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1 INTRODUCTION

1 Introduction

The role of computational biology has shown a steady increase over the past decades.

With the advancement in computational power and analysis methodology it became

possible to evaluate, compare and characterize large experiments of biological systems.

This in turn made it possible to build models of biological processes that are accessible

for analysis and simulations. Possible simulation scenarios in that context include, e.g.,

cellular signaling pharmacokinetics or molecular dynamics (MD). In particular, molec-

ular dynamics simulations have proven eminently successful in the area of analyzing

protein folding processes, conformational studies of bioactive compounds and virtual

drug design.

In this thesis we perform, to our knowledge, the first MD based conformational study

of the key substrate of the sialic acid pathway. Sialic acids play an important role in

various biological processes, e.g., immune response, tumor metastasis or inflammatory

reactions. Hence, an understanding of the key substrate that accounts for the limiting

step in the pathway is worthwhile to pave the way for designing potential inhibitors

making it possible to interfere the sialic acid synthesis and thus develop treatments for

corresponding diseases. The key reaction is in human conducted by the UDP-GlcNAc-2-

Epimerase/ManNAc-Kinase (GNE) [Hinderlich et al., 1997, Stäsche et al., 1997, Effertz

et al., 1999]. It carries out the, by feedback inhibition, regulated step of epimerizing

UDP-GlcNAc to ManNAc. For a better understanding of the ligand behavior we study

the general conformational dynamics of UDP-N-acetyl-glucosamine (UDP-GlcNAc). We

compare its characteristics in vacuum and in water environment by performing and

analyzing molecular dynamics simulations of it.

As molecular dynamics simulations are indeed widely-used for the study of peptides

or nucleic acids, it can be rather elaborate to use them with unusual molecules due to

missing parameters needed by MD programs to describe a molecule. UDP-GlcNAc is a

representative of such an uncommon molecule as its atom composition is quite unusual

concerning classical MD targets. Therefore it was necessary to determine the missing

parameters before MD simulations could be carried out. Fortunately, the missing param-

eters after could be obtained after surveying the literature and combining two located

parameter sets, enabling the simulation of UDP-GlcNAc in different environments. The

computational costs of simulations depend on system size and simulated time range.

In order to dilute this effect, a distributed computing approach that allows to simulate

different conformers of UDP-GlcNAc in parallel was applied. The simulations resulted
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1 INTRODUCTION

in trajectories of UDP-GlcNAc in vacuum and water environment which where ana-

lyzed in respect of metastable conformations, i.e., geometrical large scale structures that

persit for long periods of time but rarely switch to other conformations. Within this

interpretation of metastability it has been a promising idea to describe the metastable

dynamics of the system by means of a Markov chain which state space represents the

possible conformations and the transition matrix models the ”flipping-dynamics” be-

tween conformations. Furthermore, this understanding of metastability allows for the

application of a hidden Markov model (HMM) based approach to discretize the state

space and the application of Perron Cluster Cluster Analysis (PCCA), a method exploit-

ing the spectral properties of the transition matrix, to identify metastable conformations

of UDP-GlcNAc.

Currently, the correct binding orientation of UDP-GlcNAc to the UDP-GlcNAc-2-

Epimerase is unknown, which renders it difficult to infer knowledge about the reaction

mechanism and crucial amino acids involved in the reaction, hence prohibiting a rational

inhibitor design. To remedy this situation we modelled several potential binding confor-

mations of UDP-GlcNAc into the binding pocket of UDP-GlcNAc-2-Epimerase - E.Coli

(the E.Coli homologue of the enzyme was chosen, because for the human homologue not

crystallographic 3D data is currently available). The modelled binders were evaluated

and tested by means of MD simulations to check if they are stable. To make a conjecture

about which binder orientation is the correct one, the generated water trajectory data

were utilized by screening them for the structurally known UDP orientation.

This thesis is structured as follows, the first part is concerned with the biological

relevance of sialic acids, their synthesis pathway and the resulting importance of UDP-

GlcNAc. This section is followed by a synopsis about molecular dynamics simulations

in general, including a description of the parameterization of UDP-GlcNAc. The third

section explains in detail the performed simulations and their parameters as well as the

procedure used to distribute the computing jobs.

The fourth section elaborates on the hidden Markov model (HMM) approach used

in conjunction with Perron Cluster Cluster Analysis (PCCA) to identify metastable

sets from the simulation trajectories. It also outlines the procedures used to examine

potential binding structures of UDP-GlcNAc.

The simulation and conformational analysis results are presented in section 5. Finally,

section 6 discusses the findings made and in the last section conclusions are drawn and

an outlook for further work is given.
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2 BACKGROUND

(a) General Sialic Acid Structure –

R2 can be replaced by acetyl or gly-

colyl groups; R1, R3,R4 and R5 by

acetyl-, lactoyl-, methyl-, sulfonyl-

or phosphonyl groups

(b) Neu5Ac – most frequent sialic

acid, all hydroxyl groups are un-

modified

Figure 1

2 Background

2.1 Sialic Acids

Sialic acids have first been identified by E. Klenk [1935] in brain tissue and by G. Blix

[1936] in submaxillary mucin. They form an integral part of glycoconjugates in deuteros-

tome1 organisms. Chemically sialic acids belong to the family of acidic amino sug-

ars. The C-2 position always carries a carboxyl group and the C-5 position an amino

group. The most frequent sialic acid, and also precursor of most of the other, is N-

Acetylneuraminic Acid (Neu5Ac), it contains an acetylated amino group at C-5 (Figure

1).

Due to the high number of possible substitutes 1 a)), sialic acids exhibit a great

diversity in structure and function. Their appearance and abundance varies greatly in

different species and tissues [Varki, 1993]. The specific distribution is thereby controlled

by the activity of a wide range of sialyltransferases [Paulson et al., 1989]. In vertebrates

sialic acids occur on glycoproteins (N- or O-linked) as well as in gangliosides, where they

are usually found in terminal position. This is in contrast to bacteria, where they are

normally located in the inner part of polysaccharide chains in bacterial walls.

1Greek: ”second mouth” – superphylum of animals, refers to an important developmental feature

unique to this group
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2.1 Sialic Acids 2 BACKGROUND

Sialic acids are important for various biological functions. Due to their negative

charge and terminal position in glycoconjugates they, one the one hand, contribute to

repulsion effects between cells or cells and extracellular matrix. On the other hand, they

are essential for adhesion processes mediated by sialic acid binding lectins. Biological

processes involving such forces are, e.g., cell migration, tissue development, inflammatory

reactions, tumor growth or the development of metastasis. A well-studied example for

cell migration is the ”rolling” and migration of leukocytes into inflamed tissue. It is

induced by selectins on the leukocyte that recognize specific sialic acids [Lasky, 1995]

at the center of inflammation. An additional characteristic of sialic acids is the ability

to serve as recognition domain for viruses, parasites and toxins [Schauer, 1985, Varki,

1992, Karlsson, 1995]. The specificity of the influence A virus family , for example, is

determined by the sialisation pattern of the host cell. Depending on the virus type it

recognizes and infects cells from specific organsims (e.g. human, chicken, pig) [Ito et al.,

1998]. Only if there is a change (mutation or horizontal gene transfer) in the sialic acid

binding domain of the virus, it is capable of infection ”foreign” hosts. Considering the

bird flu virus, it is exactly such an event everybody is currently concerned about.

Furthermore it has been observed that sialic acids protect parasite micro organisms

and certain cells from recognition by the immune system. For the parasite trypanosoma

cruzi it has been found that it copies the sialisation pattern of his host and is thus

protected from immune system response [Colli, 1993, Tomlinson et al., 1994]. During

embryogenesis sialic acids protect embryonic cells from degradation by the mother im-

mune system [Schauer, 1985]. Apart from protection, sialic acids can also trigger a

specific immune response, e.g., as blood group antigenes [Pilatte et al., 1993].

Sialic acids also play an important role in cancer biology. An increased sialic acid

concentration on tumor cell surfaces often indicates an increased tumor malignity [Fogel

et al., 1983, Hakomori, 1989, Bresalier et al., 1990, Bhavanandan, 1991, Sawada et al.,

1994]. Similar to leukocyte migration, sialic acid mediated adhesion can increase the

invasiveness of tumor cells [Kageshita et al., 1995]. The above mentioned immune system

protection effect sialic acids can have is also be found in various cancers [Dennis and

Lafert, 1985]. For tumor diagnostics sialic acids can serve as well, e.g., for melanoma

detection Neu9Ac2 can be utilized [Fahr and Schauer, 2001]

2.1.1 Sialic Acid Synthesis

Sialic acids are produced via the sialic acid synthesis pathway. It consists of several steps

leading to CMP-Neu5Ac, the common sialic acid precursor. The initial substrate of the
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pathway is the nucleotide sugar UDP-GlcNAc. UDP-GlcNAc has a high abundance in

cells, ranging from 100-200 µM [?]. It is synthesized in a part of the general amino

sugar metabolism. In its role in the sialic acid pathway it marks the beginning of the

metabolism. In this initial step UDP-GlcNAc is processed by the bifunctional enzyme

UDP-GlcNAc-2-Epimerase/ManNAc-Kinase [Hinderlich et al., 1997, Stäsche et al., 1997,

Effertz et al., 1999]. It is the feedback inhibited (by CMP-Neu5Ac) limiting step of the

pathway. The UDP-GlcNAc-Epimerase domain eliminates UDP and epimerises the N-

Acetyl group at the C-2 position to ManNAc in the first reaction step. In the second

step, the ManNAc-Kinase domain phosphorylates ManNAc to ManNAc-6-P.

