
FREDHOLM INTEGRAL EQUATIONS FOR FUNCTION

APPROXIMATION AND THE TRAINING OF NEURAL NETWORKS

PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

Abstract. We present a novel and mathematically transparent approach to function ap-
proximation and the training of large, high-dimensional neural networks, based on the ap-
proximate least-squares solution of associated Fredholm integral equations of the first kind
by Ritz-Galerkin discretization, Tikhonov regularization and tensor-train methods. Practical
application to supervised learning problems of regression and classification type confirm that
the resulting algorithms are competitive with state-of-the-art neural network-based methods.

1. Introduction

Efficient and reliable methods for the training of neural networks are of fundamental im-
portance for a multitude of applications and therefore a flourishing field of mathematical
research. Stochastic gradient methods [1, 2] are known and further developed since the six-
ties. These methods mostly perform very well and therefore are often considered as methods
of choice in the field. However, global convergence analysis is complicated and actual conver-
gence might depend on proper parameter tuning [3]. Multilevel trust region methods [4, 5, 6]
on the one hand aim at increasing efficiency by Newton-type linearization and on the other
hand at increasing reliability by suitable step size control. Multilevel versions [7] are intended
to additionally transfer the efficiency of multigrid methods for the minimization of energy
functionals associated with elliptic partial differential equations to the minimization of loss
functionals.

This paper is devoted to a novel and mathematically transparent approach to function ap-
proximation and the training of large and high-dimensional shallow neural networks with usual
kernel functions ψ, training parameters (ηi, ui)

N
i=1 with ηi ∈ Q ⊂ Rs, ui ∈ R, I = 1, . . . , N ,

and intentionally large s and N . The starting point of our considerations is that such neural
networks can be interpreted as Monte-Carlo approximations of integrals over Q, once the
parameters ηi are assumed to be equidistributed on Q (see also [8]). Resulting Fredholm inte-
gral operators, now acting on parameter functions rather than parameter vectors, give rise to
so-called Fredholm networks providing a novel approach to function approximation. Training
of such Fredholm networks amounts to least-squares solution of linear Fredholm integral equa-
tions of the first kind for a parameter function u : Q→ R, the continuous counterpart of the
discrete parameter vector (ui)

N
i=1. Fredholm-trained parameters (ηi, u(ηi))

N
i=1 of the original

discrete neural network are then obtained by suitable sampling of ηi ∈ Q. A similar approach
has been developed for kernel methods in supervised and semi-supervised learning [9, 10, 11]
and applied to the covariance shift problem in transfer learning [12].

In general, the solution u of the continuous Fredholm training problem is not available. Af-
ter Ritz-Galerkin discretization with suitable ansatz space and Tikhonov regularization [13],

Key words and phrases. Function approximation, training of neural networks, Ritz-Galerkin methods, Fred-
holm integral equations of the first kind, Tikhonov regularization, tensor trains.

1

2 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

the resulting, intentionally large, linear systems are approximately solved by tensor-train
methods, such as alternating linear schemes [14, 15]. Approximately Fredholm-trained pa-
rameters (η̃i, ũ(η̃i))

N
i=1 of the original neural network are finally obtained from the resulting

approximation ũ of u and suitable sampling of η̃i ∈ Q. While the numerical analysis of
this approach is devoted to a forthcoming paper, the goal of this work is to confirm the
practical potential of the Fredholm approach by numerical experiments and comparison with
state-of-the-art neural network-based methods.

The paper is organized as follows. After describing the architecture of the neural networks
in question together with the resulting discrete training problem in the next Section 2, we
introduce Fredholm networks and Fredholm training problems as their continuous counter-
parts and briefly discuss ill-posedness in Section 3. Ritz-Galerkin discretization and Tikhonov
regularization are presented in Section 4. Utilizing suitable factorizations of the kernel func-
tions ψ (as derived in the Appendix A), Section 5 is devoted to tensor-train methods for the
iterative solution of the large linear systems associated with intentionally high-dimensional
parameter domains Q ⊂ Rs. In Section 6, we harvest the results on the training of Fredholm
networks, briefly discuss Monte-Carlo sampling, and introduce a novel inductive importance
sampling strategy. In the final Section 7, we apply our methods to three well-established test
problems of regression and classification type with different computational complexity. In
particular, we consider the UCI banknote authentication data set from [16], concrete com-
pressive strength prediction [17, 18, 19, 20], and the well-known MNIST data set [21]. For
all these problems, Fredholm networks and Fredholm-trained neural networks turn out to
be highly competitive with state-of-the-art approaches without any problem-specific features
or tuning. The efficiency of Fredholm-trained neural networks however seems to rely on a
careful choice of sampling strategy: While straightforward quasi-Monte-Carlo sampling ap-
pears to work perfectly well for simple problems, more advanced strategies, such as inductive
importance sampling, seem to be required in more complicated cases.

2. Large single layer neural networks

2.1. Architecture. We consider a parametrized single layer neural network of the form

(1) X ∋ x 7→ FN (x, ζ) =
1

N

N∑
i=1

ψ(x, ηi)ui ∈ R

defined on a compact hypercube X ⊂ Rd, for simplicity, with intentionally large number of
neurons N ∈ N, a suitable kernel function ψ : X ×Q→ R, and associated parameter vector

ζ = (ζi)
N
i=1, ζi = (ηi, ui) ∈ Q× R,

where Q = Q1 × · · · ×Qs ⊂ Rs.
Ridge kernel functions

(2) ψ(x, η) = σ(w · x+ b), η = (w, b) ∈ Q ⊂ Rs, s = d+ 1,

are characterized by suitable activation functions σ : R → R and give rise to so-called single
hidden layer perceptron models [22]. In the simplest case σ ≡ Id and b = 0, this definition
reduces to the Euclidean scalar product ψ(x, η) = x · η with η = w ∈ Rs and s = d. More

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 3

relevant choices for σ include the (discontinuous) Heaviside function

(3) σ∞(z) =

 0 if z < 0,
1/2 if z = 0,
1 if z > 0

or suitable regularizations like the logistic activation function

(4) σκ(z) =
exp(κz)

1 + exp(κz)

with κ > 0. Note that σκ(z) → σ∞(z) holds for κ→ ∞ and all z ∈ R.
Radial kernel functions [23] are given by

(5) ψ(x, η) = σ(∥x− w∥), η = w ∈ Q ⊂ Rs, s = d,

with some vector norm ∥ · ∥ on Rd and suitable activation functions σ. In the case of Gaussian
activation functions

(6) σ(z) = exp

(
− z2

2κ2

)
and the Euclidean norm ∥ · ∥ = ∥ · ∥2, we have

(7) ψ(x, η) = exp

(
−∥x− η∥22

2κ2

)
=

d∏
k=1

exp

(
−(xk − ηk)

2

2κ2

)
.

2.2. Function data, loss functional, and training. Throughout the following L2(X,π)
stands for the Hilbert space of π measurable, quadratically integrable functions on X with
canonical scalar product (·, ·)π and induced norm ∥ · ∥π. We write L2(X) = L2(X,π) and
(·, ·)X = (·, ·)π, ∥ · ∥X = ∥ · ∥π, if dπ(x) = dx is the Lebesgue measure. Furthermore, L2(Q)
stands for the Hilbert space of Lebesgue measurable, quadratically integrable functions on Q
with canonical scalar product (·, ·) and induced norm ∥ · ∥.

We aim at the approximation of a function F : X 7→ R by parametrized ansatz functions
FN (·, ζ) of the form (1). The parameters ζ are determined by minimizing the loss functional

(8) JN (ζ) = ∥F − FN (·, ζ)∥2π =

∫
X
(F (x)− FN (x, ζ))2 dπ(x)

where the measure π is associated with the training data available. We will consider the
following two cases of given

(9) a) function data F ∈ L2(X) b) point data ((xj , F (xj)))
M
j=1 ∈ (X×R)M ⊂ RM(d+1).

The case a) of a given function F is associated with the Lebesgue measure dπ(x) = dx while
case b) of given point data corresponds to the point measure dπ(x) = dµ(x),

(10) µ =
1

M

M∑
j=1

δxj , x1, . . . , xM ∈ X.

Training of the neural network FN (·, ζ) amounts to the (approximate) solution of the following
discrete, non-convex, large-scale minimization problem.

Problem 2.1. Find ζ∗ = (ζ∗i)
N
i=1, ζ

∗
i = (η∗i , u

∗
i) ∈ Q× R, such that

(11) JN (ζ∗) ≤ JN (ζ) ∀ζ = (ζi)
N
i=1, ζi = (ηi, ui) ∈ Q× R.

4 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

Approximation properties of neural networks of the form (1) have quite a history (see, e.g.,
[24] or the overview of Pinkus [22]). In particular, ridge kernels with any non-polynomial

activation function σ and unconstrained parameters ζ ∈ RN(d+2) provide uniform approxi-
mation of continuous functions F on compact sets X ⊂ Rd [22, Theorem 3.1]. While similar
results for constrained parameters ζ ∈ Q × R seem to be rare, the following proposition is a
consequence of [25, Theorem 2.6].

Proposition 2.2. For the ridge kernel (2) with logistic activation function (4), Q containing
the unit ball in Rd+1, and any function F ∈ C(X), we have

(12) inf
ζ∈(Q×R)N

max
x∈X

|F (x)− FN (x, ζ)| → 0 for N → ∞.

Hence, assuming existence of a solution ζ∗ for all N ∈ N, we have JN (ζ∗) → 0 as N → ∞
for F ∈ L2(X) in the case (9a) and F ∈ C(X) in the case (9b), respectively.

3. Continuous approximations of discrete training problems

Following the ideas from [8, Section 1.2], we now introduce and investigate the asymptotic
limit of FN (·, ζ) and of the corresponding Training Problem 2.1 for N → ∞.

