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Abstract We present a descriptive method for simultaneous dimension
reduction and identification of temporal phases in high dimensional time
series. The aim is to find hidden states in the multidimensional time series
data and to identify the essential dimensions for each of the hidden states
without making assumptions about the type of the underlying essential
dynamics and structure of the noise process (additive or multiplicative). We
solve this problem by optimization of an appropriate functional and demon-
strate two different numerical approaches: (i) a direct method which does
not imply assumptions on neither the hidden or observed processes, and (ii)
a method based on the combination of hidden Markov models (HMMs) and
principal component analysis (PCA) which assumes Markovian dynamics
of the hidden process and multivariate Gaussian distributions for observed
variables. We derive optimal estimators for the log-likelihood functional
and employ the Expectation– Maximization algorithm for its numerical
optimization. We demonstrate the performance of presented approach on
a generic multi–dimensional model system and some financial time series.
We show how the method can help to find hidden phases, to extract the
leading market indicators and to analyze the principal correlation patterns
hidden in the data.

Introduction

Assume that an observation of a process under consideration is given in
the form of a high dimensional time series in some degrees of freedom. The

? Supported in part by the DFG Research Center MATHEON, Berlin.
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general task in many practical applications is to find the few important or
essential degrees of freedom that can explain most of the observed process
and thus can help to understand the underlying mechanism [1–5].

The increasing amount of ”raw” measurement data and growing dimen-
sionality of investigated processes have led to a persistent demand for mod-
elling approaches which allow to extract interpretable information out of the
data. What is needed, is automatized generation of low–dimensional models
based on (noisy) data, i.e., there is a demand for approaches which provide
data–based dimension reduction. This should be carefully distinguished from
analytical approaches. The latter approaches allow to reduce the dimension
of a given model, but the problem of finding essential coordinates must be
solved previously and may be data–driven as well. See the textbook [6], or
the excellent review article [7] for an overview.

The problem of dimension reduction becomes crucial when dealing with
high-dimensional time-series or large data-sets. It has been shown that even
such simple linear dimension reduction strategies as principal component
analysis (PCA, also known as Karhunen-Loève expansion or proper orthog-
onal decomposition) allow for a significant compression of the time–series
information, cf. [8]. However, such a linear technique as PCA applied to in
general nonlinear phenomena as, e.g., transitions between different phases or
regimes of a multidimensional dynamical system can be misleading and can
produce difficulties in the interpretation [1,9,10]. One way to circumvent
these problems is non–linear extension of PCA (NLPCA) [11]. However,
this non-linear strategy is numerically expensive and not robust enough, so
the applicability of the technique is restricted [12]. Another possibility to
extend the linear dimension reduction techniques is contained in the theory
of indexing of high dimensional data-bases, where the problem was tackled
by combining correlation analysis with clustering techniques [13–15]. But
due to the fact that the proposed methods rely on geometrical clustering of
possibly high dimensional data–spaces, the resulting algorithms rely on some
sort of distance-metric and therefore scale polynomially wrt. the length of
the data-set. An alternative, as proposed in this paper, is to employ dynam-
ical clustering techniques like hidden Markov models (HMMs) which scale
linear wrt. the length of the time series [16–22] and to combine them with
the localized version of PCA.

A point of crucial importance in construction of reduced models based
on observation data is the number and type of dynamical structural assump-
tions being used in the modelling of the underlying system. If the ”physics”
of the system is known (i. e. if the mathematically rigorous model can
be analytically deduced from the ”first principles”), then it is possible to
construct what one can call an explanatory model of the dynamics. This
dynamical model can then be further parameterized using an appropriately
constructed estimator. If this is not the case and the proper dynamical
model from ”first principles” is not known a priory, there are two possible
ways to describe the data: (i) one can try to fit a dynamical model from
a known class of models (f. e. autoregressive integrable moving average
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(ARIMA, [23]), multivariate autoregressive models (MVAR, [23]), condi-
tional heteroscedastic models (ARCH, [24]) or their generalizations) to the
observed data-set , (ii) one can use some kind of information criterion to
find out the essential dimensions (f. e. in the sense of the lowest reconstruc-
tion error when the full data-set is reconstructed from its part). Approach
(i) will allow to make a data-based parameterization of the chosen model
but there is no guarantee that (a) the same parameterization would be valid
for other observations of the same system and (b) that there exist no better
dynamic model to describe the data. The goal of the approach (ii) is to find
spatial patterns in the data, whereas the goal of (i) is to find dynamical
patterns of certain predefined type.

Many economic applications are characterized by the need to find low-
dimensional models for complex systems that undergo transitions between
different temporal phases or ”regimes”. The information about these phases
and the paths describing the movement of the system through them are
hidden in the multi–dimensional observation data [17,25,26]. Dimension
reduction approaches known in finance and econometrics literature are rep-
resented by methods of canonical correlation analysis [27–30], dynamical
factor models based on principal component analysis [31–34], hidden Markov
approaches for multivariate autoregressive models (VAR) [35–37] and other
related approaches. Due to the fact that the application of the econometrics
models almost always implies the construction of predictions based on his-
torical observation data, all of the above approaches share the same feature
- they are explanatory, i. e., the multidimensional dynamical model (usu-
ally it is a multivariate autoregressive model or one of its modifications) is
mandatory for dimension reduction.