Figure 2: Sialic Acid Synthesis Pathway

The next steps comprise condensation, phosphate elimination and activation in the nu-

cleus (as depicted in Figure 2), such that the final product is CMP-Neu5Ac.

Being able to regulate the sialic acid synthesis, might permit the development of

treatments for associated diseases. For this reason it is necessary to control the limiting

step of the reaction, the conversion of UDP-GlcNAc to ManNAc. To do so, the design

of an UDP-GlcNAc analogon which can influence the efficiency of the limiting reaction

is desireable.

In this work, we undertake a first step into the direction of finding such an inhibitor

by characterizing the conformational dynamics and potential binding conformations of

UDP-GlcNAc by means of molecular dynamics simulations.
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2.2 Molecular Dynamic Simulations

Molecular dynamic (MD) simulations have become a principal tool in the theoretical

study of biomolecular systems. They are used to calculate the time dependent behavior

of molecules, based on known laws of physics. MD simulations provides insights on

fluctuations and conformational changes of proteins and nucleic acids. They are used

to investgate structure, dynamics and thermodynamics of biological molecules and their

complexes. MD can be understood as an interface acting as a bridge between laboratory

experiments and theory.

Molecular dynamics simulations have first been performed by Alder and Wainwright

[1957], they studied the interactions of hard spheres and could contribute important

insights about the behavior of simple liquids. Two decades later, Stillinger and Rahman

[1974] performed the first simulation of a real system by simulating liquid water and in

1977 the first protein simulation was carried out, when the pancreatic trypsin inhibitor

(BPTI) was simulated by [McCammon et al., 1977]. Today, MD simulations of solvated

proteins, Protein-DNA complexes or lipid systems routinely appear in the literature.

By running MD simulations, information about a system at the microscopic level is

generated, i.e., information about atom positions and atom velocities over time. How-

ever, often one is rather interested in the macroscopic properties (radial distributions,

molecule conformations, thermodynamic properties) of a system which can be observed

by real experiments. To relate both scales statistical mechanics is employed, it provides

the mathematical formalism that relates macroscopic properties, which can be observed

in experiments, to microscopic properties of the system, e.g., the distribution and motion

single atoms. Statistical mechanics achieves this by introducing the fundermental con-

cept of an statistical ensembles. An ensemble can be understood as a collection of copies

of the same molecular system, in which all copies can be in a different microscopic state

but, on average, have all the same macroscopic property (temperature, pressure). For

this relationship to be valid the fundermental axiom of ”ergodicity” must hold for the

system under consideration. The ”ergodic hypothesis” states: If a system is allowed to

evolve in time indefinitely, it will definitely pass through all its possible states. The time

average of the system will therefore in consequence correspond to its ensemble average.

For MD simulations this means that the total simulation time has to be long enough

such that the system visits all its possible states. Only the averages of such simulations

can be reasonably interpreted as ensemble averages.
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Classical molecular dynamic simulations are based on Newton’s second law of motion.

Fi = miai

Given the force acting on a particle i it is possible to determine it acceleration and by

integrating the corresponding equations of motion it yields a trajectory that describes

positions, velocities and accelerations of the particles as they vary in time. In the

molecular setting forces can also be expressed as

Fi = −grad(E(i)),

where grad(E(i)) denotes the gradient of the potential energy of particle i. If the

potential energy of an atom would be known, the force acting on it would be simply

given by the derivative of the energy. Unfortunately, this potential energy is in general

not known exactly. To be nevertheless able to calculate forces and consequently to

perform molecular dynamic simulations, this energy can approximated by using empirical

force fields. Such force fields approximate the potential energy by using empirically

determined functions for different parts of the total potential. The total potential is

usually split up into potentials of bonded interactions and non-bonded interactions.

Etotal = Ebonded + Enon−bonded

Ebonded = Ebonds + Eangles + Edihedrals

Enon−bonded = Evan der Waals + Eelectrostatic

Bonded interactions comprise bond, bond-angle and dihedral interactions, whereas

non-bonded comprise van der Waals and electrostatic interactions. Figure 1 depicts the

different potential types and corresponding functions used to model them.

Considering the depicted functions for each potential type, an inherent limitation of

empirical force fields becomes apparent. Each function needs several parameters to cor-

rectly reproduce the position dependend potential. Due to different physical properties,

these parameters vary for different atom compositions, e.g., the stretching two bound

carbon atoms needs a different force than stretching two hydrogen atoms apart. The

determination of such parameters is in general a non trivial task. In general, they are

assigned by utilizing ab initio quantum calculations or tuned by comparing experimental

observations to force field calculations. This labour intensive task has been performed

for many common systems such as amino acids or nucleic acids and has been stored in
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Ebonds =
∑

bonds

Kr(r − req)
2

Eangles =
∑

angles

KΘ(Θ − Θeq)
2

Edihedrals =
∑

dihedrals

Vn

2
(1+cos(nφ−γ))

EvdW =

atoms
∑

i<j

Aij

R12
ij

−
Bij

R6
ij

Eelectrostatic =

atoms
∑

i<j

qiqj

εRij

Table 1: Force Field Terms as Used by the Simulation Package Amber 8

parameters sets available in various molecular simulation software packages. However,

for systems with an atom composition not contained in these data sets, it can by rather

difficult to obtain suitable parameters, e.g., in the present case of the UDP-GlcNAc

simulation. See section 2.3 for more details.

2.2.1 Periodic Boundary Conditions

The overall system size that can be simulated by computational methods is limited.

Nowadays, it is in the range of a million atoms, a fairly small number when compared to

realistic system sizes in the molar range (NA = 6, 02 ∗ 1023). With this big discrepancy

a problem comes along concerning the size of the systems surface. For small systems

the surface to size ratio is much bigger than for larger systems. This means that in

molecular simulations surface effects become more important than they actually should.

To circumvent this, periodic boundary conditions (PBC) have been introduced. When

PBC are used the particles of a system are enclosed in a box and this box is replicated
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to infinity in all three carthesian directions, completely filling the space. The particle

coordinates are then defined as

r = (ix+ jy + kz) i, j, k ∈ [−∞,+∞],

where x,y,z correspond to vectors determining the box edges. If a particle moves, all

its infinite copies move as well, when it lefts the box it is copied back into it at the

corresponding position (see Figure 3).

Figure 3: Periodic Boundary Conditions

Particles can theoretically interact with all other particles, but this would result in

an infinite amount of necessary computation. Hence, in practice, only interactions with

particles within a certain cutoff are computed. This introduces a slight error, but is

permissible since non-bonded interactions are usually only short ranged.

2.2.2 Experimental Conditions

Molecular Dynamic simulations as described above yield trajectories describing an NVE

ensemble (constant number of particles, constand volume and constand energy), because

Newton’s second law of motion (F = ma) obeys energy conservation. Unfortunately, the

NVE setting is difficult to accomplish in experimental practice. It is often impossible to

completely isolate the system such as the total energy is conserved, it is rather common

that experiments are carried out under constant temperature and constant pressure

conditions (Isothermal-Isobaric Ensemble NPT).

To enable MD simulations to produce trajectories of this ensemble type various exten-

tions of the basic Newton dynamics have proposed developed. They can be grouped into

15



2.3 Modeling of UDP-GlcNAc 2 BACKGROUND

simple constrained formulations, including stochastically motivated models and more so-

phisticated techniques involving additional degrees of freedom. The MD program used

in the present study uses stochastic methods. It uses Langevin Dynamics [Schlick, 2002]

to model the temperature constraint and a Berensen pressure coupling scheme [Berend-

sen et al., 1984] to account for the pressure condition. Langevin dynamics represents a

simple heat bath by accounting for molecular collisions. It achieves this by adding a col-

lision term and a random force vector to the standard potential, resulting in a stochastic

differential equation. It can be shown that the resulting kinetic energy of the simu-

lated system then corresponds on average to the target temperature. The Bersensen

scheme preserves the pressure by coupling the system to an external ”pressure bath”

that rescales the particle positions such that the pressure remains constant.

2.3 Modeling of UDP-GlcNAc

UDP-GlcNAc does not belong to a class of molecules classical force fields have been

particularly designed and parameterized for. This poses several hurdles on a simulation

study of that molecule. First of all, a three dimensional representation of the molecule

had to be created. There are several modeling tools available for that purpose, which

allow to draw a 2D structural formula and infer a 3D structure from it. However, the

resulting 3D structures are often flat and appear not to resemble the native structure.

