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Abstract – The non-equilibrium non-Markovian barrier crossing dynamics of a one-dimensional
massive coordinate, described by the non-equilibrium version of the generalized Langevin equa-
tion with unequal random and friction relaxation times, is studied by simulations and analytical
methods. Within a harmonic approximation, a general formula for the barrier crossing time is
derived which agrees favorably with simulations. Non-equilibrium random forces with a relaxation
time longer than the friction relaxation time induce non-Arrhenius behavior and dramatically in-
crease the barrier crossing time; within the harmonic theory this corresponds to a reduced effective
temperature which also modifies the spatial and velocity distributions.
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Biological systems are generally far from equilibrium be-
cause mechanical and chemical forces act and produce a
net energy flow through the system. The non-equilibrium
character gives rise to many salient and not fully under-
stood properties that are studied by novel experimental
systems and theoretical models [1–5]. Topics of interest
include phase transitions induced by non-equilibrium ef-
fects [6–8], violations of the fluctuation-dissipation theo-
rem [9–13], mechanical properties of active gels [14,15] and
motility patterns of cells and organisms [16–19].

Of particular interest are non-equilibrium reaction ki-
netics, i.e., the influence of non-thermal forces on barrier
crossing dynamics in some physical or abstract reaction co-
ordinate space, because here the fields of non-equilibrium
statistical mechanics, non-Markovian dynamics and rare
phenomena meet [20,21]. As examples we mention met-
astable evolutionary dynamics [22], barrier effects on mo-
tion patterns of mammals [23] and cancer cells [24], the
effects of active fluctuations on the zipping/unzipping dy-
namics of RNA hairpins [25], protein folding under non-
equilibrium conditions [26] and chemical reactions in the
presence of strong time-dependent electric fields [27].

Arrhenius showed that the chemical reaction time un-
der thermal (i.e., equilibrium) conditions, which corre-
sponds to the mean-first-passage time (MFPT) to reach
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the barrier top of a suitable reaction coordinate, depends
exponentially on the barrier free energy height U0 ac-
cording to τMFP ∼ e(U0/kBT ) [28]. For Markovian sys-
tems the pre-exponential factor depends on the effective
friction and effective mass [29–31] and satisfactorily de-
scribes reaction-diffusion processes [32], chemical reac-
tions [33], protein folding [34–36] and nucleic-acid hairpin
formation [37]. All real systems exhibit finite relaxation
times, which give rise to memory effects and can sensi-
tively modify the pre-exponential factor [38–44]. Such
non-Markovian effects are important for molecular confor-
mational dynamics [45,46], chemical reaction kinetics [47],
protein folding [48–51] as well as colloidal dynamics in vis-
coelastic materials [52]. Note that for equilibrium systems,
friction, inertial as well as memory effects only modify the
pre-exponential factor, but not the exponential Arrhenius
term itself.

We study the barrier crossing dynamics of a one dimen-
sional non-equilibrium non-Markovian model, where the
single-exponential relaxation times of the friction mem-
ory kernel and the random force are different [18,20,21]
and thus the fluctuation-dissipation theorem is broken.
This is a rather general model that by projection and
dimensional reduction can be derived from a wide class
of different microscopic non-equilibrium systems [15,18].
Our analytical calculations show that this particular form
of non-equilibrium not only changes the pre-exponential
factor but drastically modifies the exponential Arrhenius
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Fig. 1: (a) Schematic barrier crossing of a particle in a double-
well potential defined in eq. (3). (b) Non-equilibrium sim-
ulation trajectories for moderate barrier height βU0 = 3,
high friction τm/τD = 0.1 and rescaled friction memory time
τV /τD = 0.3. The red trajectory is for rescaled random cor-
relation time τR/τD = 0.1 and shows many barrier crossing
events, the blue trajectory for τR/τD = 0.9 shows no barrier
crossing event.

factor itself. Our derived closed-form expression for the
MFPT demonstrates that the modification of the Arrhe-
nius factor can be described by an effective temperature,
that is proportional to the square of the friction and ran-
dom relaxation-time ratio, in good agreement with sim-
ulations. The same effective temperature also describes
the non-equilibrium position and velocity distributions.
In a previous study on non-equilibrium barrier crossing, a
similarly defined effective temperature was shown to cap-
ture the non-equilibrium modification of the transition-
path time [53]. The effect of the random-force correlation
time on the barrier crossing dynamics is illustrated by two
non-equilibrium simulation trajectories in fig. 1, where the
random-force correlation time is shorter (red trajectory)
and longer (blue trajectory) than the friction correlation
time, with all other parameters being the same: the red
trajectory shows many barrier crossing events, while the
blue trajectory does not show a single barrier crossing over
the same simulation time. From these sample trajectories,
we conclude that an increase of the random-force correla-
tion time increases the mean barrier crossing time.

