 1 for each t. The choice of the
Euclidean norm ‖ · ‖2 is appropriate for most of the data sets. Hence in the
Kolmogorov sense (2.7) it is the probability that the data distribution can
be reproduced by the model wrt. its parameter distribution. In other words,
within the overlap approach one chooses the very model whose probability to
reproduce the data is the highest.

Unless the experimental setting dictates something else, the data distribution
is assumed to be normal with N (µd(t), σ2

d(t)). Then Dt is defined as

Dt(x) ∼ 1
4
√

πθ

√
σd(t)

e
− (x−µd(t))2

2σ2
d
(t) . (2.8)

To calculate (2.7), one needs to model the parameter density πθ. For illus-
tration it is a convenient assumption to use a normal density also such that
πθ ∼ N (µθ, Σθ) with variance-covariance matrix

Σθ =

⎛
⎜⎜⎜⎜⎜⎝

σ2
θ1

0 . . . . . . . . . . 0
0 σ2

θ2
0 · · · 0
. . .

0 · · · 0 σ2
θP−1

0
0 . . . . . . . 0 σ2

θP

⎞
⎟⎟⎟⎟⎟⎠ . (2.9)

and expectation value µθ. In order to propagate the variances, the symmetric
variance-covariance matrix is transformed into its diagonal form. This causes
no constraints, since variances are invariant wrt. orthogonal transformation. In
contrast to classical deviation functionals like FR or FM in (A.31) or (A.35)
respectively, the overlap functional FO does not merely depend on the data
d(t) and model trajectory values Φt

θy0, but also directly on the measurement
standard deviations σd(t) as well as on the parameter variances Σθ:

FO = FO(µθ,Σθ, µd(t), σd(t)). (2.10)

In the context of the overlap optimization, parameter estimation (PE) means
to choose the parameters µθ and Σθ in such a way that the overlap FO is maxi-
mal. Conversely, determining the model–data–overlap and validating the model
wrt. the data means to conduct a PE. In comparison to the estimation of param-
eter uncertainties by means of confidence intervals a posteriori, the estimated
parameter values µθ and their variances Σθ are a result within the process of the
overlap–model ranking and not independent from the proposed models. This is
different compared to the classical estimation and discrimination approaches,
where PE and model discrimination are conducted in successive steps. More-
over, in the overlap approach the parameter variance is an indication for the
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parameter sensitivity. Hence the overlap model discrimination concept employs
the effect of a parameter perturbation δθ

θ0 �→ θ0 + δθ

on the model trajectory

y(t) �→ y(t) + δy(t).

2.3 Linear propagation of parameter variability

As mentioned in section 2.2.1, the parameter θ is regarded as a normally dis-
tributed random variable that is determined by πθ ∼ N (µθ,Σθ). For complex
scenarios, it is very challenging to sample the entire parameter space and prop-
agate the resulting ensemble of trajectories within a reasonable and justifiable
amount of time. Since the overlap functional has to be evaluated several times
within the overlap optimization, the exact but nonlinear propagation may re-
quire tremendous computation time.

Therefore, one approximates the model variability Mt by considering the lin-
earized propagation of the initial parameter perturbation δθ by means of the
sensitivity matrix P

δy(t) = P (t; θ0) δθ, (2.11)

which is the Jacobian of the flow with respect to the parameter θ

P (t; θ0) = Dθ Φt
θy0|θ=θ0 = J(θ0, t) (2.12)

and fulfills the sensitivity equation for initial value problems (1.1)

P ′(t; θ0) =
∂

∂y
f(y(t), θ0)P (t; θ0) +

∂

∂θ
f(y(t), θ0)|θ=θ0

with P (t0, θ0) = 0 (c.f. [15]).

Since the initial parameter distribution is supposed to be normal and is prop-
agated linearly, the gained model variability is therefore normal also (c.f. [6]).
Consequently, it suffices to propagate its mean and its standard deviation
(c.f. [10]). In the implementation to be presented, the mean is exactly propa-
gated by the trajectory Φt

θy0, while the variance-covariance matrix of the model
variability is given by

ΣM(µθ,Σθ, t) = J(θ, t)Σθ J(θ, t)T . (2.13)

The variance of the kth dimension of the model variability at time t is the kth

diagonal entry of the variance-covariance matrix in (2.13) and is denoted by
Σk(µθ,Σθ, t)2. They are calculated by using (2.13) and (2.9)

Σk(µθ,Σθ, t)2 =
P∑

j=1

(
∂

∂θj

(
Φt

θy0

)
k

)2

σ2
θ,j

∣∣∣∣∣
θj=θ0,j

. (2.14)
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Consequently, the linear overlap3 functional FL at time t is given by

FL(Φt
θy0,ΣM(µθ,Σθ, t), µd(t), σd(t)) =

D∑
k=1

√
2 σd,k(t)Σk(µθ,Σθ, t)

σd,k(t)2 + Σk(µθ,Σθ, t)2
exp

{
− (

Φt
θy0 − dk(t)

)2

2[σd,k(t)2 + Σk(µθ,Σθ, t)2]

}
(2.15)

The linear overlap FL in (2.15) is calculated in each direction of the state space,
since only information about the data is available.

