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ABSTRACT

This study presents a collection of purely data-driven workflows for constructing reduced-order
models (ROMs) for distributed dynamical systems. The ROMs we focus on, are data-assisted mod-
els inspired by, and templated upon, the theory of Approximate Inertial Manifolds (AIMs); the par-
ticular motivation is the so-called post-processing Galerkin method of Garcia-Archilla, Novo and
Titi. Its applicability can be extended: the need for accurate truncated Galerkin projections and for
deriving closed-formed corrections can be circumvented using machine learning tools. When the
right latent variables are not a priori known, we illustrate how autoencoders as well as Diffusion
Maps (a manifold learning scheme) can be used to discover good sets of latent variables and test
their explainability. The proposed methodology can express the ROMs in terms of (a) theoretical
(Fourier coefficients), (b) linear data-driven (POD modes) and/or (c) nonlinear data-driven (Diffu-
sion Maps) coordinates. Both Black-Box and (theoretically-informed and data-corrected) Gray-Box
models are described; the necessity for the latter arises when truncated Galerkin projections are so
inaccurate as to not be amenable to post-processing. We use the Chafee-Infante reaction-diffusion
and the Kuramoto-Sivashinsky dissipative partial differential equations to illustrate and successfully
test the overall framework.

1 Introduction

Separation of time-scales in dynamical systems is crucial toward the development of Reduced Order Models (ROMs).
For a certain class of dissipative evolution equations, the long term dynamics are attracted exponentially fast to smooth
invariant objects known as inertial manifolds (IMs), facilitating the construction of ROMs on those. The dynamics on
the IM can be described by the Inertial Form (a finite ODE system), which accurately captures the long-term behavior
of the original infinite-dimensional system [Shvartsman and Kevrekidis, 1998, Jolly et al., 1990, Titi, 1990, Akram
et al., 2020]. The purpose of this paper is to (somewhat systematically) outline (and demonstrate) links between
“traditional” AIM technology and contemporary data-driven reduction tools, giving rise to “mathematics-assisted”
algorithmic ROM workflows. Such connections had initially been experimentally attempted in the 1990s (e.g. Krischer
et al. [1993], Theodoropoulos et al. [2000]); they are currently experiencing a strong revival due to the explosion in
machine-learning-assisted modelling [Linot and Graham, 2020, Anirudh et al., 2020, Lee and Carlberg, 2020, Bar-
Sinai et al., 2019, Benner et al., 2015].
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Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era

IMs have been proven to exist for only a few systems, and even then, they have not been constructed explicitly [Jolly
et al., 1990]. It is, nevertheless, still possible to find approximations of either the global attractor or the IM itself, i.e.
Approximate Inertial Manifolds (AIMs), or the dynamics on it, i.e. the Approximate Inertial Form (AIF), and then
track the dynamics in this reduced space. The key ansatz is that the attracting dynamics in the complement space to the
AIM, are quickly slaved to, and embodied in, the AIF. Along these lines, the Galerkin projection, as well as nonlinear
Galerkin projections on approximate inertial manifolds are also popular choices for reduced order modeling [Marion
and Temam, 1990, Jolly et al., 1991, Shen, 1990, Benner et al., 2015]. AIM-based ROMs have been proposed for
reaction-diffusion systems [Foias et al., 1988b, Adrover et al., 2002], the Kuramoto-Sivashinsky equation [Foias et al.,
1988b, 1989, Jolly et al., 1990], the two-dimensional Navier-Stokes equations [Temam, 1989b,a, Jauberteau et al.,
1990], and for the three-dimensional Navier-Stokes equations [Guermond and Prudhomme, 2008].

In the late 90s the post-processing Galerkin method was proposed [Garcı́a-Archilla et al., 1998, Garcı́a-Archilla and
Titi, 1999], initially in the context of dissipative equations. Post-processing Galerkin takes into account the observation
that the error between the result of integrating a truncated Galerkin on the one hand, and the projection of the true
solution in the finite-dimensional Galerkin space, on the other, is significantly smaller than the error between the
truncated Galerkin and the full solution (superconvergence [Garcı́a-Archilla et al., 1999, Wahlbin, 2006]). We will
return to this below and illustrate it in Sec. 4 and Fig. 6. Given this observation, one uses the dynamics expressed
only in terms of the leading low modes (a truncated version of the equations) to integrate. Once the time integration
is finished one can post-process the obtained solution by approximating the high modes as a function of the solution
in the leading modes. Since, in the post-processing Galerkin framework, the correction is computed only at the end
of time integration, this makes it much cheaper to implement computationally than true nonlinear Galerkin [Garcı́a-
Archilla et al., 1998, Garcı́a-Archilla and Titi, 1999]. Moreover, truncation analysis derivation of the spectral method
for dissipative evolution equations, such as the Navies-Stokes equations, gives rise to the post-processing Galerkin
as the leading order numerical scheme, and not the Galerkin scheme itself, as commonly believed [Margolin et al.,
2003].

Model identification assisted by machine-learning has emerged in the 90s and is now experiencing a rebirth as a tool
to discover minimal parametrizations of an IM, which can subsequently be used to evolve the dynamical system in
a reduced space [Lu et al., 2017, Chorin and Lu, 2015, Zeng and Graham, 2023, Zeng et al., 2022, De Jesús and
Graham, 2023, Linot et al., 2023]. Some efforts implemented linear methods like POD [Krischer et al., 1993, Kang
et al., 2015, Theodoropoulos et al., 2000], to identify a suitable subspace that contains the majority of the variance
of the system, and parametrizes the long term dynamics. More recently, operator inference with quadratic mani-
folds has been proposed for model reduction [Geelen et al., 2023, Zastrow et al., 2023, Qian et al., 2022, McQuarrie
et al., 2021]. Nonlinear dimensionality reduction methods, such as autoencoders [Kramer, 1991] or Diffusion Maps
(DMAPs) [Coifman et al., 2008] have also been used to discover latent variables of data that originally live in a high-
dimensional space. Learning a dynamical systems in the latent space of an autoencoder (even as a collection of local
charts), or in Diffusion Maps space, also provides a systematic approach to ROM construction (e.g. Rico-Martinez
et al. [1992], Sonday et al. [2010], Evangelou et al. [2023], Linot and Graham [2022], Lee and Carlberg [2020], Bar-
Sinai et al. [2019]). Needless to say, nonlinear system identification assisted by machine learning remains a very active
current research endeavor, encompassing a plethora of directions from symbolic methods e.g. [Brunton et al., 2016],
to physics-informed methods, e.g.[Raissi et al., 2019], to numerics-informed methods [Bar-Sinai et al., 2019].

In our view, the “1980s” IM and AIM efforts towards useful reduced order models of dissipative PDEs can be suc-
cinctly summarized as follows: Given the functional form of the PDE for which we know (or believe) an IM exists,
and having an estimate of the dimensionality of said manifold:

(A) start by finding the (leading) eigenmodes, say k of them, of the (dissipative part of the) operator that “deter-
mines” (parametrizes) the IM. In that sense, the components of the solution in the remaining “higher order”
eigenmodes can be expressed as functions of the components in the lower, determining, ones;

(B) guided by separation of time scales ideas, construct the AIM approximating this function, by writing the com-
ponents of the higher eigenmodes as (approximate) functions of the components of the lower, determining
ones. Several implementable such approximations have been proposed and analysed: e.g. the “steady” man-
ifold, the “Euler-Galerkin”, and the Foias-Manley-Temam (FMT) manifold among others. We already have
a practical result: if somebody provides as observations the lower mode amplitudes, we can meaningfully
and analytically improve the full spatiotemporal solution, complementing it with the recovered higher mode
components. We will return to this theme when discussing post-processing Galerkin. Let it be noted here
that even though the original motivation of AIM was to find an approximation to the IM whenever the latter
exists, however, this idea was generalized later and implemented by finding a manifold which approximates
the global attractor as a set; observing that global attractor always exists for genuine dissipative dynamical
system;
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(C) beyond just correcting such observations, these functions can be used to correct approximations of the dy-
namics through their low-order Galerkin truncation: From an accurate, high-order Galerkin truncation, we
keep only the low, “determining” Galerkin ODEs; instead of omitting the higher order terms as negligible, we
now substitute the AIM function in the low terms. We now have the “steady”, or “Euler-Galerkin” or FMT
inertial forms.

