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Abstract

We consider a non-linear Bayesian data assimilation model for the periodic

two-dimensional Navier-Stokes equations with initial condition modelled by a

Gaussian process prior. We show that if the system is updated with sufficiently

many discrete noisy measurements of the velocity field, then the posterior distri-

bution eventually concentrates near the ground truth solution of the time evolu-

tion equation, and in particular that the initial condition is recovered consistently

by the posterior mean vector field. We further show that the convergence rate

can in general not be faster than inverse logarithmic in sample size, but describe

specific conditions on the initial conditions when faster rates are possible. In the

proofs we provide an explicit quantitative estimate for backward uniqueness of

solutions of the two-dimensional Navier-Stokes equations.

1 Introduction

High- and infinite-dimensional Bayesian methods have been increasingly popular in
statistical inference problems arising with partial differential equations (PDEs) and
related uncertainty quantification tasks, we selectively mention the contributions [41,
11, 21, 20, 12, 5]. Recent years have seen substantial progress in our theoretical under-
standing of the performance of such algorithms in non-linear settings, see [34] for an
overview and many references. The results so far have covered a variety of prototyp-
ical examples ranging from basic steady state elliptic equations [32, 18, 1, 36, 37] to
X-ray-type problems [30, 31, 7, 6, 40] and diffusion models [35, 19, 24, 8, 33, 22] where
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posterior distributions are obtained from updating a Gaussian process prior given noisy
measurements of the solution of a PDE or SDE.

A particularly important and active application area of the Bayesian inference
paradigm in PDE settings is the field of data assimilation [27, 39, 14]. For example in
geophysical sciences, non-linear dynamical systems are used to model the atmosphere
[23], oceans [3], turbulence [29] and fluid flow [10]. A Bayesian model for the initial
conditions is then updated whenever new measurements are taken, and posteriors can
be approximately computed by Monte Carlo and filtering methods. We refer to the
recent monograph [14], especially its Part II, for an overview of a variety of concrete
scientific application areas in the context of data assimilation. Beyond the setting of
linear systems (e.g., [25, 26, 38]), the statistical validity of such posterior based in-
ferences remains largely an open question. In the present article we study non-linear
data assimilation problems arising with the periodic two-dimensional Navier-Stokes
equations as a paradigm for the underlying dynamics of the system. This non-linear
PDE provides the physical description of viscous flow in fluid mechanics and forms the
mathematical foundation for the abovementioned applications in geophysical sciences.
It also constitutes one of the key PDE examples for the Bayesian approach to data
assimilation and inverse problems, see [10] and [41].

In the literature often reduced or approximate models (e.g., the Lorenz model) are
used, see, e.g., [23, 29, 39, 27, 14]. To develop a general understanding we avoid such
reductions as much as possible. The only substantial simplification we make is that
we restrict to a two-dimensional state space – this is simply because our theoretical
development relies on PDE theory for the well-posedness of global solutions to Navier-
Stokes equations which is not (yet!) known to be valid in dimensions higher than 2.
We also only consider periodic boundary conditions to streamline the exposition and
to make the proofs accessible to a wider audience, but this restriction is not essential.

To introduce the setting, recall that the (incompressible) Navier-Stokes equations
on some domain Ω postulate the evolution in time t ∈ [0, T ] of a divergence free velocity
vector field u : [0, T ]× Ω → R

2 solving the non-linear PDE

du

dt
+ νAu+B(u, u) = f (1)

u(0) = u0

where u(0) is the initial condition of the system. Here A is the (linear) Stokes operator,
ν > 0 a viscosity parameter, f a forcing term, and B is the bi-linear form modelling
the non-linearity. Roughly speaking (in the periodic case, or up to a canonical Leray-
Helmholtz projection step recalled below) we can think of A as the negative Laplacian
and of B(u, u) = u · ∇u. We refer to [9] for a classical reference on this material.

The task of data assimilation begins with the specification of an initial condition u0.
In absence of specific background knowledge in a given experimental setting, and in part
to aid the computational tasks that follow, such initial conditions are often modelled by
a Gaussian random field u0 = (θ(x) : x ∈ Ω) over the domain Ω – see [41, 39, 27, 14] and
also specifically [10] in the setting of the Navier-Stokes model. The law L(θ) ≡ Π of this
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field in an appropriate function space plays the role of the prior in (infinite-dimensional)
Bayesian statistics, and its covariance structure parallels the choices of penalty norms
in ‘variational (optimisation based) data assimilation’. Under appropriate assumptions
the solutions to (1) are unique and the random initial condition θ = u(0) determines a
complete stochastic forward model, that is, a probability distribution on the states

(

uθ(t, x) : t > 0, x ∈ Ω
)

, that solve (1) with initial condition u(0) = θ ∼ Π,

of the velocity fields at all points in space Ω and time [0, T ]. Even though the initial
condition follows a Gaussian distribution, due to the non-linearity of the Navier-Stokes
system, the implied stochastic model for uθ(t, ·) at times t > 0 is not Gaussian any
longer. Nevertheless, this ‘forward model’ can be updated via Bayes’ rule after mea-
surements at discrete points (ti, Xij) in (0, T ] × Ω are taken. We follow here the
‘Eulerian measurement’ scheme relevant in fluid mechanics (see Sec.3 in [10]) where
noisy ‘regression’ type measurements of the velocity field of the form

Yij = uθ(ti, Xij) + εi,j, εij ∼ N(0, IR2), i = 1, . . . , m, j = 1, . . . , n, (2)

are collected. If Π denotes the prior probability measure induced by the Gaussian
process model, the posterior distribution of the initial state θ is then given by

dΠ(θ|(Yij, Xij , ti)1≤i≤m, 1≤j≤n) ∝ exp
{

− 1

2

∑

i,j

|Yij − uθ(ti, Xij)|2R2

}

dΠ(θ),

where uθ is the solution of (1) corresponding to initial condition u0 = θ. Approximate
computation of such non-Gaussian posterior distributions is possible using Monte Carlo
methods, and we can then use PDE forward solvers or filtering methods to retrieve
posterior inferences for uθ at times t > 0 and points x ∈ Ω – see [27, 39, 11, 5, 14]. Of
key importance is that – in contrast to standard non-parametric regression techniques
– such posterior estimates uθ are themselves solutions of a Navier-Stokes system so
that the algorithmic outputs retain physical interpretation (e.g., incompressibility of
the flow, ∇ · uθ = 0).