2.4 Illustration for linear initial value problems

For a special class of systems (1.1), namely linear initial value problems,

d
d t

y(t, θ) = J(θ) y(t) + b(θ) with y(0) = y0, (2.16)

the linear overlap can be calculated using the analytical solution

Φt
θy0 = exp (tJ(θ)) y0 + J(θ)−1 (exp (tJ(θ)) − 1) b(θ). (2.17)

For reasons of better readability, the dash ’ shall denote the partial derivative
with respect to θ and the parameter dependency with respect to θ is omitted.
Then the flow derivative, needed for ΣM(µθ,Σθ, t) in (2.14), can be written as

∂
∂θ Φt

θy0 = exp (tJ)′ y0 − J−1J′J−1 exp (tJ) b + J−1J′J−1 b
+ J−1 exp (tJ)′ b + J−1 exp (tJ) b′ − J−1 b′.

(2.18)

Example. The two proposed models M1

(
Ẋ

Ẏ

)
=

( −2θ 2
−1 2

) (
X
Y

)
+

( −6
1

)
,

(
Y (t0)
Y (t0)

)
=

(
8
2

)
, (2.19)

and model M2

(
Ẋ

Ẏ

)
=

( −2 2θ
−1 2

) (
X
Y

)
+

( −6
θ

)
,

(
X(t0)
Y (t0)

)
=

(
8
2

)
, (2.20)

are to be discriminated. Both models coincide for θ = 1 (see figure 2.6).

3In order to distinguish between the overlap calculated with a linearly propagated model
variability to the one with exactly propagated one, the terms linear as well as nonlinear
overlap are introduced.
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Figure 2.6: Model and data plot: For θ = 1, the trajectories of M1 and M2 coincide. These
trajectory values were taken to produce the data by perturbing them. The data is symbolized
by points with attached error bar.

The data is produced artificially by taking trajectory values for θ = 1 at
some instances tk and perturbing them. The variance for perturbing at
each tj was set to be proportional to the variance of the model variability
ΣM(µθ = 1,Σθ = 0.15, t = tj) of model 1 at each point tj . Further, the
virtual experimenter assumes the data standard deviations for the X- and Y -
component to be σX(t) = σX =

√
0.25 and σY (t) = σY =

√
0.75, respectively.

After this generation of data, the target functionals FL from (2.15) as well as
FR from (A.31) were numerically optimized with respect to µθ,L, ΣθL and θR,
respectively.

µθ,L Σθ,L FL in X FL in Y FL total
M1 0.934 0.367 83.1 % 72.3 % 77.7 %
M2 0.744 1.433 58.4 % 74.4 % 66.4 %

θR σR ci gof. FR
M1 0.910 0.036 0.073 0.969 0.196
M2 0.913 0.024 0.048 0.974 0.178

Table 2.1: Linear overlap parameter estimation by FL and residual parameter estimation FR
for model M1 and M2. (notation: σR = standard error, ci = half length of the 95 % confidence
interval, gof. = goodness of fit in the classical χ2

p-sense),

The linear overlap optimization by FL favors model M1 over M2. The results
show significantly different estimated values of µθ,L and Σθ,L for both models.
Whereas µθ,L for model M1 is reasonably close to 1, the parameter used to
produce the data, µθ,L for model M2 differs significantly and shows a very high
parameter variance Σθ,L in addition.

In contrast, the residual case leads to a different conclusion. For both models,
the estimated parameters θR are close together, the residual FR as well as the
goodness of fit (gof.) indicate almost the same quality of fit. Only the standard
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error σR, corresponding to the diagonal entry of
(
JTΣ−1

D J
)−1 defined in (A.34),

distinguishes the parameter θR in M2 to be estimated more precisely. However,
in neither case, the 95%-confidence interval does include the parameter θ = 1,
originally used for perturbing the data. At last, the example shows the different
information and interpretation of the parameter variance Σθ,L on the one and
the standard error σR on the other hand. In the overlap concept, the model
variability Σθ,L for θ is smaller for model M1, whereas the relation is changed
in the residual framework, where the standard error σR is smaller for θR of
model M2.
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Figure 2.7: Optimal overlap of data error (symbolized by error bars) and linear model vari-
ability (symbolized by the 95%-confidence strips) for model M1 (top two pictures) and M2

(bottom).