This original program is complemented by the “post-processing Galerkin” protocol: Here we actually keep the low
order Galerkin truncation, ignoring the contribution of the higher order, slaved modes to it, expecting/believing that,
in its low-dimensional space, these few ODEs are accurate enough to approximate the projection of the exact solution
on the Galerkin space. The authors of [Garcı́a-Archilla et al., 1998, Garcı́a-Archilla and Titi, 1999, Garcı́a-Archilla
et al., 1999] took into account the observation that the total error of the solutions predicted by the truncated low-order
Galerkin is appreciably larger than the error after adding to them (in a sense, “reinjecting”) the AIM-approximated
higher order solution components. This reinjection is performed after the truncated low-order Galerkin equations have
been integrated until each time instance of interest (we remind the reader that this is revisited in Sec. 4 and Figure 6).

They named the approach “post-processing Galerkin” since it takes place after the truncated low-order Galerkin has
been obtained and integrated: it is these concrete available solutions of the model that are being improved - not the
model itself.

Explicit AIMs have been obtained in the context of spectral Galerkin approximation by writing approximations of the
evolution equation of the high modes in terms of the low modes, a closure relation. In the context of spectral Galerkin
approximation based on Fourier modes or eigenfunctions of the Stokes operator, one can naturally decouple the phase
space into low Fourier (eigenfunctions) modes and their complement high Fourier (eigenfunctions) modes. Therefore,
the above-described strategy of obtaining AIM is possible to be executed explicitly, and leads to an analytical closure.
For the examples we present in this work, the spectral Galerkin approximation could indeed provide a desirable closure.

However, we would like to note that in the context of the Finite Element Galerkin method, the above decomposition
to coarse spatial scales and their complement is not a straightforward task. Therefore the above strategy can not be
followed to obtain an explicit (paper and pencil) closure form, that expresses the fine spatial scales of the solution
in terms of the coarse finite elements spatial scales. For this case, a more general framework for implementing the
Post-processing Galerkin can be used [Garcı́a-Archilla and Titi, 1999]. In this more general case, an explicit form of
an AIM in order to implement Post-processing Galerkin is not required. We briefly present this more general scheme
in Sec A.0.1.

Today, beyond symbolic model (AIM) or solution (post-processing Galerkin) improvement, data driven techniques
allow us (given accurate simulation data or observations) to:

(a) Estimate the AIM dimensionality in a data-driven way (either through autoencoders or through manifold
learning).

(b) Learn good reduced AIFs (the “correct”, nonlinear Galerkin, right hand-side of the reduced, low order, com-
ponents of the PDE) in a data-driven way.

(c) Learn the AIM functions (high order mode components as a function of low order model components) in a
data driven way.

(d) Given the learned AIM in (c), correct the solutions of a low-order Galerkin truncation (a “data driven” post-
processing Galerkin). Beyond the steps (b-d) above, that more or less correspond to the traditional (A-C)
analytical steps, there are now a couple of very useful data-driven “twists”.

(e) Circumvent the assumption of accuracy of the low-order (linear) Galerkin truncation; the low order AIF is
learned from observations of the low-order components of accurate full PDE dynamics; and now the “post-
processing” that follows can be done (1) with the same “old” analytical AIMs, or, interestingly (2) with
data-driven learned AIMs from the same accurate full PDE dynamics.

(f) Gray-Box (in some sense “physics-assisted”) learning: instead of a fully black-box learning of the AIF using
PDE observations, we now learn the correction of the not-so-quantitative low-order linear Galerkin trunca-
tion. This correction can be learned as an additive (residual) term, or even as a functional correction - hoping
for easier training, since what is learned is a perturbation of the identity [Martin-Linares et al., 2023].

(g) (This is not so much a step in our list, as a branching towards new capabilities). Up to now, everything but the
eigenfunctions parametrizing the manifold was data-driven; the eigenfunctions themselves were still analyti-
cal. If we allow ourselves to find the parametrization of the manifold in a data-driven way, two individually
significant new options arise:
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(a) Use linear data-driven eigenfunctions: the leading Principal Components (PODs) of the full accurate
PDE simulations. Now the low-order PODs parametrize the manifold, and the higher order POD com-
ponents embody the AIM. POD-Galerkin takes the place of traditional Galerkin.

(b) Use a nonlinear, data-driven AIM parametrization: One can here either (g2a) use the latent variables
of an autoencoder to parametrize the AIM, learn the corresponding accurate AIF, and post-process it to
more accurate spatiotemporal PDE solution reconstruction; or (g2b) use the leading POD components
to parametrize the AIM, learn the accurate corresponding AIF, and post-process it for a more accurate
spatiotemporal PDE solution reconstruction. At the risk of making this list ridiculously long, we also add
-and illustrate below- the possibility (g2c) of using spectral (Diffusion Map) data mining to parametrize
the AIM along with the associated Geometric Harmonics for the post-processing.

A schematic overview of the different options proposed in each case, are presented in Fig.1, with references to the
subsequent sections where they are discussed in detail.

Data on 
Inertial Manifold

IM 
parametrization 

known?

NOYES Dimensionality of 
latent space
DMAPs (§3.2.1)
Autoencoder (§3.2.2)

Find Latent variables
one-to-one

Leading coefficients 
(§3.2.3)

Learn/integrate 
ODEs of leading 

coefficients (§3.2)

Capturing 
correct 

attractor? 
Intergate
truncated 
dynamics

YES

NO

Gray model
Additive 

correction of 
low-order ODE 

(§3.1.2)

Learn/integrate ODEs 
of leading 

coefficients (§3.1.2)

Infer Latent variables (§3.2.3)
• FNN
• Double DMAPs
• Inverse Map (Autoencoder)

Reconstruct 
approximate solution

Correction
• Post-processing Galerkin (§3.1.1)
• ML-derived (§3.1.2)

Correction (§3.2.3)
• Decoder
• Double DMAPs

Figure 1: Flowchart of the proposed workflow

The remainder of the paper is organized as follows: After listing the illustrative examples used in this study (Sec 2), we
proceed with describing the methodology (Sec. 3.) We start with briefly reviewing the “traditional” approximations
of IMs and IFs (and AIMs and AIFs) (Sec. 3.1). We then discuss neural network-based alternatives to approximating
IMs and IFs (Sec. 3.1.2), followed by nonlinear manifold learning methods for determining the dimensionality and
parametrization of the latent space (Sec. 3.2.1 and 3.2.2). After presenting our results we conclude by pointing out
that the technology can be easily “transferred” to POD parametrizations of the IM (Sec. 3.2.3).
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2 Illustrative examples: The Chafee-Infante and the Kuramoto-Sivashinsky equations

Our first example is the reaction-diffusion Chafee-Infante partial differential equation (PDE), for which the dimen-
sionality of the Inertial Manifold (IM), for the parameter range of interest, is known; it reads:

ut = u− u3 + νuxx. (1)

The parameter ν was chosen as ν = 0.16 and Dirichlet boundary conditions, u(0, t) = u(π, t) = 0, were used. The
Chafee-Infante PDE, for ν = 0.16, has been shown to have a two-dimensional inertial manifold [Sonday, 2011, Gear
et al., 2011, Jolly, 1989, Evangelou et al., 2022]. To simulate the dynamics on/near this two-dimensional manifold,
the Galerkin projection

u(x, t) ≈
3∑

k=1

αk(t)sin(kx) (2)

was used [Gear et al., 2011, Jolly, 1989, Evangelou et al., 2022]. The first two leading sine coefficients α1(t), α2(t)
are sufficient to parameterize this two-dimensional manifold, and Galerkin equations based only on the first two modes
provide a qualitatively correct approximation of the dynamics in these two modes. We will consider the solution of
the Chafee-Infante equation with three modes as the ground truth (cf Fig.7a). For the post-processing process, the
truncated equations with the first two sine coefficients α̃ = {α1, α2} are the ones used for integration up to time
t = T . Then, their solution is post-processed to recover α̂ = α3 and reconstruct the full solution u(x, T ). For this first
example, the truncated dynamics governed by the first two sine coefficients are (considered to be) qualitatively, but not
quantitavely accurate; the post-processing step aims to correct the obtained solution from these truncated dynamics.