There are some recent indications that the whole variety of existing
explanatory models fails to reproduce the intraday returns on the stock
markets [38]. This particular point motivates the presented work. In this
paper we present a novel descriptive method for simultaneous dimension
reduction and clustering of the time series into metastable states. We derive
the expression for the residuum–functional; minimization of this functional
allows to cluster the time series according to the differences in essential
dimensions without making additional assumptions about type of the dynam-
ical model in each of the hidden states. We present two alternative numerical
methods to perform the optimization of the presented functional under fol-
lowing two conditions: (1) We have to assume that there are not too many
regimes and that these are ”metastable”, i.e., the system typically remains
within a certain regime for a time span that is significantly longer than the
lag time of the time series. (2) Within each regime one is interested in the
subspace that contains most of the variability of the time series. We will
present two different numerical schemes. The first approach is based on the
direct optimization of the functional. This approach involves the solution of
some high-dimensional optimization problem and is therefore numerically
expensive. The second approach is based on the combination of HMMs with
PCA. The problem of simultaneous dimension reduction and metastability
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analysis in that case is solved by the optimization of an appropriate log–
likelihood functional by means of the Expectation Maximization algorithm
(EM) [19]. This method is numerically favorable, since it performs linearly
in the length of the observation sequence and so far can be used for very
long observation sequences. However, the applicability of this method is
restricted to the cases when the observation process in each of the states
is multivariate Gaussian and the hidden process is Markovian. The perfor-
mance of both methods is demonstrated by application to 202–dimensional
model example and to the time series originating from daily observations of
important stock market titles.

1 State-specific Principal Component Analysis

Let the data be given in form of a sequence {zt}t=1,...,T of c-dimensional
data vectors which describe the observation or measurement of a process
at T consequent instances. In order to encounter for memory effects in the
analyzed data (i. e. to be able to describe causal temporal dependencies exis-
tent in the observed sequence), we can extend the vector space of observ-
ables zt at each time t with k previous observations {zt−1, . . . , zt−d} [39,
40]. The resulting vector xt = {zt, zt−1, . . . , zt−d} is a component in n = dc-
dimensional space. The idea of the method is to identify the m principal
directions with the highest variance in n-dimensional data xt (m << n).
In contrast to standard PCA, where this principal directions are supposed
to be global (i. e. valid for the whole time series xt), we will construct a
local or phase-specific variant of PCA. We assume that principal directions
can vary in time and are defined with the help of a sequence of K linear
projectors Ti ∈ Rn×m, i = 1, . . . ,K, i.e., Ti is understood to project onto
the subspace spanned by the local principal directions. Mathematically the
problem of identifying Ti can be stated as a minimization problem wrt. the
residuum–functional, describing the least–squares difference between the
original observation and its reconstruction by means of the m-dimensional
projection:

L(xt,Ti, µi) =
K∑

i=1

T∑
t=1

γi(t)
∥∥∥(xt − µi)−TiTT

i (xt − µi)
∥∥∥

2

2
, (1)

where γi(t) denotes the probability to optimally describe the n-dimensional

vector xt at time t with the local projector Ti and
K∑

i=1

γi(t) = 1 for all t.

This number gives a relative weight to an observation xt in the hidden state
i, similarly to what was proposed by [41] in the context of signal extraction
and filtering. For the moment we assume the sequence of probabilities γi(t)
to be known and fixed, in the next section we will present a way to estimate
this sequence from a given observation xt. The functional L depends on the
projector matrices Ti and center vectors µi ∈ Rn. Moreover, the projectors
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Ti are subjected to the orthogonality condition:

TT
i Ti = Idm×m. (2)

The functional (1) can be equivalently written as

L =
K∑

i=1

T∑
t=1

γi(t)(xt − µi)
T
Qi (xt − µi) , (3)

where Qi = Idn×n−TiTT
i is the projector onto the orthogonal complement

of the range of Ti.
Applying the Lagrange form of the functional with constraints we get

L =
K∑

i=1

T∑
t=1

γi(t)(xt − µi)
T
Qi(xt − µq) +

K∑

i=1

eTΛi •
(
Idm×m −TT

i Ti

)
e,

(4)

where Λi is a symmetric matrix of the Lagrange multipliers (since (2) results
in a symmetric matrix of constraints), e = (1, 1, ..., 1) ∈ Rm, and A • B
denotes entry-wise multiplication of the matrices A and B. While the deriv-
ative wrt. Λi gives back the orthogonality condition (2), the derivatives of
L with respect to µi and Ti yield the two conditions

∂L
∂µi

= 2
T∑

t=1

γi(t)
(
(xt − µi)−TiTT

i (xt − µi)
)

= 0 (5)

∂L
∂Ti

= −2
T∑

t=1

γi(t)
(
(xt − µi)(xt − µi)TTi

)
− 2TiΛi = 0,

for minima of L. These conditions yield the following first results on the
minimizers µi and Ti:

Qi(µi − x̄i) = 0, with x̄i =
∑T

t=1 γi(t)xt∑T
t=1 γi(t)

⇒ µi = x̄i + ξi, (6)

where ξi is an arbitrary vector from the kernel of Qi, i.e., Qiξi = 0, and

CiTi =
T∑

t=1

γi(t)(xt − µi)(xt − µi)
TTi = −TiΛi (7)

with Ci being the weighted covariance matrix of the data in the hidden
state i.