3.1. Asymptotic integral operators. Assume that ψ(x, ·) ∈ L2(Q) for each fixed x ∈ X.
Let ηi, i = 1, ..., N , be independent, identically equidistributed random variables. Then,
denoting |Q| =

∫
Q 1 dx,

(13)
1

N

N∑
i=1

ψ(x, ηi)v(ηi) → 1

|Q|

∫
Q
ψ(x, η)v(η) dη for N → ∞

holds for all v ∈ L2(Q) and each fixed x ∈ X by the strong law of large numbers.
This observation suggests to consider the Fredholm integral operator

(14) Gv =
1

|Q|

∫
Q
ψ(·, η)v(η) dη, v ∈ L2(Q),

Let us recall some well-known properties of G, cf. [13, 26, 27].

Proposition 3.1. Assume that

(15)

∫
X

∫
Q
ψ(x, η)2 dη dx <∞.

Then the integral operator
G : L2(Q) → L2(X)

is a compact, linear mapping.

Note that Proposition 3.1 provides compactness of G, e.g., for the radial and ridge kernel
functions mentioned in Section 2.1.

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 5

3.2. Fredholm integral equations.

3.2.1. Function data. Let us first consider the case (9a) of a given function F ∈ L2(X). In the
light of (13), we impose the additional constraints on the unknowns ζi = (ηi, ui), i = 1, . . . , N ,
of the Training Problem 2.1 that

(16) ηi are samples of i.i. equidistributed random variables and ui = u(ηi), i = 1, . . . , N,

with some function u ∈ L2(Q). Then, for given function F , the asymptotic coincidence (13)
of the discrete neural network FN (·, ((ηi, ui)Ni=1) and the integral operator Gu suggests to
consider the loss functional

(17) J (v) =

∫
X
(F (x)− Gv(x))2 dx.

and the following continuous quadratic approximation of the discrete non-convex Training
Problem 2.1.

Problem 3.2. Find u ∈ L2(Q) such that

(18) J (u) ≤ J (v) ∀v ∈ L2(Q).

Observe that Problem 3.2 is just the least-squares formulation of the Fredholm integral
equation of the first kind

(19) Gu =
1

|Q|

∫
Q
ψ(·, η)u(η) dη = F.

In particular, (18) can be equivalently rewritten as the normal equation

(20) G∗Gu = G∗F in L2(Q)

utilizing the variational formulation of (18),

(21) (Gu,Gv)X = (F,Gv)X ∀v ∈ L2(Q),

and the adjoint operator of G,

L2(X) ∋ v 7→ G∗v =
1

|Q|

∫
X
ψ(x, ·)v(x) dx ∈ L2(Q).

This leads to the following well-known existence result (see, e.g., [13, Theorem 2.5]), where
R(G) and N(G) stand for the range and null space of G, respectively, ⊕ denotes the direct
sum, and the superscript ⊥ indicates the orthogonal complement in L2(X).

Proposition 3.3. Assume that F ∈ R(G) + R(G)⊥ ⊂ L2(X). Then (19) has least-squares
solutions u† ⊕ N(G), with u† = G†F being the unique minimal-norm least squares solution
(best-approximate solution), and G† : R(G) ⊕ R(G)⊥ → N(G)⊥ ⊂ L2(Q) denoting the gener-
alised Moore-Penrose inverse of G.

If G is compact, then R(G) is closed or, equivalently, G† is bounded, if and only if R(G)
has finite dimension (see, e.g., [13, Proposition 2.7]). As a consequence, the integral equation
(19) is ill-posed, even in the least-squares sense (18) for usual kernel functions such as the
radial and ridge kernels presented in Section 2.1.

Proposition 3.4. Assume that the kernel function ψ is discriminatory in the sense that

(22) N(G∗) = {0}.
Then R(G) is dense in L2(X) and therefore inf

u∈L2(Q)
J (u) = 0 holds for all F ∈ L2(X).

6 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

For ridge kernels with Heaviside or logistic activation function, we obtain v = 0, if G∗v(η) =
0 holds for all η ∈ Rs (and not only for all η ∈ Q) by [28, Lemma 1]. However, similar results
for the present case of bounded parameters η ∈ Q seem to be unknown.

Remark 3.5. In order to relax the constraints (16) on the parameters ζ that provide an
asymptotic limit of FN (·, ζ) of the form (13), one might assume that the parameters ζi =
(ηi, ui) are independent random variables that are identically distributed with respect to some
unknown probability measure ν ∈ P(Q× R). Then, the law of large numbers implies

1

N

N∑
i=1

ψ(x, ηi)ui −→
∫
Q×R

ψ(x, η)u dν(η, u) for N −→ ∞

in analogy to (13). Replacing FN (x, ζ) in the loss functional JN by the integral operator

P(Q× R) ∋ ν 7→
∫
Q×R

ψ(·, η)u dν(η, u) ∈ R

the resulting training problem for the parameter measure ν amounts to the least squares for-
mulation of the problem to find ν ∈ P(Q× R) such that

(23)

∫
Q×R

ψ(·, η)u dν(η, u) = F.

The analysis and numerical analysis of such Fredholm integral equations on measures is the
subject of ongoing research.

3.2.2. Point data. In the case (9b) of given point values of F , we replace the corresponding
point values of FN in (8) by the point values of the limiting integral operator G to obtain the
approximation J ,

J(v) =
1

M

M∑
j=1

(F (xj)− Gv(xj))2,

of the discrete loss functional JN and the following quadratic approximation of the Training
Problem 2.1.

Problem 3.6. Find u ∈ L2(Q) such that

(24) J(u) ≤ J(v) ∀v ∈ L2(Q).

Problem 3.6 is the least-squares formulation of the interpolation problem to find u ∈ L2(Q)
such that

GMu = FM

with FM = (F (xj))
M
j=1 ∈ RM and GM : L2(Q) → RM defined by GMv = (Gv(xi))Mi=1 ∈ RM .

In analogy to (20), Problem 3.6 can be equivalently reformulated as a linear normal equation
G∗
MGMu = G∗

MFM in L2(Q) utilizing the variational formulation

(25)

M∑
j=1

(Gu)(xj)(Gv)(xj) =
M∑
j=1

F (xj)(Gv)(xj) ∀v ∈ L2(Q),

of Problem 3.6 with the adjoint operator G∗
M of GM given by

RM ∋ v = (vj)
M
j=1 7→ G∗

Mv =
1

|Q|

M∑
j=1

ψ(xj , ·)vj ∈ L2(Q).

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 7

Observe that R(GM) is now finite-dimensional and thus closed. Hence, existence of a best-

approximate solution u = G†
M of Problem 3.6 for any point data (xi, F (xi)), i = 1, . . . ,M ,

follows from R(GM)⊕R(GM)⊥ = RM and the general Theorem 2.5 in [13]. As a consequence,

the Moore-Penrose inverse G†
M is now bounded. However, its norm is expected to increase

with increasing M .

Remark 3.7. Assuming N(G∗
N) = {0}, we obtain J(u) = 0 in analogy to Proposition 3.4.

3.3. Fredholm networks. The asymptotic coincidence with discrete neural networks FN (·, η)
suggests to consider their continuous counterpart

(26) Gv =
1

|Q|

∫
Q
ψ(·, η)v(η) dη

with parameter function v ∈ L2(Q) directly for approximation. Observe that the continuous
Training Problems 3.2 (function data) or 3.6 (point data) associated with such Fredholm
networks are linear, in contrast to the original discrete Problem 2.1. However, linearity
comes with the price of infinitely many unknown parameter function values. This suggests
suitable discretizations of the continuous Training Problem 3.2 or 3.6 providing computable
approximations of the corresponding Fredholm networks. For example, the integral operator
G has been replaced by a suitable Riemann sum in [9, 10, 11].

4. Ritz-Galerkin discretization and regularization

4.1. Variational formulation. Let L ⊂ L2(Q) denote a closed subspace. Then the corre-
sponding Ritz-Galerkin discretization of the Fredholm Training Problems 3.2 and 3.6 reads
as follows.

Problem 4.1. Find uL ∈ L such that

(27) (GuL,Gv)π = (F,Gv)π ∀v ∈ L,

with π still denoting the Lebesgue or point measure.

Again, existence of a best-approximate solution uL follows from Theorem 2.5 in [13], and
asymptotic ill-conditioning is expected to be inherited from the continuous case.

4.2. Algebraic formulation. Let the ansatz space L = Ln have finite dimension n and let
φ1, . . . , φn be a basis of Ln. Then any v ∈ Ln can be identified with the coefficient vector
V = (Vi)

n
i=1 ∈ Rn of its unique basis representation

(28) v =
n∑

i=1

Viφi ∈ Ln.

Example 4.2. Let Q =
⋃n

i=1 qi be a decomposition of Q into disjoint rectangles qi with
maximal edge length h. Then

φi(η) =

{
|qi|−1/2 if η ∈ qi

0 otherwise

is an orthonormal basis of the subspace Ln ⊂ L2(Q) of piecewise constant functions on qi,
and the coefficients Vi of v ∈ Ln agree with its scaled values on qi, i = 1, . . . , n.

8 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

Introducing the semi-discrete, linear operators

(29)
G = (Gφ1, . . . ,Gφn) ∈ L2(X,π)× Rn : Rn → L2(X,π),
G∗ = ((Gφi, ·)π)ni=1 ∈ Rn × L2(X,π) : L2(X,π) → Rn

we have GuL = GU with uL =
∑n

i=1 Uiφi and U = (Ui)
n
i=1 ∈ Rn. Utilizing

(30) G∗G = ((Gφi,Gφj)π)
n
i,j=1 ∈ Rn,n

the variational equality 27 can be equivalently rewritten as the linear system

(31) G∗GU = G∗F

for the unknown coefficient vector U of uL. Observe that G∗G = A⊤A holds with

(32) A = (aij) ∈ RM×n, aij = (Gφj)(xi), i = 1, . . .M, j = 1, . . . n,

in the case (9b) of given point data.

4.3. Tikhonov regularization. We only consider the case (9b) of given point data. In
order to ensure uniqueness of approximate solutions, we select some ε > 0 and introduce the
following Tikhonov regularization of the discretized Problem 4.1.

Problem 4.3. Find a solution Uε ∈ Rn of the regularized linear system

(33) (εI +A⊤A)Uε = A⊤b

with identity matrix I ∈ Rn×n, b = (F (xi))
M
i=1 ∈ RM , and ε > 0.