To demonstrate the potential of the proposed methodology in a case with more complex dynamics, we select the
Kuramoto-Sivashinsky (KS) PDE,

ut = −ν(uux + uxx)− 4uxxxx; for x ∈ [0, 2π]. (3)

The KS (Equation (3)) is a prototypical equation with dynamics that include chaos, derived in the context of a diverse
range of physical systems such as, but not limited to, thin film flow on inclined planes and instabilities in a laminar
flame front [Kuramoto and Tsuzuki, 1976, Sivashinsky, 1977, Alekseenko et al., 1985, Chang, 1986a,b, Jolly et al.,
1990, Kevrekidis et al., 1990]. The parameter ν in our case is set to ν = 33 and periodic boundary conditions are used
u(0, t) = u(2π, t). In this example, Fourier series expansion with 8 terms is used to approximate the ground truth
u(x, t):

u(x, t) ≈
8∑

k=1

αk(t)sin(kx) + βk(t)cos(kx); x ∈ [0, 2π], (4)

which results in 8 ODEs for the sine coefficients ({αk}8k=1 ) and 8 for the cosine coefficients ({βk}8k=1).

Restriction to the space of odd functions leads to retaining only the sine terms, resulting in a system of 8 ODEs for
the sine coefficients which is considered, in this work, as the exact solution of the KS. We use the truncation to the
leading three sine coefficients α̃ = {α1, α2, α3} to study the dynamics for ν = 33; however even though it has been
shown that a 3D manifold exists, the truncated equations based on the leading coefficients do not provide an accurate
approximation of the dynamics of these coefficients. In this case the traditional post-processing Galerkin methodology,
does not apply (we do not have a good base solution to correct). We circumvent this issue by constructing Gray-Box
models, as we show below in Sec. 4.3.1.

3 Methodology

3.1 Approximating the IM and the IF (known latent space)

3.1.1 Euler-Galerkin

As a preamble to traditional post-processing Galerkin, here we discuss nonlinear Galerkin schemes, in particular the
“Euler-Galerkin” algorithm, that provides a closed-form approximation of inertial manifolds [Foias et al., 1988a].
Consider the evolution equation

du

dt
+Au+ F (u) = 0, u ∈ H (5)
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where H is an appropriate Hilbert space, A is a self-adjoint positive-definite linear operator with compact inverse, and
let F be a nonlinear operator such that equation (5) is globally well-posed in time for all initial data in H . By denoting
a projection onto the span of the first n eigenvectors of A by P and Q = I − P we can split Equation (5) into

dp

dt
+Ap+ PF (p+ q) = 0 (6)

dq

dt
+Aq +QF (p+ q) = 0 (7)

where p = Pu, q = Qu and q+p = u. Assuming that the long-term dynamics of Equation (5) live in a n−dimensional
inertial manifold described as the graph of a function Φ : PH → QH we can write the projection of the inertial
manifold onto PH as

dp

dt
+Ap+ PF (p+Φ(p)) = 0. (8)

An approximation of Φ is achieved through a Galerkin truncation of m modes in Equation (7) , where m > n. The
projection to the space of the higher modes n+ 1, . . . ,m defines Qm. Since the higher modes are attracted exponen-
tially fast to the IM and become functions of the lower modes, we perform an implicit Euler step to approximate the
solution q̂ with a step size τ . By assuming an initial condition q0 = 0 we get

q̂ + τAq̂ + τQmF (p+ q̂) = 0. (9)

Instead of completely solving equation (9) we perform a single fixed-point iteration using an initial q̂ = 0 and holding
the lower modes 1, . . . , n (the components of p) constant. This gives the approximation:

Φ̂m(p) = −τ(I + τA)−1QmF (p) (10)

an algebraic expression that estimates the higher modes {n + 1, . . . ,m} as a function of the lower n modes and thus
an approximation of the IM itself.

Substituting Φ̂m(p) for the m− n higher modes gives

dp

dt
+Ap+ PF (p+ Φ̂m(p)) = 0 (11)

and more precisely an Euler-Galerkin approximation consisting of n differential equations

dp

dt
+Ap+ PF (p− τ(I + τA)−1QmF (p)) = 0. (12)

In this work, the (nonliner) Euler-Galerkin algorithm was applied to the Chafee-Infante partial differential equation,
as detailed in Sec. A.0.2.

3.1.2 Neural network derived AIM and AIF

The higher sine modes’ coefficients α̂, which are necessary for accurate reconstruction of the solution in physical
space, can be obtained in a data-driven manner. Specifically, here we use deep neural networks, schematically shown
in Fig.2, to learn the coefficients α̂, given the values of leading (lower) sine modes’ coefficients at a specific point in
time, t = T , α̃(T ).

α̂(t) = fNN (α̃(t)),

where α̃ stands for leading sine coefficients (low modes) and α̂ stands for the higher sine modes coefficients. The
leading coefficients α̂(T ) have been obtained as a result of the time integration of the truncated dynamics.

Alternatively, when the result of time-integration of the two truncated lower sine coefficients equations, is inaccurate,
we can correct it by learning a data-driven truncated ODE in the lower sine coefficients, with general form:

dα

dt
= f(α) (13)

where α ∈ Rm, here m = 2, are the variables in which we observe the evolution of the dynamics. Observe that since:
m=2 here the Poincaré-Bendixon theorem applies. Hence the dynamics of the low modes is either goes to a limit-cycle
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α2 (t)
α1 (t) α3 (t)

Figure 2: Illustrative example of a feed-forward neural network for prediction of higher coefficients. In this example
the lower harmonics, α1(t) and α2(t) are used as inputs to the network that predicts α3(t)

or to a steady state. This data-driven AIF was first explicitly described and implemented in [Theodoropoulos et al.,
2000] (see also in [Krischer et al., 1993]).

The function f is approximated by a fully connected neural network, schematically represented in Fig.3. The goal is to
predict the time derivatives of the lower sine coefficients from the their values. Once this is done, the right-hand-side
of the ODEs in Eq. 13 can be used in conjunction with any method of integration in time, such as the Runge-Kutta, to
accurately approximate α̃(T ) and then proceed as above to post-process α̃(T ).

𝑎!̇(𝑡)
𝑎"̇(𝑡)

𝑎!(𝑡)
𝑎"(𝑡)

Figure 3: An example of a feed-forward neural network architecture for the approximation of the right-hand-side of
an evolution ODE.

For parameter values of the KS equation for which the long-term truncated dynamics may not be accurate, an appealing
alternative to the Black-Box approach discussed above arises.

One can remedy the situation by first correcting the reduced dynamics, before deriving the missing terms for recon-
struction. This can be achieved by constructing a “Gray-Box” data-driven dynamic model. This Gray-Box model
describes the evolution of a reduced system, by adding to the truncated dynamics a learned correction term, which can
be thought of as a closure. This correction is approximated by a neural network that takes as inputs the lower order sine
coefficients and delivers the difference between their true time-derivatives and the truncated Galerkin time-derivatives:

dα̃p

dt
− dα̃t

dt
= gNN (α̃(t))

where dα̃p

dt is the true vector field projected in the leading sine coefficients α̃ and dα̃t

dt is the vector field of the corre-
sponding truncated Galerkin projection.

