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Institute of Mathematics of the Academy of Sciences of the Czech Republic is supported by RVO:67985840.

�P.B. and F.O. were partially supported by Deutsche Forschungsgemeinschaft (DFG) in context of the Emmy
Noether Junior Research Group BE 5922/1-1.

�The work of E.F. was partially supported by the Czech Sciences Foundation (GAČR), Grant Agreement
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1 Introduction

Consider the motion of a compressible viscous and heat conducting fluid confined between two par-
allel plates. For simplicity, we suppose the motion is space–periodic with respect to the horizontal
variable. Consequently, the spatial domain Ω may be identified with

Ω = T2 × (0, 1), T2 =

(
[−1, 1]

∣∣∣
{−1,1}

)2

.

The time evolution of the fluid mass density ϱ = ϱ(t, x), the absolute temperature ϑ = ϑ(t, x), and
the velocity u = u(t, x) is governed by the Navier–Stokes–Fourier (NSF) system:

∂tϱ+ divx(ϱu) = 0, (1.1)

∂t(ϱu) + divx(ϱu⊗ u) +
1

ε2
∇xp(ϱ, ϑ) = divxS(ϑ,∇xu) +

1

ε2
ϱ∇xG, (1.2)

∂t(ϱs(ϱ, ϑ)) + divx(ϱs(ϱ, ϑ)u) + divx

(
q(ϑ,∇xϑ)

ϑ

)
=

1

ϑ

(
ε2S : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
, (1.3)

supplemented with the Dirichlet boundary conditions

u|∂Ω = 0, (1.4)

ϑ|∂Ω = ϑB. (1.5)

The viscous stress tensor is given by Newton’s rheological law

S(ϑ,∇xu) = µ(ϑ)

(
∇xu+∇t

xu− 2

3
divxuI

)
+ λ(ϑ)divxuI, (1.6)

and the internal energy flux by Fourier’s law

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ. (1.7)

The quantity s = s(ϱ, ϑ) in (1.3) is the entropy of the system, related to the pressure p = p(ϱ, ϑ)
and the internal energy e = e(ϱ, ϑ) through Gibbs’ equation

ϑDs = De+ pD

(
1

ϱ

)
. (1.8)

The potential G represents the effect of gravitation. The Mach number Ma = ε and the Froude
number Fr = ε are both proportional to a small parameter. If ε > 0 is small, the fluid is almost
incompressible and strongly stratified, cf. Klein et al. [11]. Our goal is to identify the limit problem
for ε→ 0.
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1.1 Asymptotic limit

In accordance with the scaling of (1.2), (1.3), the zero–th order terms in the asymptotic limit are
determined by the stationary (static) problem

∇xp(ϱ, ϑ) = ϱ∇xG. (1.9)

Applying curl operator to identity (1.9), we successively deduce

∇xϱ×∇xG = 0,

and
∂p(ϱ, ϑ)

∂ϱ
∇xϱ+

∂p(ϱ, ϑ)

∂ϑ
∇xϑ = ϱ∇xG ⇒ ∇xϑ×∇xG = 0,

where we have anticipated that the pressure also depends non-trivially on the temperature ϑ and
is such that ∂p(ϱ,ϑ)

∂ϑ
̸= 0. Thus for the static problem (1.9) to be solvable, both ∇xϱ and ∇xϑ must

be parallel to ∇xG. This fact imposes certain restrictions on the distribution of the boundary
temperature ϑB. In particular, the motion in an inclined layer studied by Daniels et al. [5] does
not admit any static solution. Accordingly, we focus on the particular case

G = −gx3, ϑB =

{
Θup if x3 = 1,
Θbott if x3 = 0,

where g > 0, Θup > 0, Θbott > 0 are constant. (1.10)

Fixing the temperature profile ϑB = Θ(x3) to comply with the boundary conditions (1.10), we
may recover ϱ = r(x3) as a solution of the ODE

∂p(r,Θ)

∂ϱ
∂x3r +

∂p(r,Θ)

∂ϑ
∂x3Θ = −rg. (1.11)

Needless to say, such a problem may admit infinitely many solutions.
To simplify, we focus on the case Θbott = Θup > 0. Accordingly, we consider the reference

temperature profile Θ = Θbott = Θup - a positive constant. Then it follows from (1.11) that the
static density profile r = r(x3) must be non–constant as long as g ̸= 0. Anticipating the asymptotic
limit

ϱε → r, ϑε → Θ, uε → U (in some sense)

we deduce from the equation of continuity (1.1)

divx(rU) = 0. (1.12)

Applying (formally) the same argument to the entropy balance (1.3) we get

divx(rs(r,Θ)U) = 0. (1.13)
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Equations (1.12), (1.13) are compatible only if

∇xr ·U = 0.

As r depends only on the vertical x3-variable, this yields

U3 ≡ 0. (1.14)

In view of the previous arguments, the limit fluid motion exhibits the “stack of pancakes
structure” described in Chapter 6 of Majda’s book [14]. Specifically, U = [Uh, 0], and

∂p(r,Θ)

∂ϱ
∂x3r = −rg, (1.15)

divhUh = 0, (1.16)

r
(
∂tUh +Uh · ∇hUh

)
+∇hΠ = µ(Θ)∆hUh + µ(Θ)∂2x3,x3

Uh. (1.17)

Here and hereafter, the subscript h refers to the horizontal variable xh = (x1, x2), ∇h = [∂x1 , ∂x2 ],
divhv = ∇h ·v, ∆h = divh∇h. The fluid motion is purely horizontal, the coupling between different
layers only through the vertical component of the viscous stress.