The concept of model–data–fitting for the presented example is illustrated in
figure 2.7. In both components, the qualitative course of the model variability
strips is different. For component X of model M1 and component Y of model
M2 the parameter sensitivity vanishes at some instances, whereas for other
components, the strips are diverging. Due to the extremely diverging strips for
the X-component of model M2 the overlap compared to M1 is worse.

2.5 Comparison to non-linear propagation

In section 2.3, it was argued that in the typical application setting, the long-
lasting computation time prevents us from computing the exact parameter dis-
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tribution propagation for arbitrary models. This consideration has led us to the
linear overlap functional FL of (2.15). For very small systems, however, like
model M1 and M2, it is justifiable to calculate FO instead of FL by sampling
the parameter density πθ, propagating the trajectories and re-assembling the
model variability M as it is described in (2.3).

If we take the model parameter θ and its variances Σθ,L wrt. µθ,L from ta-
ble 2.1, the resulting overlap FO is – as expected – different to the one of FL.
As shown in table 2.2, in some cases the exact propagation yields a larger, in
other ones a smaller value FO compared to the approximation FL.

For the shown example, the model variability Mt was calculated by means of
parameter sampling and consequent trajectory calculation. Due to the simple
structure of the example, a simplex algorithm was used as the optimization
algorithm. In each iteration step of the optimizer, a sample of 500.000 param-
eters was drawn. Then for each drawn parameter, the ODE in question (2.19)
or (2.20) was solved, and then Mt of (2.7) assembled.

in X in Y total
M1 for FL 83.1 % 72.3 % 77.7 %
M1 for FO 79.6 % 73.1 % 76.7 %
M2 for FL 58.4 % 74.4 % 66.4 %
M2 for FO 47.8 % 61.7 % 54.8 %

Table 2.2: Comparison of linear overlap FL and nonlinear overlap FO using the optimal
parameters for FL in table 2.1.

To understand the reasons of these deviations, one can, f.e., compare the stan-
dard deviations of the linearly and nonlinearly propagated model variability
as shown in figure 2.8. In some cases the deviations almost coincide (c.f. Y -
component of M1), are moderately diverging (c.f. X-component of M2 or X-
component of M1) or structurally differ (c.f. Y -component of M2).
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Figure 2.8: Comparison of the standard deviations of the linear and nonlinear model variability
for the models M1 and M2.

Not only the standard deviations can differ, but also the model variability M
can become highly non-normal. The normal property, however, was essential in
the construction of FL. In some cases, the normal property of the distribution
is maintained as shown in figure 2.9.
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Figure 2.9: Example where non-linearly propagated model variability can be regarded as
normal. Two examples for the state space in Y for model M1 (left) and M2 (right) are shown.

In other ones, the nonlinearly propagated model variability M is highly non-
normal, as exemplarily seen in figure 2.10.
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Figure 2.10: Examples where the non-linearly propagated model variability cannot be regarded
as normal.

The documented effects result in different overlaps as shown in figure 2.11. The
general qualitative overlap curves of the linear and the non-linear overlap are
almost the same. The X−components in both models show a good model–data–
overlap at the beginning, in the case of model M1 roughly 1. For model M1 it
is maintained over the time course, whereas it is deteriorating for model M2.
For Y −component for both models show a small model–data–overlap at the
beginning and at the end, but a large one in the middle. The non-linear effects
of the model variability propagation seems to have a larger impact for M2. In
case of model M1, the approximated model variability seems to be sufficient,
very good coherence can be seen there, especially in the Y -component of M1.
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Figure 2.11: Overlap curves over time for M1 and M2 and each component: The linear overlap
FL and the ”exact” overlap FO are shown.

Non-surprisingly, the different propagation behavior results in different optimal
parameters. The resulting optimal parameters for FL and FO are documented
in table 2.3. The optimal parameters can differ significantly (see µθ,L versus
µθ,O for M2). Nevertheless, the qualitative result is the same: the model M1 is
discriminated to be the appropriate one.