Obviously for m = 1 the last equation implies that T is an eigenvector
of the matrix Ci (corresponding to an eigenvalue λi of Ci such that Λi =
−λi). Via induction in m and by using the orthogonality constraint (2)
together with the symmetry of Λi it is easy to show that the solution of
(7) satisfies Λi = −λi where λi is a diagonal matrix of eigenvalues of the
covariance matrix Ci, and the columns of Ti are given by the corresponding
(normalized) eigenvectors, cf. [42] for the global variant of PCA.
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In the following we assume that Ci has at least m non–negative eigen-
values. In order to identify the proper m eigenvalues and eigenvectors that
minimize L, we first note that

(xt − µi)
TTiTT

i (xt − µi) = tr
[
TT

i (xt − µi)(xt − µi)
TTi

]
. (8)

Inserting (8) into the residuum-functional (4) and making use of the linearity
of the trace operation we get

L =
K∑

i=1

[ T∑
t=1

γi(t)(xt−µi)2−γi(t) tr
[
TT

i CiTi

]
+eTλi•

(
Idm×m −TT

i Ti

)
e
]
.

(9)

This result means that the minimization of the least-squares residuum-
functional (4) with respect to Ti is equivalent to constraint maximization
of the variation functional

L =
K∑

i=1

[
tr

[
TT

i CiTi

]
− eTλi •

(
Idm×m −TT

i Ti

)
e
]
. (10)

Since the columns of Ti are eigenvectors of Ci, and Λi = −λi, we obtain,
by inserting (7) into (10) and making use of (2), the unique maximizer of L

L =
K∑

i=1

trλi (11)

given by the m dominant eigenvalues of the data-covariance Ci. (It is obvi-
ous that the minimizer may not be unique if some eigenvalues around the
m-th one (if ordered due to decreasing modulus) are identical. We ignore
this pathological situation here).

For the case of K = 1, we found the well-known theorem which states
that the optimal value of the parameter µ is given simply by the mean
value of the data and the corresponding optimal projector T is defined by
the dominant eigenvectors of the data covariance–matrix. It is important to
mention that nowhere in the derivation of the optimal estimator an assump-
tion about the form of the xt distribution is needed, i.e., local PCA can be
applied for dimension reduction of arbitrary time series.

PCA-based dimension reduction provides a useful tool for data com-
pression. The error of the data-reconstruction from the projected trajectory

yt =
K∑

i=1

γi(t)TT
i (xt − µi) is given by the value of the residuum functional

(4). This means that the original data set x(t) can be approximated by a
reconstructed time series xred

t

xred
t =

K∑

i=1

γi(t) (Tiyt + µi) (12)
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such that the error
∥∥∥xt−xred

t

∥∥∥
2

2
is bounded by the minimum of the residuum

functional from (4).
In many interesting cases the standard global PCA–approach (i. e. for

K = 1) does not result in a meaningful dimension reduction. Let us assume,
for example, a time series resulting from a two–dimensional double-well
Langevin–dynamics of the form

ẍ(t) = −grad V (x(t))− γẋ(t)− σẆ , (13)

with friction matrix γ =
(

0.25 0.125
0.125 0.25

)
, noise matrix σ =

(
0.6 0
0 0.6

)
and

potential energy defined as the sum of two Gaussian wells orthogonal to
each other added to a harmonic potential:

V (x) =
2∑

l=1

al exp
(
−(x− µsys

l )TDsys
l (x− µsys

l )
)

+6(x− 0.5(µsys
l + µsys

l ))T(Dsys
1 + Dsys

2 )(x− 0.5(µsys
l + µsys

l )), (14)

Dsys
1 =

(
20 0
0 0.5

)
, Dsys

2 =
(

0.5 0
0 20

)
, µsys

1 =
(

0
1.5

)
, µsys

2 =
(

1.5
0

)

The Langevin dynamics in this case produces two clusters of states each
associated with the corresponding metastable well. The application of PCA
with m = 1 to this time series results in an inadequately reconstructed
dynamics. If we first cluster the time series into two clusters and then apply
PCA with m = 1 to each of the clusters separately, we can reduce the value
of the residuum–functional from 191.1 in a ”global” PCA case to 46.3 in a
”local” one (by ”local” PCA we understand the PCA for each of the clusters,
the value of the residuum-functional is then given by the sum of the ”local”
functionals), indicating a much better quality of the data-reconstruction.

This leads us to a simple idea: if we want to enhance the performance of
PCA–based dimension reduction we should exploit the internal structure of
the data, i.e., we should decompose the time series of the observed process
into metastable aggregates and then make ”local” dimension reduction by
means of PCA. Furthermore, we can ask a more ambitious question: Is it
possible to use the local principle dimensions as tokens in the clustering
of the time series itself? If possible this will allow to combine clustering of
data and dimension reduction in one algorithmic step hopefully leading to
synergetic effects and allowing to improve both, clustering of the time series
in metastable sets and dimension reduction.

1.1 Direct optimization of the residuum-functional

For a given time series xt, the minimization of the constrained residuum-
functional (4) wrt. the parameters (γi(t),Ti, µi) , t = 1, . . . , T, i = 1, . . . ,K
can be achieved using an appropriate numerical optimization method. In
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order to avoid the problem connected with the high dimension of the result-
ing optimization problem due to a large number of unknown occupation
probabilities γi(t), we use a wavelet-Galerkin representation of the function
γi(t). We assume that the unknown function γi(t) can be represented as a
finite linear combination of (few) discrete Haar-wavelet functions φ(x)

φ(x) = ξ[0,1) =
{

1 0 ≤ x < 1
0 any other (15)

With their help any hidden occupation probability function γi(t) ∈ L2(R)
on any given scale J ∈ Z can be represented by a respective scale-specific
projection

PJγi(t) =
∑

r∈Z
ci
rφ(2J t− r)

ci
r =

∫ 1

0

γi

(
2−J (r + s)

)
ds (16)

If the number of the ansatz functions in expansion (16) can be assumed
to be small, it will allow to project the original high–dimensional optimiza-
tion problem to the low-dimensional space of the wavelet coefficients ci

r.
The integral transformation between the wavelet representation and the
occupation probabilities γi(t) can be efficiently implemented using the fast
Haar-wavelet transformation (FWT) [43].