To the best of our knowledge, there is no rigorous justification of the system (1.15)–(1.17)
available in the literature except the inviscid case discussed in [7]. It is worth noting that a similar
problem for the barotropic Navier–Stokes system gives rise to a different limit, namely the so–
called anelastic approximation, see Masmoudi [15] or Feireisl et al. [8]. Furthermore, as observed
in [3], the related case of a low stratification with Ma = ε and Fr =

√
ε leads to a limiting system

of Oberbeck-Boussinesq type with non-local boundary conditions for the temperature.

1.2 The strategy of the convergence proof

We start with the concept of weak solutions for the NSF system with Dirichlet boundary conditions
introduced in [4]. In particular, we recall the ballistic energy and the associated relative energy
inequality in Section 2. Next, we introduce the concept of strong solutions to Majda’s system in
Section 3. In Section 4, we state our main result.

The strategy is of type “weak” → “strong”, meaning the strong solution of the target system
is used as a “test function” in the relative energy inequality associated to the primitive system.
In Section 5, we derive the basic energy estimates that control the amplitude of the fluid velocity
as well as the distance of the density and temperature profiles from their limit values independent
of the scaling parameter ε. In Section 6, we show convergence to the target system (1.15)–
(1.17) anticipating the latter admits a regular solution. This formal argument is made rigorous
in Section 7, where global existence for Majda’s model is established. The last result may be of
independent interest.
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2 Weak solutions to the primitive NSF system

Our analysis is based on the concept of weak solutions to the NSF system introduced in [4], cf. also
[10].

Definition 2.1 (Weak solution to the NSF system). We say that a trio (ϱ, ϑ,u) is a weak
solution of the NSF system (1.1)–(1.7), with the initial data

ϱ(0, ·) = ϱ0, ϱu(0, ·) = ϱ0u0, ϱs(0, ·) = ϱ0s(ϱ0, ϑ0),

if the following holds:

� The solution belongs to the regularity class:

ϱ ∈ L∞(0, T ;Lγ(Ω)) for some γ > 1, ϱ ≥ 0 a.a. in (0, T )× Ω,

u ∈ L2(0, T ;W 1,2
0 (Ω;R3)),

ϑβ/2, log(ϑ) ∈ L2(0, T ;W 1,2(Ω)) for some β ≥ 2, ϑ > 0 a.a. in (0, T )× Ω,

(ϑ− ϑB) ∈ L2(0, T ;W 1,2
0 (Ω)), (2.1)

where ϑB is an extension of the boundary data to the whole Ω.

� The equation of continuity (1.1) is satisfied in the sense of distributions,∫ T

0

∫
Ω

[
ϱ∂tφ+ ϱu · ∇xφ

]
dx dt = −

∫
Ω

ϱ(0)φ(0, ·) dx (2.2)

for any φ ∈ C1
c ([0, T )× Ω).

� The momentum equation (1.2) is satisfied in the sense of distributions,∫ T

0

∫
Ω

[
ϱu · ∂tφ+ ϱu⊗ u : ∇xφ+

1

ε2
p(ϱ, ϑ)divxφ

]
dx dt

=

∫ T

0

∫
Ω

[
S(ϑ,∇xu) : ∇xφ− 1

ε2
ϱ∇xG ·φ

]
dx dt−

∫
Ω

ϱ0u0 ·φ(0, ·) dx (2.3)

for any φ ∈ C1
c ([0, T )× Ω;R3).

� The entropy balance (1.3) is replaced by the inequality

−
∫ T

0

∫
Ω

[
ϱs(ϱ, ϑ)∂tφ+ ϱs(ϱ, ϑ)u · ∇xφ+

q(ϑ,∇xϑ)

ϑ
· ∇xφ

]
dx dt

≥
∫ T

0

∫
Ω

φ

ϑ

[
ε2S(ϑ,∇xu) : Dxu− q(ϑ,∇xϑ) · ∇xϑ

ϑ

]
dx dt+

∫
Ω

ϱ0s(ϱ0, ϑ0)φ(0, ·) dx

(2.4)

for any φ ∈ C1
c ([0, T )× Ω), φ ≥ 0, where Dxu = 1

2
(∇xu+∇t

xu) is the symmetric gradient.
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� The ballistic energy balance

−
∫ T

0

∂tψ

∫
Ω

[
ε2
1

2
ϱ|u|2 + ϱe(ϱ, ϑ)− ϑ̃ϱs(ϱ, ϑ)

]
dx dt

+

∫ T

0

ψ

∫
Ω

ϑ̃

ϑ

[
ε2S(ϑ,∇xu) : Dxu− q(ϑ,∇xϑ) · ∇xϑ

ϑ

]
dx dt

≤
∫ T

0

ψ

∫
Ω

[
ϱu · ∇xG− ϱs(ϱ, ϑ)∂tϑ̃− ϱs(ϱ, ϑ)u · ∇xϑ̃− q(ϑ,∇xϑ)

ϑ
· ∇xϑ̃

]
dx dt

+ ψ(0)

∫
Ω

[
1

2
ε2ϱ0|u0|2 + ϱ0e(ϱ0, ϑ0)− ϑ̃(0, ·)ϱ0s(ϱ0, ϑ0)

]
dx (2.5)

holds for any ψ ∈ C1
c ([0, T )), ψ ≥ 0, and any ϑ̃ ∈ C1([0, T )× Ω),

ϑ̃ > 0, ϑ̃|∂Ω = ϑB.