Problem 4.3 is equivalent to minimizing the regularized discrete loss functional

(34) Jε(V) = ∥AV − b∥22,RM + ε∥V ∥22,Rn , V ∈ Rn.

with ∥ · ∥2,RM and ∥ · ∥2,Rn denoting the Euclidean norm in RM and Rn, respectively. Existence
and uniqueness of a solution is an immediate consequence of the Lax-Milgram lemma.

Moreover, Problem 4.3 is also equivalent with the algebraic formulation of the Ritz-Galerkin
discretization of the regularized continuous problem to find uε ∈ L2(Q) such that

Jε(uε) ≤ Jε(v) ∀v ∈ L2(Q)

with regularized loss functional

Jε(v) = ε(v, v) + J(v) = ε(v, v) +
M∑
j=1

(F (xj)− Gv(xj))2

provided that φ1, . . . , φn is an orthonormal basis of Ln (see, e.g., Example 4.2). Indeed, we
have Jε(V) = Jε(v) for v =

∑n
i=1 Viφi in this case. Utilizing Céa’s lemma and the classical

theory of Tikhonov regularization, cf., e.g., [13, Section 5.1], the resulting approximation
uε,L ∈ Ln is then expected to satisfy an a priori error estimate for the original loss functional
of the form J(uε,L) = O(ε2 + ε−2h2) under suitable regularity conditions.

5. Algebraic solution by tensor trains

In this section we consider the algebraic solution of the regularized linear system (33) in
Problem 4.3 for high dimension d and resulting large number of unknowns n by tensor train
methods.

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 9

5.1. Tensor formats. Tensors are multilinear mappings that can be represented as functions
T : {1, . . . , D1} × · · · × {1, . . . , Dp} → C or, equivalently, as multidimensional arrays T ∈
CD1×···×Dp with dimensions or modes Dk ∈ N, k = 1, . . . , p, and order p of T. We will write
T ∈ RD1×···×Dp , if all components Ti1,...,ip , ik = 1, . . . , Dk, k = 1, . . . , p, are real numbers.
Throughout the following, tensors are denoted by bold letters. When certain indices of a
tensor are fixed, we use colon notation (cf. Python or Matlab) to indicate the remaining
modes, e.g., T:,i2,...,ip−1,: ∈ CD1×Dp .

The sum of tensors and the product with scalars is defined componentwise. Extending

usual matrix multiplication, the product or index contraction T ·U ∈ CD1×···×Dp×D′′
1×···×D′′

p′′

of two tensors T ∈ CD1×···×Dp×D′
1×···×D′

p′ and U ∈ CD′
1×···×D′

p′×D′′
1×···×D′′

p′′ is defined by

(T ·U)i1,...,ip,j1,...,jp′′ =

D′
1∑

k1=1

· · ·
D′

p′∑
kp′=1

Ti1,...,ip,k1,...,kp′Uk1,...,kp′ ,j1,...,jp′′ .

Note that the sum of the tensors Tℓ ∈ CD1×···×Dp , ℓ = 1, . . . , r, can be regarded as an
index contraction of T ∈ Cr×D1×···×Dp with Tℓ,i1,...,ip = (Tℓ)i1,...,ip and 1 ∈ Rr with 1ℓ = 1,

ℓ = 1, . . . , r. We will also make use of the tensor product T ⊗U ∈ CD1×···×Dp×D′
1×···×D′

p′ of

T ∈ CD1×···×Dp and U ∈ CD′
1×···×D′

p′ which is defined by

(T⊗U)i1,...,ip,j1,...,jp′ = Ti1,...,ipUj1,...,jp′

and coincides with the dyadic product TU⊤ ∈ CD1×D′
1 of two vectors T ∈ CD1 and U ∈ CD′

1

for p = p′ = 1.
As the number of elements of a tensor grows exponentially with order p, the storage of

high-dimensional tensors may become infeasible, if p becomes large. This motivates suitable
formats for tensor representation and approximation. Obviously, the storage of a rank-one
tensor T ∈ CD1×···×Dp that can be written as the tensor product

(35) T = T(1) ⊗ · · · ⊗T(p)

of p vectors T(k) ∈ CDk , k = 1, . . . , p, only grows linearly with pDmax and Dmax = max{D1,
. . . , Dp}. As a generalization of (35), a tensor T ∈ CD1×···×Dp is said to be in the canonical
format [29], if it can be expressed as a finite sum of rank-one tensors according to

(36) T =

r∑
ℓ=1

T
(1)
ℓ,: ⊗ · · · ⊗T

(p)
ℓ,: .

Here, the tensors T(k) ∈ Cr×Dk , k = 1, . . . , p, are called cores and the number r is called the
canonical rank of T. Note that the required storage grows with order O(rpDmax).

The tensor train (TT) format [30, 31] is a further generalization of (36). Here, the basic
idea is to decompose a tensor into a chain-like network of low-dimensional tensors coupled by
so-called TT ranks r0, . . . rp according to

(37) T =

r0∑
ℓ0=1

· · ·
rp∑

ℓp=1

T
(1)
ℓ0,:,ℓ1

⊗ · · · ⊗T
(p)
ℓp−1,:,ℓp

,

with TT cores T(k) ∈ Crk−1×Dk×rk , k = 1, . . . , p, and r0 = rp = 1. With maximal TT rank
rmax = max{r0, . . . , rp}, the storage consumption for tensors in the TT format grows like
O(r2maxpDmax) and thus is still linearly bounded in terms of the maximal dimension Dmax

10 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

and the order p of T. The ranks r0, . . . , rp not only determine the required storage, but also
have a strong influence on the quality of best approximation of a given tensor in full format
by a tensor train. Note that such a best approximation in TT format with bounded ranks
always exists [32] and is even exact for suitably chosen ranks [33, Theorem 1]. For further
information about tensor formats, we refer, e.g., to [34, 35].

In order to provide a factorization of the integral operator G by factorization of the kernel
ψ, we will make use of functional tensor networks with discrete as well as continuous modes.
More precisely, a functional tensor with one discrete and one continuous mode is a function
T : {1, . . . , D}×Q→ C, where Q ⊆ R denotes the domain of the continuous mode. We write
Ti,η = T (i, η), i = 1, . . . , D, η ∈ Q, for the components of the corresponding generalized array

T ∈ CD×Q. Replacing summation by integration, index contraction T ·U ∈ CD×D′
of T with

the functional tensor U ∈ CQ×D′
is defined by

(T ·U)i,j =

∫
Q
Ti,ηUη,j dη.

Functional tensor trains (FTTs) [36] provide a decomposition of T ∈ CQ1×···×Qp into cores

T(k) ∈ Crk−1×Qk×rk in analogy to (37).
Figure 1 shows the diagrammatic notation of tensors in rank-one, canonical, TT, and FTT

format. We depict vectors, matrices, and tensors as circles with different arms indicating
the set of modes. Index contraction of two or more tensors is represented by connecting
corresponding arms.

⊗ ⊗· · · ⊗

i1 i2 ip

(a)

i1 i2 ip

(b)

i1 i2 ip

(c)

η1 η2 ηp

(d)

Figure 1. Graphical notation of tensor formats: (a) A tensor in rank-one
format, given by the tensor product of p vectors. (b) A tensor in the canonical
format, given by the contraction of p matrices on the common rank index.
(c) A tensor in TT format, given by a network of pairwise coupled tensors.
Here, the first and the last TT core are regarded as matrices, because r0 =
rp = 1. (d) A tensor in FTT format, given by a TT-like network of tensors
with one continuous mode. Discrete modes are represented by straight lines
and continuous modes by zigzag lines.

5.2. Tensor decomposition of basis and stiffness matrix. As a first step towards a
tensor train formulation of the regularized linear system (33), we assume that the basis
functions φ1, . . . , φn of the ansatz space Ln utilized in (28) are separable in the sense that

(38) φj(η) = φ
(1)
j1

(η1) · . . . · φ(s)
js

(ηs), η = (η1, . . . , ηs) ∈ Q = Q1 × · · · ×Qs,

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 11

holds with 1 ≤ jk ≤ nk and some enumeration

(39) j = j(j1, . . . , js) = 1, . . . , n = n1 · . . . · ns, jk = 1, . . . , nk, k = 1, . . . , s.

Example 5.1. Let Qk =
⋃nk

j=1 q
(k)
j be a decomposition of Qk ⊂ Rnk into disjoint intervals

q
(k)
j ⊂ R, j = 1, . . . , nk. Then the piecewise constant basis functions φ1, . . . , φn introduced in

Example 4.2 can be written as a product of the form (38) with

φ
(k)
j (ηk) =

{
|q(k)j |−1/2 if ηk ∈ q

(k)
j

0 otherwise
.

By definition of the tensor product, we have the following proposition.

Proposition 5.2. Assume that the basis functions φ1, . . . , φn of the ansatz space Ln are
separable in the sense of (38). Then the functional tensor

Φ ∈ Rn1×···×ns×Q1×···×Qs , Φj1,...,js,η1,...,ηs = φ
(1)
j1

(η1) · . . . · φ(s)
js

(ηs),

is a rank-one tensor with the decomposition

(40) Φ = Φ(1) ⊗ · · · ⊗Φ(s)

into Φ(k) ∈ Rnk×Qk defined by Φ
(k)
jk,ηk

= φ
(k)
jk

(ηk), jk = 1, . . . , nk, for k = 1, . . . , s.

In the next step, we derive a decomposition of the functional tensor Ψ ∈ RM×Q1×···×Qs

with components

(41) Ψi,η1,...,ηs = ψ(xi, η), i = 1, . . . ,M, η = (η1, . . . , ηs)
⊤ ∈ Q = Q1 × · · · ×Qs,

associated with the actual kernel function ψ and the given data points xi ∈ X, i = 1, . . . ,M .
For ease of presentation, we focus on kernels ψ : X × Q → R with X, Q ⊂ Rs. Obviously,
radial kernel functions (5) have this property with s = d, and in the case of ridge kernel
functions (2) we can identify X with its embedding {(x, 1)⊤ | x ∈ X} ⊂ Rs, s = d+ 1.