In our specific implementation of the wavelet-based optimization proce-
dure, we made two simplifying assumptions: (i) we assumed that the occu-
pation probability functions γi(t) can take only discreet values 0 and 1 (i. e.
the occupation probabilities are assumed to be discreet step functions) and
(ii) we fixed the upper limit of the Galerkin subspace dimension for each of
the optimization runs (i. e., together with the assumption (i) it means that
we set the upper limit of transitions between K hidden states). Application
of the adaptive wavelet approach (where the total number and the scale
of the respective wavelet-Galerkin basis functions can be chosen automati-
cally, like it was already demonstrated for other optimization problems [44])
will allow to get rid of those restraining assumptions. This is the matter of
ongoing research.

1.2 Hidden Markov Models (HMM)

A HMM is designed to describe the situation in which part of the informa-
tion of the system is unknown (or hidden) and another part is observed. The
hidden process consists of a sequence X1, X2, X3, . . . of random variables
taking values in some ”state space”, the value of Xt being ”the state of the
system at time t”. In applications these states are not observable, and there-
fore called hidden. Each state causes a specific output that might be either
discrete or continuous. This output is distributed according to a certain con-
ditional distribution (conditioned to the hidden state). Thus, realizations of
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HMM are concerned with two sequences, an observation sequence and a
sequence of hidden states.

The dynamics under consideration is assumed to be a Markov process,
that is, the state sequence has the Markov property, i. e., that the conditional
distribution of the ”future” Xn+1 given the ”past”, X1, . . . , Xn, depends on
the past only through Xn. Since we assume the state space of hidden states
as finite, we thus are concerned with a Markov chain, which is characterized
by a transition matrix, whose entries correspond to the probabilities of
switching from one state to another. The sum of all coefficients in one row
is the probability of taking any state, therefore being one, which means that
the transition matrix is a row-stochastic matrix.

To describe the whole system, the number of hidden states, the transition
matrix between them, an initial distribution, and, for each state, a certain
probability distribution for the observation are needed .

Therefore, a HMM formally is defined as a tuple λ = (S, V, A,B, π),
where

– S = {1, 2, ..., K} is a set of K states,
– V ⊂ Rk is the observation space,
– A = (Aij) is the transition matrix, where Aij = P (Xt+1 = j|Xt = i)

describes the the transition probability from state i to state j,
– ρk, k = 1, . . . , K are probability density functions in the observation

space which correspond to the hidden states,
– π = (πi) is a stochastic vector, that describes the initial state distribution

πi = P (X1 = i).

Often, the short notation λ = (A, ρ, π) is used since S and V are implicitly
included. HMMs can be set up for discrete or continuous observations. For
continuous observations the most popular choice is to use (multivariate)
normal distributions for the output distributions ρk.

1.3 HMM-PCA

Parameter fitting for HMMs can be performed with the help of the max-
imum likelihood principle. The likelihood function is L(λ) = P (xt, Xt|λ),
i.e., we consider the observation sequence (xt) as being given and ask for
the variation of the probability in terms of the parameters; (Xt) again refers
to the sequence of hidden states. The maximum likelihood principle simply
states that the optimal parameters are given by the absolute maximum of L.
Thus, similarly to PCA-based dimension reduction, the maximum likelihood
principle is an optimization problem in parameter space.

In order to combine both approaches, we make two assumptions on the
observation process: (i) when being in a fixed hidden state, the observed data
are distributed according to a multivariate Gaussian distributions ρi (where
each ρi is characterized by a set of corresponding parameters (µi,Ti, Si)),
(ii) the process switching between the hidden states is Markovian, i.e., the
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probability of the conformational change depends on the current hidden
state only. The first assumption is approximately valid in many cases, e.g.,
for the first-order differences of logarithms of stock prices (this property of
the data can be checked a posteriori, see numerical examples below). The
second assumption is connected to the characteristic timescale at which the
memory of the system under consideration is decaying and is also satisfied
for a wide class of applications.

These assumptions allow to design a statistical model for the observed
data and to construct the likelihood function for a reduced system. In anal-
ogy to the residuum–functional (3) we have

P (xt, Xt|λ) = πX0e
− 1

2 (x0−µX0)
T
TX0SX0TT

X0(x0−µX0)
T−1∏

k=1

A(Xk, Xk+1)√
(2π)m det(SXk+1)

×e
− 1

2 (xk+1−µXk+1)
T
TXk+1SXk+1TT

Xk+1(xk+1−µXk+1), (17)

where A is the transition matrix of the hidden process, Bi = (µi,Ti, Si) a
set of multivariate Gaussian distribution parameters with µi ∈ Rn denoting
the centers of the clusters, Ti ∈ Rn×m the corresponding optimal projectors,
and Si ∈ Rm×m a diagonal matrix of dominant variances. Functional (17)
should be additionally subjected to constraints: (i) the projector orthogo-
nality condition (2), and (ii) the condition for stochasticity of the transition
matrix A (i.e., the row sums of the matrix should be 1.0).