Such Bayesian methodology naturally addresses all main tasks of data assimilation
which are to provide estimates for

u(t, ·), t > T, prediction

u(t, ·), t = ti, filtering

u(t, ·), 0 < t ≤ T, smoothing

u(0, ·), inversion;

cf. p.173 in [39] and also [27] for this terminology. The question we address here is
whether the posterior distribution of all the states

(

uθ(t, x) : t ≥ 0, x ∈ Ω)
)

, θ ∼ Π(·|(Yij, Xij, ti)1≤i≤m, 1≤j≤n),

is statistically consistent, that is, whether it places almost all of its mass (measured
in a suitable norm in function space, and with high probability under the law of
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(Yij , Xij, ti)1≤i≤m, 1≤j≤n), near the ground truth state (uθ0(t, x) : t ≥ 0, x ∈ Ω) of the
system generated by the actual (unobserved) initial condition u0 = θ0. Such results
validate Bayesian data assimilation algorithms in a scientifically desirable ‘objective’,
that is, prior-independent or ‘frequentist’ way, cf. [16]. To the best of our knowledge,
no results of this type are known in the literature at the moment. We will show
in Theorem 3 that posterior consistency indeed occurs for a flexible class of infinite-
dimensional Gaussian process prior models for θ, and as sample size N = mn → ∞.
Our proof strategy resembles the Bayesian forward model and is based on solving the
hardest of the above four problems (inversion) first, and then uses forward Lipschitz
continuity in time of strong solutions of the (two-dimensional) Navier-Stokes equations.
We further show that the ‘logarithmic’ convergence rates we obtain for the inversion
problem cannot be improved in general, and discuss a set of (strong) restrictions on
the initial condition in terms of the spectrum of the Stokes operator where faster rates
are possible.

Our proofs are based on general statistical theory for Bayesian non-linear inverse
problems developed in [34], on classical results from the PDE analysis of 2D Navier-
Stokes equations (e.g., [9]), and on an explicit quantitative stability (inverse continuity)
estimate for the forward map θ 7→ uθ given in Theorem 1 below. The latter is inspired
by old work on backward in time uniqueness of solutions to the 2D Navier-Stokes
equations in [2], who gave explicit estimates on the difference between the initial data
in terms of the difference of the final state of the strong solutions of the system. This
implies the desired backward uniqueness, but further allows one to obtain a quantitative
stability estimate (unlike alternative non-constructive proofs using the analyticity in
time of strong solutions, cf. [9]).

This paper is organised as follows: the main analytical results on the 2D Navier-
Stokes equations will be given in Subsection 2.1, while the statistical theory for data
assimilation with Gaussian process priors is developed in Subsection 2.2. Proofs can
be found in Section 3.

2 Main results

2.1 Forward and inverse stability in the 2D Navier-Stokes

equations

Throughout we denote by Ω = [0, 2π]2 the two-dimensional flat torus, i.e., opposite
endpoints are identified and all functions are periodic: u(· + 2πei) = u(· + ei) for
i = 1, 2 where e1 = (1, 0), e2 = (0, 1) are the canonical orthogonal basis vectors of
the plane. We define C∞(Ω) as the space of infinitely differentiable periodic functions
with fundamental periodic domain Ω. We also require the usual L2(Ω) spaces of square
integrable functions for Lebesgue measure dx, as well as the Sobolev spacesHm(Ω), m ∈
N, of functions f ∈ L2(Ω) whose partial derivatives up to order m lie in L2(Ω). When
considering two-dimensional vector fields v = (v1, v2) : Ω → R

2 with components v1, v2
lying in some function space X , we will write v ∈ X 2 – or sometimes even only v ∈ X
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when no confusion may arise. The divergence operation

∇ · v =
∂

∂x1

v1 +
∂

∂x2

v2

for smooth vector fields extends to a linear operation ∇· in the sense of (periodic
Schwartz) distributions. We can then define spaces of vector fields

H =
{

u ∈ L2(Ω)2 : ∇ · u = 0,

∫

Ω

u = 0
}

, (3)

as well as

V =
{

u ∈ (H1(Ω))2 : ∇ · u = 0,

∫

Ω

u = 0
}

, (4)

and equip these spaces with inner products 〈·, ·〉H ≡ 〈·, ·〉L2 and

〈u, v〉V ≡ 〈∇u,∇v〉L2 =
2

∑

i,j=1

∫

Ω

∂ui(x)

∂xj

∂vi(x)

∂xj
dx,

where ∇ is the gradient operator. The resulting norms are denoted by ‖ · ‖H , ‖ · ‖V ,
respectively. One can show that H and V arise as the completion of

V =
{

u = (u1, u2), ui a trigonometric polynomial on Ω : ∇ · u = 0,

∫

Ω

u = 0
}

, (5)

for the norms of L2(Ω) and H1(Ω), respectively.

We now introduce some standard notation for general Navier-Stokes equations –
while this is not strictly necessary in the periodic case, we include it here as our proofs
do extend in this notation to general two-dimensional domains Ω with smooth boundary
by appealing to the theory developed in [9]. The ‘Helmholtz-Leray’ L2-projector is
given by P : L2(Ω)2 → H and on

D(A) ≡ H2(Ω)2 ∩ V

we then define the Stokes operator

A = −P∆, ∆ = ∇ · ∇ the Laplacian, (6)

which on D(A) has ‘graph norm’ ‖u‖D(A) ≡ ‖Au‖L2 ≃ ‖u‖H2 (as in Prop 4.7 in [9]) and
is self-adjoint on its domain. Notably, we observe that in the case of periodic boundary
conditions one in fact has A = −∆. We also define the bilinear form

B(u, v) = P [v · ∇u], B : V × V → V ′, (7)

where V ′ is the topological dual space of V , with the usual dual pairing 〈·, ·, 〉V,V ′ .
In this notation we have for all u ∈ V , from integration by parts and since P is a
L2-projector,

‖u‖2V = 〈∇u,∇u〉L2 = 〈−∆u, u〉V,V ′ = 〈Au, u〉V,V ′, (8)
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and also (as in (6.17), (6.18) in [9]), for u, v, w ∈ V ,

〈B(u, v), w〉V,V ′ = −〈B(u, w), v〉V,V ′ , and thus 〈B(u, v), v〉V,V ′ = 0. (9)

Now let ν > 0 be a fixed viscosity term and f ∈ H1(Ω) a forcing such that
∫

Ω
f = 0.

To expedite proofs we take f to be time-independent but this is not necessary. We
consider spatially periodic solutions u = uθ = (uθ(t, x) : t ∈ (0, T ], x ∈ Ω) of the
incompressible Navier-Stokes equations which represent the system of non-linear partial
differential equations given by

∂

∂t
u− ν∆u+ u · ∇u = f −∇p on Ω× (0, T ], (10)

∇ · u = 0 on Ω× (0, T ],
∫

Ω

u(t, ·) = 0 for all t ∈ (0, T ],

u(0, ·) = u0 ≡ θ on Ω, (11)

where u(0) = θ ∈ V is an initial condition and ∇p is a pressure term.
Using the preceding notation and applying the Helmhotz-Leray projector P to the

last set of equations, one can alternatively study solutions u ∈ V of the non-linear
evolution equation in Hilbert space H given by

du

dt
+ νAu+B(u, u) = f (12)

u(0) = u0

where u0 = θ ∈ V . [See Ch.5 in [9] for details. Note that this eliminates the pressure
term ∇p – but as is well known, the original equations can be recovered from the
solution of the ‘projected’ equations by solving a standard elliptic problem.]