µθ,L Σθ,L FL in X FL in Y FL total
M1 0.934 0.367 83.1 % 72.3 % 77.7 %
M1 0.916 0.312 80.0 % 73.2 % 76.8 %

µθ,O Σθ,O FO in x FO in y FO total
µθ,L Σθ,L FL in X FL in Y FL total

M2 0.744 1.433 58.4 % 74.4 % 66.4 %
M2 0.978 0.540 47.9 % 74.2 % 61.3 %

µθ,O Σθ,O FO in x FO in y FO total

Table 2.3: Comparison of PE results of linear overlap FL and ”exact” overlap FO for models
M1 and M2.

3 Algorithmic realization of the overlap concept

The calculation of the overlap FO according to (2.6) includes the calculation
of the model variability in (2.7). As mentioned before, this would require to
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construct a statistically large trajectory bundle. For practical purposes, the
consideration are restricted to the linear overlap concept introduced in sec-
tion 2.3, thus replacing FO by FL of (2.15). Due to simplicity, the notation
is slightly redefined from now on: ∆θ denotes the diagonal entries of Σθ, with
Σθ = diag

(
σ2

θ1
, ...σ2

θj
, ...σ2

θP

)
and θ0 is the expectation µθ,L.

The algorithmic problem is to determine the model parameters θ and their
variances Σθ,L wrt. µθ,L so that the linear overlap is maximal, i.e.

(θ0, ∆θ) := arg max
(µθ,L,Σθ,L)

(FL(µθ,L,ΣM(µθ,L,Σθ,L, t), µd(t), σd(t))) . (3.21)

In principle one could adopt very different strategies to solve this minimization
problem, f.e., stochastic techniques like simulated annealing or other approaches
to global optimization. However, the costly evaluations of FL suggest the ap-
plication of a Gauss-Newton-type minimization, more specifically a (damped)
Gauss-Newton algorithm with statistical dimension reduction (c.f. [18]).

Let F be the matrix with

(F )ik = overlap at time ti in the kth component
= 〈(Dti)k , (Mti)k〉 (3.22)

which is linked to the linear overlap functional FL by the matrix norm ‖.‖
FL = ‖F‖.

Further, let z abbreviate

z = (θ, ∆θ).

Then the general Gauss-Newton-algorithm solves a series of linearized problems

‖JF (z)∆z − F(z)‖2 = min
∆z

(3.23)

with ∆z being an update for znew = zold + ∆z and JF being the (component-
wise) Jacobian of F, defined in (3.22), wrt. z (c.f. [15]).

In comparison to the standard application of (damped) Gauss-Newton strate-
gies to residuum minimization ([14]), one faces a new challenge: Due to the
dependency of the overlap on the variances ΣM(θ0, ∆θ, t) of the model, the
parameter variances ∆θ are to be optimized simultaneously. Consequently, (a)
the dimension of the optimization problem is doubled in contrast to residuum
optimization for the same model, (b) statistical correlations between parame-
ters and the associated numerical problems will be more pronounced (since one
has to expect correlations between a parameter θj and its variance ∆θj), and
(c) one will see that the numerical effort for the evaluation of the Jacobian for
each Gauss-Newton step increases quadratically.

Next, we have to discuss the numerical computations that are necessary to eval-
uate the Jacobian JF of F as given by (3.23) with respect to θ and ∆θ, resulting
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in the composition of J1 representing the componentwise partial derivatives wrt.
to θ and J2 the one wrt. ∆θ.

JF = (J1,J2)

J1 =

[
∂Fik

∂Φti
θ y0

· ∂Φti
θ y0

∂θj
+

∂Fik

∂ (∆θ(ti))k

· ∂ (∆θ(ti))k

∂θj

]
(θ0,∆θ)

J2 =
[

∂Fik

∂ (∆θ(ti))k

· ∂ (∆θ(ti))k

∂σθj

]
(θ0,∆θ)

The computational effort for evaluation of the Jacobian will increase like P 2

(with θ ∈ R
P ) for FL instead like P for the residuum FR. The numerical

evaluation of the derivatives involved is realized by numerical differentiation as
it has been implemented within Presto Kinetics

TM.

Presto Kinetics
4 is a professional software tool used within research and

development. This software package focusses on the modelling and dynamic
simulation of arbitrary kinetic reactions ([42]). It provides general reaction
step patterns for reaction kinetics and biokinetics as well as possibilities for
the input of arbitrary ODE-systems. Its philosophy has also been proved to
be very applicable within research context (c.f. [9, 12, 24, 25]). It contains a
quite general Gauss-Newton framework for parameter estimation for dynamical
systems with damping strategy, convergence monitor, and update strategy as
given in [15, 22]. This framework has been extended to implement and test
the stochastically damped Gauss-Newton approach to overlap optimization as
presented in the following. Details on this implementation will be published in
a forthcoming publications (c.f. [41]).