We therefore screened several structural databases for UDPGlcNAc and finally obtained

the structure from the Biological Magnetic Resonance Data Bank [Seavey et al., 1991].

It was provides in PDB format and was converted by using antechamber to be readable

by the used simulation program.

The second hurdle concerned the missing partial charges of the molecule needed to

correctly model its electrostatic interactions. The standard way to obtain these charges

is to perform several exact quantum chemical calculations to obtain an electrostatic po-

tential field (ESP) for different conformations of the molecule. These fields are then used

to fit a partial charge to each atom such the partial charges would optimally resemble

the ESP field. This charge fitting procedure is in general a rather elaborate task involv-

ing a lot of complex computations. Hence, we decided to rely on already determined

charges for UDP-Glc [Petrová et al., 1999] and GlcNAc [Woods Group, 2007] published

in the literature. From the UDP-Glc publication we transferred the charges only for

the UDP part of the molecule, the charges for GlcNAc were additionally obtained from

the Glycam parameter set. A list of finally used partial charges is given in Table 2.
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3 SIMULATIONS

The combination of charges from both sources resulted in a net charge of −1.998 for

UDP-GlcNAc, instead of −2 . After a careful investigation, it became apparent that

the charge of the O-Atom, linking UDP and GlcNAc, caused this difference. Based on

former experiences we decided to scale the charge of this atom such that the netto charge

of entire molecule was −2.

Finally, the problem of missing force field parameters had to be solved. Above we

outlined the need for specific force field parameters depending on the considered atom

composition. Unfortunately, the atom composition of UDP-GlcNAc is rather unusual in

respect to classical force field application fields resulting in missing angle and dihedral

parameters for the phosphate backbone of the molecule. To resolve this problem we

again fall back on published force field parameters determined by Petrová et al. [1999].

After having determined all missing parameters we were able to create an input file

for the used Amber simulation package containing all necessary information to perform

simulations.

Figure 4: 2D Structural Formula of UDP-GlcNAc with Dihedral Numbering

3 Simulations

3.1 Sampling Problem

Biological processes take place on timescales ranging from a few nanoseconds to several

milliseconds or even seconds and they are often determined by corresponding biomolecu-

lar conformation changes. However, the time scales accessible by current MD simulations

reach barely beyond the microsecond scale. The limiting factor in that respect is de-

termined by the simulated time step size, which must be chosen in a way in a way

such that a consistent integration of the equations of motion is possible. When molec-
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3.1 Sampling Problem 3 SIMULATIONS

Atom Atom Type Charge Atom Atom Type Charge

G
lc

N
A

c

C CG 0.06300

D
i-
P

h
o
sp

h
a
t O15 OS -0.42330

H HC 0.00000 P P 1.11280

H1 HC 0.00000 O5 O2 -0.79670

H2 HC 0.00000 O10 O2 -0.79670

C15 C 0.58800 O14 OS -0.49740

O9 O -0.57900

U
ra

ci
l

C4 CT 0.05580

N1 N -0.55200 H7 H1 0.06790

H18 H 0.23600 H8 H1 0.06790

C9 CG 0.24500 C8 CT 0.10650

H11 H1 0.00000 O13 OS -0.35480

C12 CG 0.16500 H10 H1 0.11740

O3 OH -0.63000 C11 CT 0.20220

H22 HO 0.41300 O2 OH -0.65410

H14 H1 0.00000 H21 HO 0.43760

C10 CG 0.32200 H13 H1 0.06150

O1 OH -0.73300 C13 CT 0.06700

H20 HO 0.44900 O4 OH -0.61390

H12 H1 0.00000 H23 HO 0.41860

C7 CG 0.24600 H15 H1 0.09720

C3 CG 0.32800 C14 CT 0.06740

O OH -0.68800 H16 H2 0.18240

H19 HO 0.42100 N2 N* -0.04180

H5 H1 0.00000 C2 CM -0.11260

H6 H1 0.00000 H4 H4 0.21880

H9 H1 0.00000 C1 CM -0.36350

O12 OS -0.56800 H3 HA 0.18110

C16 CG 0.53770 C5 C 0.59520

H24 H2 0.00000 O7 O -0.57610

D
i-
P

h
o
sp

h
a
t

O16 OS -0.47630 N NA -0.35490

P1 P 1.09030 H17 H 0.31540

O6 O2 -0.79280 C6 C 0.46870

O11 O2 -0.79280 O8 O -0.54770

Table 2: Atom Types and Partial Charges for UDP-GlcNAc
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Figure 5: Generation of Amber Input Files from ConFlow Output

ular systems are concerned this time step is usually in the range of femto second, the

timescale H-bond oscillations take place. Given this limitation the obtuseness of MD

simulations becomes clear, e.g., generating a 1ns MD simulation involves 1.000.000 cal-

culation steps. This possibly occurring timescale discrepancies can be problematic. It

might for example happen that either too few transitions between conformations can be

observed to make a valid statistical statement or, even worse, no transitions at all can be

observed in the simulation data, which would mean to overlook certain conformations.

To counteract this problem several parallel simulations of UDP-GlcNAc were started,

each with a different start conformation, assuming that this leads a better sampling of

the conformational space and allows for a more reliable description of transitions. To

generate the different conformations of UDP-GlcNAc the ConFlow [Meyer et al., 2006]

program was used. ConFlow generates conformations of a molecule by a systematic

conformational search. Given the ConFlow output we chose to selected the 20 best

energy ranking conformations to get a set of diverse start positions. Apart from the

improved sampling properties, the 20 conformations enabled us to run simulations of

them in parallel, using a distributed computing approach. This approach was based

on an agent based scheduling system capable of distributing tasks to various machines.

The agents are started independently on different machines polling a database for new

simulation tasks. Each time a new task is available it is processed by an agent and the

resulting output is written to a central directory. By utilizing this distribution system

it was possible to achieve a fairly long total simulation time, generating enough data for

a profound analysis.
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3.2 Simulation Procedure

To carry out molecular dynamic simulations the Amber 8 [Case et al., 2004] software

package was used. The software requires input files defining the structure to simulate

and a file containing the simulation parameters. To be able to simulate the generated

conformations of UDP-GlcNAc, the output of ConFlow first had to be converted into

a format readable by Amber. This was done by manually generating a template file

containing all residues, the charges and corresponding force field terms as obtained from

the literature. By applying several amber conversion tool the conformers generated by

ConFlow could be converted to an Amber readable format and the template file was used

to generate the appropriate input files containing the right charges. With the principal

input files for each of the 20 conformers the simulations were set up. We run 3 different

types of simulations in different environmental conditions (vacuum, water and peptide).

The next sections describe the corresponding simulation protocols and parameters.

3.2.1 Vacuo

The first simulation of UDP-GlcNAc were performed in vacuo without any solvent

present. This setting does not reproduce realistic conditions, however the systems com-

plexity is very low in this case and allows very long simulations. Hence, it provides

first valuable insights into the dynamics and flexibility of the ligand. In case of vacuum

simulations, the simulation protocol is fairly simple. It starts with minimizing each of

the 20 conformers in the given force field to resolve bad particle contacts and to get out

of unfavored configurations. As minimization algorithms steepest decent and conjugate

gradient are provided by Amber. In the present case we run 1000 steps of steepest

decent minimization to approach the minimum quickly, to then obtain a better conver-

gence rate the last 1000 steps are carried out using conjugate gradient. After the system

was minimized, it was heated from 0K to 300K within 20ps using Langevin temperature

control. This slow heating process is necessary to obtain a homogeneous temperature

distribution for the whole system, it avoids strange artefacts such as obtaining hot and

cold parts of the molecule. When the heating is finished the production run could be

started. In this run each of the UDP-GlcNAc conformers was simulated for about 100ns.

This resulting production run trajectories were then analyzed to identify conformations

of UDP-GlcNAc and transitions between them. The outlined protocol was applied for

all of the 20 conformers in parallel leading 20 production run trajectories. The figure

below shows a schematic representation of the simulation protocol.
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Figure 6: In Vacuo Simulation Workflow

3.2.2 Water

In the second simulation setup UDP-GlcNAc was simulated in a water environment

to account for potential solvent effects. To model the water environment 3900 wa-

ter molecules were placed around UDP-GlcNAc in an orthogonal box under periodic

boundary conditions.