The regularity of solutions will be expressed in terms of function spaces

Lp((0, T ],X ) ≡
{

u : (0, T ]× Ω → R
2 :

∫ T

0

‖u(t, ·)‖p
X
dt < ∞

}

, 1 ≤ p < ∞,

with corresponding Bochner-integral norm for X -valued maps, where X is a normed
linear space of vector fields over Ω to be specified. Similarly we define the spaces
L∞((0, T ],X ) and C([0, T ],X ) of time-bounded or -continuous X valued maps. The
following result can be deduced without difficulty from existing theory for the two-
dimensional periodic Navier-Stokes equations.

Proposition 1. Let T > 0 and let u0 ∈ V satisfy ‖u0‖V ≤ U for some U > 0.

A) The two-dimensional periodic Navier-Stokes equations (12) have a unique strong
solution u ∈ C([0, T ], V ) ∩ L2((0, T ),D(A)) with du/dt ∈ L2((0, T ], H). There exists a
constant cU ≡ c(U, ‖f‖L2, ν, T ) < ∞ such that

sup
0≤t≤T

‖u(t)‖V +

∫ T

0

‖u(t)‖2D(A)dt ≤ cU . (13)

6



Moreover, for every m > 0 there exists c = c(m, ‖f‖H1, ν, T ) > 0 such that we have

sup
u0∈D(A): ‖Au0‖L2≤m

sup
0≤t≤T,x∈Ω

|u(t, x)| ≤ c < ∞. (14)

B) If v0 ∈ V is another initial condition, then we have

sup
0≤t≤T

‖u(t)− v(t)‖L2(Ω) ≤ K‖u0 − v0‖L2(Ω) (15)

for some constant K = K(U, ‖f‖L2, ν, T ) < ∞.

Proof. The main steps of the proof are given for convenience of the reader in Section
3.5 below.

Let us now turn to the inverse problem of solving for u0 from u(t). It is known
that under natural regularity hypotheses, the Navier-Stokes solution map θ = u(0) 7→
u(t) = uθ(t) is analytic in time and as a consequence injective for any t > 0 (and
d = 2), see Theorem 12.2 in [9]. Therefore the solutions u(t) determine their initial
conditions u(0), and a Bayesian approach to solve this inverse problem with discrete
noisy data will be studied in the next section. A main contribution of this article is the
following explicit stability estimate for this forward map θ 7→ uθ(t), to be used in the
proofs below. It is inspired by backward uniqueness results [2] for general non-linear
parabolic equations in Hilbert space.

Theorem 1. Let T > 0, and for initial conditions u(0), v(0) ∈ V such that ‖u(0)‖V +
‖v(0)‖V ≤ U < ∞, consider the corresponding strong solutions u, v ∈ C([0, T ], V ), to
the 2-dimensional periodic Navier-Stokes equations (12).

A) There exist constants c0, c1 depending only on U, ν, T, ‖f‖L2 such that

‖u(0)− v(0)‖L2(Ω) ≤ c0

(

log
c1

‖u(t)− v(t)‖L2

)−1/2

, for every t ∈ [0, T ], (16)

where ‖u(t)− v(t)‖L2 < c1.

B) Suppose further that there exists a fixed (‘inverse Poincaré’) constant 0 < cP <
∞ such that

‖u(0)− v(0)‖V
‖u(0)− v(0)‖L2

≤ cP . (17)

Then there exists a constant c2 = c2(U, ν, T, ‖f‖L2) such that

‖u0 − v0‖L2(Ω) ≤ ec2cP ‖u(t)− v(t)‖L2(Ω), for every t ∈ [0, T ]. (18)

Versions of these inequalities where ‖u(t) − v(t)‖L2(Ω) is replaced by its quadratic
time average over (0, T ] hold as well – see Corollary 1 below. The proof of Theorem
1 extends to the case of bounded smooth domains Ω ⊂ R

2, if the spaces V,H are
appropriately defined (with Dirichlet boundary conditions, cf. [9]), after only minor
technical modifications.
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The growth of the constants in the preceding stability estimates is exponential in the
time horizon T , as is not unexpected due do the limited time predictability of chaotic
dynamical systems of even much simpler nature than the Navier-Stokes equations,
cf. the classical contribution by Lorenz [28] and also more generally the discussion
in [23] about limitations of forecasting geophysical systems. The previous stability
estimates hence should be interpreted as informative in ‘moderate’ time horizons T .

Remark 1 (Inverse Poincaré inequality and the Stokes spectrum). The ratio in (17)
is lower bounded by a fixed positive constant in view of the Poincaré inequality (p.292
in [13]), but we are asking here for a similar uniform upper bound (for the class of
initial conditions considered). While one cannot in general expect that such an ‘inverse
Poincaré constant’ exists, examples can be given where it holds. For instance suppose
both u0, v0 ∈ V have a finite expansion in the H-orthonormal eigen-basis (ej : j ≥ 0)
of the Stokes operator A (see (22) below), up to ‘frequency’ J . Then

‖u0 − v0‖2V
‖u0 − v0‖2L2

=

∑

j≤J λj〈ej , u0 − v0〉2L2

∑

j≤J〈ej , u0 − v0〉2L2

≤ λJ ≡ cP .

Observe that one has the asymptotic distribution λj ≃ j as j → ∞, of the eigenvalues
of the Stokes operator A in d = 2, see Proposition 4.14 in [9]. This will permit the
creation of ‘Stokes band-limited’ models of initial conditions for which we can obtain
‘fast’ (better than logarithmic) convergence rates in Theorem 5 below. Other sets of
initial conditions could be conceived for which (17) holds with a uniform constant cP ,
but this is beyond the scope of the present paper.

Without an a priori upper bound on the terms required to represent u0, v0 in the
eigen-basis of the Stokes operator, the stability estimate (16) is sharp in the sense
that the inverse modulus of continuity is attained for particular sets of motions of the
Navier-Stokes equation – at least up to the power of the logarithm. Inspection of the
proof of (20) shows that the power of log in the lower bound could be made to approach
1/2 if we consider initial conditions bounded in H1 only, but we give a result under
the stronger H2-hypothesis relevant in the statistical theorems that follow.