Here, gNN is approximated using a neural network implemented in tensorflow [Abadi et al., 2015] with 6 hidden
layers, 95 neurons each, and a tanh activation function. The loss function used is the mean squared error (MSE), and
the Adam optimizer is employed.

Finally, it is worth noting that the proposed workflow works equally well, when considering evolution equation of
the leading POD mode coefficients, as parametrizing the IM. An illustrative example, based on the Chafee-Infante
POD-based equations can be found in A.0.2.
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3.2 Learning the dimensionality of the latent space

In most cases, a minimal parametrization of the IM of a dynamical system is not known a priori. It is possible to
discover it, using different data mining approaches, such as Diffusion Maps and autoencoders. Both methods are
discussed in the following paragraphs and summarized in Fig.4

𝜑5
𝜑1𝜑5

Diffusion Maps Double DMaps

(a)

α1     α2     α3     α4    α5     α6     α7     α8

Bottleneck
layer

L1 L2 L3

encoder

decoder

𝑎"! 𝑎"" 	𝑎"# 𝑎"$ 𝑎"% 𝑎"& 𝑎"' 𝑎"(

(b)

Figure 4: Learning a low dimensional embedding of data: (a) Manifold learning with Diffusion Maps and inverse
transformation with Double Diffusion Maps [Evangelou et al., 2022]; (b) Representative autoencoder structure, in-
cluding encoder/decoder and the bottleneck layer.

3.2.1 Diffusion Maps

Diffusion maps [Coifman and Lafon, 2006b, Nadler et al., 2006, Coifman et al., 2008] is a manifold learning frame-
work that can (based upon diffusion processes) facilitate discovering low-dimensional intrinsic geometric descriptions
of data sets, even when the data is high-dimensional, nonlinear and/or corrupted by (relatively small) noise. It is used
here to discover the dimensionality of the IM and provide a data-driven parametrization of it.

The parametrization of the manifold is obtained through a few eigenvectors, ϕi, of a scaled affinity matrix, which
contains the Euclidean distances between all the pairs of available data points. A detailed description of the Diffusion
Maps algorithm is provided in the Sec. A.1 of the Appendix and for the Double Diffusion Maps in Sec. A.2.

3.2.2 Autoencoders

Autoencoders [Kramer, 1991] are neural networks that are trained (a) to encode high-dimensional data into a low-
dimensional representation (b) to reconstruct the original high-dimensional from this lower-dimensional representation
(cf.Fig.4b). In this context, the input layer is the same as the output, and the low-dimensional encoding is parametrized
by the weights of the bottleneck layer. The loss function

Lθ = ||α(k) − ᾱ(k)||2 (14)

is commonly used to train an autoencoder where α(k) represent a data point in the ambient space and ᾱ(k) the recon-
structed data point k from the autoencoder.

In this work, we use autoencoders for an additional second use case, which relies on the observation that the discov-
ered autoencoder latent coordinates are one-to-one with the leading sine coefficients α̃, as discussed in detail in the
following paragraph.

3.2.3 Theoretical and data-driven latent variables: transformations and AIMs

The local one-to-one relation between the autoencoder’s latent variables (L) and the leading sine coefficients (α̃) is
tested by computing the Inverse Function Theorem across the training data. The Inverse Function Theorem guarantees
local invertibility in a neighborhood of any point Li ∈ L if the determinant of the Jacobian (det(Jf (L)) is bounded
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away from zero. We provide a more detailed description of the Inverse Function Theorem in Sec. A.3 of the Appendix.
The Jacobian computation in our case is performed by using automatic differentiation with tensorflow.

The fact that the latent variables are one-to-one with the leading sine coefficients, allows us to recover the full sine
coefficients in two distinct steps, schematically shown in Fig. 5. The first step is training the autoencoder. In the
second step, we learn to infer the latent variables L from the leading sine coefficients, using either a feedforward
neural network or Double DMAPs.

Deco
der

Or

Double D
MAPs

DecoderOr
Double DMAPs

1. Learning the Latent variables 
(Autoencoder/ DMAPs)
2. Inverse mapping
(Decoder/Double DMAPs

Learning Latent 
variables:

Li = f (!"1 !"2 !"3), 
i=1, 2, 3

Predicting full 
coefficients:
1. Decoder
2. Double 

DMAPs

!"1
!"2
!"3
!"4
!"5
!"6
!"7
!"8

!"1
!"2
!"3
!"4
!"5
!"6
!"7
!"8

α1     

α2     

α3     

α4    

α5     

α6     

α7     

α8

L1
L2
L3L1

L2
L3

Figure 5: Schematic representation of computational workflow: First step includes learning the a minimum representa-
tion of the Approximate Inertial Manifold either with DMAPs or an autoencoder, as well as the inverse transformation,
i.e. from the latent variables to the sine coefficients. Secondly, the latent variables are learned as a function of the
leading three sines or POD coefficients, and finally, the full coefficients are predicted either with the decoder or Double
DMAPS.

Alternatively, the decoder part of the autoencoder can be used to compute an inverse-map. This inverse map utilizes the
leading Fourier modes, α̃, in which the dynamics have evolved, and the trained decoder, to find the latent autoencoder
variables that minimize the algebraic optimization constraint

argmin
L

||α̃− decoder(L)||F . (15)

In Equation (15) the latent autoencoder variables are denoted as L, the leading Fourier modes as α̃. After solving the
optimization problem in Equation (15) the decoder can be used to recover all the Fourier modes given L.

This second use case of the autoencoder allows us to map from the leading Fourier modes to the latent space and back
to the full Fourier models without the need of constructing an additional regression scheme. Once the latent variables
are predicted, the decoder of the autoencoder or the inverse transformation from the DMAP to the ambient coordinates,
is used to approximate the full set of reconstructed coefficients.

4 Results

Before presenting our results we remind the reader, through the illustration in Fig. 6 of the basic premise and the
various errors associated with the post-processing Galerkin concept. The main premise is that the distance ∆1, between
the projection of the true solution (point 5) and the truncated Galerkin solution (point 3) is much smaller than the
distance ∆3 between point 3 and the true solution (point 1), the total error of truncated Galerkin approximation
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[Garcı́a-Archilla et al., 1999]. This motivates the need for post-processing, which establishes that the distance ∆4

between point 1 and the post-processed Galerkin (point 2) is also much smaller than the total error (and comparable to
∆1) as shown in Fig. 6.

(c)                                                                         (d) 

(a)                                                                             (b)

Figure 6: (a) A schematic illustrating the benefits of the post-processing Galerkin methodology. A trajectory of the
exact solution is shown on the manifold in a1, a2, a3 as a red solid trajectory, its final state denoted with an x marker
and (1). The projection of the exact solution in a1, a2 is shown with a red dashed line, its final state denoted as (3),
and a blue square. The trajectory integrated by using the approximate inertial form is shown with a black dashed line,
and its final state is shown with a black square and denoted as (4). The trajectory integrated by using the truncated
Galerkin is shown with a blue dashed line, its final state denoted as (3) and a blue square, and its post-processing
(mapping) on the manifold, denoted as (2), and indicated by a blue x marker. The dotted line ∆1 shows the distance
between (1) and (5), the dotted line ∆2 shows the distance between (2) and (3), the dotted line ∆3 shows the distance
between (1) and (4). The main premise of post-processing Galerkin is that ∆1 and ∆4 are much smaller than ∆2. (b)
The same components used in (a) are shown for the Chafee-Infante PDE. (c) The reconstructed solution in u(x, T ) for
all possible options. (d) A blow-up of the reconstruction in u(x, T ).