Figure 7: UDP-GlcNAc in Water Box

In comparison to the vacuum simulations, the computational complexity is largely

increased in this scenario due to larger system size, resulting in a shorter total simulation

time. The simulation protocol is the following. The initial minimization is a two stage

process. First, only the water molecules are minimized and second the whole system

is minimized. This procedure has been proven to prevent the simulations from steric

solvent artefacts resulting from only minimizing the whole system. After minimization

of the solvated system it was heated for 20ps from 0K to 300K. During the heating

procedure the solute was weakly restrained to prevent it from wild fluctuations. To

simulate the system as in a realistic experimental setting constant pressure conditions

were turned on after the heating was completed. The system was then given 100ps

to adapt its volume to the pressure constraint. When the pressure was equilibrated,

production runs of 10ns were started. In order to reduce the computational complexity

we used the triangulated TIP3 water model. In this model the H-O-H angle is fixed
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which reduces the calculation costs. Furthermore, the SHAKE [Ryckaert et al., 1977]

algorithm was used to restrain the hydrogen bond fluctuations, which allows to increase

the simulation step size from 1fs to 2fs. This simulation protocol was again applied

to all 20 conformers leading 20 water simulation trajectories. The principal protocol is

outlined below.

Figure 8: Water Simulation Workflow

3.2.3 Protein Environment

In addition to the vacuum and water simulations we also simulated UDP-GlcNAc in

the binding site of the UDP-GlcNAc epimerase of E.coli. We decided to use the E.coli

homologe as there was a protein crystal structure available from the PDB (PDB-Code:

1F6D)[Campbell et al., 2000], the structure of the human variant is currently only avail-

able as homology modeling based structure. The E.coli protein is present as a tetramer

in the crystal data containing 4 identical units. For computational reasons we simu-

lated only one subunit, assuming that this practice has no serious effect on the principal

functionality. In the crystallographic data the UDP part of the ligand was also present,

which allowed to determine the binding site of the enzyme. But as only information

about the UDP part of the ligand was present, the GlcNAc orientation had to be mod-

elled manually.

By assuming the UDP to be fixed at its position, the dihedrals 7,8 and 9 (refer to Figure

4) mainly determine the principal orientation of the GlcNAc moiety. Each of them were

systematically turned in steps of 120◦ leading 27 different UDP-GlcNAc/UDP-GlcNAc-

Epimerase complexes. For each of these complexes we performed short simulations

in explicit water. The simulation protocol is similar to the ones used in the explicit

water simulations. First, the surrounding water molecules where optimized, followed by

the whole system. The minimization was followed by slowly heating up the solvated

complex from 0K to 300K over 20ps, while putting weak restraints on the solute. When
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Figure 9: Dihedrals Turned to Model Potential Binding Conformations Based on Fixed UDP

Part

the system was heated to 300K, pressure constraints were activated to obtain a pressure

of 1 atm. The productive simulation run was started after giving the system 100ps to

adjust to the pressure. Due to the severely increased system complexity (46646 atoms)

computational restrictions allowed only a relatively short simulation of 100ps for each

complex. Out of the 27 started simulations, 9 failed probably due to errors caused by

energetic artefacts resulting from missoriented ligands.

Figure 10: Protein Simulation Workflow

3.2.4 Summary

We performed in total 67 simulations in different environmental conditions using different

simulation protocols. For an comprehensive overview of the Amber simulation input
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parameters refer to Appendix A. The simulations generated a number of trajectories

containing the atom positions of UDP-GlcNAc over time. This data served as a basis

for a comprehensive analysis.

Atoms Sim. Time Step Size Temperature Pressure

In Vacuo 64 100 ns (2µs) 1 fs 300K –

Water 3964 10 ns (200ns) 2 fs 300K 1 atm

Protein 46646 100 ps 2 fs 300K 1 atm

Table 3: Simulation Parameters
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4 Data Analysis

Biomolecular systems and their dynamics can be characterized by the existence of

biomolecular conformations. These conformations can be understood as metastable ge-

ometrical large scale structures that persit for long periods of time. On long time scales

the dynamics of conformational changes can be regarded as flipping process [Elber and

Karplus, 1987, Frauenfelder et al., 1989, Schütte et al., 1999, Schütte and Huisinga,

2003], whereas on shorter time scales a high flexibility in these conformations can be

observed, resulting in a rich temporal multiscale structure [Nienhaus et al., 1992]. Bio-

physical research suggests that biomolecular systems often posses only a few dominant

conformations, which can be described by only a small number of degrees of freedom

[Amadei et al., 1993].

In many cases conformations can be characterized by analyzing the dihedral angles of a

biomolecular system. In the present case we based our analysis on the dihedral angles of

UDP-GlcNAc depicted in Figure 4. To obtain them, the generated MD trajectory data

given in carthesian coordinates were projected into dihedral space. For the identification

of metastable sets (conformations) from that data we mainly applied a hiddem Markov

model (HMM) based approach [?] as well as Perron Cluster Cluster analysis [?]. Apart

from the identification of metastable sets in the vacuum and water trajectories we also

attempt to gain insights about the binding conformation of UDP-GlcNAc. Below the

utilized methods are described in more detail.

4.1 HMM with Gaussian Output

HMMs have been used in a variety of application areas ranging from speech recognition

over signal processing to Bioinformatics. More recently they have also been employed

to identify biomolecular conformations based on dihedral angle time series data [?]. In

that respects HMMs exhibit a remarkable feature. The analyzed essential coordinates

not need to necessarily enable a geometric separation of the conformations, with HMMs

also dynamical properties of the system are considered.

A HMM can be considered as a stochastic process with hidden and observable states

(see Figure 11). The hidden process consits of a sequence of random variables X1, X2, . . .

taking values from some state space, where Xt stands for the hidden state of the system

at time t. Hidden state in this context refers to the fact that it cannot be observed, what

is observed is just the output caused by a specific state. In the HMM setting it is assumed

that the hidden process is a Markov process, i.e., the state Xn is memoryless and depends
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Figure 11: HMM Principle

only on its predecessor Xn−1. As the state space is assumed to be finite in the present

application the Markov process can be characterized by a transition matrix P = (pij),

where pij denotes the conditional probability of switching from state i to j. Note that

P is a row stochastic matrix, meaning that each row adds up to one. Each hidden

states X1 has a specific output distribution which can be discrete or continuous. Hence,

realizations of HMMs are concerned with two sequences, a sequence of observations and

a sequence of hidden states. In the context of molecular dynamics data, the hidden

states correspond to the metastable subset (conformation) the molecular system is in at

a certain time, while the observations are the dihedral positions at that time.

To completely describe a HMM the number of hidden states (conformations), the

transition matrix P , an initial distribution and the output distributions for each hidden

state must be qualified. A way to obtain all these data is to make use of the well

known Maximum Likelihood Principle, a standard technique for estimating parameters

of a statistical model with respect to observed data. In setting considered here it can

be explained as follows. Let λ denote the set of all parameters necessary to describe an

HMM and Θ = Θ1,Θ2, . . . ,ΘT an observed sequence of data, i.e., in our setting dihedral

values of UDP-GlcNAc. Let further denote p(Θ|λ) the probability2 of observing the data

sequence given the model λ. The likelihood function is then defined as L(λ) = p(Θ|λ),

i.e., the observation is considered as being given and the functions asks for the variation

of the probability in terms of the model parameters. The maximum likelihood principle

states that the optimal parameters are given by the absolute maximum of L. Hence,

finding the HMM that best describes the observed data can also be regarded as an

optimization problem in the parameter space. In the context of HMMs this problem can

be tackled by making use of an expectation-maximization algorithm (EM). Typically

the determination of the optimal HMM parameters and the associated indentificaton of

conformations involves three problems:

2strictly speaking p(Θ|λ) is actually a probability density function
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I Calculation of the probability p(Θ|λ) for an observation sequence Θ (dihedrals)

for a given λ (HMM).

II Estimation of the best model parameters for a given observation sequence.

III Given the estimated model λ and an observation sequence, determine the most

probable hidden state sequence X∗ = (x∗1, x
∗
2, . . . , x

∗
T ).

Problem I

The most straightforward method to calculate the probability p(Θ|λ) of an observa-

tion sequence given a model is to compute every possible hidden state sequence X =

(x1, x2, . . . , xT ) of length T and sum up all their probabilities conditioned on the hidden

sequence:

p(Θ|λ) =
∑

X=(x1,...,xT )

p(X|λ)p(Θ|X, λ)

Using this method would involve 2TNT calculations which is infeasible for any practical

application. By making use of so-called forward and backward probabilities it is possible

to reduce this effort to TN2. The method recursively divides the observation sequence

Θ in two subsequences: one from tome 1 to time t and the other one from t + 1 up to

T . The forward probabilities are given by

αt(i) = p(Θ1,Θ2, . . . ,Θt, Xt = i|λ),

denoting the probability of the observation sequence up to time t together with the

information that the system is in hidden state i, conditioned to the given model λ. The

backward probabilities are given by

βt(i) = p(Θt+1,Θt+2, . . . ,ΘT |Xt = i, λ),

denoting the probability of the observation sequence from time t + 1 to T , in this case

under the condition that the system is in hidden state i at time t and on the model λ.

Both probabilities can be computed by using recursive formulas within TN2 operations

each. Once the forward and backward variables are computed, finally the probability of

the observation sequence Θ can be computed as

p(Θ|λ) =

N
∑

i=1

αt(i)βt(i).