2.1 Relative energy inequality

In addition to Gibbs’ equation (1.8), we impose the hypothesis of thermodynamic stability written
in the form

∂p(ϱ, ϑ)

∂ϱ
> 0,

∂e(ϱ, ϑ)

∂ϑ
> 0 for all ϱ, ϑ > 0. (2.6)

Next, following [4], we introduce the scaled relative energy

Eε

(
ϱ, ϑ,u

∣∣∣ϱ̃, ϑ̃, ũ)
=

1

2
ϱ|u− ũ|2 + 1

ε2

[
ϱe− ϑ̃

(
ϱs− ϱ̃s(ϱ̃, ϑ̃)

)
−
(
e(ϱ̃, ϑ̃)− ϑ̃s(ϱ̃, ϑ̃) +

p(ϱ̃, ϑ̃)

ϱ̃

)
(ϱ− ϱ̃)− ϱ̃e(ϱ̃, ϑ̃)

]
.

Now, the hypothesis of thermodynamic stability (2.6) can be equivalently rephrased as (strict)
convexity of the total energy expressed with respect to the conservative entropy variables

Eε

(
ϱ, S = ϱs(ϱ, ϑ),m = ϱu

)
≡ 1

2

|m|2

ϱ
+

1

ε2
ϱe(ϱ, S),

whereas the relative energy can be written as

Eε

(
ϱ, S,m

∣∣∣ϱ̃, S̃, m̃) = Eε(ϱ, S,m)−
〈
∂ϱ,S,mEε(ϱ̃, S̃, m̃); (ϱ− ϱ̃, S − S̃,m− m̃)

〉
− Eε(ϱ̃, S̃, m̃).

Finally, as observed in [4], any weak solution in the sense of Definition 2.1 satisfies the relative
energy inequality[∫

Ω

Eε

(
ϱ, ϑ,u

∣∣∣ϱ̃, ϑ̃, ũ) dx

]t=τ

t=0
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+

∫ τ

0

∫
Ω

ϑ̃

ϑ

(
S(ϑ,∇xu) : Dxu+

1

ε2
κ(ϑ)|∇xϑ|2

ϑ

)
dx dt

≤ − 1

ε2

∫ τ

0

∫
Ω

(
ϱ(s− s(ϱ̃, ϑ̃))∂tϑ̃+ ϱ(s− s(ϱ̃, ϑ̃))u · ∇xϑ̃−

(
κ(ϑ)∇xϑ

ϑ

)
· ∇xϑ̃

)
dx dt

−
∫ τ

0

∫
Ω

[
ϱ(u− ũ)⊗ (u− ũ) +

1

ε2
p(ϱ, ϑ)I− S(ϑ,∇xu)

]
: Dxũ dx dt

+

∫ τ

0

∫
Ω

ϱ

[
1

ε2
∇xG− ∂tũ− (ũ · ∇x)ũ

]
· (u− ũ) dx dt

+
1

ε2

∫ τ

0

∫
Ω

[(
1− ϱ

ϱ̃

)
∂tp(ϱ̃, ϑ̃)−

ϱ

ϱ̃
u · ∇xp(ϱ̃, ϑ̃)

]
dx dt (2.7)

for a.a. τ > 0 and any trio of continuously differentiable functions (ϱ̃, ϑ̃, ũ) satisfying

ϱ̃ > 0, ϑ̃ > 0, ϑ̃|∂Ω = ϑB, ũ|∂Ω = 0. (2.8)

2.2 Constitutive relations

The existence theory developed in [4] is conditioned by certain restrictions imposed on the consti-
tutive relations (state equations) similar to those introduced in the monograph [9, Chapters 1,2].
Specifically, the equation of state reads

p(ϱ, ϑ) = pm(ϱ, ϑ) + prad(ϑ),

where pm is the pressure of a general monoatomic gas,

pm(ϱ, ϑ) =
2

3
ϱem(ϱ, ϑ), (2.9)

enhanced by the radiation pressure

prad(ϑ) =
a

3
ϑ4, a > 0.

Accordingly, the internal energy reads

e(ϱ, ϑ) = em(ϱ, ϑ) + erad(ϱ, ϑ), erad(ϱ, ϑ) =
a

ϱ
ϑ4.