4.1 Euler-Galerkin vs. neural-network AIMs: Chafee-Infante

For the Chafee-Infante we start by providing a comparison between the solution obtained with the three sine coef-
ficients, here considered as the ground truth, (cf Fig.7a) and the truncated equations with the first two modes. The
different post-processing schemes are applied to the solution of the truncated equations at the end of the desired in-
tegration. The comparison between the two is shown in Fig.7 where the reconstructed solution is shown with a blue
dashed line and the ground truth simulation with a red line. The percent error along each step of the time integration
until time T = 5, is shown in Fig.7b.

The solution of the 2D truncated dynamics is then corrected, using the value of α3(T ) as predicted by a neural network
(described in Sec. 3.1.1), using as inputs, the values of α1(T ) and α2(T ) at the final time-step, t = T . The results are
shown in Fig.7c with a dashed blue line; included in the same figure, with a solid blue line, is the solution corrected
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with the theoretically (Euler-Galerkin AIM) derived value of α3(T ). The percent error along the integration time till
time T = 5 for the ML-derived α3 is shown in Fig.7d. Both, the ML-derived and the theoretical corrections help
recover the accuracy and both lead to a mean absolute percent error (MAPE) of less than 1%. The mean absolute
percent error (MAPE) is also computed at the same time instance (T = 5) but for 100 randomly selected initial
conditions, for the 2D and the ML-corrected 2D model. This is shown in Fig.7e, where the favorable effect of the
correction on the mean absolute percentage error is clearly visualized. In these and in subsequent results, the MAPE
refers to point-wise average of the absolute percentage error in each sample.

As an alternative, it is also possible to correct the learned ODE in two dimensions, derived as described in 3.1.2. The
accuracy achieved is similar to the accuracy of the true truncated 2D model.

(a) (b)

(c) (d)

(e)

Figure 7: Solution of Chafee Infante reconstructed in physical space; (a) The result of the 3D and the 2D Galerkin
are shown in red and dashed black line respectively; (b) Percent error of reconstructed 2D Galerkin solution at each
time-step; (c) Comparison of 3D Galerkin (red line) to the 2D Galerkin corrected with the neural network-derived term
(dashed blue line); and the 2D Galerkin corrected with the theoretically derived α3; (d) Percent error of reconstructed
solution of the 2D ODE, corrected with the ML-derived α3, at each time-step; (e) Histogram of the mean absolute
percent error of the 2D and ML-corrected 2D model at time T = 5, for 100 randomly selected initial conditions.
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4.2 Kuramoto-Sivashinsky: Data-driven latent spaces and their AIMs

The KS equation is selected in order to explore the application of the proposed methodology in cases where the
minimum dimension of the Approximate Inertial Form (AIF) is not known a priori, although it has been argued to be
three-dimensional [Jolly et al., 1990]. Nevertheless, the truncated dynamics are not always quantitavely close to the
actual behavior. The latter will be addressed with “Gray-Box” modeling, whereas the former is an important challenge
in the implementation of post-processing Galerkin methods and will be addressed here with two different approaches:
nonlinear manifold learning and in particular Diffusion Maps discussed in 3.2.1, and autoencoders discussed in 3.2.2.

4.2.1 Learning the dimensionality of the latent space

Autoencoders

A collection of data is sampled for the KS parameter value ν = 33, in various time instances of time-integration
sufficiently close or on the global attractor. The data are used as inputs to an autoencoder and are reduced by the
encoder into into a low dimensional bottleneck layer which parametrizes an approximation of the inertial manifold. It
is then possible to map to the approximation of the high dimensional variables with the decoder. The encoder/decoder
components of the network can be used independently as it will be demonstrated in a subsequent section to improve
the accuracy of the reduced order model.

The three latent variables of the bottleneck layer are one-to-one functions of the first three sine coefficients, α1, α2

and α3. This is shown in Fig.8, where the three bottleneck variables are plotted and colored according to the three
sine coefficients. The smooth color variation suggests a one-to-one correlation between the latent and the ambient
variables. It so happens that each one of the sine coefficients is one-to-one with each of the Diffusion Maps coordinates
(the comparison is shown in the SI).

Figure 8: Latent variables of the autoencoder bottleneck layer; The three latent variables colored by the value of the
first three sine coefficients, α1 (left), α2 (center) and α3 (right). Smoothness in color gradation suggests a one-to-one
relation.

In Figure 9, the histogram of the Jacobian determinant’s values, det(Jf (L)), along the training and test data shows
that this quantity is always positive and thus the mapping f : L→ α̃ is locally invertible.

The one-to-one relationship between the leading sine coefficients and the autoencoder’s latent variables L facilitates
the second use case of the autoencoder we discussed earlier. This second use case utilizes the decoder to solve an
inverse-problem and map the leading sine coefficients α̃ to the autoencoder’s latent space. Since, we showed that
f : L̃ → α̃ is a locally invertible map we can use the trained decoder and estimate L given α̃ by solving the opti-
mization problem described in Equation 15. As initial conditions to solve the optimization problem randomly sampled
points from the training set were used. After optimization, the decoder can be used to reconstruct the remaining sine
coefficients and from those the solution in u(x, t) space, from the obtained values in autoencoder’s latent space.

In Figure 10a, we contrast, for one reconstructed trajectory (i) the true solution u(x, T ) obtained from the full
equations, (ii) the reconstructed solution based on the first three learned sine coefficients, and (iii) the reconstructed
solution obtained by solving the inverse map and using the decoder to reconstruct the full solution. In Figure 10b the
histograms show a comparison of the MAPE in u(x, t) space between the true solution and the solutions based on (i)
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Figure 9: The histogram of the determinant of the Jacobian det(Jf (L)) computed along the training and test sets with
automatic differentiation of the decoder.
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Figure 10: (a) A visual comparison for one data point between the true solution, the solution obtained after solving the
inverse problem, and the truncated solution obtained by using the first three leading sine coefficients. (b) The mean
absolute percent error (MAPE) across all the test points between the true solution and (i) the solution based on the
leading sine coefficients (red histogram) (ii) the solution obtained after solving the inverse problem with optimization
(blue histogram).

the three leading sine coefficients and (ii) the solution obtained after implementing the optimization step.

Diffusion Maps and their data-driven AIMs

Diffusion Maps is implemented to encode the high dimensional data to a low dimensional manifold parametrized by
three Diffusion Maps coordinates shown in Fig. 20 of the Appendix. The Diffusion Maps coordinates ϕ1, ϕ2 and ϕ3
are one-to-one with the coefficients of the first three sine terms. This is shown in Fig. 20, of the Appendix, by the
smooth color transition in the diffusion maps plot when colored by α1, α2 and α3.

The sine coefficients, αi, are reconstructed with the help of Double DMAPS and by the decoder of the autoencoder
as discussed in Secs. 3.2.1 and 3.2.2 respectively. The MSE for the Double DMAPs approach is 0.00492, whereas
for the autoencoder it is 0.0155. The precision of the autoencoder decreases for higher harmonics, which leads to the
overall drop in accuracy of the reconstruction (this comparison is shown in the Sec. A.3). Double DMAPs predicts
accurately all the coefficients (this comparison is shown in the Sec. A.3).
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(a) (b)

(c)

Figure 11: (a) Reconstructed solution of the learned 3D equation (broken line) and the actual 3D dynamics (solid
line), showing almost perfect agreement. (b) Percent error of the learned and true 3D solutions along the integration
time. (c) Histogram of the mean absolute percent error of the learned 3D model at time T=0.06, for 100 randomly
selected initial conditions.

4.3 Data-driven post-processing Galerkin

Having established that the first three sine coefficients are one-to-one with the data-driven latent variables, the next
step is to learn a data-driven ODE of the time evolution of the first three reconstructed sine coefficients as described in
Sec. 3.1.2.