Theorem 2. There exists a sequence of initial conditions uj(0) ∈ C∞(Ω)2 ∩ V , j ∈ N,
with corresponding strong solutions uj(t) to the periodic Navier-Stokes equations (12)
on Ω with ν = 1/2, f = 0, such that

‖uj(0)‖H2 . 1, ‖uj(0)‖L2 ≃ j−2, ‖uj(t)‖L2 ≃ e−j2tj−2, (19)

for all t > 0. In particular, setting v(0) = 0 and hence v(t) ≡ 0, we have for some
c′ = c′(c, t) > 0 that

‖uj(0)− v(0)‖L2(Ω) ≥ c′
1

log
(

1
‖uj(t)−v(t)‖

L2

) , all j ∈ N, t > 0. (20)

The exponential instability arises from a (linear, scalar) heat equation that can
be ‘planted’ within the set of solutions of Navier-Stokes equations for a specific set of
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initial conditions for which the non-linearity vanishes at all times. At least when f = 0
we conjecture that similar phenomena persist even when the non-linear term does not
vanish, by employing the (non-linear) spectral manifolds constructed in [15] instead of
the eigenfunctions of the Laplacian from the previous proof.

2.2 Non-linear data assimilation with Gaussian process priors

We now consider data assimilation tasks arising with discrete observations from the
Navier-Stokes equations and give statistical guarantees for Bayesian methodology pro-
posed and developed for such problems in [10] – see also [41, 39, 27, 14]. For u = uθ

a solution of the PDE (12) with unknown initial condition u(0) = θ, the statistical
observations are assumed to consist of the random vectors Z(N) = (Yi, ti, Xi)

N
i=1

Yi = uθ(ti, Xi) + εi, εi ∼i.i.d. N(0, IR2), i = 1, . . . , N, (21)

with (ti, Xi)
N
i=1 drawn iid from the uniform distribution λ on (0, T ]×Ω, independently

of the Gaussian noise vectors εi. The law on (R2 × (0, T ] × Ω)N of the data vector
Z(N) = (Yi, ti, Xi)

N
i=1 when uθ arises from the initial condition θ will be denoted by PN

θ .
One could (as in (2)) consider distinct sample sizes for time and space measurements, in
particular a single time measurement t would be sufficient for the results that follow,
but we abstain from this to keep the exposition straightforward. Let us emphasise
that the ‘white’ noise εi in (21) is purely of measurement error type (arising from the
discretisation of uθ) and that we do not model explicit stochasticity in the Navier-Stokes
dynamics itself, in particular we do not consider a SPDE model (whose transition
densities and hence likelihood functions would be numerically inconvenient for the
implementation of the Bayesian approach).

We assume the viscosity ν > 0 and forcing f to be given, possibly determined be-
forehand by independent experiments (theory for these distinct inverse problems could
be developed as well, for ν for instance following ideas in [18, 33]). In contrast, and
following common practice in data assimilation, we assume that the initial condition
θ = u(0) of the system is unknown. Inferences on the state uθ(t, ·) of the system based
on observations Z(N) need to incorporate this uncertainty. One systematic way to do
this is to adopt a Bayesian approach and to model the initial condition u(0) = θ by a
Gaussian random field over Ω – see [10] in the setting of Navier-Stokes equations and
fluid mechanics specifically; and also [41, 39, 27, 14] more generally. For the theory
that follows we will employ the following assumption – for standard notions of and
background on Gaussian processes we refer the reader to [17] and [34].

Condition 1. Consider a Borel probability measure Π′ on V ∩H2(Ω)2 arising as the
law of the centred Gaussian random vector field (θ′(x) = (θ′1(x), θ

′
2(x)) : x ∈ Ω) with

reproducing kernel Hilbert space (RKHS) H continuously imbedded into V ∩Hα(Ω)2 for
some α ≥ 2. Then take as prior Π = ΠN for θ the law of the rescaled random vector
field θ = θ′/N1/(2α+2).

Examples of ‘base priors’ Π′ with RKHS H = (V ∩Hα, ‖ · ‖Hα) for any α ≥ 2 can
be easily constructed: for instance one starts with two independent periodic α-regular
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Gaussian random fields over Ω (e.g., expanded in a basis of periodic wavelets with
independent Gaussian coefficients, as in [35]) and then applies the (linear) Helmholtz-
Leray-projector P to the Gaussian vector to enforce the H-constraint. Alternatively
we could define the prior for θ′ immediately as a Gaussian series expansion (e.g., (B.1)
in [34]) for the H-orthonormal eigenfunctions

ek ∝ (k2,−k1)e
2πik.(·), k ∈ Z

2 \ {(0, 0)}, (22)

of the Stokes operator. The N -dependent rescaling of θ′ follows ideas in [30] and
provides an (in the proofs essential) increase of the amount of regularisation provided
by the prior. Finally, if information on θ is available from past observations (‘training
samples’), we could center the prior at such a ‘trained’ mean vector, but for the theory
we only consider generic mean zero Gaussian process priors.

As the random vector fields θ′, θ lie almost surely in the space V ∩ H2 = D(A),
by Proposition 1 such a prior postulates a complete stochastic ‘forward’ model of
uniformly bounded solutions uθ(t, ·) of the Navier-Stokes equations drawn from the
Gaussian initial condition θ. Given observations Z(N) we can update this model via
Bayes’ rule to produce the best ‘posterior’ fore- and hind-casts for the solution uθ(x, t)
at (potentially unobserved) times t and points x ∈ Ω. Algorithmically we first compute
the posterior distribution for the initial state θ, which in the model (21) is of the form

dΠ(θ|Z(N)) ∝ eℓN (θ)dΠ(θ); ℓN (θ) = −1

2

N
∑

i=1

|Yi − uθ(Xi, ti)|2, θ ∈ V, (23)

where | · | = | · |R2 is the Euclidean norm. Even though the prior is Gaussian, the
non-linearity of the map θ → uθ renders Π(·|Z(N)) a non-Gaussian random probability
measure in the function space V . Nevertheless, posterior draws θ ∼ Π(·|Z(N)) and then
also an estimate for the posterior mean EΠ[θ|Z(N)] can be calculated from Markov chain
Monte Carlo (MCMC) techniques, for instance by the pCN, ULA or MALA algorithm
(see [11] and specifically in the context of data assimilation also Ch.3 in [27]; as well
as [21, 37, 34] for results towards computational guarantees). This approach requires
numerical solutions of the forward PDE at each iterate ϑk of the Markov chain – but no
inversion step, or backward solution of the PDE, is required. We can then compute an
estimate uθ̄ for uθ(x, t) at any given point (x, t) by computing the solution of (12) with
the initial condition θ̄ = EΠ[θ|Z(N)] (itself approximated by ergodic MCMC averages
∑K

k=1 ϑk/K on a suitable discretisation space for θ).