In order to determine the initial values µθ and Σθ of the parameters and their
variances for the Gauss-Newton iteration, one may, f.e., use box search. In
the following it is assumed that there is a unique (local) maximum of FL in
the vicinity of these initial values. With this preparations, the stochastically
damped Gauss-Newton-algorithm consists of the following steps:

i) Initially set l = 0.

ii) Compute FL(θ(l)
0 ,Σ(θ(l), ∆θ(l), t), µd(t), σd(t)) by means of F. Compute

a set of realizations of the Jacobian JF at (θ(l)
0 , ∆θ(l)) by numerical dif-

ferentiation.

iii) Conduct dimension reduction by means of a truncated singular value de-
composition (c.f. [18]).

iv) Compute the increment ∆z to z by solving

JF (θ(l)
0 ,Σ(θ(l)

0 , ∆θ(l), t))∆zT = FL(θ(l)
0 ,Σ(θ(l)

0 , ∆θ(l), t), µd(t), σd(t))

in the sense of (3.23) thus incorporating the dimension reduction.
4
Presto Kinetics

TM is a registered trademark by Dr. Michael Wulkow CiT GmbH
Rastede
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v) Set

(θ(l+1)
0 , ∆θ(l+1)) = (θ(l)

0 , ∆θ(l)) + κ ∆z

with damping parameter κ. Verify monotony as reported in [22].

vi) Test convergence by means of the stopping criteria given in [14]. If not
converged, set l = l + 1 and iterate from ii) onwards.

4 Numerical experiments

The overlap concept will now be applied to discriminating biokinetic models.
Biokinetics describe chemical reactions performed by and between microorgan-
isms like bacteria (c.f. [7]). To this end one has to conduct a model ranking by
means of numerically prepared data. The data were generated by one model
representing a dynamical system with distributed model parameters.

A simple example for a dynamical system modelling such biological processes
is the following example

d
dt

X(t) = µ(X(t), S(t)) · X(t) − kd · X(t) (4.24)

d
dt

S(t) = −µ(X(t), S(t))
yxs

· X(t) − ms · X(t). (4.25)

S denotes the substrate that is transformed into biomass X, where S(t) and
X(t) denote the associated concentrations. The parameter yxs represents the
ratio of mass of cells formed to mass of substrate consumed, kd the deterioration
rate of the biomass and ms the one of the substrate that is consumed by the
biomass. The rate of the transformation process is described by the kinetic
µ(X, S). The following three types of kinetics

µ(X(t), S(t)) = µmax · S(t)r (4.26)

µ(X(t), S(t)) = µmax · S(t)
ks + S(t)

(4.27)

µ(X(t), S(t)) = µmax · S(t)
ks · X(t) + S(t)

(4.28)

are to be discriminated. The parameters µmax denote the maximal growth rate,
ks the half-saturation concentration. The kinetics given in (4.27) and (4.28)
are known as the Monod and Contois kinetics, respectively (c.f. [7]). The third
candidate in (4.26), the action mass kinetics, does show a significantly different
behavior, f.e., asymptotically one observes S → ∞. It therefore can be consid-
ered as a certain case of a chemically inappropriate model.

Now the overlap model ranking for the three models (4.27), (4.28) and (4.26)
is illustrated. As in section 2.4, artificial data, generated on the basis of the
Monod kinetics, was used again. The overlap is calculated at 14 time points:
t1 = 0.1, . . . , t14 = 1.4. In order to generate the data, 14 sets of values of
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model parameters θ were randomly drawn according to a given normal param-
eter density πθ, each for every time point. This is also shown in the last two
lines of table 4.4 under ”original”. Next, the model for the Monod kinetics is
evaluated wrt. the time points and sets of parameter values. Then the artificial
data points were set to be d(t1) = Φt1

θ(1)y0, ..., d(t14) = Φt14
θ(14)y0. Further, the

corresponding data variances σ2
d, which were not provided by the model, were

set to be σ2
d(ti) = 0.15 for all i = 1, ..., 14.

The following computations have been performed by Presto Kinetics, as
mentioned in section 3. One will see, that even though the Jacobians JF in
the Gauss-Newton-steps (3.23), are relatively small for our investigated mod-
els, namely of dimension 10 × 28 corresponding to the number of parameters
(including their variances) times the numbers of measured data for each dimen-
sion, the main numerical problem are the mentioned correlations in the matrix.
This is going to be investigated at the end of the this section.