The feedforward neural network is trained using as input the values of α̂1, α̂2 and α̂3, that are reconstructed by the
latent space learning methods, i.e. autoencoders and DMAPs (the results of latent space identification and reconstruc-
tion of the hight-dimensional variables is presented in the SI). The predicted time-derivatives, the right-hand-side of
the learned ODE, for each one of the sine coefficients are pictured in Fig. 22 (of the SI) versus the actual values of
that components time derivative, α̇. The top row shows the predicted right-hand-side from the three sine coefficients
resulting from the autoencoder, withMSE = 9.5. The respective predictions from the Double DMAPs reconstruction
are shown on the bottom row, with MSE = 2.2.

The neural network-derived approximation is then used in conjunction with an ODE solver, such as the Runge-Kutta,
in order to integrate in time. The outcome of integration is reconstructed in physical space and compared to the
outcome of the ground truth integration (in 8D) and also the reconstructed solution using only the first three modes of
the ground truth. This is shown in Fig. 11, alongside the error between the learned 3D ODE and the actual 3 modes of
the Galerkin approximation, which demonstrates that the learned ODE predicts accurately the low dimensional time
evolution of the first three modes.

4.3.1 When post-processing Galerkin works, when it does not work, and how to fix it

It is worth looking into the time evolution of the first three modes, α1, α2 and α3 that result from the truncated 3D
dynamics and compare it to the evolution of the first three terms of the full 8D dynamics and those of the learned AIF

14



Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era

Figure 12: Left: Comparison of time evolution of the first three sine coefficients of the Galerkin discretization; 8-
dimensional (red), learned 3-dimensional (black) the 3-dimensional (blue) Galerkin discretization

ODE. This is shown in Fig. 12, where it becomes evident that the first three terms of the learned 3D ODE are close to
the trajectory of the first three terms of the 8D Galerkin. In contrast, the truncated 3D dynamics deviate significantly,
past a certain point in time, from the ground truth dynamics. This observation suggests that using a post-processing
scheme directly on the truncated equations won’t be able to correct the dynamics. This motivates us to use an ML
correction so-called “Gray-Box” model discussed further in the next section.

In essence, the post-processing Galerkin method relies on the premise that the solution of the truncated problem is
reasonably close to the projection of the ground truth solution. Here it is demonstrated that even though the AIM is
indeed three-dimensional, in the range of physical parameters examined, the truncated long term dynamics in three
dimensional space are not accurate. This is demonstrated further in Fig. 13, where the solution in physical space is
reconstructed from the 8D Galerkin, the 3D Galerkin and the learned 3D AIF ODEs, in different instances along the
same trajectory. At initial stages of the trajectory, the solutions of the three methods are reasonably close, as shown
in Fig. 13a. Later in time, the truncated 3D solution is growing quantitatively further apart from the ground truth,
whereas the learned 3D AIF ODE follows closely the 8D dynamics (Fig.13b). This is made clear in Fig. 13c, where
the percent error between the learned and the truncated 3D solution is plotted along the trajectory. This can also be
observed in phase space shown in Fig.13d, on the right. The red point corresponds to the initial condition. The values
of sine coefficients initially evolve in a similar manner but eventually, the truncated 3D dynamics deviate.

Data-driven post-processing Galerkin

To recover the values of all the αis, necessary for accurate reconstruction, the first step involves predicting the latent
variables, either the bottleneck variables from the autoencoder or alternatively the DMAPs latent coordinates. One
way to achieve this, is with a feedforward neural network with three inputs (the the first three sine coefficients) and
three outputs (the latent variables). In this implementation, the neural network consists of 5 hidden layers with 80
neurons each and a tanh activation function, implemented in tensorflow [Abadi et al., 2015]. The mean squared error
is used as the loss function along with the Adam optimizer.

It is then possible to employ either Double DMAPs, in the case of DMAPs, or the decoder of the autoencoder, and
predict the corresponding αis with MSE = 0.09 for both cases. The reconstructed solution in physical space is
compared to the ground truth in Fig. 14.
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(a) (b)

(c) (d)

Figure 13: Comparison of the solution, in physical space, in two time instances (a) T1, where the 3D and 8D dynamics
are sufficiently close and (b) T2, when they are quite far apart; (c) percent error between the truncated and the learned
3D AIF dynamics; (d) Comparison of time evolution of the first three sine coefficients of the Galerkin discretization
: 8-dimensional (solid line), learned 3-dimensional (broken line) the 3-dimensional AIF (dotted line) Galerkin dis-
cretization

When the PPG assumptions fail

If we have a accurate low-dimensional observation we can correct, in principle theoretically with Euler-Galerkin, or
in practice with machine learning approaches as described above. If this is not available, then we proceed to improve
the AIF itself though the Gray-Box approach.

The method’s performance is demonstrated in Fig. 15 for two cases. In the first case (cf Fig. 15a), the 3D, 8D,
and corrected Gray-Box dynamics are shown for the reconstructed physical space solution, at T1 = 0.02, when the
truncated 3D dynamics are close to the ground truth. At a later time-step, at T2 = 0.05 (cf Fig. 15b), the truncated
dynamics have deviated far from the truth. The Gray-Box model corrects the deviation in both cases and accurately
captures the ground truth with the addition of post-processing terms, as seen in Fig. 15e.

4.4 Using POD coefficients to parametrize the IM/AIM

Here, the implementation of the proposed workflow is presented in the case where the manifold is parametrized by
data-driven POD coefficients, rather than sine coefficients, for the Chafee-Infante equation. To start with, the POD
modes that contain the greatest percentage of variance of an ensemble of solutions in physical space, are identified.
Three POD modes represent 99.99% of the energy of the dataset (cf. Fig. 16a), defined as the percentage of the
cumulative sum of the leading three eigenvalues over the sum of all the eigenvalues.

The original dataset is then projected on the first three modes, leading to each solution vector, being represented by
three coefficients. The mean absolute percent error of the dataset, projected on a basis consisting of 3 POD vectors,
is 0.06% (cf. Fig.16b). We use this collection of POD coefficients, to discover the latent variables, here with an

16



Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era

(a) (b)

(c) (d)

(e)

Figure 14: (a) Comparison, at α=33 and T = 0.5 of the reconstructed Kuramoto-Sivashinsky solution, between the
8-dimensional Galerkin (solid red line) and the 3-dimensional learned AIF ODE corrected with the decoder-derived
higher harmonics terms (broken blue line); (b) percent error over the time integration interval. (c) Comparison, at
α=33 and T = 0.5 of the reconstructed Kuramoto-Sivashinsky solution, between the 8-dimensional Galerkin (solid
red line) and the 3-dimensional learned AIF ODE corrected with the DMAPs-derived higher harmonics terms (broken
blue line); (d) Percent error along the time-span of integration. (e) Histograms of MAPE of the autoencoder-corrected
and DMAPs-corrected solution at time T=0.5, for 100 randomly selected initial conditions.

autoencoder with a 2-neuron bottleneck layer. The mean absolute percentage error achieved for the autoencoder-
reconstructed POD coefficients is 1.2%. The latent variables are one-to-one with the two leading POD coefficients,
as is evident in Fig. 17, where they are plotted and coloured according to the values of the coefficients. The smooth
colour transition is indicative of the one-to-one relationship.