Moreover, using several physical principles it was shown in [9, Chapter 1]:

� Gibbs’ relation together with (2.9) yield

pm(ϱ, ϑ) = ϑ
5
2P

(
ϱ

ϑ
3
2

)
for a certain P ∈ C1[0,∞). Consequently,

p(ϱ, ϑ) = ϑ
5
2P

(
ϱ

ϑ
3
2

)
+
a

3
ϑ4, e(ϱ, ϑ) =

3

2

ϑ
5
2

ϱ
P

(
ϱ

ϑ
3
2

)
+
a

ϱ
ϑ4, a > 0. (2.10)
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� Hypothesis of thermodynamic stability (2.6) expressed in terms of P gives rise to

P (0) = 0, P ′(Z) > 0 for Z ≥ 0, 0 <
5
3
P (Z)− P ′(Z)Z

Z
≤ c for Z > 0. (2.11)

In particular, the function Z 7→ P (Z)/Z
5
3 is decreasing, and we suppose

lim
Z→∞

P (Z)

Z
5
3

= p∞ > 0. (2.12)

� Accordingly, the associated entropy takes the form

s(ϱ, ϑ) = sm(ϱ, ϑ) + srad(ϱ, ϑ), sm(ϱ, ϑ) = S
(
ϱ

ϑ
3
2

)
, srad(ϱ, ϑ) =

4a

3

ϑ3

ϱ
, (2.13)

where

S ′(Z) = −3

2

5
3
P (Z)− P ′(Z)Z

Z2
< 0. (2.14)

In addition, we impose the Third law of thermodynamics, cf. Belgiorno [1], [2], requiring
the entropy to vanish when the absolute temperature approaches zero,

lim
Z→∞

S(Z) = 0. (2.15)

Finally, we suppose the transport coefficients are continuously differentiable functions satisfying

0 < µ(1 + ϑ) ≤ µ(ϑ), |µ′(ϑ)| ≤ µ,

0 ≤ η(ϑ) ≤ η(1 + ϑ),

0 < κ(1 + ϑβ) ≤ κ(ϑ) ≤ κ(1 + ϑβ), where β > 6. (2.16)

As a consequence of the above hypotheses, we get the following estimates:

ϱ
5
3 + ϑ4 <∼ ϱe(ϱ, ϑ)

<∼ 1 + ϱ
5
3 + ϑ4, (2.17)

sm(ϱ, ϑ)
<∼
(
1 + | log(ϱ)|+ [log(ϑ)]+

)
, (2.18)

see [9, Chapter 3, Section 3.2].

3 Strong solutions to Majda’s system

Problem (1.16)–(1.17) shares many common features with the 2d−incompressible Navier–Stokes
system solved in the celebrated work by Ladyženskaja [12], [13]. Indeed we show that problem
(1.16)–(1.17), endowed with the boundary conditions

Uh|∂Ω = 0, Ω = T2 × (0, 1), T2 =

(
[−1, 1]

∣∣∣
{−1,1}

)2

, (3.1)

is globally well posed in the framework of Sobolev spacesW 2,p with p > 1 large enough. We report
the following result that may be of independent interest.
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Theorem 3.1 (Global existence for Majda’s system). Let Θ > 0 be given. Suppose that

r ∈ C1([0, 1]), 0 < r ≤ r(x3) for all x3 ∈ [0, 1]. (3.2)

Let the initial data U0,h belong to the class

U0,h ∈ W 3,q ∩W 1,q
0 (Ω;R2), divhU0,h = 0 (3.3)

for all 1 ≤ q <∞.
Then the system (1.16)–(1.17), with the boundary conditions (3.1) and the initial condition

(3.3), admits a strong solution Uh in (0, T )× Ω, unique in the class

∂tUh ∈ Lp(0, T ;Lp(Ω;R2)), (Uh,∇hUh) ∈ Lp(0, T ;W 2,p(Ω;R2)×W 2,p(Ω;R2×2)) (3.4)

for any 1 ≤ p <∞.

Remark 3.2. To avoid any misunderstanding we emphasize that by

U0,h ∈ W 3,q ∩W 1,q
0 (Ω;R2), divhU0,h = 0

for all 1 ≤ q <∞ we mean

U0,h ∈
⋂
q≥1

W 3,q ∩W 1,q
0 (Ω;R2), divhU0,h = 0.

Similarly,

∂tUh ∈ Lp(0, T ;Lp(Ω;R2)), (Uh,∇hUh) ∈ Lp(0, T ;W 2,p(Ω;R2)×W 2,p(Ω;R2×2))

for all finite 1 ≤ p <∞ means

∂tUh ∈
⋂
p≥1

Lp(0, T ;Lp(Ω;R2)), (Uh,∇hUh) ∈
⋂
p≥1

Lp(0, T ;W 2,p(Ω;R2)×W 2,p(Ω;R2×2)).

The proof of Theorem 3.1 is postponed to Section 7.