For the generated data, the linear overlap FL was optimized and the parame-
ters µmax, kd, yxs, ms, ks and r as well as their variances were estimated. The
results of the PE for the linear overlap optimization are shown in table 4.4.
Additionally, a classical residual based PE with respect to FR was conducted.

model entity µmax ks or r yxs ms kd

(4.26) expectation µθ,L 0.331 0.999 0.573 0.254 1.213 · 10−2

variance Σθ,L 0.076 0.150 0.094 0.648 1.132 · 10−5

parameter θR 0.633 0.397 0.564 1.345 2.179 · 10−4

standard error σR 0.181 0.239 0.222 0.393 1.014 · 10−3

(4.27) expectation µθ,L 1.386 0.737 0.573 0.091 6.102 · 10−2

variance Σθ,L 0.203 0.084 0.101 0.048 3.030 · 10−3

parameter θR 1.262 0.793 0.613 0.377 9.208 · 10−6

standard error σR 0.262 0.639 0.125 0.278 1.236 · 10−4

(4.28) expectation µθ,L 2.028 0.981 0.525 0.059 9.872 · 10−2

variance Σθ,L 0.421 0.001 0.222 0.003 1.145 · 10−2

parameter θR 1.560 0.902 0.819 0.791 1.106 · 10−4

standard error σR 0.394 0.779 0.155 0.192 1.334 · 10−3

original expectation µθ,L 1.400 0.730 0.600 0.090 6.000 · 10−2

variance Σθ 0.100 0.080 0.100 0.010 1.000 · 10−2

Table 4.4: Linear overlap parameter estimation wrt. FL and classical parameter estimation
wrt. FR for biokinetics (4.26), (4.27) and (4.28).

As expected, the parameters θL including their variances Σθ,L, were best es-
timated for the Monod kinetics, the ones for Contois stayed reasonable close,
whereas the one for mass action kinetics differ in magnitude compared to the
parameters used to generate the data. Figure (4.12) shows the trajectories cal-
culated for (4.27) corresponding to the expectation determined by πθ.
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Figure 4.12: Monod kinetics with the prepared data. The substrate concentration S(t) shown
in the decreasing, the biomass concentration X(t) in the increasing trajectory. The error bars
denote the 95% confidence interval of the data.

The estimation methods by FL on the one and by FR on the other also allow
for different interpretations in the parameters. For the Monod kinetics, the pa-
rameter kd shows an influence in the overlap setting, but was estimated lower
by the residuum by the factor 1000.

Returning to the numerical problems, one should recall that the Gauss-Newton-
algorithm described in section 3 converges locally. Hence, one does need a qual-
ified guess for the starting points for the algorithm. The problem surfaces in the
context of overlap estimation even more, since the target functional for our ap-
plied kinetics is nonlinear and the θ(l) and ∆θ(l) interact with each other. The
numerical simulations show that these correlations affect the numerical con-
dition of the Gauss-Newton-algorithm as well as the problem of identification
dominant model parameters. The authors call a model parameter dominant,
if and only if whose values dominate the dynamics of the model. In order to
find uncorrelated and dominant model parameters, it shall be mentioned that
no apriori knowledge about parameter correlations wrt. the nonlinear model
under investigation is available. Moreover, one expects the parameter correla-
tions to be dependent on the choice of πθ. Hence, it is reasonable to identify a
set of dominant and pairwise statistically model parameters by analyzing the
dynamics of the model as a preliminary step in model ranking. This prelimi-
nary step will be the subject of further investigations.

Since the parameters gained by the overlap estimation are assumed to be of the
same order of magnitude, a qualified guess proved to be the estimated param-
eters θR by a least-square estimation as described in A.31. The starting values
for the parameter sensibility Σθ could also be chosen to be the estimated pa-
rameter standard deviation σR. This choice provides an acceptable convergence
of the overlap optimization. Choosing parameters that are far away from this
choice, frequently result in trapping at a local minima.
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In table 4.5, the targets functionals for the parameters estimated above are
documented.

model FL FO residuum
(4.26) in X 68.97 % 62.64 % FR 0.144

in S 58.15 % 58.68 % avg.traj. 4.578
total 63.56 % 60.66 %

(4.27) in X 77.99 % 68.15 % FR 0.159
in S 66.96 % 55.87 % avg.traj. 0.275
total 72.47 % 62.02 %

(4.28) in X 31.71 % 19.76 % FR 0.144
in S 38.45 % 51.52 % avg.traj. 1.329
total 35.09 % 35.64 %

Table 4.5: Linear overlap parameter estimation wrt. FL and classical parameter estimation
wrt. FR for the three kinetics. The values for FO were calculated for the optimized parameters
by FL of table 4.4 to document the deviation between linear and nonlinear propagation. The
residuum in the avg.traj. (left row) is the squared distance between the mean value of the
data distribution and the average trajectory of (2.5) in the overlap setting.