The absence of an explicit inversion step in this algorithm is attractive for applica-
tions but also triggers the question whether guarantees can be given that it will recover
the true physical state of the system. Our goal here is to prove that this method indeed
will be statistically consistent, that is, that it will recover the ‘correct’ solution of the
Navier-Stokes equations at any point in time and space, arising from the ‘ground truth’
initial condition θ0 that has actually generated the data, at least if we take sufficiently
many measurements N → ∞. Mathematically this means that we study the statistical
behaviour of the posterior distribution under the law PN

θ0
, following the usual paradigm

10



of frequentist analysis of Bayes procedures, see [16] or also Ch.7.3 in [17]. In our proofs
we combine Proposition 1 and Theorem 1 with recent techniques from the theory of
Bayesian non-linear inversion with Gaussian process priors [30, 34] to show asymptotic
concentration properties of this posterior around the true states (uθ0(t, x), t ≥ 0, x ∈ Ω)
of the non-linear system.

By convention we regard the first N measurements as the training sample and the
additional pair (XN+1, t) as the prediction sample, where XN+1 is drawn at random
from λΩ and t ∈ (0, Tp], Tp ≥ T, is a (deterministic) time we wish to fore- or hind-cast.
If we denote by θ0 the ground truth initial condition that generated the data (21) and
by θ ∼ Π(·|Z(N)) a draw from the posterior distribution, then this leads us to consider
the posterior quadratic ‘prediction risk’

EXN+1

(

∣

∣uθ(t, XN+1)− uθ0(t, XN+1)
∣

∣

2)
= ‖uθ(t, ·)− uθ0(t, ·)‖2L2(Ω)2 , t > 0, (24)

which measures how well we predict on average the state of the system at time t and
at a ‘generic’ position XN+1 ∼ λΩ.

Theorem 3. Consider a Gaussian process prior as in Condition 1 with α ≥ 2, RKHS
H, and resulting posterior distribution (23) arising from observations (21) in the
2-dimensional periodic Navier-Stokes equations (12). Suppose the ground truth ini-
tial condition θ0 lies in H. Then for every TP ≥ T there exists a sequence ηN =
O(1/

√
logN) as N → ∞ (with constants uniform in ‖θ0‖H ≤ U) such that

Π
(

θ ∈ V : sup
0<t≤Tp

‖uθ(t, ·)− uθ0(t, ·)‖L2(Ω)2 < ηN |Z(N)
)

→PN
θ0 1 (25)

as well as
Π
(

θ ∈ V : ‖θ − θ0‖L2(Ω)2 < ηN |Z(N)
)

→PN
θ0 1. (26)

Moreover, if
θ̄N = EΠ[θ|Z(N)] ∈ V

is the posterior (‘Bochner-’) mean and uθ̄N the solution of the Navier-Stokes equation
(12) with initial condition θ̄N , then

‖θ̄N − θ0‖L2(Ω)2 + sup
0<t≤Tp

‖uθ̄N (t, ·)− uθ0(t, ·)‖L2(Ω)2 = OPN
θ0

(ηN ). (27)

The logarithmic rates obtained may not be sharp at ‘observed’ times t > 0. For
instance in ‘average prediction’ loss where one takes the quadratic time average of
(24) over [0, T ], our proofs imply much faster rates, see (41). But inference for fixed
possibly unobserved times t constitutes a nonlinear inverse problem which the Bayesian
posterior distribution arising from a prior on the initial condition θ solves ‘implicitly’
by first inferring θ and then updating the resulting forward model prediction for uθ(t).

We now show that for the underlying key step of recovery of the initial condition,
the posterior convergence rates obtained are essentially optimal in an information theo-
retic ‘minimax’ sense in the family of two-dimensional periodic Navier-Stokes equations
arising from H2-initial conditions.

11



Theorem 4. Consider periodic solutions of the Navier-Stokes equations (12) with vis-
cosity ν = 1/2, forcing f = 0, and observations Z(N) arising as in (21). Then there
exists c = c(U, T ) > 0 such that

lim inf
N→∞

inf
θ̃N

sup
θ∈V :‖θ‖

H2≤U

PN
θ

(

‖θ̃N − θ‖L2 >
c

logN

)

> 1/4, (28)

where the infimum extends over all estimators θ̃N of θ (i.e., all measurable functions
of Z(N) taking values in the space V ).

This lower bound uses Theorem 2 and is reminiscent of similar ‘logarithmic’ min-
imax rates in the linear inverse problem of recovering the initial condition from an
observed solution of the scalar heat equation (see, e.g., [26, 38]). As with the much
simpler case of such heat equations, one can ask if faster rates can be obtained for
‘super-smooth’ initial conditions. If we use a Gaussian prior that has a slowly grow-
ing expansion in the eigenfunctions from (22), and if the true initial condition θ0 is
‘band-limited’ in the Stokes spectrum, then we can indeed obtain convergence rates
that approach the ‘parametric’ rate 1/

√
N of finite-dimensional models as we increase

the regularity of the prior, α → ∞.

Theorem 5. Denote by (ej : j ∈ N) ⊂ V an enumeration of the L2-orthonormal
basis of H arising from the eigenfunctions of the Stokes operator A = −P∆ from (22),
ordered by increasing eigenvalues. Let the prior Π be as in Condition 1 and project it
onto the span EJ = {ej : j ≤ J} with J = JN = O(log logN). Suppose the ground
truth initial condition θ0 lies in H ∩ EJ0 for some arbitrary fixed J0 ∈ N. Then the
conclusions of Theorem 3 remain true with convergence rate

ηN = (logN)β ×N−α/(2α+2), some β > 0.

3 Proofs

3.1 Proof of Theorem 1

The idea of the proof is based on [2]. We can assume w(0) ≡ u0− v0 6= 0 in V ⊂ L2(Ω)
and by forward uniqueness therefore also w(t) ≡ u(t)− v(t) 6= 0 in V ⊂ L2(Ω) for all
t. The ‘Dirichlet ratio’ at time t is defined as

Φ(t) =
‖w(t)‖2V
‖w(t)‖2L2

=
〈Aw(t), w(t)〉L2

‖w(t)‖2L2

, t ∈ [0, T ], (29)

where we recall (8) and where we now write, unless specified otherwise, L2 = L2(Ω).
If we set ū = (u+ v)/2 then we see from (7) and an elementary calculation that

B(u, u)− B(v, v) = B(ū, w) +B(w, ū). (30)

12



Then since u(t), v(t) solve the Navier-Stokes equations for the respective initial con-
ditions we see that w(t) solves the inhomogeneous non-linear parabolic equation in H
given by

dw

dt
+ νAw = g, where g(t) = −B(ū(t), w(t))− B(w(t), ū(t)) (31)

with initial condition w(0) = u(0)− v(0). The following bounds for the Dirichlet ratio
(29) will be the key to the proof of Theorem 1.