4 Main result

Having collected the necessary preliminary material, we are ready to state our main result.
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Theorem 4.1 (Singular limit). Let the thermodynamic functions p, e, and s as well as the
transport coefficients µ, λ, and κ comply with the structural hypotheses specified in Section 2.2.
Let

G = −gx3, g > 0, Θup = Θbott = Θ > 0, (4.1)

and let

r ∈ C1([0, 1]), 0 < r ≤ r,
∂p(r,Θ)

∂ϱ
∂x3r = −rg. (4.2)

Let (ϱε, ϑε,uε)ε>0 be a family of weak solutions of the scaled NSF system in the sense of
Definition 2.1 emanating from the initial data

ϱε(0, ·) = ϱ0,ε, ϱεuε(0, ·) = ϱ0,εu0,ε, ϱεs(ϱε, ϑε)(0, ·) = ϱ0,εs(ϱ0,ε, ϑ0,ε),

where ∫
Ω

Eε

(
ϱ0,ε, ϑ0,ε,u0,ε

∣∣∣ r,Θ, [U0,h, 0]
)

dx→ 0 as ε→ 0, (4.3)

and U0,h belongs to the class (3.3).
Then

ess sup
τ∈(0,T )

∫
Ω

Eε

(
ϱε, ϑε,uε

∣∣∣ r,Θ, [Uh, 0]
)
(τ, ·) dx→ 0 as ε→ 0, (4.4)

where Uh is the unique solution of Majda’s system, the existence of which is guaranteed by
Theorem 3.1.

Hypothesis (4.3) corresponds to well–prepared initial data. In view of the coercivity properties
of the relative energy stated in (5.1), (5.2) below, relation (4.4) implies, in particular,

ϱε → r in L∞(0, T ;L
5
3 (Ω)),

ϑε → Θ in L∞(0, T ;L2(Ω)),

ϱεuε → r[Uh, 0] in L∞(0, T ;L1(Ω;R3))

as ε→ 0.
The next two sections are devoted to the proof of Theorem 4.1.

5 Uniform bounds

In order to perform the singular limit in the NSF system we need the associated sequence of
weak solutions (ϱε, ϑε,uε)ε>0 to be bounded at least in the energy space. First, we introduce the
notation of [9] to distinguish between the “essential” and “residual” range of the thermostatic

10



variables (ϱ, ϑ). Specifically, given a compact set

K ⊂
{
(ϱ, ϑ) ∈ R2

∣∣∣ ϱ > 0, ϑ > 0
}

we introduce
gess = g1(ϱ,ϑ)∈K , gres = g − gess = g1(ϱ,ϑ)∈R2\K .

As shown in [9, Chapter 5, Lemma 5.1], the relative energy enjoys the following coercivity prop-
erties:

Eε

(
ϱ, ϑ,u

∣∣∣ϱ̃, ϑ̃, ũ) ≥ Eε

(
ϱ, ϑ,u

∣∣∣ϱ̃, ϑ̃, ũ)
ess

≥ C

(
|ϱ− ϱ̃|2

ε2
+

|ϑ− ϑ̃|2

ε2
+ |u− ũ|2

)
ess

(5.1)

Eε

(
ϱ, ϑ,u

∣∣∣ϱ̃, ϑ̃, ũ) ≥ Eε

(
ϱ, ϑ,u

∣∣∣ϱ̃, ϑ̃, ũ)
res

≥ C

(
1

ε2
+

1

ε2
ϱe(ϱ, ϑ) +

1

ε2
ϱ|s(ϱ, ϑ)|+ ϱ|u|2

)
res

(5.2)

whenever (ϱ̃, ϑ̃) ∈ int[K], where the constant C depends on K and the distance

dist
[
(ϱ̃, ϑ̃); ∂K

]
.

5.1 Energy estimates for ill–prepared data

We examine a slightly more general situation than in Theorem 4.1. Let Θ > 0 be constant and r
the solution of the static problem

∂p(r,Θ)

∂ϱ
∂x3r = −rg. (5.3)

Next, we consider a family (ϱε, ϑε,uε)ε>0 emanating from ill–prepared data (ϱ0,ε, ϑ0,ε,u0,ε)ε>0,∫
Ω

Eε

(
ϱ0,ε, ϑ0,ε,u0,ε

∣∣∣r,Θ, 0) dx
<∼ 1 independently of ε→ 0. (5.4)

The relative energy inequality (2.7) yields[∫
Ω

Eε

(
ϱε, ϑε,uε

∣∣∣r,Θ, 0) dx

]t=τ

t=0

+

∫ τ

0

∫
Ω

Θ

ϑε

(
S(ϑε,∇xuε) : Dxuε +

1

ε2
κ(ϑε)|∇xϑε|2

ϑε

)
dx dt

≤ 1

ε2

∫ τ

0

∫
Ω

ϱε
r
(r∇xG−∇xp(r,Θ)) · uε dx dt. (5.5)

Moreover, in view of (4.1) and (4.2), we deduce the stationary equation

∇xp(r,Θ) = r∇xG; (5.6)
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hence (5.5) reduces to[∫
Ω

Eε

(
ϱε, ϑε,uε

∣∣∣r,Θ, 0) dx

]t=τ

t=0

+

∫ τ

0

∫
Ω

Θ

ϑε

(
S(ϑε,∇xuε) : Dxuε +

1

ε2
κ(ϑε)|∇xϑε|2

ϑε

)
dx dt ≤ 0. (5.7)

5.2 Conclusion, uniform bounds for ill-prepared data

In view of the estimates obtained in the previous section, we deduce from (5.7) for ill–prepared
initial data satisfying (5.4) the following bounds independent of the scaling parameter ε→ 0:

ess sup
t∈(0,T )

∫
Ω

Eε

(
ϱε, ϑε,uε

∣∣∣r,Θ, 0) dx
<∼ 1, (5.8)∫ T

0

∥uε∥2W 1,2
0 (Ω;R3)

dt
<∼ 1, (5.9)