We further assume that the actual kernel function ψ can be expressed (or approximated)
as a sum of products of univariate functions according to

(42) ψ(x, η) =
r∑

ℓ=1

ψ
(1)
ℓ (x1, η1) · . . . · ψ(s)

ℓ (xs, ηs).

Example 5.3. The ridge kernel function ψ(x, η) = σ(x · η) with trivial activation function

σ = Id can be written in the form (42) with r = s and ψ
(k)
ℓ (xk, ηk) = xkηk for k = ℓ and

ψ
(k)
ℓ (xk, ηk) = 1 otherwise.

Explicit constructions of approximate factorizations of ridge kernels with more relevant
activation functions can be found in Appendix A. Note that even in the case of real-valued

kernel functions ψ, the factors ψ
(k)
ℓ might have complex values (see, e.g. A.3).

Example 5.4. The radial kernel function with Gaussian activation function given in (7)
takes the form (42) with r = 1 and

ψ
(k)
1 (xk, ηk) = exp

(
−(xk − ηk)

2

2κ2

)
, k = 1, . . . , d.

12 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

Utilizing the given data points xi = (xi,k)
s
k=1 ∈ X, i = 1, . . . ,M , we now introduce the

auxiliary functional tensor Ψ̂ ∈ CMs×Q1×···×Qs with canonical decomposition

(43) Ψ̂ =
r∑

ℓ=1

Ψ̂
(1)
ℓ,:,: ⊗ · · · ⊗ Ψ̂

(s)
ℓ,:,:

into cores Ψ̂(k) ∈ Cr×M×Qk with components Ψ̂
(k)
ℓ,i,ηk

= ψ
(k)
ℓ (xi,k, ηk).

Proposition 5.5. Assume that the kernel function ψ allows for the representation (42). Then
the functional tensor Ψ ∈ CM×Q1×···×Qs can be decomposed according to

(44) Ψ = ∆ · Ψ̂
with the delta tensor ∆ ∈ RM×Ms

defined by

(45) ∆i,j1,...,js = δi,j1 · . . . · δi,js
and δi,jk denoting the Kronecker delta.

Proof. The desired identity (44) follows from

(∆ · Ψ̂)i,η1,...,ηs =
M∑

j1=1

· · ·
M∑

js=1

∆i,j1,...,jsΨ̂j1,...,js,η1,...,ηs

=
r∑

ℓ=1

 M∑
j1=1

δi,j1Ψ̂
(1)
ℓ,j1,η1

 · · ·

 M∑
js=1

δi,jsΨ̂
(s)
ℓ,js,ηs


=

r∑
ℓ=1

Ψ̂
(1)
ℓ,i,η1

· · · Ψ̂(s)
ℓ,i,ηs

=
r∑

ℓ=1

ψ
(1)
ℓ (xi,1, η1) · · ·ψ(s)

ℓ (xi,s, ηs) = Ψi,η1,...,ηs . □

The construction of the functional tensor Ψ is illustrated in Figure 2 (a). Note that
the auxiliary tensor ∆ does not explicitly appear in our numerical computations. We will
also exploit the FTT format to represent the auxiliary tensor Ψ̂, if it allows for a low-rank
decomposition. In particular, monomials of the form (x · η)p can be expressed in a compact
way using a tensor train-like coupling as we show in Appendix A. Figure 2 (b) shows the
corresponding FTT network for Ψ.

Now we are in the position to provide a representation of the stiffness matrix A = (aij) ∈
RM×n defined in (32) as a tensor network.

Proposition 5.6. Assume that the basis functions φ1, . . . , φn of the ansatz space Ln are
separable in the sense of (38) and that the kernel function ψ allows for the representation (42).
Then the tensor

(46) A ∈ RM×n1×···×ns , Ai,j1,...,js = ai,j(j1,...,js)

with enumeration j(j1, . . . , js) introduced in (39) allows for the factorization

(47) A = ∆ ·
r∑

ℓ=1

A
(1)
ℓ ⊗ · · · ⊗A

(s)
ℓ , A

(k)
ℓ = (Ψ̂

(k)
ℓ,:,: ·Φ

(k)) ∈ CM×nk , k = 1, . . . , s,

with Φ(k), Ψ̂(k), and ∆ taken from (40), (43), and (45), respectively.

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 13

η1 η2 ηs

i

(a)

η1 η2 ηs

i

(b)

Figure 2. Graphical notation of the functional decomposition of Ψ corre-
sponding to the kernel ψ(x, η) and data points (xj)

M
j=1: (a) Using the canon-

ical format for Ψ̂ with cores coupled by a common rank. (b) Using the FTT

format with a chain-like coupling. Blue circles represent the cores of Ψ̂, each
having one continuous mode represented by a zigzag line. Contraction with ∆
(green circle) merges all free modes of Ψ̂ into one.

Proof. The desired identity follows from

Ai,j1,...,js =
M∑
i1

· · ·
M∑
is

∆i,i1,...,is

r∑
ℓ=1

A
(1)
ℓ,i1,j1

· · ·A(s)
ℓ,is,js

=

r∑
ℓ=1

(
M∑
i1

δi,i1A
(1)
ℓ,i1,j1

)
· · ·

(
M∑
is

δi,isA
(s)
ℓ,is,js

)

=

r∑
ℓ=1

A
(1)
ℓ,i,j1

· · ·A(s)
ℓ,i,js

=

r∑
ℓ=1

∫
Q1

ψℓ(xi1 , η1)φ
(1)
j1

(η1) dη1· · ·
∫
Qs

ψℓ(xis , ηs)φ
(s)
js

(ηs) dηs

=

∫
Q

(
r∑

ℓ=1

ψℓ(xi1 , η1) · · ·ψℓ(xis , ηs)

)
φ
(1)
j1

(η1) · · ·φ(s)
js

(ηs) dη

=

∫
Q
ψ(xi, η)φj(j1,...,js)(η) dη = ai,j(j1,...,js). □

Utilizing the enumeration (39), we introduce the tensor representation

U ∈ Rn1×···×ns , Uj1,...,js = Uj(j1,...,js),

of the unknown solution vector U ∈ Rn in (33). Then, the regularized linear system (33) in
Problem 4.3 takes the form

(48) (εI+A⊤A)U = A⊤b

with unit tensor I ∈ Rn1×···×ns and b = b ∈ RM . Solving (48) is equivalent to minimizing the
tensor analogue

Jε(V) = ∥AV − b∥22,RM + ε∥V∥22,Rn1×···×ns , V ∈ Rn1×···×ns ,

14 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

of the regularized discrete loss functional Jε defined in (34). We now introduce the corre-
sponding tensor-train approximation of the linear system (48).

Problem 5.7. Find cores U(k) ∈ Rrk−1×nk×rk , k = 1, . . . , s, with r0 = rs = 1 and prescribed
ranks rk, k = 1, . . . , s− 1 such that the resulting tensor train

(49) Ur =

r0∑
ℓ0=1

· · ·
rs∑

ℓs=1

U
(1)
ℓ0,:,ℓ1

⊗ · · · ⊗U
(s)
ℓs−1,:,ℓs

∈ Rn1×···×ns ,

is minimizing the regularized discrete loss functional Jε over the submanifold of all tensor
trains V of the form (49).

Existence of a solution Ur of Problem 5.7 follows by compactness arguments. Note that
we have Ur = U, if the selection r1, . . . , rs−1 agrees with the minimal rank of the unique
solution U of (48), because there exists an exact tensor train representation of U in this case
(see [33, Theorem 1]). As a consequence of non-uniqueness of tensor train representations,

uniqueness of the cores U(k) ∈ Rrk−1×nk×rk can not be expected.

5.3. Algebraic solution by alternating linear systems. The Tensor-Train Approxima-
tion Problem 5.7 allows for a variety of different methods for direct or iterative solution, such
as pseudoinversion [15, 37, 38, 39] or core-wise linear updates [14, 15, 40, 41], respectively.
Here, we concentrate on iterative solution by alternating ridge regression (ARR), cf. [15],
because this approach significantly reduces computational cost and memory consumption in
comparison with explicit computation of pseudoinverses (see, e.g., [15] for details). These

methods provide successive updates of the cores Ũ(k) ∈ Rrk−1×nk×rk , k = 1, . . . , s, by solving
a sequence of reduced linear problems.

More precisely, for given iterate Ũ of the form (49) and each fixed k, the cores Ũ(1), . . . , Ũ(k−1)

are left-orthonormalized and Ũ(k+1), . . . , Ũ(s) are right-orthonormalized by successive singular
value decompositions [30] such that the rows and columns, respectively, of certain reshapes
of these cores form orthonormal sets. Note that, without truncation, this procedure produces
a different but equivalent representation of Ũ, say Û. The orthonormalized cores then define
a retraction operator

QÛ,k ∈ R(n1×···×ns)×(rk−1×nk×rk),

which satisfies

QÛ,kV
(k) =

r0∑
ℓ0=1

· · ·
rs∑

ℓs=1

k−1⊗
i=1

Û
(i)
ℓi−1,:,ℓi

⊗V
(k)
ℓk−1,:,ℓk

⊗
s⊗

i=k+1

Û
(i)
ℓi−1,:,ℓi

for all V(k) ∈ Rrk−1×nk×rk and is orthonormal in the sense that

(50) Q⊤
Û,k

·QÛ,k = I ∈ R(rk−1×nk×rk)×(rk−1×nk×rk).

Minimization with respect to the k-th core then gives rise to the reduced problem to
minimize

∥AQŨ,kV
(k) − b∥22,RM + ε∥QŨ,kV

(k)∥22,Rn1×···×ns

over all V(k) ∈ Rrk−1×nk×rk or, equivalently, to solve the reduced linear system

(51) Q⊤
Ũ,k

(εI+A⊤A)QŨ,kŨ
(k)
new = Q⊤

Ũ,k
A⊤b

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 15

for the new core Ũ
(k)
new ∈ Rrk−1×nk×rk (see, e.g. [14, 15, 40, 41] for details). The unique

solution Ũ
(k)
new of (51) can be computed, e.g., by Cholesky decomposition of the symmetric

and positive definite coefficient matrix.
The corresponding update of cores is typically applied in alternating order, i.e., from k = 1

to k = s and then back to k = 1. As the same regularization parameter ε > 0 is used for
each core k, the alternating linear systems approach [14] applied to (48) and alternating ridge
regression [15] are equivalent in this case. As a consequence of the intrinsic nonlinearity of the
overall iterative approach, the convergence analysis is complicated. We refer to [14, 42, 43]
for further information.