Lemma 1. We have
d

dt
Φ(t) ≤ ‖g(t)‖2L2

ν‖w(t)‖2L2

∀t ∈ (0, T ]. (32)

Moreover,
‖g(t)‖L2 ≤ k(t)‖w(t)‖V for all t ∈ (0, T ] (33)

for some k ∈ L4((0, T )) whose L4-norm is bounded by a fixed constant that depends on
T, ν, ‖f‖L2 and on the initial conditions u0, v0 via the upper bound U ≥ ‖u0‖V +‖v0‖V .

Proof. We take the L2-inner product of equation (31) with w and Aw, respectively,
which gives

1

2

d

dt
‖w(t)‖2L2 + ν‖w(t)‖2V = 〈g, w〉L2,

1

2

d

dt
‖w(t)‖2V + ν‖Aw(t)‖2L2 = 〈g, Aw〉L2

where we have also used (8) in the second identity. Therefore we have

d

dt
Φ(t) = 2

‖w‖2L2

(

〈g, Aw〉L2 − ν‖Aw‖2L2

)

− ‖w‖2V
(

〈g, w〉L2 − ν‖w‖2V
)

‖w‖4L2

= 2ν
‖w‖4V − ‖w‖2V 〈g/ν, w〉L2 − ‖w‖2L2‖Aw‖2L2 + ‖w‖2L2〈g/ν, Aw〉L2

‖w‖4L2

= 2ν

(

‖w‖2V − 〈g/2ν, w〉L2

)2 − 〈g/2ν, w〉2L2 − ‖w‖2L2‖Aw‖2L2 + ‖w‖2L2〈g/ν, Aw〉L2

‖w‖4L2

= 2ν
〈Aw − g/2ν, w〉2L2 − 〈g/2ν, w〉2L2 − ‖w‖2L2‖Aw‖2L2 + ‖w‖2L2〈g/ν, Aw〉L2

‖w‖4L2

.

using again (8) in the last step. By the Cauchy-Schwarz inequality, the last ratio is
bounded from above by

2ν

‖w‖4L2

[

∥

∥Aw − g

2ν

∥

∥

2

L2‖w‖2L2 +
‖g‖2L2‖w‖2L2

4ν2
− ‖w‖2L2‖Aw‖2L2 + ‖w‖2L2

〈g

ν
, Aw

〉

L2

]

=
‖g‖2L2

ν‖w‖2L2

and the first claim of the lemma follows. Using again the Cauchy-Schwarz and standard
interpolation inequalities (Ch.6 in [4]) as well as the Poincaré inequality (p.292 in [13])

‖w(t)‖L2

‖∇w(t)‖L2

≤ c,
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we can bound ‖g(t)‖L2 by

‖B(ū(t), w(t))‖L2 + ‖B(w(t), ū(t))‖L2

≤ ‖w(t)‖L4(Ω)‖∇ū(t)‖L4(Ω) + ‖ū(t)‖∞‖∇w(t)‖L2

≤ c0‖w(t)‖1/2L2(Ω)‖∇w(t)‖1/2L2(Ω)‖∇ū(t)‖L4(Ω) + ‖ū(t)‖∞‖∇w(t)‖L2(Ω)

≤ ‖w(t)‖V
(

c1‖ū(t)‖1/2H1 ‖ū(t)‖1/2H2 + c2‖ū(t)‖1/2L2 ‖ū(t)‖1/2H2

)

≡ k(t)‖w(t)‖V ,

with appropriate universal constants ci. Now by (13) the norms ‖ū(t)‖L2 , ‖ū(t)‖V are
bounded by an fixed constant and ‖ū(t)‖H2 . ‖u(t)‖D(A)+ ‖v(t)‖D(A) lies in L2((0, T ))
for strong solutions of the Navier-Stokes equations. In particular the L4-norms of k
are bounded as required, completing the proof of the lemma.

Combining the two inequalities from the last lemma we obtain the differential in-
equality

d

dt
Φ(t) ≤ k2(t)

ν
Φ(t) ∀t ∈ (0, T ], (34)

which after integrating (i.e., Gronwall’s inequality, p.711 in [13]) implies

Φ(t) ≤ Φ(0)e
1

ν

∫ t

0
k2(s)ds ≡ Φ(0)K(t) ∀t ∈ (0, T ], (35)

where we notice that Φ(0) is bounded by a constant from below by the Poincaré
inequality (p.292 in [13]), and also finite as w(0) 6= 0 and u(0), v(0) ∈ V by hypothesis.

Now taking inner products of (31) with w and noting that 〈B(ū, w), w〉L2 = 0 from
(9) we arrive at

1

2

d

dt
‖w(t)‖2L2 + ν‖w(t)‖2V + 〈B(w, ū), w〉L2 = 0, 0 < t ≤ T.

Just as in the proof of the previous lemma we can bound for some C < ∞

|〈B(w, ū), w〉L2(Ω)| ≤ C‖w‖L2‖w‖V ‖ū‖V

and we obtain for all 0 < t ≤ T that

1

2

d

dt
‖w(t)‖2L2 ≥ −ν‖w(t)‖2V − C‖w(t)‖L2‖w(t)‖V ‖ū(t)‖V

≥
(

− νΦ(t)− C‖ū(t)‖VΦ1/2(t)
)

‖w(t)‖2L2

≥ −φT‖w(t)‖2L2

where
φT ≡ sup

0≤t≤T
[νΦ(t) + C‖ū(t)‖VΦ1/2(t)].

Again from this we can deduce the inequality

‖w(t)‖2L2 ≥ ‖w(0)‖2L2e−2TφT ∀t ∈ (0, T ]. (36)

14



We can also integrate the last inequality with respect to t over the interval [0, T ] to
obtain similarly

1

T

∫ T

0

‖w(t)‖2L2dt ≥ ‖w(0)‖2L2e−2TφT , (37)

as will be relevant later, in Corollary 1 below. It remains to examine the constant φT ,
and we distinguish the two cases A) and B) now.

B) Assume first the simpler case where an apriori bound (17) on the ‘inverse
Poincaré constant’ Φ(0) ≤ cP is available. Then assuming cP ≥ 1 without loss of
generality we have from (35) and Proposition 1 that

φT ≤ sup
t
[νΦ(t) + C‖ū(t)‖VΦ1/2(t)] ≤ KcP

for some constant K = K(U, ‖f‖L2, ν, T ) and so (36) becomes

‖w(0)‖L2 ≤ ec2cP ‖w(t)‖L2, c2 = 2TK,

which is the desired stability estimate.