The time-evolution law of the ODE for the two leading POD coefficients, is then learned from data. This is achieved
using a feed forward neural network consisting of two hidden layers with 20 neurons each. The tanh activation
function is implemented and the mean squared error is used as a loss function. The learned ODE is integrated with a
Runge-Kutta solver over time T = 5. From the values of the two POD coefficients at the final time-step, the latent
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(a) (b)

(c) (d)

(e)

Figure 15: Gray-Box correction of 3D Galerkin dynamics: Comparison of the solution, in physical space, in two time
instances (a) T1 = 0.02, where the 3D and the 8D Galerkin dynamics are sufficiently close and (b) T2 = 0.05, when
they are quite far apart; (c) Percent error between the truncated and the Gray-Box 3D dynamics; (d) Comparison of
time evolution of the first three sine coefficients of the Galerkin discretization : 8-dimensional (solid red line), Gray-
Box 3-dimensional (broken blue line) truncated 3-dimensional (blue solid line) Galerkin discretization (e) Comparison
of the solution, in physical space, of the corrected Gray-Box with the 8D Galerkin at T2 = 0.05

variables are then inferred using an appropriately trained neural network. Then, the decoder of the autoencoder is used
to recover the entire set of POD coefficients. It is then possible to “lift” from POD space to the sine coefficients and
reconstruct the solution: the solution reconstructed using 3 ML-derived terms compares very favorably to the ground
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(a) (b)

Figure 16: (a) % energy of the data contained by progressively increasing POD basis size. 3 POD modes represent
99.99 % of the variance (b) MAPE of the dataset projected on progressively increasing POD basis, with respect to the
original. When condidering 3 POD modes, the MAPE drops to 0.06%.

Figure 17: Latent variables discovered by the autoencoder, whose inputs are POD coefficients values. The smooth
color transition implies that the latent variables are 1-to-1 with the leading POD coefficients.

truth solution in Fig.18. For reference, in the same figure, the solution reconstructed from only the 2 POD coefficients,
is also included.

Figure 18: Reconstructed solution of the Chafee-Infante equation, at time T = 5. The red line represents the ground
truth, 8D Galerkin solution, which corresponds to 3 POD coefficients. The black broken line corresponds to the data-
driven post-processed solution of the evolution of 2 POD coefficients. The uncorrected solution derived by 2 POD
coefficients, is also depicted with a blue broken line.
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Figure 19: (a) A data set sampled from the singularly perturbed system of ODEs is shown with a black solid line. The
span of the first POD mode (POD1) is shown with a red vector and the span of the second POD mode (POD2) is
shown with a blue vector. The projection of a data point (black solid circle) to POD1 and POD2 is depicted. (b) The
components of the first POD vector (POD1) versus the components of the second POD vector (POD2). POD2 can
be seen as a quadratic function of POD1.

5 Conclusions

In conclusion, this study has attempted to bridge theoretical approaches to reduced order modeling of dynamical
systems (theoretically, closed form, approximations of AIMs and AIFs) with appropriately derived data-driven work-
flows. The data in question may consist of either (a) theoretical parametrizations of the IM (here sine coefficients) or
(b) equally possibly, data-driven parametrizations (POD coefficients, autoencoder latent variables, manifold learning
Diffusion Map coordinates). The use of machine learning techniques, specifically autoencoders and Diffusion Maps,
allows for accurate and efficient modeling of high-dimensional systems while overcoming the limitations of traditional
post-processing Galerkin methods.

Moreover, the proposed approach has demonstrated promising results in scenarios where the low-dimensional ROM
significantly deviates from the correct long-term dynamics, which was previously challenging to address with post-
processing Galerkin techniques. The introduction of a “Gray-Box” model that adds a correction to the truncated
Galerkin helps it regain its accuracy; it then allows for post-processing steps to recover even higher levels of accuracy,
in ambient space.

Overall, this work contributes to the growing body of literature on data-driven reduced order modeling techniques for
dynamical systems and provides a valuable alternative to traditional post-processing Galerkin methods. The proposed
workflows have the potential to significantly improve the accuracy and efficiency of reduced order models, which has
important implications for a wide range of applications, including but not limited to, aerospace engineering, biomedical
engineering, and climate modeling.

A promising future direction of our current work for the construction of reduced-order models is the combination of
data-driven techniques with physics-based techniques. The work of R. Geelen et al. Geelen et al. [2023], in which the
parameterization of the data is achieved by combining linear subspaces - spanned by the first few POD vectors - and
quadratic components, is the most pertinent to this direction. One could express the dynamics in terms of the first few
POD vectors and use the quadratic correction only as a post-processing step to obtain a more accurate reconstruction
at the end of the integration. The ability to find a quadratic correction could provide improved explainability to the
post-processing step, that we lose by learning a black-box post-processing step in our current work. A visualizable
example is shown in Figure 19 where the 2-dimensional singularly perturbed system (ẋ = 2− x− y; ẏ = 1/ϵ(x− y))
was used to sample data. For this example one could write the dynamics in terms of POD1 and express the correction
from POD2 = f(POD1) through a quadratic correction since POD2 can be seen as a quadratic function of POD1

(Figure 19(b)).
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Boaz Nadler, Stéphane Lafon, Ronald R Coifman, and Ioannis G Kevrekidis. Diffusion maps, spectral clustering and
reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis, 21(1):113–127, 2006.

Elizabeth Qian, Ionut-Gabriel Farcas, and Karen Willcox. Reduced operator inference for nonlinear partial differential
equations. SIAM Journal on Scientific Computing, 44(4):A1934–A1959, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational physics, 378:686–707, 2019.

Ramiro Rico-Martinez, K Krischer, IG Kevrekidis, MC Kube, and JL Hudson. Discrete-vs. continuous-time nonlinear
signal processing of cu electrodissolution data. Chemical Engineering Communications, 118(1):25–48, 1992.

Jie Shen. Long time stability and convergence for fully discrete nonlinear Galerkin methods. Applicable Analysis, 38
(4):201–229, 1990.

Stanislav Y Shvartsman and Ioannis G Kevrekidis. Nonlinear model reduction for control of distributed systems: A
computer-assisted study. AIChE Journal, 44(7):1579–1595, 1998.

Gregory I Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames—i. derivation of basic equa-
tions. Acta astronautica, 4(11):1177–1206, 1977.

Benjamin Sonday. Systematic model reduction for complex systems through data mining and dimensionality reduction.
Princeton University, 2011.

Benjamin E Sonday, Amit Singer, C William Gear, and Ioannis G Kevrekidis. Manifold learning techniques and model
reduction applied to dissipative pdes. arXiv preprint arXiv:1011.5197, 2010.

R Temam. Do inertial manifolds apply to turbulence? Physica D: Nonlinear Phenomena, 37(1-3):146–152, 1989a.

Roger Temam. Induced trajectories and approximate inertial manifolds. ESAIM: Mathematical Modelling and Nu-
merical Analysis, 23(3):541–561, 1989b.

C Theodoropoulos, IG Kevrekidis, and TJ Mountziaris. Order reduction for nonlinear dynamic models of distributed
reacting systems. Journal of Process Control, 10(2-3):177–184, 2000.

Edriss S Titi. On approximate inertial manifolds to the navier-stokes equations. Journal of Mathematical Analysis and
Applications, 149(2):540–557, 1990.

Lars Wahlbin. Superconvergence in Galerkin finite element methods. Springer, 2006.

Benjamin G Zastrow, Anirban Chaudhuri, Karen E Willcox, Anthony S Ashley, and Michael C Henson. Data-driven
model reduction via operator inference for coupled aeroelastic flutter. In AIAA SCITECH 2023 Forum, page 0330,
2023.

Kevin Zeng and Michael D. Graham. Autoencoders for discovering manifold dimension and coordinates in data from
complex dynamical systems, 2023.

23



Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era

Kevin Zeng, Alec J Linot, and Michael D Graham. Data-driven control of spatiotemporal chaos with reduced-order
neural ode-based models and reinforcement learning. Proceedings of the Royal Society A, 478(2267):20220297,
2022.

A Appendix

A.0.1 Post-Processing Galerkin for the finite element Method

Let X be the phase space of a nonlinear dissipative evolution equation of the form
du

dt
+ νAu = F (u).

Let XH be a finite dimensional (e.g. finite element) space of spatial scale H with PH : X → XH an orthogonal
projection. The Galerkin approximate solution uH ∈ XH satisfies the equation

duH
dt

+ νPHAuH = PHF (uH), for t ∈ [0, T ].