=

A

Figure 3. Graphical notation of tensor-based counterpart of the (underde-
termined) system AU = b: The cores of Ψ (blue circles) are contracted with
the cores of Φ (orange circles) by integrating over common modes. Together
with the delta tensor (green circle), this system builds the tensor operator A.
The coefficient tensor U (white circles) is approximated in the TT format.

Here, Ψ̂ is given in canonical format but could also be defined as functional
tensor train, see Section 5.2.

6. Sampling of discrete neural network parameters

By construction, an approximate solution Ũ ∈ Rn1×···×ns of Problem 5.7 provides an ap-
proximate solution

Ũ = (Ũj) ∈ Rn, Ũj(j1,...,js) = Ũj1,...,js ,

of Problem 4.3 by utilizing the enumeration (39). In turn, Ũ gives rise to the approximate
solution

ũ =

n∑
j=1

Ũjφj ∈ Ln ⊂ L2(Q)

of Problem 2.1 (function data) or Problem 3.6 (point data) and the resulting approximation

(52) Gũ =

n∑
j=1

Ũj

∫
Q
ψ(·, η)φj(η) dη

of the trained Fredholm network Gu introduced in Section 3.3. Note that Gũ(x) can be

evaluated in given test or training points by contracting Ũ with the corresponding stiffness
tensor A.

16 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

Further approximation of Gũ by classical Monte Carlo sampling of the integral

(53) Gũ =

∫
Q
ψ(·, η)ũ(η) dη

provides parameters ζ̃i = (η̃i, ũi) with i.i.d. η̃i and ũi = ũ(η̃i), i = 1, . . . , N , and thus the

trained neural network FN (·, ζ̃). We would expected higher accuracy from quasi-Monte Carlo
integration based on quasi-random sequences in Rs, such as, e.g., Sobol sequences, which fill
the space more uniformly than pseudo-random sequences as used for classical Monte Carlo
integration.

In order to further enhance sampling quality, we now introduce inductive importance sam-
pling that is directly targeting the underlying loss functional JN defined in (8). Given a set

of quasi-Monte Carlo sample points (η̃i)
N ′
i=1, corresponding parameter function evaluations

(ũ(η̃i))
N ′
i=1, and some N ≤ N ′, we want to inductively find parameters (η̃ij)

N
j=1 such that

FN (·, ζ) with ζ = (η̃ij , ũ(η̃ij))
N
j=1 is reducing the loss functional JN sufficiently well. For this

purpose, the first sample ηi1 is chosen according to

ηi1 = argmin
η∈{η1,...,ηN′}

J1((η, ũ(η)))

and for given samples ηi1 , . . . , ηiK , K < N , we select

ηiK+1 = argmin
η∈{η1,...,ηN′}\{ηi1 ,...,ηiK }

JK+1 ((ηi1 , ũ(ηi1)), . . . , (ηiK , ũ(ηiK)), (η, ũ(η))) .

Note that we use exact kernel and activation functions here and not their approximate fac-
torizations which the Fredholm network is trained on. While quasi-Monte Carlo integration
performed reasonably well in simple cases, we found a considerable improvement of efficiency
by inductive importance sampling in our numerical experiments to be reported below.

7. Numerical experiments

In order to demonstrate the practical relevance of our approach, we now consider three
well-established test cases of regression and classification type. In particular, we will numer-
ically investigate different aspects of the tensor-based training of neural networks, such as
adaptability, accuracy, and robustness. We emphasize that kernel, activation and even basis
functions for discretization have been chosen ad hoc, and no profound parameter optimization
is performed. Our implementation of ARR and other relevant tensor algorithms are available
in Scikit-TT1.

7.1. Bank note authentication. As a first example, we consider a classification problem
to distinguish forged from genuine bank notes, utilizing the UCI banknote authentication
data set2 from [16]. It contains 1372 samples of different features that were extracted from
images of genuine and forged banknote-like specimens by applying wavelet transforms. Each
sample has d = 4 different attributes: variance, skewness, curtosis, and entropy of the wavelet
transformed images. The data set is randomly divided into M = 1098 (≈ 80%) training and

1https://github.com/PGelss/scikit_tt
2https://archive.ics.uci.edu/ml/datasets/banknote+authentication

https://github.com/PGelss/scikit_tt
https://archive.ics.uci.edu/ml/datasets/banknote+authentication

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 17

Table 1. Results for the bank note authentication data set: Predictability of
trained neural network FN (·, ζ̃) for increasing N in terms of expectation and
standard deviation of the classification rates.

N classification rate perfect classification

26 = 64 0.9353± 0.0147 0
27 = 128 0.8653± 0.0279 0
28 = 256 0.7827± 0.0136 0
29 = 512 0.9991± 0.0022 81
210 = 1024 1.0000± 0.0000 100
211 = 2048 0.9999± 0.0007 96

m = 274 test samples. We first apply min-max normalization to the given training data
points x̂i = (xi,k)

d
k=1, i = 1, . . . ,M , to obtain

(54) xi,k =
x̂i,k −min(k)

max(k)−min(k)
∈ [0, 1], i = 1, . . . ,M, k = 1, . . . , d,

denoting min(k) = mini∈{1,...,M} x̂i,k and max(k) = maxi∈{1,...,M} x̂i,k. Hence, X = [0, 1]d.
The test data points are normalized in the same way using the same constants.

For the neural network FN of the form (1), we then choose a Gaussian activation func-
tion (7) with κ = 1 and the same parameter set for each dimension, i.e., Q = [−1, 1]s with
s = d = 4.

Discretization of the continuous training Problem 3.2 is performed by piecewise constant
finite elements with respect to an equidistant grid with mesh size 1/4, see Example 4.2.
The resulting ansatz space has the dimension n = 8d = 4096. We select the Tikhonov
regularization parameter ε = 10−3. For the iterative solution of the resulting Problem 5.7
with ranks r1 = · · · = rs−1 = 10 we apply 20 sweeps of ARR (cf. Section 5.3) with all tensor

core entries equal to one as initial guess. From the resulting approximation Ũ of the exact
solution Ur, we then obtain the approximation ũ ∈ Ln ⊂ L2(Q) of the solution u ∈ L2(Q) of
Problem 3.2, and the resulting approximately trained Fredholm network Gũ as explained in
Section 6. From Gũ we extract discrete parameters ζ̃ = (η̃i, ũ(η̃i))

N
i=1 by quasi-Monte Carlo

sampling for various numbers N of neurons to obtain the trained neural network FN (x, ζ̃),

cf. Section 6. A sample x ∈ X is then classified as 0 (genuine), if FN (x, ζ̃) < 0.5 and 1
(forged) otherwise.

In order to test the predictability of our trained neural networks for a fixed number N of
neurons, we randomly select training and test sets of as described above, use quasi-Monte
Carlo sampling to extract discrete parameters and evaluate the corresponding realization of
the classification rate, i.e., the ratio of the number of correct predictions and the size of the
selected test set. This procedure is repeated 100 times, in order to obtain expectation and
standard deviation of the classification rates together with the number of perfect classifica-
tions, i.e., the number of test sets that are correctly classified without an exception. The
results are shown in Table 1 for various N . As expected, the predictability is increasing with
increasing N . While no test sets are perfectly classified for N ≤ 256, we even achieve full
optimality for N = 1024. Note that predictability deteriorates for even larger N , which might
be due to numerical noise caused by round-off errors.

18 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

7.2. Concrete compressive strength prediction. We aim at the description of concrete
compressive strength in terms of tolerated mechanical stress as a function F of the values
x = (xk)

d
k=1 of d = 8 parameters, i.e., the percentage of cement, fly ash, blast furnace slag,

superplasticizer, fine aggregates, coarse aggregates, water, and age. To this end, we make
use of a data set with 1030 samples that was collected over several years and has repeatedly
been deployed for corresponding training of neural networks, see, e.g., [17, 18, 19, 20]. We
randomly split the data set into M = 824 (80%) training and m = 206 test samples. As
the output of each sample is distributed between 2.33MPa and 82.60MPa, different input
variables might be of different orders of magnitude. In order to avoid large values dominating
the others, min-max normalization is applied in analogy to (54), and we obtain X = [0, 1]d.

We consider a neural network of the form (1) with ridge kernel and Heaviside activation
function (3) together with the parameter set Q = [−1, 1]s ⊂ Rs, s = d+ 1 = 9.

For discretization of the continuous training Problem 3.2, we choose the ansatz space Ln

spanned by n = 3d = 6561 tensor products of Chebyshev polynomials of the first kind up
to order 2. The regularization parameter is set to ε = 10−8. Approximate factorization of
the Heaviside activation function is performed as presented in Appendix A.3, and we set
ℓ0 = 100. Hence, the decomposition (47) of the corresponding approximate coefficient tensor
A ∈ RM×n = R824×6561 has the canonical rank r = 201. We normalize the tensor A such
that ∥A∥2,RM×n = 1. The coefficient tensor corresponding to the test set is multiplied by the
same normalization constant.

For the tensor-train approximation (49) in Problem 5.7 we choose the ranks r1 = · · · =
rs−1 = 10 and apply 5 sweeps of ARR (cf. Section 5.3) with all tensor core entries equal to

one as an initial guess. From the resulting approximate solution Ũ we derive the approxi-
mate solution ũ of Problem 3.2 which in turn provides the approximately trained Fredholm
network Gũ as explained in Section 6. Discrete parameters ζ̃ = (η̃i, ũ(η̃i))

N
i=1 providing the

corresponding neural network FN (·, ζ̃) can finally be obtained by a suitable sampling strat-
egy. In this experiment, we use both standard quasi-Monte Carlo sampling and inductive
importance sampling as introduced in Section 6.

