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Abstract: To increase the efficiency of drug discovery and development, modelling
and simulation in pharmacokinetics and disease is gaining increasing attraction.
Due to recent advances in physiologically based pharmacokinetics regarding the
prediction of key parameters, it is now possible to predict concentration-time
profiles in different spaces of various organs for large classes of compounds—even
prior to the performance of any in vivo studies. The field has now reached a
status that allows for ample exploitation on a much broader scale. Combined
with systems biology models of cellular response at the target site this will
result in more realistic mechanism based pharmacokinetic/dynamic models with
a wide spectrum of important applications in current drug design, including
e.g., identification and ranking of biomarkers candidates, time resolved analysis
of drug-target interactions, support in prioritizing compounds, and the study
of physiological variability and important sub-populations. First steps of this
combined approach are illustrated for diabetes mellitus type 2 treatment with
tolbutamide, and the implications on the design requirements for the systems
biology models are discussed.
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1. INTRODUCTION

A major reason for attrition in current drug de-
velopment is the failure to demonstrate efficacy
in late stage clinical development (Kola and Lan-
dis, 2004). Very often, the reason is the lack of
predictive and/or timely (animal) models of clin-
ical outcome. As a consequence, efforts are made
to consider predictive tools of efficacy as early
as possible, resulting in a boosting interest in
biomarkers that in broad terms are defined as easy
accessible molecular markers which correlate with
the status or progression of the disease (Frank and
Hargreaves, 2003). Biomarkers might also help to
identify the relevant sources of pharmacokinetic
or pharmacodynamics variability that contributes
to the variable clinical outcome in certain groups
of patients (Kloft et al., 2006). To further un-
derstand and elucidate biomarkers, in silico are
increasingly recognized as a valuable tool.

In silico approaches are increasingly recognized by
pharmaceutical companies as a very valuable tool
(Beresford et al., 2002). An important class are
physiologically based pharmacokinetic (PBPK)
models. They allow to integrate data from differ-
ent sources (Lüpfert and Reichel, 2006), and can
provide links to systems biology models of cellular
response. This type of approach offers the oppor-
tunity to generate expectations/hypothesis about
future experiments based on the current under-
lying assumptions and data. Recently, crucial ad-
vances have been made in PBPK modelling. These
regard the prediction of key input parameters (so-
called tissue partition coefficients) based on read-
ily measurable in vitro compound-specific data
(Poulin and Theil, 2000; Rodgers and Rowland,
2006) as well as the modularisation of the PBPK
models in terms of the underlying physiologically
processes (von Kleist and Huisinga, 2007). As a
result PBPK modelling is now much more acces-
sible.

The integration of systems biology into the drug
discovery process offers a new perspective (Ekins
et al., 2005; Butcher et al., 2004; Hunter and
Borg, 2003; Wolkenhauer et al., 2007). In partic-
ular when coupled to physiologically based phar-
macokinetic models, a wide range of important
applications arise: It allows (a) to study processes
that are often not accessible by experiments per-
formed in clinical in vivo studies, (b) to make
predictions solely based on the assumptions and
data integrated into the model, (c) to identify and
rank biomarker candidates, (d) to analyse drug-
target interactions in a time resolved way, (e) to
prioritise compounds based on pharmacokinetic
as well as pharmacodynamic in silico character-
istics, (f) to study the influence of physiological
variability and the peculiarities of important sub-
populations, such as patients with special char-

acteristics like children or poor-metabolisers, (g)
to guide in hypothesis generation, clinical study
planing and optimization. Of course, in silico
should be seen within the orchestra of in vitro and
in vivo methodologies. Only the rationale combi-
nation of all available techniques will eventually
guarantee progress in drug discovery and devel-
opment, being always aware of the advantages
and, equally important, of the limitations of the
methods used.

In this paper we illustrate a combined systems
biology-pharmacokinetics approach in application
to diabetes mellitus type 2 treatment with tolbu-
tamide. We introduce the necessary ingredients,
present first results and discuss lines of necessary
further research, which clearly demonstrate how
both fields may fruitfully interact with each other.

2. DIABETES MELLITUS &
TOLBUTAMIDE-INSULIN-GLUCOSE

DYNAMICS

The literature dealing with mathematical mod-
eling for diabetes type 2 is abundant, focussing
on the different aspects of the disease, includ-
ing glucose and insulin dynamics (e.g. (Keener
and Sneyd, 1998; Fall et al., 2002) and references
therein). A simplified model for the release of in-
sulin from the pancreatic β-cells was proposed by
Maki and Keizer (Keener, 2001; Maki and Keizer,
1995) and will be discussed below. Sulfonylureas,
such as tolbutamide, are oral antidiabetic drugs
that increase insulin release from the pancreatic
β-cells and thereby increase glucose uptake from
the blood.