Therefore, for a given Galerkin solution uH and its time-derivative duH

dt over the interval [0, T ], the post-processing
Galekin solution is a function v ∈ X (notice it is not in the complement of XH , i.e. not in X ⊖XH , but in X , so v
involves both coarse as well as fine spatial scales), such that v satisfies

νAv = −duH
dt

+ F (uH) |t=T .

The right-hand side is a given function at time t = T , and v solves a linear elliptic equation. However, in practice we
solve an approximation of v say ṽ ∈ Xh, where h≪ H , and Xh is a finer finite element space

νPhAṽ = Ph

(
− duH

dt
+ f(uH)

)
|t=T .

A.0.2 Euler-Galerkin algorithm applied to Chafee-Infante PDE

The implementation of the Euler-Galerkin algorithm described in Sec. 3.1.1 is shown here for the Chafee-Infante
reaction-diffusion equation. For this PDE, as discussed in Sec. 4.1, a two-dimensional inertial manifold exists
(n = 2) parameterized by the first two sine Fourier modes α1, α2. By using the Galerkin projection u(x, t) ≈∑m=3

i=1 ai(t)sin(ix) a system of three coupled ordinary differential equations is derived. The derived system of equa-
tions reads

ȧ1 = −a1ν + a1 −
3

4
a31 −

3

2
a1a

2
2 −

3

4
a21a3 −

3

4
a22a3 −

3

4
a1a

2
3 (16)

ȧ2 = −4a2ν + a2 −
3

2
a21a2 −

3

4
a32 −

3

2
a1a2a3 −

3

2
a2a

2
3 (17)

ȧ3 = −9a3ν + a3 +
a31
4

− 3

2
a33 −

3

2
a22a3 −

3

2
a21a3 −

3

4
a1a

2
2. (18)

The term −9α3ν of the right-hand side of Equation (18) corresponds to the diffusion term and all the other terms of
the right-hand side to the reaction terms. We take an implicit Euler step of Equation (18) of length τ by using as initial
condition α3(t = 0) = 0. This gives us the expression

α3(τ) = α3(0) + τ ȧ3 (19)

By moving the diffusive term to the left-hand side and solving in terms of α3 we get the expression

α3 =
τ

(1 + 9τν)

(
a3 +

a31
4

− 3

2
a33 −

3

2
a22a3 −

3

2
a21a3 −

3

4
a1a

2
2

)
. (20)

We then perform one fixed point iteration by considering a3 = 0 and τ = 1. This leads to the Euler-Galerkin
approximation

α3 =
1

4(1 + 9ν)

(
α3
1 − α1α

2
2

)
. (21)

In our case, the Euler-Galerkin approximation in Equation (21) was used as one of the post-processing schemes to
correct the solution of û(x, T ) computed from the truncated dynamics.

24



Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era

A.1 Diffusion Maps

The Diffusion Maps algorithm reveals the intrinsic geometry of a data set X = {xi}Ni=1, where each data point
xi ∈ Rm, by constructing a random walk on X. This random walk is constructed by means of an affinity matrix A
with entries computed in terms of a kernel

Aij = exp

(
−||xi − xj ||22

2ε

)
(22)

where ε is a positive hyperparameter that specifies the rate of decay of the kernel (kernel bandwidth). The Gaussian
kernel, Equation (22), is typically chosen for the construction of the affinity matrix A.

To obtain a random walk (parametrization) of X regardless of the sampling density the normalization

K = P−αKP−α, where Pii =

N∑
j=1

Aij (23)

is applied, with α = 1 to factor out the density effects.

A second normalization,

K̃ = D−1K where Dii =

N∑
j=1

Kij , (24)

is applied to recover the row-stochastic matrix K̃. The eigendecomposition of K̃,

K̃ϕi = λiϕi (25)

gives a set of eigenvectors ϕ and eigenvalues λ. Proper selection of the eigenvectors that parameterize independent
directions, (known as non-harmonics) is needed. This selection in practice can be achieved by using the local linear
regression algorithm proposed in Dsilva et al. [2018]. If the number of non-harmonic eigenvectors is smaller than the
original dimension ñ < n then those eigenvectors Φ = {ϕ1, . . . , ϕñ} can provide a more parsimonious representation
of the original data and thus to obtain dimensionality reduction.

It is therefore important to discover which eigenvectors parametrize independent directions, and do not span the same
direction with different frequencies (harmonics).

To achieve this, the local linear regression algorithm, proposed in Dsilva et al. [2018] is used, according to which, each
DMAP coordinate is fitted as a function of the previous ones. To select the DMAP coordinates that are independent,
the “goodness of fit” of this functions is used: A good fit is associated with a ϕk that is a harmonic function of the
previous eigenmodes, whereas a bad fit signifies that ϕk is a new independent direction on the data manifold.

A.2 Geometric Harmonics and Double Diffusion Maps

Geometric Harmonics Coifman and Lafon [2006a] is a regression scheme traditionally applied on a data set X to
extend a function f . Extending means that we are able to evaluate the function f for points “outside” of X, for
xnew /∈ X.

In our previous work Evangelou et al. [2022] we introduced a special case of Geometric Harmonics, termed Double
Diffusion Maps (Double DMAPs), able to regress functions directly on the reduced Diffusion Maps coordinates Φ. In
this case, similar to the first round of Diffusion Maps, an affinity matrix is computed

A∗
ij = exp

(
−||ϕi − ϕj ||22

2ε∗

)
. (26)

An eigendecomposition of the symmetric and positive semidefinite matrix A∗ is then computed. From this eigen-
decomposition we obtain a set of orthonormal eigenvectors Ψ = {ψ0, . . . , ψN−1} ranked with their non-negative
eigenvalues σ = {σ0, . . . , σN−1}. A set of those eigenvalues Sδ = {i : σi > δσ0}, where δ > 0, is considered as the
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basis in which we project and subsequently extend the function f . The projection of f in this truncated step is given
as

f 7→ Pδf =
∑
i∈Σδ

⟨f, ψi⟩ψi (27)

where ⟨·, ·⟩ denotes the inner product. For ϕnew /∈ Φ we obtain (Ef)(ϕnew) by firstly extending each eigenvector
ψi ∈ Ψ,

Ψi(ϕnew) = σ−1
i

m∑
j=1

A(ϕnew,ϕj)ψi(ϕj), (28)

where σi is the ith eigenvalue and ψi(ϕj) is the jth component of the eigenvector ψi. The extended eigenvectors can
then used to estimate (Ef)(ϕnew) as,

(Ef)(ϕnew) =
∑
i∈Sδ

⟨f, ψi⟩Ψi(ϕnew). (29)

A.3 Inverse Function Theorem

Consider the vector function F (x) = y and assume that x ∈ Rnis a solution of F and that F : Rn → Rn is differen-
tiable . The Inverse Function Theorem Marsden et al. [1993] states that, if the Jacobian matrix

Jf (x) =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 (30)

is invertible, then in a neighborhood of x and y the function f−1 exists. This suggests a unique local solution close
to any y. The Jacobian matrix is invertible if and only if its determinant is nonzero, therefore, showing that the
det(Jf (x)) has values of a single sign guarantees that the mapping is locally invertible and thus one-to-one.

Figure 20: Diffusion Maps coordinates the parametrize the latent space: ϕ1, ϕ2 and ϕ3; Left: colored by sine coeffi-
cient α1, center: colored by sine coefficient α2, right: colored by sine coefficient α3
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Figure 21: Reconstruction of sine coefficients; first two columns: by the autoencoder, last two columns: by Double
DMAPs.

Figure 22: Performance of the neural network predicting the right-hand-side of the learned ODE of the first three
coefficients. Actual versus learned α̇1 (left), α̇2 (center) and α̇3 (right), from the autoencoder (top) and Double
DMAPs (bottom) derived values of sine coefficients.
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