The prediction accuracy of the Fredholm network Gũ and of neural networks FN (·, ζ̃) on
given test data (yi, F (yi)), i = 1, . . . ,m, are measured by the usual R2 scores

R2
G = 1−

∑m
i=1(F (yi)− (Gũ)(yi))2∑m

i=1(F (yi)− F (y))2
and R2

N = 1−
∑m

i=1(F (yi)− FN (yi, ζ̃))
2∑m

i=1(F (yi)− F (y))2
,

respectively, where F (y) = 1
m

∑m
i=1 F (yi) stands for the algebraic mean of the test values.

Note that for evaluation of FN (yi, ζ̃) the exact Heaviside activation function σ∞ is used and
not its approximate factorization. Corresponding R2

G and R2
N scores on training data are

computed in the same way using the training data (xi, F (xi)), i = 1, . . . ,M , instead. Similar
to the previous example, R2 scores are considered as random variables, and we apply standard
Monte Carlo with 100 samples each of random training and test data sets to approximately
compute its expectation and standard deviation.

The resulting scores of the Fredholm network Gũ are

training sets: R2
G = 0.9154± 0.0029 test sets: R2

G = 0.8701± 0.0180.

with samples of the R2
G scores on training sets ranging between 0.9093 and 0.9244 and on

test sets between 0.8202 and 0.9058. These results indeed match the scores obtained by
state-of-the-art ML approaches, cf. [20, 44].

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 19

Table 2. Results for the Concrete compressive strength prediction: Pre-
dictability of trained neural network FN (·, ζ̃) for increasing N in terms of
expectation and standard deviation of R2 scores.

N R2
N score (training data) R2

N score (test data)

200 0.9023± 0.0051 0.8040± 0.0244
400 0.9406± 0.0027 0.8330± 0.0219
600 0.9563± 0.0023 0.8473± 0.0209
800 0.9648± 0.0019 0.8532± 0.0204
1000 0.9702± 0.0019 0.8586± 0.0198

However, in order to achieve similar R2
N scores for discrete neural networks FN (·, ζ̃) as

obtained by quasi-Monte Carlo sampling, it turned out in our numerical experiments that
about N = 220 ≈ 106 sampling points were required. This motivates application of more
advanced sampling strategies such as inductive importance sampling introduced in Section 6.
For this strategy, we obtained a considerable reduction of the number N of required samples,
as illustrated in Table 2. As in the previous example, predictability increases with growing N ,
both on training and test data. Observe that the R2

N scores on training data are even better
than for the Fredholm network Gũ which might be an outcome of the particular importance
of training data for the applied sampling strategy. Even though the R2

N scores on test sets
are slightly worse, they are still comparable with state-of-the-art ML approaches, cf. [20, 44].

7.3. MNIST data set. In our third experiment, we classify hand-written digits from the
MNIST data set [21] that consists of representations of the ten digits 0, . . . , 9 as grayscale
images of 28×28 pixels. We slightly modified the MNIST dataset by reducing the size of these
images to d = 14×14 = 196 pixels in order to lower the computational effort for classification.
The data set is divided into M = 60, 000 training images and m = 10, 000 test images with
associated labels, and we have X = [0, 1]d.

For the neural network, we choose the ridge kernel ψ from (2) with logistic activation
function σκ from (4) and κ = 1. More precisely, we use its FTT approximation based
on the identification of the sample space X with its embedding {(x, 1)⊤ | x ∈ X} ⊂ Rs,
s = d + 1 = 197 and Taylor approximation (60) at z = 0. See Appendix A.2 for details. In
order to provide sufficient accuracy of this approximation, we require |z| = |xi · η| ≤ 2 for
all data points xi ∈ X. This is guaranteed by the choice η ∈ Q = [−2/ρX , 2/ρX]s, denoting

ρX = maxi∈{1,...,M}
∑d+1

j=1 xi,j .
As each image x ∈ X has to be classified as one of the ten digits, the target function F is

now vector-valued. Utilizing one-hot encoding, we get F (x) = (Fi(x))
10
i=1 ∈ R10, x ∈ X, with

(55) Fl(x) =

{
1 if x represents the digit l

0 otherwise
, l = 0, . . . , 9.

Corresponding vector-valued versions of the neural network (1) and of its continuous counter-

part (3.6) are obtained by taking coefficients ui ∈ R10 and parameter functions u ∈
(
L2(Q)

)10
,

respectively. Observe that each component ul of u can be (approximately) computed sepa-
rately from the scalar Problem 3.6 with F = Fl and Fl defined in (55).

For the Ritz-Galerkin discretization of each of these scalar problems, we choose basis el-

ements φ
(k)
j of the form (38) with constant and linear functions φ

(k)
j1

and φ
(k)
j2

, respectively.

20 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

This leads to a subspace Ln of L2(Q) with dimension n = 2s = 2197 ≈ 2 · 1059. We choose
the Tikhonov regularization parameter ε = 10−15 and fix r1 = · · · = rd = 20 in the tensor
train approximation Problem 5.7. To the initial iterate of all core entries set to one (before

orthonormalization) we apply 5 ARR sweeps to obtain the approximate solution Ũl, which
provides the corresponding component Gũl of the (approximately) trained Fredholm network,
cf. Section 6. We finally use the softmax function for classification, i.e. for each entry x the
index lmax of the largest of the components (Gũl)(x), l = 0, . . . , 9, determines the detected
label.

For comparison with this trained Fredholm network, we consider single layer neural net-
works built from the well-established Keras library3. The input layer of the network comprises
196 nodes (one for each pixel), followed by a hidden layer with a varying number of NK nodes
and the logistic activation function. The output layer also uses one-hot encoding and the
softmax function. For optimizing of the neural network parameters, 10% of the given training
set is used as a validation set. The parameters are then trained for a sufficiently large number
of iterations in order to ensure convergence of the validation loss which indicates how well
the model fits to unseen data.

10000 20000 30000 40000 50000 60000
number of training images

0.94

0.95

0.96

0.97

0.98

cl
as

si
fic

at
io

n
ra

te

NK = 32

NK = 64

NK = 128

NK = 256

NK = 512

Fredholm

Figure 4. Results for the MNIST data set: Classification rates obtained from
the Fredholm network over the number M of training images in comparison
with Keras networks with increasing number NK of nodes in the hidden layer.

Figure 4 shows the classification rates as obtained from our Fredholm network Gũ and
of Keras networks of size NK = 34, 64, 128, 256, 512 on the fixed MNIST test data set of
m = 10, 000 test images over the number M of utilized training images. For the largest
number of M = 60, 000 training data, the classification rates of the Keras networks are
ranging from 0.9789 to 0.9832 for sufficiently large NK ≥ 64 and are thus comparable with
the classification rate 0.9805 of the Fredholm network. However, Keras networks are clearly
outperformed for smaller sets of training data.

8. Conclusion and outlook

In this work, we have proposed a novel approach to function approximation and the training
of large and high-dimensional shallow neural networks, based on their continuous asymptotic
limit. Utilizing resulting Fredholm networks for function approximation and also for training

3https://keras.io

https://keras.io

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 21

in the original discrete case, we have thus traded highly nonlinear discrete training problems
with finitely many unknown parameters for linear continuous training problems with infinitely
many unknown values of a parameter function.

Fredholm training problems can be regarded as least-squares formulations of Fredholm
integral equations of the first kind. They were solved approximately by Ritz-Galerkin dis-
cretization in combination with Tikhonov regularization and tensor train methods. Here, we
particularly aimed at a significant reduction of memory consumption as well as computa-
tional costs to mitigate the curse of dimensionality as occurring for high-dimensional data.
To this end, we described different tensor formats, suitable factorizations of kernel and basis
functions as well as an alternating scheme for solving the tensorized linear training problems.
Finally, we considered quasi Monte-Carlo sampling of discrete neural network parameters and
introduced inductive importance sampling which is directly targeting the loss functional JN .

The predictive quality of the resulting approximatively trained Fredholm and neural net-
works are illustrated by numerical experiments with three well-established test problems of
regression and classification type. The results clearly confirm that our approach is highly
competitive with state-of-the-art neural network-based methods concerning efficiency and
reliability. The investigations carried out in this work offer a number of further promising de-
velopments. In particular, numerical analysis of the whole approach will be subject of future
research and will provide error estimates together with problem-oriented ansatz functions,
more sophisticated regularization techniques, selection of tensor ranks, and further advanced
sampling strategies.

References

[1] Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5):185–
196, 1993.

[2] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421–436.
Springer, 2012.

[3] Patrick Cheridito, Arnulf Jentzen, and Florian Rossmannek. Non-convergence of stochastic gradient de-
scent in the training of deep neural networks. Journal of Complexity, 64:101540, 2021.

[4] Qipin Chen and Wenrui Hao. Randomized Newton’s method for solving differential equations based on
the neural network discretization. Journal of Scientific Computing, 92(2):1–22, 2022.

[5] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust region methods. SIAM, 2000.
[6] Eiji Mizutani and James W. Demmel. On structure-exploiting trust-region regularized nonlinear least

squares algorithms for neural-network learning. Neural Networks, 16(5-6):745–753, 2003.
[7] Alena Kopanicáková and Rolf Krause. Globally convergent multilevel training of deep residual net-

works. SIAM Journal on Scientific Computing, pages S254–S280, 2022. doi:https://doi.org/10.1137/
21M1434076.

[8] Grant M. Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of neural networks: An interacting
particle system approach, 2019. arXiv:1805.00915.

[9] Qichao Que and Mikhail Belkin. Back to the future: Radial basis function networks revisited. In Artificial
intelligence and statistics, pages 1375–1383. PMLR, 2016.

[10] Qichao Que, Mikhail Belkin, and Yusu Wang. Learning with Fredholm kernels. Advances in neural infor-
mation processing systems, 27, 2014.

[11] Wei Wang, Hao Wang, Zhaoxiang Zhang, Chen Zhang, and Yang Gao. Semi-supervised domain adaptation
via Fredholm integral based kernel methods. Pattern Recognition, 85:185–197, 2019.

[12] Qichao Que and Mikhail Belkin. Inverse density as an inverse problem: The Fredholm equation approach.
Advances in neural information processing systems, 26, 2013.