Our model is based on the approximate generalized
Langevin equation (GLE) with linear friction

mẍ(t) = −
∫ t

t0

ΓV (t − t′)ẋ(t′)dt′ − ∇U(x(t))+ FR(t), (1)

where m is the particle mass, ΓV (t) the friction memory
kernel, t0 some initial time and FR(t) denotes the random
force characterized by the general autocorrelation

〈FR(t)FR(t′)〉 = β−1ΓR(t − t′), (2)

where β is a numerical constant. This version of the GLE
has been recently shown to follow from an exact form of
the GLE in the limit when the correlations between par-
ticle velocity and random force are homogeneous in reac-
tion coordinate space and thus corresponds to a physically
sound and realizable asymptotic form [54], the main re-
striction is that non-linear friction effects are neglected.
The potential U(x) is time-independent and thus corre-
sponds to the potential of mean force that describes the

stationary equilibrium distribution of the reaction coordi-
nate. As a potential that leads to barrier crossing events,
we choose a double well

U(x) = U0

[( x

L

)2

− 1
]2

, (3)

where 2L is the separation between the minima and U0 is
the barrier height.

In equilibrium, the fluctuation-dissipation theorem pre-
dicts ΓR(t) = ΓV (t) and β−1 = kBT equals the heat bath
thermal energy. In the general non-equilibrium scenario,
ΓR(t) and ΓV (t) are independent functions, which for sim-
plicity we choose as single exponentials,

ΓR(t) =
γR

τR
e

− |t|
τR , (4)

ΓV (t) =
γV

τV
e

− |t|
τV , for t > 0, (5)

and β does not correspond to the heat-bath temperature.
We normalize ΓR(t) and ΓV (t) such that their integral
is independent of the memory times, τR and τV , which
allows us to decouple memory time effects from friction
effects (note that in a previous treatment of a similar
model a different normalization of these memory functions
was chosen [53]). With no loss of generality, we consider
equal prefactors γR = γV = γ, since different prefactors
can be absorbed into the definition of β in eq. (2). For
different random and friction memory times, τR �= τV ,
the fluctuation-dissipation theorem is irrevocably violated
and thus the system is out of equilibrium [55–57]. The
non-equilibrium version of the GLE in eq. (1) describes
non-equilibrium systems in terms of a one-dimensional
reaction coordinate that is coupled to a non-thermal ran-
dom force and subject to a time-independent potential, it
can be derived by dimensional reduction of microscopic
non-equilibrium models that are coupled to multiple heat
baths at different temperatures [15]. Two other time
scales characterize the model, namely the inertial time
τm = m/γ and the diffusion time τD = L2γβ.

We first present analytical results for the MFPT
based on the positional autocorrelation function C(t) =
〈x(t)x(0)〉. For this we employ a harmonic approxima-
tion of eq. (1) and use Uhar(x) = Kx2/2, where K is the
second derivative of the double-well potential at the min-
ima, K = U ′′(L) = 8U0/L2. The calculation we present
here significantly generalizes our previous derivation [42],
as will be pointed out below. Fourier transforming eq. (1)
for t0 → −∞ and solving for x̃(ω), we obtain

x̃(ω) =
F̃R(ω)

K − mω2 + iωΓ̃+
V (ω)

≡ χ̃(ω)F̃R(ω), (6)

which defines the response function χ̃(ω). The half-sided
Fourier transform Γ̃+

V (ω) of ΓV (t) is given by

Γ̃+
V =

∫ ∞

0

dte−iωtΓV (t) =
γ

1 + iωτV
, (7)
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while the Fourier transform of the symmetric random force
correlation ΓR(t) is

Γ̃R(ω) = Γ̃+
R(ω) + Γ̃+

R(−ω) =
2γ

1 + ω2τ2
R

. (8)

The Fourier transform of C(t) is given by C̃(ω) =
β−1Γ̃R(ω)χ̃(ω)χ̃(−ω) and reads (see the Supplementary
Material Supplementarymaterial.pdf (SM))