1

ε2

∫ T

0

(
∥∇x log(ϑε)∥2L2(Ω;R3) + ∥∇xϑ

β
2
ε ∥2L2(Ω;R3)

)
<∼ 1. (5.10)

Next, it follows from (5.8) that the measure of the residual set shrinks to zero, specifically

1

ε2
ess sup

t∈(0,T )

∫
Ω

[1]res dx
<∼ 1. (5.11)

In addition, we get from (5.8):

ess sup
t∈(0,T )

∫
Ω

ϱε|uε|2 dx
<∼ 1,

ess sup
t∈(0,T )

∥∥∥∥[ϱε − r

ε

]
ess

∥∥∥∥
L2(Ω)

<∼ 1,

ess sup
t∈(0,T )

∥∥∥∥[ϑε −Θ

ε

]
ess

∥∥∥∥
L2(Ω)

<∼ 1,

1

ε2
ess sup

t∈(0,T )

∥[ϱε]res∥
5
3

L
5
3 (Ω)

+
1

ε2
ess sup

t∈(0,T )

∥[ϑε]res∥4L4(Ω)
<∼ 1. (5.12)

Combining (5.10), (5.11), and (5.12), we conclude∫ T

0

∥∥∥∥ log(ϑε)− log(Θ)

ε

∥∥∥∥2
W 1,2(Ω)

dt+

∫ T

0

∥∥∥∥ϑε −Θ

ε

∥∥∥∥2
W 1,2(Ω)

dt
<∼ 1. (5.13)

12



Finally, we claim the bound on the entropy flux∫ T

0

∥∥∥∥[κ(ϑε)

ϑε

]
res

∇xϑε

ε

∥∥∥∥q
Lq(Ω;R3)

dt
<∼ 1 for some q > 1. (5.14)

Indeed we have ∣∣∣∣[κ(ϑε)

ϑε

]
res

∇xϑε

ε

∣∣∣∣ <∼ 1

ε
|∇x log(ϑε)|+

1

ε

∣∣∣∣[ϑβ
2
ε ∇xϑ

β
2
ε

]
res

∣∣∣∣ ,
where the former term on the right–hand side is controlled via (5.13). As for the latter, we deduce
from (5.10) that ∥∥∥∥1ε∇xϑ

β
2
ε

∥∥∥∥
L2((0,T )×Ω;R3)

<∼ 1;

hence it is enough to check ∥∥∥∥[ϑβ
2
ε

]
res

∥∥∥∥
Lr((0,T )×Ω)

<∼ 1 for some r > 2. (5.15)

To see (5.15) first observe that

ess sup
t∈(0,T )

∥[ϑε]res∥L4(Ω)
<∼ 1, (5.16)

and, in view of (5.10) and Poincaré inequality,∥∥∥∥ϑβ
2
ε

∥∥∥∥
L2(0,T ;L6(Ω))

<∼ 1.

Consequently, (5.15) follows by interpolation.
Of course, the above uniform bound remain valid also for the well-prepared initial data consid-

ered in Theorem 4.1.

6 Convergence to the target system

We show convergence to the regular solution Uh in Majda’s system claimed in Theorem 4.1. To
get a lean notation, we will identify the two-dimensional velocity Uh with its three-dimensional
counterpart [Uh, 0]. The ansatz (ϱ̃, ϑ̃, ũ) = (r,Θ,Uh) in the relative energy inequality (2.7) yields[∫

Ω

Eε

(
ϱε, ϑε,uε

∣∣∣r,Θ,Uh

)
dx

]t=τ

t=0

+

∫ τ

0

∫
Ω

Θ

ϑε

(
S(ϑε,∇xuε) : Dxuε +

1

ε2
κ(ϑε)|∇xϑε|2

ϑε

)
dx dt

≤ −
∫ τ

0

∫
Ω

[
ϱε(uε −Uh)⊗ (uε −Uh) +

1

ε2
p(ϱε, ϑε)I− S(ϑε,∇xuε)

]
: DxUh dx dt
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+

∫ τ

0

∫
Ω

ϱε [∂tUh + (Uh · ∇x)Uh] · (Uh − uε) dx dt− 1

ε2

∫ τ

0

∫
Ω

ϱε∇xG ·Uh dx dt, (6.1)

where we have used the stationary equation

∇xp(r,Θ) = r∇xG.

Next, seeing that
divxUh = 0, ∇xG ·Uh = 0,

we deduce [∫
Ω

Eε

(
ϱε, ϑε,uε

∣∣∣r,Θ,Uh

)
dx

]t=τ

t=0

+

∫ τ

0

∫
Ω

Θ

ϑε

(
S(ϑε,∇xuε) : Dxuε +

1

ε2
κ(ϑε)|∇xϑε|2

ϑε

)
dx dt

≤ −
∫ τ

0

∫
Ω

[
ϱε(uε −Uh)⊗ (uε −Uh)− S(ϑε,∇xuε)

]
: DxUh dx dt

+

∫ τ

0

∫
Ω

ϱε [∂tUh + (Uh · ∇x)Uh] · (Uh − uε) dx dt. (6.2)