For numerical reasons it is much more convenient to optimize the loga-
rithm of the likelihood functional. Writing the resulting log-likelihood func-
tional together with both constraints in Lagrange–form, taking the deriva-
tives wrt. to the model parameters and setting them to zero we get:

µi =
∑T

t=1 αi(t)βi(t)xt∑T
t=1 αi(t)βi(t)

, (18)

T∑
t=1

αi(t)βi(t)(xt − µi)(xt − µi)
TTi = TiSi, (19)

where αi(t), βi(t) are forward and backward variables (as defined in
appendix, see also [22]). They are related to the Markov process (A, π)
and describe the probabilities to observe the hidden process Xt in the state
i in the time t. We observe direct correspondence between the estimator for-
mulas (18-19) and those given by localized PCA (6-7) if γi(t) = αi(t)βi(t).
Only the m dominant eigenvectors of

Ci =
T∑

t=1

αi(t)βi(t)(xt − µi)(xt − µi)
T

are needed for the construction of the matrix Ti. Even for large matrices
Ci one can compute them efficiently with some iterative subspace method
(e.g. Lanczos eigenvalue solver, cf. [45]). In the case of several hidden states
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we suggest to use the standard Expectation-Maximization algorithm [46],
often also called the Baum-Welch algorithm [16,18]. This approach improves
iteratively an initial parameter set, and converges to a local maximum of
the likelihood function. Its two steps, the E- and the M-step, are iteratively
repeated until the improvement of the likelihood becomes smaller than a
given limit. The EM algorithm used herein follows standard procedures;
the detailed formula are given in the appendix.

To apply the EM algorithm to a given observation sequence, we have to
set up a HMM λ = λ(A,B, π) by assuming a finite number K of hidden
states, a distribution function for the output of each state, and initial values
for all remaining parameters.

2 Numerical Examples

2.1 Langevin Dynamics in 202 Dimensions

As a first example we consider realizations of the Langevin equation (13)
with x = (q, y) ∈ R2 × RN , N = 200 and the perturbed two–hole potential

V (x) =
2∑

l=1

al exp
(
−(q − µsys

l )TDsys
l (q − µsys

l )
)

+
1
2
yTDbathy (20)

+δ0

(
cos(2πk(x1 + x2)) + cos(2πk(x1 − x2))

)
, (21)

where δ0 ¿ 1 is a small perturbation parameter. The N harmonic bath vari-
ables are denoted by y, whereas q labels the two ”metastable” dimensions
that live in the plane of the double well potential. We have chosen the follow-

ing parameter values: µsys
1 = (1.5, 0)T, µsys

2 = (0, 1.5)T, Dsys
1 =

(
0.5 0
0 20

)
,

Dsys
2 =

(
20 0
0 0.5

)
, a1 = −6, a2 = −6 such that we get two contiguously

placed orthogonal wells and a transition region in between (the contour lines
of this potential are shown in the Fig. 4). The parameter matrices Dbath

and γ have been chosen to be symmetric, positive definite, and tri-diagonal,
with 30.0 on the main diagonal and 5.0 on secondary diagonals for Dbath

(5.0 and 2.5 respectively for γ). The noise parameter σ was taken as a diag-
onal matrix with 4.0 on the diagonal. The system is metastable because the
barrier is sufficiently larger than the average kinetic energy in the system.

Simulation of the model has been realized with the Euler–Maruyama
integrator (discretization time step ∆tEuler = 0.005) and total time length
200. Each tenth instance of the resulting time series has been taken for a sub-
sequent parameter estimation (resulting in observation time step τ = 0.05)
such that T = 4.000. If projected onto the two ”metastable” modes q the
resulting time series corresponds to a dynamics in a double–well potential
with clear transitions between the metastable wells, cf. Fig. 1.

Furthermore, in order to make our model system more realistic and
mimic the features inherent in multidimensional systems, we rotate the
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0 50 100 150 200
−1

0

1

2

q 1(t
)

0 50 100 150 200
−1

0

1

2

t

q 2(t
)

Fig. 1 Projection of the 202-dimensional time series onto the two metastable
modes q.

resulting time series in the (N+2) dimensional space. We do it in such a
way, that the metastability of the system becomes hidden in all the dimen-
sions of the system.

HMM-PCA. Application of the HMM–PCA method indicates the presence
of two metastable and one transition state in the time series (see Fig. 2). The
phrase ”transition state” here means a metastable state with the following
two properties: (a) The process under consideration goes through the state
whenever it makes a transition between two of the most metastable states
of the system, and (b) the transition state is significantly less metastable
than the other metastable states.

Clustering of the data with the HMM–PCA–approach in the case of 3
hidden states and reduced dimension m = 2 results in the hidden path (also
called Viterbi–path in the literature) shown in Fig. 3.

The two projectors Ti are 202×2 matrices whose columns are the eigen-
vectors of the two largest eigenvalues of the corresponding (local) covariance
matrices. In each of the two cases the dominant eigenvalue is significantly
larger than the second one; the eigenvectors corresponding to the two dom-
inant eigenvalues are almost identical to the columns of the rotation matrix
used to obscure the time series (difference in 2-norm below 0.01 in both
cases). This shows that HMM-PCA identified the right subspaces.

In order to interpret the quality of the assignment connected with the
Viterbi–path identified by HMM-PCA, we rotate the time series back accord-
ing to the projectors Ti identified by HMM-PCA, color the elements accord-
ing to the Viterbi–path and plot them atop of the original potential surface
in (q1, q2). As we can see in Fig. 4, the local Langevin models are correctly
situated at the wells of the double–well potential in the metastable dimen-
sions and the elements of the time series are assigned in a proper way.
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Fig. 2 Spectrum of the transition matrix as calculated for the 202-dimensional
time series with HMM–PCA (7 hidden states). It indicates the presence of two
metastable states and one transition state (there are two eigenvalues denoted
with stars which are located close to 1.0 and one between them and the rest of
the spectrum)
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Fig. 3 Viterbi–path resulting from the HMM–PCA clustering of 202–dimensional
time series (for 3 hidden states and m = 2).