A) We can proceed as in the last step but use the estimate Φ(0) ≤ U/‖u(0)−v(0)‖L2

instead of appealing to an inverse Poincaré constant. By the usual Poincaré inequality,
Φ(0) ≥ c > 0 and hence

√

Φ(0) . Φ(0). Combining this with (35) and (36) gives

‖u(0)− v(0)‖2L2 exp
{

− c′

‖u(0)− v(0)‖2L2

}

≤ ‖u(t)− v(t)‖2L2 (38)

for a constant c′ = c′(T, U, ν, ‖f‖L2). Since e−c′/x2 ≤ x2/c′ for all x > 0 we deduce

exp
{

− 2c′

‖u(0)− v(0)‖2L2

}

≤ ‖u(t)− v(t)‖2L2/c′ ≡ Z.

If we set c21 = c′ then by hypothesis the right hand side Z < 1 and hence logZ < 0, so
taking logarithms in the previous display gives

− 2c′

‖u(0)− v(0)‖2L2

≤ − log(1/Z) ⇐⇒ ‖u(0)− v(0)‖2L2 ≤ 2c′

log(1/Z)

from which it follows that

‖u(0)− v(0)‖L2 ≤
√
2c′

(

log
c21

‖u(t)− v(t)‖2L2

)−1/2

,

completing the proof upon setting c0 =
√
c′.
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3.2 Proof of Theorem 2

Proof. For j = 1, 2, . . . we define univariate trigonometric polynomials on [0, 2π] as
φj(x) = eijx/

√
2π, x ∈ [0, 2π]. Then for initial conditions wj(0) = φj/j

2 the (scalar)
heat equation

∂w

∂t
− ∂2w

∂x2
= 0 on [0, 2π]× [0, T ]

has unique solutions

wj(t, x) =
−e−j2t

j2
φj(x), x ∈ [0, 2π], t ∈ [0, T ].

Now following an idea in Remark 7 in [15], consider the periodic Navier-Stokes equation
(12) for initial conditions

uj(0, x) = j−2(φj(x1 − x2), φj(x1 − x2)), x = (x1, x2) ∈ Ω,

which clearly satisfy ∇ · uj(0) = 0 and hence lie in C∞(Ω) ∩ V . The vector fields

uj(t, x) = (wj(t, x1 − x2), wj(t, x1 − x2)), x = (x1, x2) ∈ Ω,

are also divergence free, have vanishing non-linear term uj · ∇uj = 0, and solve the
Navier-Stokes equations (12) for ν = 1/2, f = 0 and the given initial conditions. To
compute the quantities in (19), notice that the vector fields

(ēlk, ēl′k′), with ēlk(x1, x2) = φl(x1)φk(x2), xi ∈ [0, 2π], k, k′, l, l′ ∈ Z,

form an orthonormal tensor basis of the Hilbert space L2([0, 2π]2)2. Also, for any fixed
xi, by standard properties of trigonometric polynomials (and for δjl the Kronecker-δ)

〈φj(· − xi), φl〉L2([0,2π]) ∝ e−ijxi〈φj, φl〉L2([0,2π]) = δjl

and hence using Parseval’s identity (and with universal constants in ≃)

‖uj(0)‖L2([0,2π]2)2 ≃ j−2, ‖uj(t)‖L2([0,2π]2)2 ≃ e−j2t/j2.

Similarly, the Sobolev norms of these initial conditions are of order

‖uj(0)‖2H2 .
∑

l,k

(|l|2 + |k|2)〈uj(0), ēlk〉2L2([0,2π]2)2 .
j2

j2
≤ const.

The inequality (20) now follows from (19), v(0) = v(t) = 0 and elementary properties
of the exponential/logarithm map.
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3.3 Proof of Theorems 3 and 5

We will apply the general theory for non-linear Bayesian inverse problems from [34] in
conjunction with Proposition 1 and the stability estimate Theorem 1. In fact we will
use the following corollary to this theorem, proved by just replacing (36) by (37) in the
last step of its proof.

Corollary 1. In the setting of the Theorem 1 B), for any T > 0, there exists a constant
c2 depending on U, ν, T, ‖f‖L2 such that

‖u(0)− v(0)‖L2(Ω) ≤ ec2cP
( 1

T

∫ T

0

‖u(t, ·)− v(t, ·)‖2L2(Ω)dt
)1/2

, (39)

while in the setting of Theorem 1 A), there exist constants c0, c1 depending on U, ν, T, ‖f‖L2

such that

‖u(0)− v(0)‖L2(Ω) ≤ c0

(

log
c1

∫ T

0
‖u(t, ·)− v(t, ·)‖2L2(Ω)dt

)−1/2

(40)

where ‖u− v‖2L2((0,T ]×Ω) < c1.

Now in the notation of Section 1.2.1 in [34], the parameter space Θ of initial con-
ditions is chosen as the subspace

Θ ≡ V ∩H2(Ω)2 of L2(Z,W )

with V from (4), and where we choose Z = Ω and W = R
2. The forward map

θ 7→ G (θ) = uθ, G : Θ → L2(X ,R2),

is the solution map of the PDE (12) with initial condition u0 = θ, where we set
X = (0, T ]× Ω and the finite-dimensional vector space V in [34] (different from V in
our context) is identified with R

2 here. Then on X we have the uniform probability
measure λ while on Z we can just take ζ equal to Lebesgue measure, so that our
statistical model (21) co-incides precisely with the one in eq. (1.9) in [34] with ‘random
design’ (ti, Xi)

N
i=1 equal to the (Xi)

N
i=1 there. By hypothesis, the prior is supported in

V ∩D(A) ≡ R almost surely and we will apply Theorem 2.2.2 in [34] with regularisation
space R, norm ‖ · ‖R ≡ ‖ · ‖H2 , and choices

κ = 0, δN = N−α/(2α+2), d = 2.

The Condition 2.1.1 in [34] is then verified in view of Proposition 1, and we obtain that
for some large enough constant M > 0, as N → ∞,

Π
(

θ ∈ V : ‖θ‖H2 ≤ M, ‖uθ − uθ0‖L2((0,T ]×Ω) ≤ MδN |Z(N)
)

→PN
θ0 1. (41)

By the stability estimate Theorem 1 with u = uθ, v = uθ0 , specifically (40), this gives
contraction rate ηN for ‖θ − θ0‖L2 and proves (26). The bound (25) then follows from
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what precedes and the forward estimate from Proposition 1, Part 2) (now with Tp

replacing T ). The last claim of Theorem 3 (convergence rate of the posterior mean)
follows from the preceding bounds and a uniform integrability argument given in The-
orem 2.3.2 in [34], and again Proposition 1, and details are left to the reader.

The proof of Theorem 5 follows the same pattern (cf. also Exercise 2.4.3 in [34]), not-
ing that the RKHS is now EJ∩H were EJ is the linear span of the Stokes-eigenfunctions
up to order J . The preceding arguments go through since θ0 ∈ EJ ∩ H for all N (and
thus J) large enough. We can then use the stronger stability estimate (39) with inverse
Poincare constant now growing at most as cP = O(log logN) as explained in Remark 1,
so that the result follows by introducing the additional log-factor ec2cP = O((logN)β)
in the contraction rate.