The forward and backward probabilities will be used further to estimate the best

model parameters.
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Problem II

There is no way to analytically determine the globally best model parameters that

optimally explain the observed data. But it is possible to estimate a λ̂ that locally

maximized the likelihood L(λ) = p(Θ|λ). In the context of HMMs this can be achieved

by using the Baum-Welch algorithm [Baum et al., 1970, Baum, 1972], which belongs to

the class of expectation maximization (EM) algorithms [A.P. Dempster and Rubin, 1977].

EM algorithms are learning algorithms that iteratively improve an initial parameter set

and converge to a local maximum of the maximum likelihood function. They consists

of two steps, the Expectation step and the Maximization step. Starting from some

initial model λ(0) the model is iteratively refined by cycling through expectation and

maximization steps:

Expectation-step In this step, probabilities for being in hidden state i in time step t,

given the observation Θt at that time and the current model λk are calculated.

This can be efficiently done by calculating the joint probabilities making use of

the previously calculated forward and backward variables.

The probability to be in hidden states i at time t can be expressed as

γt(i) =

N
∑

j=1

ξt(i, j)

where ξt(i, j) is the joint probability of being in i at t and j in t+ 1.

ξt(i, j) = p(Xt = i, Xt+1 = j|Θ, λ(k))

=
p(Xt = i, Xt+1 = j,Θ, λ(k))

p(Θ, λ(k))

=
p(Xt = i, Xt+1 = j,Θ|λ(k))

p(Θ|λ(k))

=
αt(i)pijfj(Θt+1)βt+1(j)

p(Θ|λ(k))

Maximization-step After having calculated the probabilities for each hidden state given

the observations and the model, reestimation formulas are used to get an improved

model λ(k+1) The initial distribution π
(k+1)
i is reestimated by
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π
(k+1)
i = γ1(i).

The transition probabilities between hidden states are reestimated by

p
(k+1)
ij =

∑T−1
t=1 ξt(i, j)

∑T−1
t=1 γt(i)

The probability density function for each hidden state fi has to be reestimated

too, this is done via their maximum likelihood estimators. The observations Θt

used to determine fk+1
i have to with the probability γt(j) of the hidden state. In

the present application we assume that the output of the hidden states follows

a Gaussian distribution. The maximum likelihood estimators to determine this

distribution are mean (µ̂)and variance (σ̂) and are reestimated as follows:

ˆ
µ

(k+1)
i =

∑T

t=1 γ
(k)
t (i)Θt

∑T

t=1 γ
(k)
t

ˆ
σ

(k+1)
i =

∑T

t=1 γ
(k)
t (i)(Θt − µ̂

(k)
i )2

∑T

t=1 γ
(k)
t

The E- and M-steps are iteratively repeated until either a predefined maximum of iter-

ations is reached or the improvement of the likelihood L(λ) gets smaller than a certain

limit. It has been shown by A.P. Dempster and Rubin [1977] that the estimated model

does not get worse (L(λk+1) ≥ L(λ(k))) and therefore approaches always a local maxi-

mum.

Problem III

Once the HMM has been estimated it is possible to determine the most probable hidden

sequence. In the setting of analyzing molecular dynamic data this hidden sequence cor-

responds to the classification of the simulation trajectory in metastable (conformations)

sets. To calculate the most probable hidden sequence the Viterbi [Viterbi, 1967] algo-

rithm can be used. It computes for a given HMM model λ and an observation sequence

Θ the most probable hidden path X∗ = (x∗1, x
∗
2, . . . , x

∗
T ).

29



4.2 Identification of Metastable Sets 4 DATA ANALYSIS

Let

δt(i) = max
x1,x2,...,xt−1

P (x1, x2, . . . , xt = i,Θ1,Θ2, . . . ,Θt, |λ)

denote the probability of being in hidden state i at time t after t observations. This

quantity can be computed recursively by

δt(i) = max
1≤j≤N

(δt−1(j)pji)fi(Θt)

When the probabilities for all states at all time steps has been calculated, it is straight-

forward to compute the most likely hidden state sequence. To do so an additional vari-

able ψt(i) is introduced. It containts the number of the argument that maximizes δt(i).

The complete Viterbi algorithm is given below:

1) Initialization

δ1(i) = πifi(Θ1), 1 ≤ i ≤ N

ψ1(i) = 0

2) Recursion

δt(i) = max
1≤j≤N

(δt−1(j)pji)fi(Θt)

ψt(i) = arg max
1≤j≤N

(δt−i(j)pji)

2 ≤ t ≤ T, 1 ≤ i ≤ N

3) Backtracking

x∗T = arg max
1≤j≤N

(δT (j))

x∗t = ψt+1(xt + 1), t = T − 1, T − 2, . . . , 1

x∗t can then be interpreted as the metastable set (conformation) the molecular system

is in at time step t.

4.2 Identification of Metastable Sets

The inherent problem with HMMs is the a priori specification of the number of molecular

conformations. In general, this number is not known in advance. To circumvent this

problem, the HMM procedure can be started with a sufficiently large number of hidden

states, greater then the expected number of conformations. Unfortunately, increasing
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the number of hidden states also increases the number of HMM parameters that have to

be estimated by the EM algorithm, e.g., with d hidden states d2 covariance parameters

of the Gaussian distribution must be estimated. This parameter space increase causes

a slower convergence behavior, which makes the pure HMM approach inapplicable for

systems with many degrees of freedom. Hence, the HMM method is often used in

a modified way, as described below. First, the high dimensional observation space is

decomposed into low dimensional subspaces. For example if Θ contains all observed

torsion angles, a possible decomposition would be to consider each single torsion angle,

i.e., Θ(j) = θ
(j)
1 , θ

(j)
2 , . . . , θ

(j)
T denoting the time series of the jth torsion angle. Second,

each of this single dimensional time series is separately analyzed by the HMM method

outline above, resulting in k Viterbi paths, where k is the number of torsion angles. Each

paths represents the conformational dynamics as detected from information contained

in the single time series Θ(j)j = 1 . . . k. Third, these single paths are combined into a

single global path with the following structure xt = (x
(1)
t , x

(2)
t , . . . , x

(k)
t ). Then each state

of the occurring Viterbi patterns gets unique state identifier assigned resulting in a one

dimensional path st containing all the information from xt.

The obtained global path can be regarded as a discretization of the state space which

allows to deduce a reversible transition matrix P = pij defined as

pij =
#(i, j) + #(j, i)

#(i) + #(j)

where #(i, j) denotes the number of transitions from i to j and #(i) the number of

states i in the path. Given this matrix, the aim is to define non-overlapping subsets

such that transitions within these subsets are maximized and transitions between min-

imized. Each subset then corresponds to a long living metastable conformation. The

local flexibility of the conformation is represented by frequent transitions between the

sets, whereas conformational changes are represented by rare transitions between sets.

The determination of these metastable sets and the number of sets can be achieved via

inspection of the spectral properties of the transition matrix. Due to reversibility and

row stochasticity , all eigenvalues of P are real and the metastable subsets can be iden-

tified by eigenvectors of eigenvalues close to the maximal dominant eigenvalue λ = 1.

Meaning that the number of metastable sets is equal to the number of eigenvalues close

to 1 (including one), while the rest of the spectrum is separated by a spectral gap from 1.

To identify the corresponding subsets (among other methods) the sign structure of the

eigenvectors of the identified eigenvalues can be exploited. In this case each sign pattern

determines a unique subset. This type of metastability analysis is termed Perron Cluster
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Cluster Analysis (PCCA). For a more comprehensive description see [?]. It is important

to note, this way metastability is defined in respect to a certain lag time. This lag time

arises from the frequency molecule coordinates are written to the trajectory file by the

simulation program. When the lag time changes, the transition matrix inferred from

the global Viterbi path might change as well resulting in a different metastability. In

general, the lag time should be chosen such that the Markov property holds, i.e., a state

in the global Viterbi path is not affected by the previous ones (memoryless).

4.3 Analysis Potential Binding Structures

To understand the enzymatic mechanism of the UDP-GlcNAc epimerase it would be

advantageous to know the correct orientation of its ligand in the binding pocket. Unfor-

tunately, only the position of the UDP part of the ligand in the binding pocket is known

from 3D structural data [?]. To address this problem different possible orientations of

the missing GlcNAc part have been modeled into the pocket and simulated for 100ps.

The resulting trajectories have been analyzed in respect to the stability of the 3 dihedrals

which contribute most to the yet structurally unsolved sugar arrangement.

4.4 Conformational Matching

The binding conformation of the UDP part of the ligand is known from 3D structural

data of the UDP-GlcNAc-Epimerase (E.coli). To address the interesting question if

this conformation is native, i.e., natively occurring without the influence of the protein

environment, the water trajectory data was screened for the binding UDP structure. For

this purpose the structural difference of the binding UDP part to the UDP part of UDP-

GlcNAc structures was calculated for each frame of the water trajectory. Here, structural

difference is expressed in terms of dihedral difference of the structures. A quantity

measuring this difference is the dihedral residual minimal square distance (RMSD).