C̃(ω) =
2γβ−1(1 + ω2τ2

R)−1(
K − ω2

[
m − τV γ

1+τ2
V ω2

])2

+ ω2γ2

(1+ω2τ2
V )2

. (9)

This can be rewritten in a form that corresponds to the
standard result for the memory-less harmonic oscillator in
equilibrium (i.e., τV = τR = 0),

C̃(ω) =
2γeffβ−1

eff

(K − meffω2)2 + ω2γ2
eff

, (10)

where we have introduced effective frequency-dependent
friction, mass and temperature

γeff =
γ

1 + τ2
V ω2

, (11a)

meff = m − c1τV γeff, (11b)

βeff =
1 + ω2τ2

R

1 + ω2τ2
V

β. (11c)

The mapping introduced here is valid for arbitrary fre-
quencies and for non-equilibrium situations, whereas in
our previous work we considered the equilibrium case and
the asymptotic limits of high and low frequencies sepa-
rately [42]. We have introduced a numerical constant that
in the harmonic case takes the exact value c1 = 1 and will
be used as a fit parameter to account for non-harmonic
corrections. For τR = τV equilibrium is recovered and
βeff = β, for τR = τV = 0 the equilibrium Markovian limit
is recovered and additionally γeff = γ and meff = m. Note
that the potential curvature K is not renormalized. In
the overdamped case, characterized by a vanishing bare
mass m = 0, the effective mass meff would become neg-
ative. Thus, a finite bare mass m is needed in order to
regularize the dynamics of the system in our analytical
approach. In the low and high friction limits, eq. (10) is
dominated by the poles ω2

L = K/meff for Kmeff > γ2
eff

and ω2
H = −K2/γ2

eff for Kmeff < γ2
eff, respectively (see

the SM). From these characteristic frequencies we obtain
from eq. (11a) the effective friction in the low and high
friction limits (see the SM),

γL
eff =

γ

1 + c2τ2
V K/m

, (12a)

γH
eff =

γ

2

(
1 +

√
1 + c3(2KτV /γ)2

)
, (12b)

from which the effective mass meff and the effective tem-
perature βeff in the low and high friction limits follow from

Fig. 2: (a) MFPT in the equilibrium Markovian limit (τV =
τR = 0) as a function of rescaled mass τm/τD for three
different βU0. Comparison of simulation results (symbols),
eq. (13) (dashed lines) and Melnikov-Meshkov (MM) theory
[30] (colored lines). Red straight lines show the Kramers lim-
its [29,58]. (b) MFPT in the equilibrium non-Markovian case
(τV = τR �= 0) for βU0 = 3 and various τm/τD as a function
of rescaled memory time τV /τD. Simulation results (symbols)
are compared with eq. (14) (lines).

eqs. (11b) and (11c) by insertion. We introduced two more
numerical constants c2 and c3 that will be used as fit pa-
rameters for describing our numerical data.

Using the Markovian mapping in eq. (10), we now
construct an expression for the mean-first passage time
τMFP between the two potential wells at ±L for the non-
Markovian non-equilibrium case. First we consider the
equilibrium scenario, defined by τR = τV , in which case
βeff = β, as follows from eq. (11c), and start with the
Markovian limit, τR = τV = 0. From the classical
Kramers results in the high and low-friction limits, τMFP =
eβU02

√
2πγ/K and τMFP = eβU03πm/(8

√
2βU0γ), respec-

tively [29,58], we construct the heuristic interpolating ex-
pression

τMFP = eβU0

[
1

βU0

3π

8
√

2
m

γ
+ 2

√
2π

γ

K
+ 4

√
2
m

K

]
. (13)

Note that we have simply summed the two asymptotic
limits and added a crossover term. In fig. 2(a) we compare
simulation results for τMFP (data points) with the heuristic
formula eq. (13) (dashed line) and with Melnikov-Meshkov
theory [30] (orange line), the latter becoming exact in the
high-barrier limit (see the SM), for three different barrier
heights. Details on the simulation methods are given in
the SM. The agreement is very good, which means that the
numerical simulations are converged and that the heuristic
expression eq. (13) works. The Kramers limits are denoted
by red lines in fig. 2(a).