Just knowing the values of table 4.5, the virtual experimenter has to discrim-
inate between the three model candidates. By merely looking at the classical
residuum FR, no model can be favored. However, according to the overlap
information FL, the Contois kinetic of (4.28) ought to be rejected. For the
remaining two candidates, the squared distance between the mean values of the
data distribution and the average trajectory of (2.5), abbreviated table 4.5 by
avg.traj., favors the Monod kinetics (4.27). The average trajectory is closer to
the data for Monod than for the other one. Combining criteria from the residual
on the one and the overlap framework on the other, one is able to discriminate
the given model candidates.

Table 4.5 also documents again the differences between a linear FL and ”exact”
FO overlap calculation. How to improve the nonlinear propagation is subject
of further papers to come (c.f. [23]).

A Some approaches to model discrimination

In this section, a brief review on some of the most influential ideas in model
discrimination is given and compared to the overlap-approach.

Bayesian approach to model discrimination. There also is a Bayesian
approach to model discrimination that has been developed in order to incor-
porate knowledge gained from other sources, namely apriori information about
the parameters or the models (c.f. [30]). This is typically done by Bayesian
parameter estimation [19] or by Bayesian factors [11, 27].

The very idea of Bayesian parameter estimation is to calculate the aposteriori
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distribution for the parameters θ using the Bayes formula:

P [θ | d] =
P [d | θ]∫

Θ

P [d | θ]P [θ] dθ
· P [θ] =

P [d | θ]
P [d]

· P [θ], (A.29)

Here the first factor of (A.29) is the standardized likelihood, P [θ] is the prior
distribution for the parameters and P [d | θ] the likelihood. The conditional
aposteriori distribution of θ can be used in the model discrimation process, if
P [d | θ] was estimated from the data [39].

A Bayesian factor B(Mi, Mj) for two models Mi and Mj is defined as the ration
of the posterior odds and the model priors resulting in the ratio of the model
likelihoods for two models

B(Mi, Mj) =
P [Mi | d] P [Mj ]
P [Mj | d] P [Mi]

=
P [d |Mi]
P [d |Mj ]

, (A.30)

where P [Mi] is the model prior for Mi, P [d |Mi] the model likelihood for model
Mi. The marginal distribution of the data d under model M , the Bayesian
factors, therefore, choose the very model for which the marginal likelihood of
the data is maximum. Again, P [d |Mi] has to be estimated from the data and
P [Mi | d] can be calculated using the Bayes formula.

Residuum and least squares estimation. In parameter estimation and
model discrimination methods, the residual, measuring the distance between
data and model, is used to describe the model–data–fit. For non-constant data
variance σ2

d(ti), most commonly the weighted residual is considered (c.f. [8])

FR(θ) =
D∑

k=1

N∑
i=1

[
dk(ti) − (Φti

θ y0)k

σd(ti)

]2

. (A.31)

The parameter estimation mostly evolves around least squares estimation: the
parameters θ are chosen to minimize the residuum FR. The least-squares tech-
nique can be best illustrated in the case of linear regression models (c.f. [33, 40]).
The relationship between random variables is given in terms of a model, concate-
nating the dependent (endogenous) variable y, which is explained by the model,
and the independent (exogenous, explanatory) variable θ, which explains or pre-
dicts the dependent variables through the model. A linear regression model is
given by

y = Xθ + ε ε ∼ N (0,Σd) (A.32)

where X ∈ R
D×P is the design matrix and ε the random perturbation, that

models the measurement uncertainty.

Assume that the variance of the data is known and given by the variance-
covariance matrix Σd. Then it can be shown (c.f. [8]) that the weighted least
squares estimation for parameters θ can be calculated analytically by

θ̂ =
(
XTΣ−1

d X
)−1

XTΣ−1
d y. (A.33)
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The point-estimator θ̂ in (A.33) happens to be the one with the smallest variance
of all unbiased linear estimators (BLUE-estimator), namely:

Var(θ̂) =
(
XTΣ−1

d X
)−1

. (A.34)

Equation (A.34) can be used to link the variance Σd of the data to the quality of
the estimated parameters θ, which is expressed by the variance of the estimation
of θ̂. Thus (A.34) characterizes the uncertainty of the exact value for the
parameter to estimate. Often the minimization of (A.31) is used to select one
of a pool of competing linear and nonlinear models.