Now, in view of the uniform bounds (5.9), (5.12),∫ τ

0

∫
Ω

ϱε [∂tUh + (Uh · ∇x)Uh] · (Uh − uε) dx dt

=

∫ τ

0

∫
Ω

r [∂tUh + (Uh · ∇x)Uh] · (Uh − uε) dx dt+Q(ε),

where Q(ε) denotes a generic function with the property Q(ε) → 0 as ε→ 0.
Next, in view of (5.9), (5.12), we may assume

ϱε → r in L∞(0, T ;L
5
3 (Ω)), uε → u weakly in L2(0, T ;W 1,2

0 (Ω)),

up to a suitable subsequence, where
divx(ru) = 0. (6.3)

Similarly, using the bounds (5.12), (5.13) we may perform the limit in the entropy inequality (2.4)
obtaining

divx(rs(r,Θ)u) ≥ 0.

However, thanks to the no–slip boundary conditions,∫
Ω

divx(rs(r,Θ)u) dx = 0;

14



therefore
divx(rs(r,Θ)u) = 0. (6.4)

Combining (6.3), (6.4) we may infer

r
∂s(r,Θ)

∂ϱ
∇xr · u = 0.

As entropy is given by the constitutive equation (2.13), (2.14),

∂s(r,Θ)

∂ϱ
< 0,

and we conclude
u3 = 0, divhu = 0. (6.5)

Now, ∫ τ

0

∫
Ω

ϱε [∂tUh + (Uh · ∇x)Uh] · (Uh − uε) dx dt

=

∫ τ

0

∫
Ω

r [∂tUh + (Uh · ∇x)Uh] · (Uh − u) dx dt+Q(ε).

In addition, since Uh, u satisfy (1.17), (6.5), respectively, we obtain∫ τ

0

∫
Ω

r [∂tUh + (Uh · ∇x)Uh] · (Uh − u) dx dt (6.6)

=

∫ τ

0

∫
Ω

µ(Θ)
[
∆hUh + ∂2x3,x3

Uh

]
· (Uh − u) dx dt

= −
∫ τ

0

∫
Ω

S(Θ,∇xUh) : Dx(Uh − u) dx dt.

Going back to (6.2), we deduce[∫
Ω

Eε

(
ϱε, ϑε,uε

∣∣∣r,Θ,Uh

)
dx

]t=τ

t=0

+

∫ τ

0

∫
Ω

Θ

ϑε

(
S(ϑε,∇xuε) : Dxuε +

1

ε2
κ(ϑε)|∇xϑε|2

ϑε

)
dx dt

≤ −
∫ τ

0

∫
Ω

[
ϱε(uε −Uh)⊗ (uε −Uh)− S(Θ,∇xu)

]
: DxUh dx dt

−
∫ τ

0

∫
Ω

S(Θ,∇xUh) : Dx(Uh − u) dx dt+Q(ε). (6.7)
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Finally, exploiting weak lower semi–continuity of convex functions, we conclude[∫
Ω

Eε

(
ϱε, ϑε,uε

∣∣∣r,Θ,Uh

)
dx

]t=τ

t=0

+

∫ τ

0

∫
Ω

(S(Θ,∇xu)− S(Θ,∇xUh) : (Dxu− DxUh) dx dt

≤ −
∫ τ

0

∫
Ω

[
ϱε(uε −Uh)⊗ (uε −Uh)

]
: DxUh dx dt+Q(ε), (6.8)

which, applying the standard Grönwall argument, yields the desired convergence as well as u = Uh.
We have proved Theorem 4.1.

7 Global existence for Majda’s problem

Our ultimate goal is to show global existence of strong solutions to Majda’s model claimed in
Theorem 3.1. To this end, it is more convenient to consider the (horizontal) vorticity formulation
of (1.16), (1.17). With a slight abuse of notation in the definition of Uh, this formulation reads

∂tω +Uh · ∇xω = ν∆xω, (7.1)

Uh =
[
∇⊥

h∆
−1
h [ω], 0

]
, (7.2)

ν = ν(x3), (7.3)

with the boundary conditions
ω|∂Ω = 0, (7.4)

and the initial condition
ω(0, ·) = ω0. (7.5)

Here, ν = µ(Θ)
r

, and
ω = curlhUh, curlh[v] = ∂x1v2 − ∂x2v1. (7.6)

For given ω, the velocity field Uh can be recovered via Biot-Savart law:

Uh =
[
∇⊥

h∆
−1
h [ω], 0

]
, ∇⊥

h = [−∂x2 , ∂x1 ]. (7.7)

Remark 7.1. Strictly speaking, the velocity Uh is determined by (7.7) up to its horizontal average

Uh =

∫
T2

Uh dxh

that can be recovered as the unique solution of the parabolic problem

r∂tUh = µ(Θ)∂2x3,x3
Uh in (0, T )× (0, 1),

Uh|x3=0,1 = 0,

Uh(0, ·) =
∫
T2

U0,h dxh.
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7.1 Construction via a fixed point argument

The desired solution ω to (7.1)–(7.5) can be constructed via a simple fixed point argument. Con-
sider the set

XM =
{
ω̃ ∈ C([0, T ]× Ω)

∣∣∣ ω̃|∂Ω = 0, ω̃(0, ·) = curlhU0,h , ∥ω̃∥C([0,T ]×Ω) ≤M
}
.