As mentioned before, we hope that dimension reduction provides a tool
for data compression in the sense that the original time series can (almost)
be reconstructed from the low–dimensional data-set with a help of projectors
Ti and vectors µi. The quality of reconstruction in our case is illustrated in
Fig. 5. We see that HMM-PCA results in good agreement with the original
data. In contrast, the reconstruction based on global PCA (with 2 modes)
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Fig. 4 Coloring of the time series wrt. the Viterbi–path from Fig. 3 (see text).
The 202–dimensional data is back–rotated according to the two projectors Ti and
projected onto the two metastable modes (q1, q2).

is less efficient and the errors become significant especially at the transition
regions.
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Fig. 5 Original Langevin time series (green) together with time series being
reconstructed according to (12) from two–dimensional reduced models based on
PCA (left graphics, dotted lines, residuum functional L = 2.600) and HMM-PCA
(dotted, right graphics, residuum functional L = 1.700 ) as described in the text.

2.2 Analysis of the stock market indicators between Jan 2, 1987 and May
12, 2006.

As a second application we analyzed the temporal dynamics of the 12
following stock market indicators: DAX30, Stoxx50(EUR), Stoxx50(USD),
NASDAQ Composite, NASDAQ Industrial, NASDAQ Banking, NASDAQ
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Insurance, NASDAQ Other Finance, NASDAQ Transportation, NASDAQ
Telecommunication, S&P500 and finally Dow Jones Industrial Average
(daily closing prices). The data covers the interval between Jan 2, 1987
and May 12, 2006, and thus amounts to 4997 trading days (the data was
taken from www.markt-daten.de).

As far as the data is obviously non–stationary and has some trend we
cannot just assume the multivariate Gaussian distribution to describe the
observation probability in the hidden states. However, taking the first dif-
ferences of logarithms of the time series stationarizes the data [47,23] and
makes it possible to apply HMM–PCA.

Application of HMM–PCA with m = 1 to the differenced time series indi-
cates the presence of four metastable states (see Fig. 6). The result of the
HMM-PCA optimization can be validated by comparison of the resulting
Viterbi-path with the plot of the respective probabilities γi(t) resulting from
the direct optimization of the likelihood functional (4). Fig. 7 shows a good
agreement of both pathes which validates the applicability of the HMM-
PCA-strategy in this case. The differences can be explained by the fact that
as it was already explained above, we have implemented a non-adaptive ver-
sion of the wavelet-based optimization strategy, i. e. in this particular case
the maximal number of Haar-wavelet functions was set to 10 for each of the
hidden states. Application of the adaptive framework will hopefully increase
the similarity between two paths.
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Fig. 6 Spectrum of the transition matrix of the hidden Markov chain (for 7
hidden states, m = 1).

The corresponding dominant modes are presented in Fig. 8 and can give
an idea about the correlation patterns in the data. This means that posi-
tive and negative values of dominant eigenvectors correspond to correlating
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and anti–correlating indicators, i.e., whenever the reduced trajectory in the
metastable state goes up, the indicators corresponding to positive compo-
nents of the dominant eigenvector increase and negative ones decrease. As
it can be deduced from the comparison of eigenvectors in Fig. 8, the cor-
relation patterns are changing in time. In the first (and less significantly
in the third states) the ”NASDAQ Banking” indicator is anti–correlated
wrt. to all other indicators and in the fourth hidden state it is ”NASDAQ
Telecommunication”.
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Fig. 7 Comparison of Viterbi–paths resulting from HMM–PCA(dots) and from
the direct optimization of the residuum–functional (with the upper number of
Haar-wavelet functions set to 10 for each of the hidden states) (4) for 4 hidden
states (m = 1).

In the same manner as in the previous example, we compare global
PCA with HMM–PCA wrt. the data reconstruction quality. As we see from
Fig. 10, the one–dimensional projection based on HMM–PCA captures the
real dynamics better than standard PCA.

Application of HMM–PCA with m > 1. In order to find out whether this
type of information (coming only from the one dominant local mode) is
enough for qualitative understanding of the correlation behavior in the hid-
den states, we have to estimate the number m of essential dimensions needed
for a reliable representation of the full process in 12–dimensional space of
stock indicators. To this end we plot the reconstruction error which describes
the l2–distance between the time–dependent data vector in R12 and its
reconstruction from the projection on Rm for different values of m accord-
ing to (12). Fig. 9 indicates that, whereas in the first and second hidden
states the reconstruction error is actually almost not changing with m, in
the third (and somewhat less in the fourth state) the reconstruction error
can be brought onto the level of first two states only for m = 2. This means



Dimension Reduction for Time Series 17

0 5 10

−0.5

0

0.5

D
om

in
an

t D
im

en
si

on

Index

hidden state 1

0 5 10

−0.5

0

0.5

D
om

in
an

t D
im

en
si

on

Index

hidden state 2

0 5 10

−0.5

0

0.5

D
om

in
an

t D
im

en
si

on

Index

hidden state 3

0 5 10

−0.5

0

0.5
D

om
in

an
t D

im
en

si
on

Index

hidden state 4

Fig. 8 Dominant dimensions of the optimal projectors Ti for the four hidden
states with the ordering of the stock indexes as being given in the text. Four
pictures correspond to the four hidden states in Fig. 7 as being identified via
HMM-PCA with m = 1. Black dashed lines indicate the zero level.

that in order to get the low-dimensional description of the full process with
uniform quality one has to take m = 1 for the first and the second hidden
states and m = 2 for the third and the fourth.