Dihedral RMSD for Two Structures

RMSD(ΘA,ΘB) =

√

√

√

√

1

n

n
∑

i=1

(min(360 − (|θA
i − θB

i |), |θ
A
i − θB

i |))
2

This calculation resulted in a data set containing an RMSD value for each time step in

the water trajectory, which was related to the identified conformations of UDP-GlcNAc,

allowing to draw conclusions about a potential bindind conformations.
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5 Results

5.1 Simulations in Different Environment

5.1.1 UDP-GlcNAc Vacuo Simulation

We simulated 20 conformations UDP-GlcNAc without any solvent present at 300K for

2µs. Atom coordinates were written to the trajectory in intervals of 5ps. From the

generated trajectory data 17 dihedral (as defined in Fig. 4) trajectories were extracted

and served as basis for a metastability analysis. First, principal component analysis

(PCA) [?] was applied to obtain the principal components of the input data. We selected

the 6 first principal components contributing to 95% of the variance in the data. On

each of this 6 principal components HMM-Gaussian was applied, assuming 4 hidden

states per dimension. This resulted in 6 Viterbi paths which were combined into a single

global Viterbi path containing 243 states. The spectrum of the corresponding transition

matrix showed a spectral gap after 38 eigenvalues. Hence, PCCA clustering was applied

to the transfer matrix to identify 38 metastabale sets. A large portion of these sets had

a relative weighting below 5% causing us to to group these together using an intelligent

clustering scheme (personal communication E. Meerbach). After the summarization, 5

metastable conformations remained. The accordingly colored dihedral trajectories are

depicted in Figures 12,13. The identified conformations of UDP-GlcNAc are depicted in

Table 4. It becomes apparent that the most compact structure has the greatest weight

(66%), whereas the most spatially relaxed structure has the least relative weight (5.5%).

This characteristics can be explained by energetically favored inner molecular hydrogen

bonds which are present in the interfold structures. As further consequence, all identified

conformations appear to be very stiff and show only a small local flexibility, transitions

between the conformations are also very rare. Based on the metastable clustering of

the trajectory, a transition matrix can be calculated that represents the transitions

between the 5 conformations. The corresponding transition network is shown in Figure

14. Edges between the conformations indicate possible transitions. Due to the rare

transition events, the calculated transition probabilities are extremely small, here in

the range of 0.1%. As the transition matrix was build based on a time lag of 5ps, the

transition probability has to be also interpreted in that time scale.
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Figure 12: 2µs Vacuum Simulation Trajectory Data – Dihedrals 1-9

5.1.2 UDP-GlcNAc Water Simulation

We simulated 20 generated UDP-GlcNAc conformers in explicit water at a temperature

of 300K and a pressure of 1atm. The simulations resulted in 20 trajectories of 10ns each.

For the identification of metastable conformations all 20 trajectories were concatenated

and analyzed using a similar methodology as for the vacuum data. Unfortunately, initial
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Figure 13: 2µs Vacuum Simulation Trajectory Data – Dihedrals 10-17

analyzes showed that the global conformations were dominated by the ring puckering

of the GlcNAc and furanose ring making it difficult to obtain a meaningful clustering.

Therefore, we choose only to consider dihedrals 1-8 for the analysis as they mainly

determine the spatial properties of the molecule. On the trajectories of each of this 8

dihedrals HMM-Gaussian was applied assuming 3 hidden states. The resulting 8 Viterbi

paths were combined into one, containing 1920 states out of 38 = 6561 possibilities. To

ensure the Markov property holds we calculated transition matrices3 for different lag

3Transitions at the boundaries of concatenated trajectories were not counted in this case.
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Conformation Structure Density Plot

C1 (66.6%)

C2 (9%)

C3 (8.1%)

C4 (10.8%)

C5 (5.5%)

Table 4: Identified Vacuo Conformations with Relative Weighting

times and analyzed the corresponding spectra. The eigenvalue trend became constant

at a lagtime of 160ps (80 steps), implying the observation is gets Markovian at this lag

time. When looking at the spectrum of the corresponding transfer matrix a spectral

gap after the 6th eigenvalue could be identified, suggesting 6 metastable sets. PCCA
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Figure 14: Transition Network Vacuo Conformations

was hence applied to the 1920x1920 transfer matrix to identify 6 metastable sets. The

relative weightings of the identified conformations were C1 = 58.3%, C2 = 17.5%, C3 =

11.9%, C4 = 9.9%, C5 = 1.5% and C6 = 1.0%.

They are depicted in Figure 17 which shows the transition network obtained from the

clustered transfer matrix. In contrast to he conformations obtained from the vacuum

simulations, here the most relaxed structure shows the highest relative weight whereas

rather condensed structures have a small weight. Additionally, transitions between con-

formations are more frequent, e.g., conformation C6 changes to C1 with a probability

of 9.1%, much higher than any transition probability in vacuum. The local flexibility

of UDP-GlcNAc is also increased as it can be seen by the blurry parts of the density

plots in the network graphic, making it hard to clearly identify structural features of the

conformers.
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Figure 15: Water Simulation Trajectory Data – Dihedrals 1-9
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Figure 16: Water Simulation Trajectory Data – Dihedrals 10-17
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Figure 17: Transition network of UDP-GlcNAc in explicit water with density plots showing

the flexibility within each metastable set. (in brackets – relative weighting, below brackets –

persistence probability, next to pictures – exit probability) – Visualizations using Amira [?]

5.2 Discussion

The conformational behavior of UDP-GlcNAc shows clear differences depending on

the environment, this can be directly seen from the dihedral trajectories (see Figures

12,13,15,16). Dihedral one, accountable for position the of the uracil ring show in vac-

uum almost no metastable behavior, in water, however, it it exhibits a high variability

adopting two positions. Dihedrals 2-8, mainly responsible for the spatial extention of

the molecule, don not show much variability in vacuum either. The different positions

visible in the vacuum trajectories occur principally due to the different start conforma-

tions used. In the water environment these dihedrals exhibit a much stronger variability

and metastability, which becomes apparent in the identified metastable conformations.

They show a lot more local inner flexibility and changes between conformations are more

frequent. The puckering of both rings shows also an interesting environment-dependent

behavior. The GlcNAc ring (dihedrals 12-14) shows in water literally no puckering,

whereas in vacuum it occasionally appears. In contrast, the furanose ring (dihedrals 15,

16) shows a great flexibility in water and is almost fixed in vacuum. It is furthermore

remarkable that there is an anomalous change in dihedral 10 (peptide bond in N-Acetyl

moiety), a behavior only observed in water. These fluctuations can probably be at-

tributed either to a force field effect or to solvent interactions not present in vacuum.

However, the flexibility of dihedral 11 (position of the -C6-O-H group) is coherent in

both environments, only occasionally restricted in vacuum. Similar arguments apply for
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dihedral 17 (O-C1 bond in furanose ring).

Overall we observe ample conformations and high flexibility of UDP-GlcNAc in the

water environment and few, stiff, well defined conformations in vacuum. This consid-

erable difference can be attributed to solvent effects provoked by water molecules. In

vacuum, UDP-GlcNAc forms several inner molecular hydrogen bonds stabilizing inter-

folded structures and reducing the flexibility. Such non-covalent bonds cannot develop

in this way when water molecules are present, as they are rather formed with water

molecules than with the molecule itself. Therefore, due to the absence of stabilizing

bonds, conformations of UDP-GlcNAc are in water more relaxed and flexible.

The explanation for the complementary characteristics of the puckering of the ring

systems is not as straightforward. A possible explanation for the puckering of furanose

ring that only can be observed that strongly in water is given by the fact that frequent

conformational changes in the ”backbone” (dihedrals 2-8) directly affect the furanose

arrangement. As there are not so many conformational changes in vacuum, the effect on

the furanose puckering is limited in this case. The fact that there are no conformational

changes observed for the GlcNAc moiety in water, is most likely an artefact of the short

simulation times. The energy barrier of a conformational change in the sugar ring are

too high to be overcome in this time. As the simulation time in vacuum is remarkably

longer, observing a conformational change in the sugar is much more likely.

5.3 Testing Potential Binding Conformations

5.3.1 Protein - Ligand Stability

The simulation of 27 different binding conformations of UDP-GlcNAc in the binding

pocket of the UDP-GlcNAc-Epimerase (E.coli) resulted in 16 100ps trajectories. 9 sim-

ulations failed due to errors caused by energetic artefacts resulting from missoriented

ligands. The orientations of the three dihedrals (7, 8, 9) that determine the position of

the GlcNAc moiety are displayed in Figure 18. For reasons of presentation all 16 tra-

jectories have been concatenated, the alternating coloring corresponds to the different

conformations. From the depicted data it becomes apparent that there are almost no

significant changes in the dihedral angles of the respective conformations, the only appar-

ent changes happen in dihedral 9 (orientation of the N-Acetyl Group) in conformations

5 and 12. Overall, this data indicates the existence of different binding conformations

of UDP-GlcNAc.