3.4 Proof of Theorem 4

We use a standard lower bound proof technique from nonparametric statistics, e.g.,
Theorem 6.3.2 in [17] (or since we will only use a two-hypotheses case, we can also
argue as in the the proof of Theorem 2.2 in [1]). The Kullback-Leibler divergence in
our measurement model (21) is

KL(PN
θ , PN

θ0
) =

N

2T
‖uθ − uθ0‖2L2((0,T ]×Ω)2 , θ ∈ Θ,

see Proposition 1.3.1 in [34] (and with choices of Θ,X , V, λ etc. as described after
Corollary 1). Using the base hypothesis θ0 = 0 and alternative hypothesis θj = uj(0)
from Theorem 2, we can for every µ > 0 choose j = jN =

√
L logN such that

KL(PN
θj
, PN

θ0
) . N‖uj(t)‖2L2(Ω×(0,T )) . Ne−cj2NT ≤ µ

for L = L(µ) large enough. At the same time ‖θj − θ0‖L2 & logN from Theorem 2,
which verifies (6.100) in [17] with rn ≃ logN , and so the result follows from Theorem
6.3.2 in [17] withM = 2 and µ small enough (cf. also (6.99) to obtain the ‘in probability’
version of the lower bound).

3.5 Proof of Proposition 1

We start with the following basic a priori estimate for solutions u = u(t) ∈ V of (12):
Taking the L2-inner product of (12) with u and using (8), (9) we obtain

1

2

d

dt
‖u‖2L2 + ν‖∇u‖2L2 = 〈f, u〉L2 ≤ λ−1‖f‖L2‖∇u‖L2

≤ 1

2νλ
‖f‖2L2 +

ν

2
‖∇u‖2L2

where we have used the Cauchy-Schwarz, the Poincaré (with constant λ) and the Young
inequalities. This readily implies,

d

dt
‖u‖2L2 + ν‖∇u‖2L2 ≤

‖f‖2L2

νλ
,
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which can be integrated to give

∫ T

0

‖∇u(t)‖2L2dt ≤
‖u0‖2L2

ν
+ T

‖f‖2L2

ν2λ
≤ K1 ≡ K1(U, ν, T, ‖f‖L2). (42)

We now turn to the proof of A). We will show

sup
u0∈V :‖u0‖H2≤m

sup
0≤t≤T

‖u(t)‖H2(Ω) ≤ c (43)

for a constant c = c(m, ‖f‖H1, T, ν), which implies (14) by the Sobolev imbedding
H2 ⊂ L∞ and which also implies (13) for initial conditions bounded in H2 (rather than
in H1). The proof of (13) under weaker H1-conditions follows from similar arguments,
but we omit it here as we only require θ = u(0) ∈ H2 elsewhere in this paper.

Applying the curl operation ∇× to (11) we obtain the vorticity formulation of the
Navier-Stokes equations

∂

∂t
ω − ν∆ω + u · ∇ω = ∇× f (44)

where the vorticity ω = ∇⊥ ·u. Notice that since ∇·u = 0 one has ‖∇ω‖L2 = ‖∆u‖L2.
Therefore, we can prove (43) by bounding the H1-norms of ω uniformly in time t ∈
[0, T ]. Taking the L2-inner product of the last equation with −∆ω and using (8) we
obtain

1

2

d

dt
‖∇ω‖2L2 + ν‖∆ω‖2L2 −

∫

Ω

(u · ∇ω)∆ω = −
∫

Ω

(∇× f)∆ω. (45)

The Cauchy-Schwarz inequality implies

∣

∣

∣
−

∫

Ω

(∇× f)∆ω
∣

∣

∣
≤ ‖∇f‖L2‖∆ω‖L2

and we can further estimate, by integration by parts

∣

∣

∣
−
∫

Ω

(u · ∇ω)∆ω
∣

∣

∣
=

∣

∣

∣
−

2
∑

l=1

∫

Ω

(u · ∇ω)∂2
l ω

∣

∣

∣
=

∣

∣

∣

2
∑

l=1

∫

Ω

[

(∂lu · ∇ω)∂lω
]

∣

∣

∣

≤ ‖∇u‖L2‖∇ω‖2L4 ≤ c0‖∇u‖L2‖∇ω‖L2‖∆ω‖L2

since
∑

l

∫

Ω
(u · ∇∂lω)∂lω = 0 as in (9), and where we have used, for every ϕ ∈ H1

with
∫

Ω
φ = 0, the interpolation inequality ‖φ‖2L4 ≤ c0‖φ‖L2‖∇φ‖L2. Substituting the

previous bounds into (45) gives

1

2

d

dt
‖∇ω‖2L2 + ν‖∆ω‖2L2 ≤ ‖∇f‖L2‖∆ω‖L2 + c0‖∇u‖L2‖∇ω‖L2‖∆ω‖L2.

By Young’s inequality for products we deduce

1

2

d

dt
‖∇ω‖2L2 + ν‖∆ω‖2L2 ≤

‖∇f‖2L2

ν
+

ν

4
‖∆ω‖2L2 +

c20
ν
‖∇u‖2L2‖∇ω‖2L2 +

ν

4
‖∆ω‖2L2
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and rearranging we obtain

d

dt
‖∇ω‖2L2 ≤ 2

ν
‖∇f‖2L2 +

2c20
ν

‖∇u‖2L2‖∇ω‖2L2.

We can apply Gronwall’s inequality (p.711 in [13]) to deduce

‖∇ω(t)‖2L2 ≤ e
2c2

0
ν

∫ t

0
‖∇u(s)‖2

L2
ds
[

‖∇ω(0)‖2L2 +
2t

ν
‖∇f‖2L2

]

, 0 < t ≤ T. (46)

Now we use (42) to bound the constants in the preceding integrals and deduce

‖u‖H2 . ‖∆u(t)‖2L2 = ‖∇ω(t)‖2L2 .
(

‖∆u(0)‖2L2 + ‖f‖H1

)

≤ K2, 0 ≤ t ≤ T, (47)

and K2 = K2(T, ν, ‖f‖H1, m), which implies (43) as desired.

To conclude the proof of the proposition, we note that what precedes are formal
estimates for solutions to Navier-Stokes equations. The existence and uniqueness of
such solutions then follows from these formal estimates and standard compactness
arguments applied to Galerkin approximations of solutions of (12), in complete analogy
to those given in [9], Ch.9, and are left to the reader. Finally, the estimate (15) in B)
also follows from simple variations of the preceding arguments, see the steps leading
to eq. (10.6) in [9], and is also left to the reader.
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