[13] Martin Hanke Heinz W. Engl and Andreas Neubauer. Regularization of Inverse Problems. Kluwer Aca-
demic Publishers, Dordrecht, Netherlands, 1996.

https://doi.org/https://doi.org/10.1137/21M1434076
https://doi.org/https://doi.org/10.1137/21M1434076
http://arxiv.org/abs/1805.00915

22 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

[14] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. The alternating linear scheme for tensor
optimization in the tensor train format. SIAM Journal on Scientific Computing, 34(2):A683–A713, 2012.
doi:10.1137/100818893.

[15] Stefan Klus and Patrick Gelß. Tensor-based algorithms for image classification. Algorithms, 12(11), 2019.
doi:10.3390/a12110240.

[16] Volker Lohweg, Jan Leif Hoffmann, Helene Dörksen, Roland Hildebrand, Eugen Gillich, Jürg Hofmann,
and Johannes Schaede. Banknote authentication with mobile devices. In Adnan M. Alattar, Nasir D.
Memon, and Chad D. Heitzenrater, editors, Media Watermarking, Security, and Forensics 2013, volume
8665, page 866507. International Society for Optics and Photonics, SPIE, 2013. doi:10.1117/12.2001444.

[17] I-Cheng Yeh. Modeling of strength of high-performance concrete using artificial neural networks. Cement
and Concrete Research, 28(12):1797–1808, 1998. doi:10.1016/S0008-8846(98)00165-3.

[18] I-Cheng Yeh. Prediction of strength of fly ash and slag concrete by the use of artificial neural networks.
J. Chin. Inst. Civil Hydraul. Eng., 15:659–663, 2003.

[19] I-Cheng Yeh. Analysis of strength of concrete using design of experiments and neural networks. Journal
of Materials in Civil Engineering, 18(4):597–604, 2006. doi:10.1061/(ASCE)0899-1561(2006)18:4(597).

[20] Syyed Adnan Raheel Shah, Marc Azab, Hany M. Seif ElDin, Osama Barakat, Muhammad Kashif Anwar,
and Yasir Bashir. Predicting compressive strength of blast furnace slag and fly ash based sustainable
concrete using machine learning techniques: An application of advanced decision-making approaches.
Buildings, 12(7), 2022. doi:10.3390/buildings12070914.

[21] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to doc-
ument recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi:10.1109/5.726791.

[22] Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica, 8:143–195,
1999.

[23] Bekir Karlik and A Vehbi Olgac. Performance analysis of various activation functions in generalized
MLP architectures of neural networks. International Journal of Artificial Intelligence and Expert Systems,
1:111–122, 2011.

[24] Tianping Chen and Hong Chen. Approximation capability to functions of several variables, nonlinear func-
tionals, and operators by radial basis function neural networks. IEEE Transactions on Neural Networks,
6(4):904–910, 1995.

[25] Maxwell Stinchcombe and Halbert White. Approximating and learning unknown mappings using mul-
tilayer feedforward networks with bounded weights. In 1990 IJCNN International Joint Conference on
Neural Networks, pages 7–16. IEEE, 1990.

[26] Rainer Kress. Linear Integral Equations. Springer-Verlag, New York, 1999.
[27] Charles W. Groetsch. The theory of Tikhonov regularization for Fredholm equations of the first kind.

Pitman Publishing Limited, London, 1984.
[28] George Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems,

2:303–314, 1989. doi:10.1007/BF02551274.
[29] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics

and Physics, 6(1-4):164–189, 1927.
[30] Ivan V. Oseledets and Eugene E. Tyrtyshnikov. Breaking the curse of dimensionality, or how to use SVD

in many dimensions. SIAM Journal on Scientific Computing, 31(5):3744–3759, 2009.
[31] Ivan V. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–2317,

2011. doi:10.1137/090752286.
[32] Antonio Falcó and Wolfgang Hackbusch. On minimal subspaces in tensor representations. Foundations of

computational mathematics, 12(6):765–803, 2012.
[33] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. On manifolds of tensors of fixed TT-rank.

Numerische Mathematik, 120(4):701–731, 2012.
[34] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455–

500, 2009.
[35] Wolfgang Hackbusch. Tensor spaces and numerical tensor calculus, volume 42. Springer, 2012.
[36] Alex Gorodetsky, Sertac Karaman, and Youssef Marzouk. A continuous analogue of the tensor-train

decomposition. Computer Methods in Applied Mechanics and Engineering, 347:59–84, 2019. doi:10.1016/
j.cma.2018.12.015.

[37] Patrick Gelß. The tensor-train format and its applications: Modeling and analysis of chemical reaction
networks, catalytic processes, fluid flows, and Brownian dynamics. PhD thesis, FU Berlin, 2017.

https://doi.org/10.1137/100818893
https://doi.org/10.3390/a12110240
https://doi.org/10.1117/12.2001444
https://doi.org/10.1016/S0008-8846(98)00165-3
https://doi.org/10.1061/(ASCE)0899-1561(2006)18:4(597)
https://doi.org/10.3390/buildings12070914
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/BF02551274
https://doi.org/10.1137/090752286
https://doi.org/10.1016/j.cma.2018.12.015
https://doi.org/10.1016/j.cma.2018.12.015

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 23

[38] Patrick Gelß, Stefan Klus, Jens Eisert, and Christof Schütte. Multidimensional approximation of nonlinear
dynamical systems. Journal of Computational and Nonlinear Dynamics, 14(6):061006, 2019. doi:10.1115/
1.4043148.

[39] Kim Batselier. Enforcing symmetry in tensor network MIMO Volterra identification. IFAC-PapersOnLine,
54(7):469–474, 2021. doi:10.1016/j.ifacol.2021.08.404.

[40] Sergey V. Dolgov and Dmitry V. Savostyanov. Alternating minimal energy methods for linear systems
in higher dimensions. SIAM Journal on Scientific Computing, 36(5):A2248–A2271, 2014. doi:10.1137/
140953289.

[41] Lars Grasedyck and Sebastian Krämer. Stable ALS approximation in the TT-format for rank-adaptive
tensor completion. Numerische Mathematik, 143:855–904, 2019. doi:10.1007/s00211-019-01072-4.

[42] Thorsten Rohwedder and André Uschmajew. On local convergence of alternating schemes for optimization
of convex problems in the tensor train format. SIAM Journal on Numerical Analysis, 51(2):1134–1162,
2013. doi:10.1137/110857520.

[43] Mike Espig, Wolfgang Hackbusch, and Aram Khachatryan. On the convergence of alternating least squares
optimisation in tensor format representations, 2015. arXiv:1506.00062.

[44] Benjamin A. Young, Alex Hall, Laurent Pilon, Puneet Gupta, and Gaurav Sant. Can the compres-
sive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from
statistical analysis and machine learning methods. Cement and Concrete Research, 115:379–388, 2019.
doi:10.1016/j.cemconres.2018.09.006.

[45] Patrick Gelß, Stefan Klus, Sebastian Matera, and Christof Schütte. Nearest-neighbor interaction systems
in the tensor-train format. Journal of Computational Physics, 341:140–162, 2017.

Appendix A. Factorization of ridge kernel functions

According to (2), ridge kernel functions ψ : X ×Q→ R, are given by

ψ(x, η) = σ(w · x+ b), η = (w, b) ∈ Q ⊂ Rs, s = d+ 1.

with hypercubes X ∈ Rd, Q = Q1 × · · · ×Qs ⊂ Rs, and ridge activation function σ : R 7→ R.
Identifying X with its embedding {(x, 1)⊤ | x ∈ X} ⊂ Rs, ridge kernel functions take the
form

ψ(x, η) = σ(x · η).
In what follows, explicit tensor decompositons of different ridge activation functions are de-
rived, either using the canonical format or TT format. In case of the latter, we use the core
notation of the TT format [45] to represent FTT cores as two-dimensional arrays containing

vector-valued functions as elements. More precisely, for a given functional tensor train Ψ̂
with cores Ψ̂(k) ∈ Crk−1×M×Qk×rk defined by

Ψ̂
(k)
ℓk−1,i,ηk,ℓk

= ψ
(k)
ℓk−1,ℓk

(xi,k, ηk) : R×Qk → C,

a single core is written as

(56)
q
Ψ̂(k)

y
=

u

www
v

Ψ̂
(k)
1,:,ηk,1

· · · Ψ̂
(k)
1,:,ηk,rk

...
. . .

...

Ψ̂
(k)
rk−1,:,ηk,1

· · · Ψ̂
(k)
rk−1,:,ηk,rk

}

���
~
,

where Ψ̂
(k)
ℓk−1,:,ηk,ℓk

= (ψ
(k)
ℓk−1,ℓk

(xi,k, ηk))
M
i=1. Thus, the FTT decomposition of the auxiliary

tensor Ψ̂, cf. (43), takes the form Ψ̂ =
q
Ψ̂(1)

y
⊗ · · · ⊗

q
Ψ̂(s)

y
, denoting

(q
Ψ̂(k)

y
⊗

q
Ψ̂(k+1)

y)
ℓk−1,ik,ηk,ik+1,ηk+1,ℓk+1

=

rk∑
ℓk=1

Ψ̂
(k)
ℓk−1,ik,ηk,ℓk

· Ψ̂(k+1)
ℓk,ik+1,ηk+1,ℓk+1

.

https://doi.org/10.1115/1.4043148
https://doi.org/10.1115/1.4043148
https://doi.org/10.1016/j.ifacol.2021.08.404
https://doi.org/10.1137/140953289
https://doi.org/10.1137/140953289
https://doi.org/10.1007/s00211-019-01072-4
https://doi.org/10.1137/110857520
http://arxiv.org/abs/1506.00062
https://doi.org/10.1016/j.cemconres.2018.09.006

24 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

Proposition A.1. Consider a monomial of the form ψ(x, η) = (x · η)p, p ≥ 0, with η ∈ Q
and data points xi ∈ X, i = 1, . . . ,m. The functional tensor Ψ ∈ RM×Q1×···×Qs defined by
Ψi,η1,...,ηs = ψ(xi, η) can be written as Ψ = ∆ · Ψ̂, Ψ̂ ∈ RMs×Q1×···×Qs, where

Ψ̂ = p!
r

1
p!(x:,1η1)

p · · · x:,1η1 e
z
⊗

u

wwww
v

e 0 · · · 0

x:,2η2
. . .