41



5.3 Testing Potential Binding Conformations 5 RESULTS

500 1000 1500 2000 2500 3000

−150

−100

−50

0

50

100

150

7

500 1000 1500 2000 2500 3000

−150

−100

−50

0

50

100

150

8

500 1000 1500 2000 2500 3000

−150

−100

−50

0

50

100

150

9

Figure 18: Concatenated simulation data of all protein environment simulations, only dihe-

drals that determine the orientation of the GlcNAc moiety are shown. The alternating colors

correspond to the different simulated conformations.

5.3.2 Protein - Screening of UDP Conformation in Water

Simulating different conformations of UDP-GlcNAc in the binding pocket of UDP-

GlcNAc-Epimerase did not reveal a favored binding conformation. To get nevertheless

an idea of the most likely binding conformation we analyzed the water trajectory data

to find the metastable set that contains the binding orientation of the UDP moiety. For

this analysis we calculated the dihedral distance of the reference UDP (as it is bound to

the protein) to all structures present in the water trajectory. The resulting distance over

time plot is depicted in Figure 19. At certain times the dihedral distance gets rather

small, in the range of 30 degrees. Hence, the corresponding structures can be seen as

very similar to the reference UDP structure. Coloring the RMSD trajectory according

to the determined metastable sets of the water trajectory it appears that a metastable
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conformation has associated most of the very small RMSD values.
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Figure 19: Dihedral RMSD of bound UDP to the UDP moiety in Water Displayed Over Time

– Different Colors Correspond to Identified Water Conformations

More precisely it is the C5 conformation in respect to the conformational analysis of

the water trajectory (compare to Figure 17). Thus leading to the conjecture that the C5

conformation might contain possible binding conformations of UDP-GlcNAc. In order

to investigate this metastable set further, we extracted a sub-trajectory by taking all

frames that correspond to the C5 subset. The UDP part in the sub-trajectory was then

aligned to the reference UDP structure resulting in the density plot shown in Figure 20.

The density plot shows a relatively stable UDP part, whereas the GlcNAc moiety shows

strong local flexibility. Therefore, unfortunately, it is not possible to determine a favored

GlcNAc orientation from the C5 metastable set and its density plot. But based on the

statistical weight of the C5 conformation we can assume that at least the structure of the

UDP part of UDP-GlcNAc occurs with a probability of 1.5% in the water environment.

5.4 Discussion

In order to rationally design an inhibitor for the UDP-GlcNAc epimerase it is of tremen-

dous importance to understand the catalytic mechanism of the UDP-GlcNAc-2-Epimerase/ManNAc-

Kinase. An inevitable step in that respect is determination of the correct binding po-

sition and orientation of the substrate. In case of the UDP-GlcNAc-2-Epimerase, the

active site is known but the exact orientation of the substrate only partly in form of the

UDP moiety of UDP-GlcNAc. This prompted us to model and test different possible
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Figure 20: Density Plot of C5 Conformation Aligned to UDP Moiety

orientation of the GlcNAc moiety. The conducted simulations indicate that different ori-

entations of GlcNAc are sterically possible. On the simulated time scale no transitions

towards a particular structure is observed. From a purely geometrical point of view this

therefore clearly indicates the possibility of different binding conformations. However,

for the enzyme to be effective it is likely that solely a particular conformation is metab-

olized, which is most probable the energetically most favored one. Unfortunately, it is

not possible to make reliable statements about the energy differences of the conform-

ers because of high energy fluctuations and insufficient simulation times. In order to

nevertheless gain insights about the correct binding conformations, the identified water

conformations of UDP-GlcNac were related to the created potential binding conforma-

tions. Therefore, a geometric distance criteria was utilized to compare the structure of

the bound UDP to the UDP structures in the water trajectory. At this analysis it turned

out that several conformations (UDP moiety) in the time series are rather similar to the

conformation of the bound UDP. Subsequent coloring of the trajectory according to the

identified water conformations indicates that the majority of similar structures belongs

to the C5 conformation of UDP-GlcNAc in water. If a well defined position for GlcNAc

could be inferred from that conformation, it would be a clear indication for a likely

binding conformation. To follow up on this question, all representatives of the C5 con-

formations have been aligned to the conformation of the bound UDP. Figure 20 shows

the result, it becomes apparent that the UDP part of all representatives of C5 is quite

similar but the GlcNAc moiety is not very well defined as implied by the blurry section.

Based upon this result it is therefore difficult to make any statement about correspond-

ing potential binding structures. An additional complete comparison (not restricted to

the UDP moiety) of all conformations to all representatives of the C5 set revealed (data
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not shown) a few representatives with a small distance, however, the number was too

small to draw any resilient conclusion. It is either possible that these were statistical

outlier and the conformation does not exist in water, or the sampling of the conforma-

tional space is not sufficient to generate enough corresponding conformations. In case

the binding conformation does not exist in ”native” aqueous environment, it would be

an indication for an induced fit binding mechanism, i.e., the enzyme has to alter the

conformation of the ligand in order to bind it, which would be in contrast to a selective

binding procedure, where the enzyme simply bind the appropriate conformation.
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6 Conclusions

In this work we performed the first molecular dynamics study of UDP-GlcNAc, the key

ligand of the sialic acid synthesis pathway, aiming at a better understanding of its con-

formational dynamics and determining its correct binding orientation when binding to

UDP-GlcNAc-2-Epimerase (E.Coli). In order to be able to perform these studies the

problem of missing molecule force field parameters was successfully solved by combining

known parameters of two similar molecules. UDP-GlcNAc was simulated in vacuum, in

explicit water and in the binding site of the enzyme. For an efficient sampling of the

conformational space, different starting conformations were generated and correspond-

ing simulations were distributed among several CPUs using a job scheduling system. By

applying metastability analysis different conformations of UDP-GlcNAc could be iden-

tified from the simulation trajectories. Based on this data a considerable environmental

effect becomes apparent. Conformations of UDP-GlcNAc without any solvent present

differ substantially from conformations in aqueous solution. In water UDP-GlcNAc is

observed to be much more flexible and unwound. Additional studies of potential binding

conformations revealed that different orientations of the GlcNAc moiety of UDP-GlcNAc

are possible in terms of their geometry. A subsequent analysis of the water trajectory un-

veiled the existence of the bound UDP conformation in the ”native” water environment.

However, an unambiguous determination of the corresponding GlcNAc orientation was

not yet possible. We hope that longer simulations will improve the sampling of the

conformational space and therefore provide more insights into that question.

To sum up, the present conformational study could help in future to understand

the initial step of the sialic acid pathway and therefore support the rational design of

inhibitors.

7 Future Directions

Assuming it is possible to determine the binding rate of UDP-GlcNAc, this information

could be used to further analyze the simulations for conformations having a lifetime in

this range. The results might than provide additional insights about possible binding

conformers and the binding process itself. Moreover, once the correct binding conforma-

tion is known and/or verified structural data for the human variant of the UDP-GlcNAc-

2-Epimerase/ManNAc kinase is obtained, a quantum mechanical/molecular mechanics

(QM/MM) simulation should be carried out. This type of simulations provide a pow-
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erfull tool to understand the actual reaction, as it is directly possible to simulate and

observe actual enzymatic reactions, e.g., proton transfers. Furthermore, the effect of

ions, e.g., Mg2+ or Mn2+ on the conformational behavior of UDP-GlcNAc should be

investigated, recent work by Petrová et al. [2001] shows their importance in relation to

UDP-Glc and glycosyltransferases. In general, longer simulations of the ligand in water

environment appears to be desirable as the data suggests more sampling of the confor-

mational space might reveal additional conformations which in turn might answer the

question of the correct binding conformation.
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8 Appendix - Amber Parameters

8.1 Parameters Vacuum Run

Minimization

&cntrl

imin = 1, // perform minimization

maxcyc = 2000, // maximal number of minimization cycles

ncyc = 1000, // switch to conjugate gradient after ncyc steps

ntb = 0, // periodic boundary conditions switched off

ntr = 0, // no position restraining

cut = 12 // electrostatic cutoff 12 Angstroem

Heating

&cntrl

imin = 0, // no minimization

ntb = 0, // periodic boundary conditions switched off

igb = 0, // no implicit solvent

cut = 12, // electrostatic cutoff 12 Angstrem

tempi = 0.0,// final temperature

temp0 = 300.0,// inital temperature

ntt = 3, // use Langevin dynamics to regulate temperature

gamma_ln = 1.0, // collision frequency in Langevin equation

nstlim = 20000, // total number of simulation steps (20ps)

dt = 0.001, // time step 1 fs

nscm = 100, // remove rotational and translational centre of mass

// all 500 steps

ntpr = 100, // print out energy information all 100 steps (100fs)

ntwx = 100, // print out atom coordinates all 100 steps (100fs)

ntwr = 1000 // print out restart file all 1000 steps (1ps)