We for now stay in equilibrium but consider the more
general non-Markovian case and replace the friction coef-
ficient and mass in eq. (13) by their effective expressions
in eqs. (11). This only has to be done for the low-friction
term proportional to m/γ in eq. (13), because here the re-
sulting effects are dominant compared to the high-friction
term proportional to γ/K (or the crossover term) in
eq. (13). This is also reflected by the fact that fitting the
simulation data for the MFPT with the heuristic formula,
we obtain a very small value c3 = 0.01 so that γH

eff ≈ γ
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(see the SM). From eqs. (11) and (12) we find in the low-
friction limit mL

eff/γL
eff = m/γ − c1τV + c2τ

2
V K/γ, which

shows that memory has two opposing effects: For small
τV the MFPT eq. (13) goes down due to mass renormal-
ization, thus short memory accelerates barrier crossing,
while for long memory the MFPT goes up due to friction
renormalization, i.e., long memory slows down barrier
crossing [38,40,42]. We also see that the effect memory
has on the MFPT survives in the overdamped scenario,
m = 0, since the memory correction terms are independent
of the bare mass. We combine the memory acceleration
term with the overdamped contribution in eq. (13) accord-
ing to γ/K − c1τV /(βU0) ≈ (γ/K)/(1 + c1KτV /(γβU0)),
which ensures that τMFP stays positive and improves the
description of the numerical data. We thereby derive
the final expression for the MFPT in the equilibrium
non-Markovian case, which is equivalent to a previously
suggested heuristic formula [42],

τMFP = eβU0

[
1

βU0

3π

8
√

2

(
m

γ
+

c2Kτ2
V

γ

)

+
2
√

2πγ

K

1
1 + 3c1KτV /(32βU0γ)

+ 4
√

2
m

K

]
. (14)

The harmonic result is recovered for c1 = 1 = c2 = 1.
By fitting to simulation data in fig. 2(b) for fixed barrier
height βU0 = 3 and a few different rescaled masses τm/τD

(symbols), we obtain c1 = 64/3 and c2 = 2/3, which ac-
counts for the fact that the simulated potential in eq. (3) is
not harmonic. We see that the formula eq. (14) is very ac-
curate for general mass/friction ratios and rescaled mem-
ory times τV /τD.

We now turn to the non-equilibrium case τV �= τR.
From eq. (11c) and the poles ωL and ωH , we obtain

βL
eff

β
=

τ2
R + m/K − c1τV γL

eff/K

τ2
V + m/K − c1τV γL

eff/K
, (15)

βH
eff

β
=

τ2
R − (γH

eff/K)2

τ2
V − (γH

eff/K)2
. (16)

In the limits τm/τV < 1, τm/τR < 1, γ/(KτV ) < 1,
γ/(KτR) < 1, which hold for the simulated systems, as
we demonstrate below, we can write

βNEQ/β = τ2
R/τ2

V ≈ βL
eff/β ≈ βH

eff/β. (17)

We see that the effective temperature β−1
NEQ depends

quadratically on the ratio of the memory friction time τV

and the random relaxation time τR. Replacing β by βNEQ,
we obtain from eq. (14) our final expression for τMFP in
the non-Markovian non-equilibrium case,

τMFP = eβNEQU0

[
1

βNEQU0

3π

8
√

2

(
m

γ
+

c2Kτ2
V

γ

)

+
2
√

2πγ

K

1
1 + 3c1KτV /(32βNEQU0γ)

+ 4
√

2
m

K

]
. (18)

Fig. 3: (a) Logarithmic position distributions for τm/τD =
0.1, βU0 = 3 and various τR/τD and τV /τD. (b) Logarithmic
position distributions rescaled by fitting factors β/βeff . In (c)
and (d) βeff/β from fits in (b) (red stars) is compared with the
predictions from eqs. (15), (16), (17).

Before comparing eq. (18) with simulation results for
τMFP, we consider the joint position-velocity distribution,
which, according to our mapping, is predicted as

P (x, v) ∝ e−βeffU(x)−βeffv
2m/2. (19)

Note that we assume the mass prefactor of the kinetic en-
ergy not to be renormalized. From this point on, we focus
on the overdamped case and choose τm/τD = 0.1, because
this is the most relevant regime for biophysical applica-
tions. In fig. 3(a) we show logarithmic positional distri-
butions − lnP (x) for various values of τV /τD and τR/τD,
shifted vertically so that they agree for x = ±L. The simu-
lation data for the equilibrium case τR = τV is denoted by
a black line and agrees perfectly with the expected Boltz-
mann distribution − lnP (x) = βU(x), denoted by black
spheres; the non-equilibrium simulation results are shown
as colored lines. In fig. 3(b) we show −(β/βeff) ln P (x)
with the prefactor β/βeff fitted such that the data su-
perimpose. We see that all distributions agree perfectly,
meaning that an effective temperature describes the non-
equilibrium position distributions well. In figs. 3(c) and
(d) we plot the fit results for βeff/β (red stars) as a func-
tion of τR/τD and τV /τD, respectively, and obtain perfect
agreement with the predictions in eqs. (15), (16), (17).
This in particular means that the asymptotic expres-
sion for βNEQ in eq. (17) is accurate for the employed
parameters.