Fig. 11 shows the second dominant modes as resulting from HMM–PCA
for m = 2 (we get the same Viterbi–path as for m = 1). In states 3 and 4
these second modes explain the difference in stock market dynamics around
the year 2000. Whereas the ”NASDAQ Banking”, ”NASDAQ Insurance”,
”NASDAQ Other Finance”, ”NASDAQ Transportation” and ”Dow Jones
Industrial” are more or less ”flat”, other indicators show a ”sharp” peak at
2000. As it can be seen from the corresponding elements of second dominant
eigenvectors , ”flat” indicators are anti-correlating with the ”sharp” ones in
the second dominant modes.

It should be clear that taking m > 1 increases the accuracy of the
reproduction in all aspects. However, as we saw one- and two- dimensional
local models are already sufficient to capture the essentials of the time series
and can help to qualitatively understand the correlation behavior and to
figure out the differences between the hidden states. Such kind of analysis
can be helpful in the construction of the minimal–risk portfolio [48].
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Fig. 9 Comparison of the reconstruction error for the global PCA analysis (m =
1, black solid line) with reconstruction errors of HMM-PCA for m = 1 (red dotted
line) and m = 2 (blue dashed line). The green dashed vertical lines and the
numbers indicate the switching points of the hidden Viterbi–path from Fig. 7.

2.3 Analysis of some commodities, currencies and stock market indicators
between Jan 4, 2000 and April 11, 2006.

As a third application we analyze the temporal dynamics of the 21 daily clos-
ing prices of the following stock market titles: Brent oil price in USD, silver
price in USD, gold price in USD, Yen price in USD, gold price in Yen, EUR
price in USD, gold price in EUR, platinum price in USD, platinum price
in EUR, platinum price in Yen, palladium price in USD, palladium price
in EUR, DAX 30, NASDAQ Composite, NASDAQ Industrial, NASDAQ
Banking, NASDAQ Insurance, NASDAQ Other Finance, NASDAQ Trans-
portation, NASDAQ Telecommunications and S&P500. The data covers the
interval between Jan 4, 2000 and April 11, 2006, and thus amounts to 1636
trading days (as in example before, the data was taken from www.markt-
daten.de).

HMM-PCA analysis (m = 1) of the time series of price increments
reveals a presence of four hidden states (since there are four dominant eigen-
values in the spectrum of the HMM transition matrix). The result of the
HMM-PCA optimization can be validated by comparison of the resulting
Viterbi-path with the plot of the respective probabilities γi(t) resulting from
the direct optimization of the likelihood functional (4). As it can be seen
from the Fig. 12, the direct optimization of (4) results in K = 3 metastable
states which can be explained by the fact that the non-Gaussian metastable
state 1 in terms of the direct optimization procedure is approximated by
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Fig. 10 Original time series (blue) together with their reconstructions from one–
dimensional reduced models based on global PCA (black dotted lines, residuum
functional L0 ) and HMM-PCA (red dashed lines, residuum functional L = 0.6L0)
both for m = 1.

two metastable Gaussian states in context of HMM-PCA. Other identified
metastable substates are almost Gaussian (which is verified by applying
standard statistical tests to the substate distributions of the data projec-
tions on essential dimensions), therefore also the identified Viterbi paths are
similar in both cases.

The respective corresponding dominant modes are shown in Figs. 12 and
14. As it can be seen, the most significant entries in the dominant modes
are related to just two titles: gold and platinum prices in Yen. In the same
manner as in example before, we plot the reconstruction error for different
values of m (see Fig. 13) in order to find the adequate number of reduced
dimensions for each of the states. It shows up that in order to achieve
uniform quality of the dimension reduction, it is enough to take m = 2
for the fourth and m = 1 for all other states. Moreover, as its can be seen
from Fig. 15, the dominant elements of the second dominant mode in the
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Fig. 11 Second dominant modes of the optimal projectors Ti for the four hidden
states with the ordering of the stock indexes as being given in the text. The four
pictures correspond to the four hidden states in Fig. 7. Black dashed lines indicate
the zero level.

fourth hidden state are corresponding once again to the gold and platinum
prices in Yen. This means that for the overall dimension reduction in the
first and second states only the platinum price in Yen is necessary (cf. the
upper left and right panels of the Fig. 14) whereas for all other states its
enough to take additionally the gold price. The quality of reconstruction of
the full dynamics out of these two prices is presented in the Fig. 16. This
demonstrates that these two commodities can serve as a reliable indicator
of the stock market dynamics.

3 Conclusion

We presented a novel method for simultaneous dimension reduction and
identification of metastable phases or regimes from time series data. The
problem is formulated in terms of the minimization of the residuum func-
tional describing the distance between the original and the reduced data.
We have demonstrated that taking some reasonable assumptions on the
underlying process one can apply the HMM–framework to minimize the
functional. The resulting numerical method is based on a combination of
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Fig. 12 Viterbi–path resulting from HMM–PCA (for the four hidden states, m =
1, dots) and from the direct minimization of the functional (4) (m = 1, dashed, the
upper number of Haar-wavelet functions set to 10 for each of the hidden states).
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Fig. 13 Comparison of the reconstruction error for the global PCA analysis (m =
1, black solid line) with reconstruction errors of HMM-PCA for m = 1 (red dotted
line) and m = 2 (blue dashed line). The green dashed vertical lines and the
numbers indicate the switching points of the hidden Viterbi–path from Fig. 12.