Production

&cntrl

imin = 0, // no minimization

ntb = 0, // periodic boundary conditions switched off

igb = 0, // no implicit solvent

cut = 12, // electrostatic cutoff 12 Angstrom

tempi = 300.0,// final temperature

temp0 = 300.0,// initial temperature

ntt = 3, // use Langevin dynamics to regulate temperature

gamma_ln = 0.1, // collision frequency in Langevin equation

nstlim = 100000000, // total number of simulation steps (100ns)
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dt = 0.001, // time step 1 fs

nscm = 500, // remove rotational and translational centre of mass

// all 500 steps

ntpr = 2000, // print out energy information all 2000 steps (2ps)

ntwx = 2000, // print out atom coordinates all 2000 steps (2ps)

ntwr = 10000 // print out restart file all 10000 steps (10ps)

8.2 Paramters Water Run

Minimization Water Only

&cntrl

imin = 1, // perform minimization

maxcyc = 2000, // maximal number of minimization cycles

ncyc = 1000, // maximal number of minimization cycles

ntb = 1, // periodic boundary conditions switched on (const V)

ntr = 1, // use positional restraining

cut = 10 // electrostatic cutoff 10 Angstroem

/

Hold Solute Fixed // put restraints on the solute to keep it fixed

500

RES 1 1

END

END

Minimization System

Minimize Entire System

&cntrl

imin = 1, // perform minimization

maxcyc = 2500, // maximal number of minimization cycles

ncyc = 1000, // switch to conjugate gradient after ncyc steps

ntb = 1, // periodic boundary conditions switched on (const V)

ntr = 0, // no position restraining

cut = 10, // electrostatic cutoff 10 Angstroem

Heating

&cntrl

imin = 0, // no minimization

ntx = 1, // read initial coordinates from file

ntb = 1, // periodic boundary conditions switched on (const V)

cut = 10, // electrostatic cutoff 10 Angstroem

ntr = 1, // use positional restraining

ntc = 2, // use SHAKE to constrain bonds involving hydrogens
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ntf = 2, // omit force interactions involving hydrogens

tempi = 0.0, // inital temperature

temp0 = 300.0, // target temperature

ntt = 3, // use Langevin dynamics to regulate temperature

gamma_ln = 1.0, // collision frequency in Langevin equation

nstlim = 10000, // total number of simulation steps (20ps)

dt = 0.002, // time step 2fs

ntpr = 100, // print out energy information all 100 steps

ntwx = 100, // print out atom coordinates all 100 steps

ntwr = 1000 // print out restart file all 1000 steps

/

Keep Solute Fixed // put weak restraints on the solute to keep it fixed

10.0

RES 1 1

END

END

Pressure Equilibration

&cntrl

imin = 0, // no minimization

irest = 1, // continue calculation from given input file

ntx = 7, // read positions, velocities and box information from file

ntb = 2, // perodic boundary conditions (const P)

pres0 = 1.0, // reference pressure (1 atm)

ntp = 1.0, // constant pressure dynamics (isotropic pos. scaling)

taup = 2.0, // pressure regulation time (2ps)

cut = 10, // electrostatic cutoff 10 Angstroem

ntr = 0, // no positional restraining

ntc = 2, // use SHAKE to constrain bonds involving hydrogens

ntf = 2, // omit force interactions involving hydrogens

tempi = 300.0, // inital temperature

temp0 = 300.0, // target temperature

ntt = 3, // use Langevin dynamics to regulate temperature

gamma_ln = 1.0, // collision frequency in Langevin equation

nstlim = 50000, // total number of simulation steps (100ps)

dt = 0.002, // time step (2fs)

ntpr = 100, // print out energy information all 100 steps

ntwx = 100, // print out coordinates all 100 steps

ntwr = 1000 // print out restart file all 1000 steps

Production Run

&cntrl
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imin = 0, // no minimization

irest = 1, // continue calculation from given input file

ntx = 7, // read positions, velocities and box information from file

ntb = 2, // perodic boundary conditions (const P)

pres0 = 1.0, // reference pressure (1 atm)

ntp = 1.0, // constant pressure dynamics (isotropic pos. scaling)

taup = 2.0, // pressure regulation time (2ps)

cut = 10, // electrostatic cutoff 10 Angstroem

ntr = 0, // no positional restraining

ntc = 2, // use SHAKE to constrain bonds involving hydrogens

ntf = 2, // omit force interactions involving hydrogens

tempi = 300.0, // inital temperature

temp0 = 300.0, // target temperature

ntt = 3, // use Langevin dynamics to regulate temperature

gamma_ln = 1.0, // collision frequency in Langevin equation

nstlim = 5000000, total number of simulation steps (10ns)

dt = 0.002, // time step (2fs)

ntpr = 1000, // print out energy information all 1000 steps

ntwx = 1000, // print out coordinates all 1000 steps

ntwr = 10000 // print out restart file all 10000 steps

8.3 Paramters Protein Simulation

Minimization Water Only

&cntrl

imin = 1, // perform minimization

maxcyc = 2000, // maximal number of minimization cycles

ncyc = 1000, // maximal number of minimization cycles

ntb = 1, // periodic boundary conditions switched on (const V)

ntr = 1, // use positional restraining

cut = 10 // electrostatic cutoff 10 Angstroem

/

Hold Solute Fixed // put restraints on the solute to keep it fixed

500

RES 1 372

END

END

Minimization System

Minimize Entire System

&cntrl

imin = 1, // perform minimization
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maxcyc = 2000, // maximal number of minimization cycles

ncyc = 1000, // switch to conjugate gradient after ncyc steps

ntb = 1, // periodic boundary conditions switched on (const V)

ntr = 0, // no position restraining

cut = 10, // electrostatic cutoff 10 Angstroem

Heating

&cntrl

imin = 0, // no minimization

ntx = 1, // read initial coordinates from file

ntb = 1, // periodic boundary conditions switched on (const V)

cut = 10, // electrostatic cutoff 10 Angstroem

ntr = 1, // use positional restraining

ntc = 2, // use SHAKE to constrain bonds involving hydrogens

ntf = 2, // omit force interactions involving hydrogens

tempi = 0.0, // inital temperature

temp0 = 300.0, // target temperature

ntt = 3, // use Langevin dynamics to regulate temperature

gamma_ln = 1.0, // collision frequency in Langevin equation

nstlim = 10000, // total number of simulation steps (20ps)

dt = 0.002, // time step 2fs

ntpr = 100, // print out energy information all 100 steps

ntwx = 100, // print out atom coordinates all 100 steps

ntwr = 1000 // print out restart file all 1000 steps

/

Keep Solute Fixed // put weak restraints on the solute to keep it fixed

10.0

RES 1 372

END

END

Pressure Equilibration

&cntrl

imin = 0, // no minimization

irest = 1, // continue calculation from given input file

ntx = 7, // read positions, velocities and box information from file

ntb = 2, // perodic boundary conditions (const P)

pres0 = 1.0, // reference pressure (1 atm)

ntp = 1.0, // constant pressure dynamics (isotropic pos. scaling)

taup = 2.0, // pressure regulation time (2ps)

cut = 10, // electrostatic cutoff 10 Angstroem

ntr = 0, // no positional restraining
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ntc = 2, // use SHAKE to constrain bonds involving hydrogens

ntf = 2, // omit force interactions involving hydrogens

tempi = 300.0, // inital temperature

temp0 = 300.0, // target temperature

ntt = 3, // use Langevin dynamics to regulate temperature

gamma_ln = 1.0, // collision frequency in Langevin equation

nstlim = 50000, // total number of simulation steps (100ps)

dt = 0.002, // time step (2fs)

ntpr = 100, // print out energy information all 100 steps

ntwx = 100, // print out coordinates all 100 steps

ntwr = 1000 // print out restart file all 1000 steps

Production Run

&cntrl

imin = 0, // no minimization

irest = 1, // continue calculation from given input file

ntx = 7, // read positions, velocities and box information from file

ntb = 2, // perodic boundary conditions (const P)

pres0 = 1.0, // reference pressure (1 atm)

ntp = 1.0, // constant pressure dynamics (isotropic pos. scaling)

taup = 2.0, // pressure regulation time (2ps)

cut = 10, // electrostatic cutoff 10 Angstroem

ntr = 0, // no positional restraining

ntc = 2, // use SHAKE to constrain bonds involving hydrogens

ntf = 2, // omit force interactions involving hydrogens

tempi = 300.0, // inital temperature

temp0 = 300.0, // target temperature

ntt = 3, // use Langevin dynamics to regulate temperature

gamma_ln = 1.0, // collision frequency in Langevin equation

nstlim = 50000, total number of simulation steps (100ps)

dt = 0.002, // time step (2fs)

ntpr = 250, // print out energy information all 250 steps

ntwx = 250, // print out coordinates all 250 steps

ntwr = 250 // print out restart file all 250 steps
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