In fig. 4(a) we show the logarithmic velocity dis-
tributions − lnP (v) for various values of τV /τD and
τR/τD, shifted vertically so that they agree for v = 0.
Again, the simulation data for the equilibrium case
τR = τV is denoted by a black line and agrees per-
fectly with the expected Maxwell-Boltzmann distribution
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Fig. 4: (a) Logarithmic velocity distributions for τm/τD = 0.1,
βU0 = 3 and various τR/τD and τV /τD. (b) Logarithmic ve-
locity distributions rescaled by fitting factors β/βeff . In (c)
and (d) βeff/β from fits in (b) (red stars) is compared with the
predictions from eqs. (15), (16), (17) (lines).

− lnP (v) = βmv2/2 (black spheres), the non-equilibrium
simulation results are shown as colored lines. In fig. 4(b)
we show −(β/βeff) ln P (v) with fitted prefactors β/βeff and
again find the data to perfectly superimpose. In figs. 4(c)
and (d) we favorably compare the fit results for βeff/β
(red stars) with the predictions in eqs. (15), (16), (17). In
essence, the position and velocity distributions from our
non-equilibrium simulations are perfectly described by an
effective temperature that depends on the ratio of memory
and random relaxation times according to eq. (17).

Finally, in fig. 5 we compare τMFP from simulations
(symbols) with eq. (18) as a function of τR/τV for three
different values of τV /τD, note that equilibrium is recov-
ered for τR/τV = 1. We see that as the ratio τR/τV in-
creases, τMFP grows dramatically (note the logarithmic
vertical scale), which reflects the decrease of the effective
temperature in eq. (17) and the divergence of the expo-
nential Arrhenius factor in eq. (18). In contrast, for de-
creasing ratio τR/τV the MFPT levels off, which reflects
a competition of the pre-exponential memory slow-down
factor proportional to τ2

V with the exponential factor in
eq. (18).

In conclusion, by solving the non-equilibrium non-
Markovian harmonic oscillator in terms of its effective
friction, mass and temperature, and using the Kramers
results for the Markovian barrier crossing dynamics, we
analytically derive a closed-form expression for the non-
equilibrium non-Markovian barrier crossing dynamics in
a double well that holds in the low and high friction
regimes. Our derived expression for the MFPT agrees with
a previously suggested heuristic formula for the MFPT in
the non-Markovian equilibrium limit [42,43] and describes
our non-equilibrium simulation results rather well with-
out additional fitting parameters. Whereas memory and

Fig. 5: Non-equilibrium MFPT as a function of the relaxation-
time ratio τR/τV for various values of τV /τD for fixed βU0 = 3
and τm/τD = 0.1. The lines show the predictions from eq. (18)
and the stars denote simulation data.

inertial effects only influence the exponential prefactor of
the MFPT, non-equilibrium effects modify the exponen-
tial Arrhenius factor itself and thus drastically modify bar-
rier crossing times. The random correlation time τR and
the memory friction time τV influence the non-equilibrium
MFPT in a markedly asymmetric fashion, the MFPT in-
creases steeply for τR/τV > 1 but rather levels off for
τR/τV < 1. These findings are possibly relevant for in
vivo non-equilibrium protein folding, since in recent ex-
periments on the folding speed of a nascent polypeptide
during translation a delay of the folding has been mea-
sured [26]. Whether co-translational folding is charac-
terized by increased random-force relaxation times seems
plausible but of course has to be substantiated by micro-
scopic modeling. We note that our derived result for the
MFPT depends crucially on the form of our friction and
random-force memory functions, who are taken as single-
exponential functions and whose integrals are defined to
be independent of the memory times. In passing we note
that our analytically derived effective temperature also de-
scribes position and velocity distribution of our non-linear
barrier crossing system very accurately even far away from
equilibrium.
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