the HMM approach and local PCA analysis and has the nice feature that it
is linear wrt. the length of data–sequence and so far is suitable for very long
time series. Incorporation of local PCA analysis helps to map the clustering
problem into low dimensional space. We have demonstrated the applica-
tion of the method to a model system and to some time series of stock
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Fig. 14 Dominant modes of the optimal projectors Ti for the four hidden states
with the indexing of the titles as being given in the text. Four pictures correspond
to the four hidden states in Fig. 12 as being identified via HMM-PCA with m = 1.
Black dashed lines indicate the zero level.

market titles and compared the performance of HMM-PCA-method with a
direct optimization method based on a discrete wavelet representation of the
hidden occupation probabilities. The numerical examples demonstrate the
usefulness of the HMM-PCA approach and validate the applicability of the
approach to identification of the hidden phases in high–dimensional data.
We have shown that in the context of the financial analysis the method can
help to find hidden regimes in the high–dimensional data, to extract the
leading market indicators and to analyze the principal correlation patterns
hidden in the data. We have also demonstrated how the reconstruction error
associated with the HMM-PCA representation can help to find the number
of essential degrees of freedom in each of the hidden states.

Appendix: EM Steps

There is no known way to analytically determine the model parameters
that globally maximize the probability of the given observation sequence.
We can, however, estimate λ such that it locally maximizes the likelihood
L(λ) = P (xt | λ). The EM algorithm is a learning algorithm, it iterates two



Dimension Reduction for Time Series 23

0 10 20
−1

−0.5

0

0.5

1

S
ec

on
d 

D
om

in
an

t D
im

en
si

on

Index

hidden state 1

0 10 20
−1

−0.5

0

0.5

1

S
ec

on
d 

D
om

in
an

t D
im

en
si

on

Index

hidden state 2

0 10 20
−1

−0.5

0

0.5

1

S
ec

on
d 

D
om

in
an

t D
im

en
si

on

Index

hidden state 3

0 10 20
−1

−0.5

0

0.5

1
S

ec
on

d 
D

om
in

an
t D

im
en

si
on

Index

hidden state 4

Fig. 15 Second dominant modes of the optimal projectors Ti for the four hidden
states with the ordering of the stock indexes as being given in the text. Four
pictures correspond to the four hidden states in Fig. 12. Black dashed lines indicate
the zero level.

steps, the Expectation step and the Maximization step. Starting with some
initial model λ0 the steps iteratively refine the model:

– The Expectation-step: In this step the state occupation probability γt(i) =
P (Xt = i | xt, λ), and the transition probability ξt(i, j) = P (Xt =
i,Xt+1 = j | xt, λ), are calculated for each time t in the sequence, given
the observation xt and the current model λ.

– The Maximization-step: This step finds a new model λ̂ via a set of
reestimation formulas. The maximization guarantees that the likelihood
does not increase in each single iteration.

In order to calculate the two conditional probabilities of the E-step we first
define two additional variables

αt(i) = P (x1x2 . . . xt, Xt = i | λ) (22)

and

βt(i) = P (xt+1xt+2 . . . xT , XT = i | λ), (23)

where αt(i) and βt(i) are forward– and backward–variables respectively.
The interpretation of αt(i) is as follows: it denotes the probability of the
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Fig. 16 Original time series (blue) together with their reconstructions from only
the gold and platinum prices in Yen (red dashed lines) as compared with the
global PCA for m = 1 (black dotted lines).

observation sequence up to time t together with the information that the
system is in hidden state i at time t conditioned wrt. the given model λ.
The following formulas show that the computation of the sequence αt(i) for
the whole sequence is possible with K2 T operations:

α1(i) = πiρi(x1), 1 ≤ i ≤ K

αt+1(j) =

[
K∑

i=1

αt(i)Aij

]
ρj(xt+1),

1 ≤ t ≤ T − 1, 1 ≤ j ≤ K.

The backward variable βt(i) can be computed with analogous formula:

βT (i) = 1, 1 ≤ i ≤ K

βt(i) =
K∑

j=1

Aijρj(xt+1)ρt+1(j),

t = T − 1, T − 2, . . . , 1, 1 ≤ i ≤ K

P (x1 | λ) =
K∑

i=1

β1(i)πiρi(x1) (24)



Dimension Reduction for Time Series 25

From (22) and (23) one can finally compute the probability for all t as

P (xt | λ) =
K∑

i=1

αt(i)βt(i).

The two conditional probabilities of the E-step can be calculated efficiently
by using the forward-backward variables:

ξt(i, j) =
αt(i)Aijρj(xt+1)βt+1(j)

P (xt | λ)

With these values the probability to be in state i at time t can be
expressed as

γt(i) =
K∑

j=1

ξt(i, j).

Note that the expected number of visits in the state i to is

T−1∑
t=1

γt(i),

and the expected number of transitions from i to j is

T−1∑
t=1

ξt(i, j).

The M-step consists of reestimation formulas for the improved model
λ̂. The estimators for the hidden Markov chain are given by

π̂i = γ1(i)

Âij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(i)

(25)

References

1. T. Ichiye and M. Karplus. Collective motions in proteins – a covariance
analysis of atomic fluctuations in molecular dynamics and normal mode sim-
ulations. Proteins, 11:205–217, 1991.

2. A. Amadei, A.B.M. Linssen, and H.J.C Berendsen. Essential dynamics on
proteins. Proteins, 17:412–425, 1993.

3. D. Frenkel and B Smit. Understanding Molecular Dynamics: From Algorithms
to Applications. Academic Press, London, 2002.

4. W. E and E. Vanden-Eijnden. Metastability, conformation dynamics, and
transition pathways in complex systems. In S. Attinger and P. Koumoutsakos,
editors, Multiscale, Modelling, and Simulation, pages 35–68. Springer, Berlin,
2004.



26 Illia Horenko, Christof Schütte
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