As the initial velocity U0,h belongs to the class (3.3), the set XM is a bounded closed convex subset
of the Banach space C([0, T ] × Ω). Moreover, XM is non-empty as long as M is large enough to
accommodate the initial condition.

We define a mapping T [ω̃] = ω, where ω is the unique solution of the problem

∂tω + bL(Ũh) · ∇xω = ν∆xω, (7.8)

Ũh =
[
∇⊥

h∆
−1
h [ω̃], 0

]
, (7.9)

ω|∂Ω = 0, (7.10)

ω(0, ·) = curlhU0,h, (7.11)

for some cut–off function bL. Specifically,

bL(Ũh) = [bL(Ũ
1
h), bL(Ũ

2
h), 0],

where
bL ∈ L∞(R) ∩ C∞(R), bL(Z) = Z whenever |Z| ≤ L.

7.1.1 Maximum principle

Applying the standard maximum principle, we deduce

sup
t∈[0,T ]

∥T [ω̃](t, ·)∥C(Ω) = sup
t∈[0,T ]

∥ω(t, ·)∥C(Ω) = ∥ω(0, ·)∥C(Ω)
<∼ ∥U0,h∥W 2,q(Ω;R2) as long as q > 3.

(7.12)
Note carefully that the bound (7.12) depends solely on the initial data. In particular, it is inde-
pendent of the specific form of the cut–off function bL.

7.1.2 Maximal Lp − Lq regularity

In view of hypothesis (4.2),

ν ∈ C1([0, 1]), 0 < ν ≤ ν(x3) for any x3 ∈ [0, 1].

Consequently, we can apply the maximal Lp−Lq regularity estimates, see, e.g., Denk, Hieber, and
Prüss [6], to obtain

∥∂tω∥Lp(0,T ;Lq(Ω)) + ∥ω∥Lp(0,T ;W 2,q(Ω)) ≤ c(p, q)
(
∥ω(0, ·)∥W 2,q∩W 1,q

0 (Ω) + ∥bL(Ũh) · ∇xω∥Lp(0,T ;Lq(Ω))

)
,
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1 < p, q <∞. (7.13)

Here
∥ω(0, ·)∥W 2,q∩W 1,q

0 (Ω)

<∼ ∥U0,h∥W 3,q(Ω;R2),

while, by interpolation and (7.12),

∥bL(Ũh) · ∇xω∥Lq(Ω) ≤ L∥∇xω∥Lq(Ω;R3) ≤ L∥ω∥λW 2,q(Ω)∥ω∥1−λ
Lq(Ω)

≤ Lc(q)∥U0,h∥1−λ
W 3,q(Ω;R2)∥ω∥

λ
W 2,q(Ω), t ∈ (0, T )

for some 0 < λ < 1. Consequently, it follows from (7.13) and our hypotheses imposed on the initial
data that

∥∂tT [ω̃]∥Lp(0,T ;Lq(Ω)) + ∥T [ω̃]∥Lp(0,T ;W 2,q(Ω)) ≤ c
(
p, q, ∥U0,h∥W 3,q(Ω;R2)

)
(1 + L) (7.14)

for all finite p, q.

7.2 Fixed point

It follows from the estimates (7.12), (7.14) that T is a compact (continuous) mapping of XM into
XM provided M is large enough, therefore, by means of Tikhonov–Schauder fixed point Theorem,
there is a fixed point ω ∈ XM satisfying

∂tω + bL(Uh) · ∇xω = ν∆xω,

Uh =
[
∇⊥

h∆
−1
h [ω], 0

]
ω|∂Ω = 0,

ω(0, ·) = curlhU0,h.

Finally, as Uh is given by the Biot–Savart law, we get

sup
x3∈(0,1)

∥∇hUh∥Lq(T2;R2×2) ≤ c(q)∥ω(0, ·)∥L∞(Ω) uniformly for t ∈ (0, T ) for any 1 < q <∞,

in particular

∥Uh∥L∞((0,T )×Ω;R2)
<∼ ∥ω(0, ·)∥L∞(Ω)

<∼ ∥U0,h∥W 2,q(Ω;R2) as soon as q > 3.

Since this bound is independent of L, we may choose L large enough so that bL(Uh) = Uh to get
the desired conclusion

∂tω +Uh · ∇xω = ν∆xω,

Uh =
[
∇⊥

h∆
−1
h [ω], 0

]
ω|∂Ω = 0,
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ω(0, ·) = curlhU0,h.

Finally, it is easy to check that the solution is unique in the regularity class (3.4). As a matter
of fact, a more general weak–strong uniqueness holds that could be shown adapting the above
arguments based on the relative energy inequality.

We have proved Theorem 3.1.
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[13] O. A. Ladyženskaja. Solution “in the large” of the nonstationary boundary value problem for
the Navier-Stokes system with two space variables. Comm. Pure Appl. Math., 12:427–433,
1959.

[14] A. Majda. Introduction to PDEs and Waves for the Atmosphere and Ocean. Volume 9 of
Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathe-
matical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[15] N. Masmoudi. Rigorous derivation of the anelastic approximation. J. Math. Pures Appl.,
88:230–240, 2007.

20