Maximum likelihood estimation (MLE). Within the concept of maxi-
mum likelihood estimation, the likelihood function FM is considered.

FM (θ) = P
(‖d − Φt=τ

θ y0‖
)
, (A.35)

Here τ ∈ R
+ \ {0} is an arbitrary constant value and P a probability measure.

For linear regression models f.e., it measures the probability of the distance
between model and data. Parameter estimation in the context of MLE means:
the parameters θ are chosen to maximize the likelihood function FM (θ).

If the model is linear with respect to the parameters θ and the data errors
are assumed to be normally distributed with known covariance, then the max-
imum likelihood estimation coincides (c.f. [8]) with the weighted least squares
estimation of (A.33).

Discussion. In comparison to the overlap-approach the Bayesian approaches
to model selection abstains from a clear distinction between deterministic input
variables and distributed model parameters as made in (1.1) and favors a com-
plete stochastic concept of a model. Consequently a concept of a model which
differs slightly from (1.1) holds. Furthermore, due to the unavoidable estimation
of distributions in the Bayesian approaches a model of the form (1.1) obviously
can be translated into a sequence of stochastically dependent Bayesian models
in time. Due to this fact, the procedure of model selection in the non-stationary
case expressed in Bayesian terms will cause additional problems for model se-
lection. Instead the authors have demonstrated that the overlap-approach to
discriminate competing models of the form (1.1) is much less complex. Hence,
no Bayesian approaches to model selection was discussed in this paper.

According to [13, 16, 21], there are three main sources of model uncertainty:

(U1) Uncertainty about the structure of the model;

(U2) Uncertainty about estimates of model parameters, assuming that one
knows the structure of the model;

(U3) Unexplained random variation in the observed variables even when one
knows the structure of the model and the values of the model parameters.
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According to [13], the notion of model uncertainty based on nescience in model
structure of (U1) can be broken down further, namely

(S1) Model misspecification (e.g. omitting a variable by mistake),

(S2) Specifying a general class of models of which the best model is a special,
but unknown case or

(S3) Being confronted with two or more models of quite different structures.

Linear regression methods (c.f. [34]) and even more local polynomial regression
methods (c.f. [17]) are popular statistical methods for dealing with the aspects
(U2), (U3) as well as (S2). However, for cases like (U1), (S1) or (S3), the
existing concepts do not allow strong inferences as in the previously mentioned
cases. This circumstance is illustrated in the following for regression models
considering a well known model selection criterion which deals which different
models in the line of (D5) and (D6).

A basic concept for model selection is to employ some very general goodness–
of–fit criteria combined with a penalty for model complexity:

Ftrade off = −2l(θ) + γP, (A.36)

where P the number of parameters and

l(θ) = log P [d|θ] (A.37)

is the log–likelihood, which is maximized for the maximum-likelihood estimation
of the parameters. For γ = 2 this is the Akaike-Information-Criterion (AIC)
(c.f. [1, 2, 3, 4])

FAIC = −2l(θ) + 2P. (A.38)

The AIC is a large sample approximation of the discrepancy between the as-
sumed true model and the fitted model in terms of the Kullback–Leibler

distance (c.f. [28]). Model selection in terms of AIC means to choose the very
model among the candidates that is closest in the Kullback–Leibler sense.
However, the AIC tends to accept the most complex model (c.f. [32]) and is not
always asymptotically constistent. 5

The above type of model discrimination, along with the majority of textbook
model discrimination approaches, consequently starts with a parameter esti-
mation by means of least-square- or maximum likelihood approaches for each
model. Additionally, it is assumed that the noise is of smaller magnitude than
the effect. In a second step, the quality of the goodness-of-fit is evaluated and
optimized if necessary. In this step one has to be aware of over- and underfit-
ting: When a model has too many degrees of freedom the model fit will include
parts of the noise as well as the structure contained in the distributed data.

5Mallow’s Cp-criterion for selection among models with different numbers of parameters is
a special case of AIC.
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Overfitting typically leads to high goodness-of-fit. On the other hand when
the model is not complex enough, it cannot capture the structure in our data,
no matter how much data are available. Underfitting typically leads to bad
predictions due to biased models [20].

Generally speaking, no master approach to the textbook model discrimination,
parameter selection or model validation exists. Instead one hitherto needs a
mixture of tailored solutions, which depends on the stage of modelling, on the
type of model uncertainty one expects and on the strategy one chooses to cope
with it. Hence a unified indicator for localized model ranking, which is able to
deal with small amounts of data is of notably interest.
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