. . .
...

...
. . .

. . . 0
1
p!(x

′
:,2η2)

p · · · x:,2η2 e

}

����
~
⊗ · · ·

⊗

u

wwww
v

e 0 · · · 0

x:,s−1ηs−1
. . .

. . .
...

...
. . .

. . . 0
1
p!(x:,s−1ηs−1)

p · · · x:,s−1ηs−1 e

}

����
~
⊗

u

www
v

e
x:,sηs

...
1
p!(x:,sηs)

p

}

���
~

(57)

with e = (1, . . . , 1)T ∈ RM .

Proof. By using the multinomial formula, we know

(
s∑

k=1

zk

)p

=
∑

ℓ1+···+ℓs=p
ℓ1,...,ℓs≥0

p!

ℓ1! · · · ℓs!
zℓ11 · · · zℓss

for any i ∈ {1, . . . ,M}. This can be written as a sequence of matrix multiplications of the
form

(
s∑

k=1

zk

)p

= p!
[
zp1 · · · z01

]


∑
ℓ2+···+ℓs=0

1

ℓ2! · · · ℓs!
zℓ22 · · · zℓss

...∑
ℓ2+···+ℓs=p

1

ℓ2! · · · ℓs!
zℓ22 · · · zℓss



= p!
[
zp2 · · · z02

] z
0
2 0
...

. . .

zp2 · · · z02




∑
ℓ3+···+ℓs=0

1

ℓ3! · · · ℓs!
zℓ33 · · · zℓss

...∑
ℓ3+···+ℓs=p

1

ℓ3! · · · ℓs!
zℓ33 · · · zℓss


= . . .

= p!
[
zp2 · · · z02

] z
0
2 0
...

. . .

zp2 · · · z02

 · · ·

z
0
s−1 0
...

. . .

zps−1 · · · z0s−1


z

0
s
...
zps

 .

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 25

Thus, for Ψ = ∆Ψ̂ with Ψ̂ as given in (57), we get

Ψi,η1,...,ηs =
M∑

j1=1

· · ·
M∑

js=1

∆i,j1,...,jsΨ̂j1,...,js,η1,...,ηs

=
M∑

j1=1

· · ·
M∑

js=1

δi,j1 · · · δi,jsΨ̂j1,...,js,η1,...,ηs

= Ψ̂i,...,i,η1,...,ηs =

(
s∑

k=1

xi,kηk

)p

= (xi · η)p. □

A.1. Trivial activation function. In the simplest case σ = Id, the ridge kernel function is
bilinear, i.e., ψ(x, η) = x · η, and clearly can be written in the form (42) (see Example 5.3).
Let us consider the functional tensor

Ψ ∈ RM×Q1×···×Qs , Ψi,η1,...,ηs = xi · η =
s∑

k=1

xi,kηk, s = d,

associated to ψ according to (41) for the given data points xi ∈ X, i = 1, . . . ,M . It can be

expressed as Ψ = ∆ · Ψ̂, see Proposition 5.5, where the auxiliary tensor Ψ̂ has the functional
canonical decomposition

(58) Ψ̂ = η1

 x1,1
...

xM,1

⊗

1
...
1

⊗ · · · ⊗

1
...
1

 + · · · +

1
...
1

⊗ · · · ⊗

1
...
1

⊗ ηd

 x1,d
...

xM,d


Using the core notation (56) and Proposition A.1, we can also represent Ψ̂ as a functional
tensor train:

(59) Ψ̂ =
q
x:,1η1 e

y
⊗

s
e 0

x:,2η2 e

{
⊗ · · · ⊗

s
e 0

x:,d−1ηd−1 e

{
⊗

s
e

x:,dηd

{
.

Note that the canonical rank of (58) is equal to d whereas the FTT ranks r1, . . . , rd−1 of (59)
are always equal to 2 for any state space dimension d.

A.2. Logistic activation function. For the logistic activation function σκ given in (4), the
kernel function takes the form

(60) ψκ(x, η) =
exp(κx · η)

1 + exp(κx · η))
=

1

1 + exp(−κx · η)
=

1

2
+

1

2
tanh

(
−κx · η

2

)
.

We expand σκ(z) into a Taylor series at z = 0, to obtain

(61) ψκ(x, η) =
1

2
+
κx · η

4
− κ3 (x · η)3

48
+O(x · η)5.

Assuming that the side lengths of Q are sufficiently small, we skip the quintic part in (61). The
resulting approximation of ψκ can be written in the form of (42) with r = 1+s+1

6(s
3+3s2+2s).

Indeed, the zero- and the first-order term in (61) can be written as a functional canonical

26 PATRICK GELSS, AIZHAN ISSAGALI, AND RALF KORNHUBER

tensor with rank 1+ s summands, cf. (58), while, by the multinomial formula, the cubic term
can be written as

κ3 (x · η)3

48
=
κ3

48

(
s∑

k=1

xkηk

)3

=
κ3

48

∑
ℓ1+···+ℓs=3

6

ℓ1! · · · ℓs!
(x1η1)

ℓ1 · · · (xsηs)ℓs

with
∑s

k3=1

∑k3
k2=1

∑k2
k1=1 1 = 1

6(s
3+3s2+2s) summands. In contrast to that, the ranks of the

corresponding FTT decomposition are always bounded by 4 for any parameter dimension s.
This can be seen by using Proposition A.1 for each of the first three terms in (61) and adding
the respective decompositions. The resulting FTT representation of the auxiliary tensor is
then given by

Ψ̂ =
r

1
6(η1x:,1)

3 1
2(η1x:,1)

2 η1x:,1 e
z
⊗

u

www
v

e 0 0 0

η2x:,2 e 0 0
1
2(η2x:,2)

2 η2x:,2 e 0
1
6(η2x:,2)

3 1
2(η2x:,2)

2 η2x:,2 e

}

���
~
⊗ . . .

⊗

u

www
v

e 0 0 0

ηd−1x:,d−1 e 0 0
1
2(ηd−1x:,d−1)

2 ηd−1x:,d−1 e 0
1
6(ηd−1x:,d−1)

3 1
2(ηd−1x:,d−1)

2 ηd−1x:,d−1 e

}

���
~
⊗

u

www
v

−κ3

8 e

−κ3

8 ηdx:,d

−κ3

16 (ηdx:,d)
2 + κ

4e

−κ3

48 (ηdx:,d)
3 + κ

4ηdx:,d +
1
2e

}

���
~
.

A.3. Heaviside activation function. For each fixed z ∈ R and κ→ ∞ the logistic activa-
tion function σκ(z) converges to the Heaviside function σ∞(z) defined in (3). However, as the
interval of convergence [−π

κ ,
π
κ] of the Taylor expansion (61) shrinks with incresing κ, we now

derive a different kind of approximation of the Heaviside kernel function ψ∞(x, η) = σ∞(x ·η)
of the form (42). Our starting point is the Fourier epansion

σ∞(z) =
1

2
+

2

π

∞∑
ℓ=1

1

2ℓ− 1
sin

(
(2ℓ− 1)π

T
z

)
,

which converges pointwise within the interval [−T, T] for suitable T > 0. Euler’s formula
sin(z) = (exp(iz)− exp(−iz))/2i yields

σ∞(z) =
1

2
+

1

πi

∞∑
ℓ=1

1

2ℓ− 1

(
exp

(
(2ℓ− 1)πi

T
z

)
− exp

(
−(2ℓ− 1)πi

T
z

))
.

Inserting z = x · η, we obtain the representation

ψ∞(x, η) =
1

2
+

1

πi

∞∑
ℓ=1

1

2ℓ− 1

(
d∏

k=1

exp

(
(2ℓ− 1)πi

T
xkηk

)
−

d∏
k=1

exp

(
−(2ℓ− 1)πi

T
xkηk

))

of the Heaviside kernel function for x · η ∈ [−T, T]. Truncating this expansion at ℓ = ℓ0,
we obtain the desired factorization (42) of the resulting approximation with r = 2ℓ0 + 1

FREDHOLM INTEGRAL EQUATIONS FOR APPROXIMATION AND TRAINING 27

summands. In this case, the decomposition (44) of the associated functional tensor Ψ reads

Ψ = ∆ ·

[
1

2

d⊗
k=1

e +
1

πi

ℓ0∑
ℓ=1

1

2ℓ− 1

d⊗
k=1

exp

(
(2ℓ− 1)πi

T
ηkx:,k

)

− 1

πi

ℓ0∑
ℓ=1

1

2ℓ− 1

d⊗
k=1

exp

(
−(2ℓ− 1)πi

T
ηkx:,k

)]
.

Patrick Gelß, AI in Society, Science, and Technology, Zuse Institute Berlin, 14195 Berlin,
Germany

Email address: gelss@zib.de

Aizhan Issagali, Institut für Mathematik, Freie Universität Berlin, 14195 Berlin, Germany
Email address: aizhan.issagali@fu-berlin.de

Ralf Kornhuber, Institut für Mathematik, Freie Universität Berlin, 14195 Berlin, Germany
Email address: kornhuber@math.fu-berlin.de

	1. Introduction
	2. Large single layer neural networks
	2.1. Architecture
	2.2. Function data, loss functional, and training

	3. Continuous approximations of discrete training problems
	3.1. Asymptotic integral operators
	3.2. Fredholm integral equations
	3.3. Fredholm networks

	4. Ritz-Galerkin discretization and regularization
	4.1. Variational formulation
	4.2. Algebraic formulation
	4.3. Tikhonov regularization

	5. Algebraic solution by tensor trains
	5.1. Tensor formats
	5.2. Tensor decomposition of basis and stiffness matrix
	5.3. Algebraic solution by alternating linear systems

	6. Sampling of discrete neural network parameters
	7. Numerical experiments
	7.1. Bank note authentication
	7.2. Concrete compressive strength prediction
	7.3. MNIST data set

	8. Conclusion and outlook
	References
	Appendix A. Factorization of ridge kernel functions
	A.1. Trivial activation function
	A.2. Logistic activation function
	A.3. Heaviside activation function