Our interest in diabetes mellitus modelling was
motivated by a clinical study, in which the effect
of polymorphisms in drug metabolizing enzymes
on the glucose insulin metabolism was analyzed
(Kirchheiner et al., 2002). In the study, the plasma
concentrations of tolbutamide, glucose and insulin
were measured. While there was a good corre-
lation between the activity of the metabolising
enzymes and the drug pharmacokinetics (as ex-
pected), surprisingly no correlation between the
drug concentration and the effect on insulin and
glucose plasma levels could be found, which gave
rise to different speculations.

Insulin is secreted from the pancreatic β-cells
via exocytosis in an oscillatory fashion, stimu-
lated by glucose metabolism within the β-cell.
Glucose is taken up by a family of GLUT-type
transporters; secreted insulin affects the transport
of glucose into the cells by activating GLUT-
1 transporters and inactivating GLUT-2 trans-
porters. Thus, there is both positive and negative
feedback. Maki and Keizer proposed a mathemat-
ical model to study the interactions in a cleverly

232



oral

H
9

H
3C

S

O

O

O

H
N

HN
C

4

H9

H3C
S

O

O

O

HN

H
N C4

H9

H3C

S

O
O

O

HN

H
N

C4

H
9

H
3C

SO

O

O

H
N

H N
C

4

H
9

H
3C

S

O

O

O

H
N

HN
C

4

H9

H3C

S

OO

O HN

H
N

C4

H9
H3CS

O

O

O

HN

H
NC4

H
9

H
3C

SO

O

O

H
N

H N
C

4

H 9

H 3C

S

O O

O
HN

H
N

C 4

H 9

H 3C

S

O O

O
HN

H
N

C 4

H
9

H
3C

S

O

O

O

H
N

HN
C

4

H9
H3CS

O

O

O

HN

H
NC4

H
9

H
3 C

S

O
O

O
H

N

H
N

C
4

Pancreatic islet cell

Nutrient (Glucose)

ATP

K +

Tolbutamide

K +

CA
2+

CA
2+

-

Insulin 

exocytosis

Ca   -induced Insulin release

-
Insulin
Granuli

+

Insulin-

synthesis

Metabolism

2+

2+
Voltage dependent Ca  -channel

Tolbutamide

+

Glucose -Na

Co-transport

+

lung

liver

kidney

brain

heart

muscle

skeleton

adipose

a
rte

ry

gut

spleen

pancreas

skin

p.o.

v
e

n
e

metab.

whole body topology organ topology

Fig. 1. The leftmost picture shows a β-cell model of insulin secretion including Tolbutamide-target
interactions. An illustration of a physiologically based whole body pharmacokinetic model is shown
in the middle and on the right.

designed in vitro experiment (Maki and Keizer,
1995; Keener, 2001). The setup involves extracel-
lular glucose, extracellular insulin, and intracellu-
lar glucose. It further incorporates a flow through
the bed of cells. The system of differential equa-
tions is given by

d
dt

Gi = −R1 −R2 − k0(Gi −G0) (1)

d
dt

I i = Rs − k0(I i − I0) (2)

d
dt

Gc = R1 + R2 −Rm. (3)

The concentrations Gi ,I i and Gc correspond to
the interstitial glucose and insulin concentrations,
as well as the intracellular glucose concentration.
The terms R1 and R2 represent the uptake rates
of glucose through GLUT-1 and GLUT-2 trans-
porters, Rs and Rm denote the rate of insulin
secretion and the rate of glucose metabolism. The
parameter k0 represents the inflow with G0 and
I0 representing the inflow concentrations (which
could be interpreted as the capillary concentra-
tions). The system is coupled through the defi-
nition of the rates Ri. All parameters and a dis-
cussion of the model can be found in the original
articles (Maki and Keizer, 1995; Keener, 2001).

Although simplified, this model may serve as a
good starting point for the integration of the
insulin-glucose interaction into a physiologically
based pharmacokinetic model. The model has
been developed after in vitro experiments with
intact β cells have been carried out. It is worth
mentioning that in view of integrating systems
biology models into PBPK models, the former
should allow for a physiological or mechanistic
interpretation (see also Sec. 6).

Table 1. Tolbutamide specific pharma-
cokinetic parameters.

rat a human

tissue Kt:up Kt:up param. value

lun 0.76 1.74 fup 0.093 g

brn 0.3 3.11 CL (1*/1*) 16 b e

hea 0.83 1.35 CL (1*/3*) 10 b e

mus 0.4 0.87 CL (3*/3*) 2.7 b e

gut 0.36 1.03 pKa 5.43
spl 0.59 1.39 MAT 34.2 d e

ske 0.48 f 1.28 CV2
A 0.34 e

skin 0.68 3.05 log Po:w 2.4 i

kid 0.67 1.53 fbio 0.9 e

liv 0.93 1.64
pan 0.89 1.46
fat 0.39 0.92
ery 1.35 1.35

3. PHYSIOLOGICALLY BASED
PHARMACOKINETIC MODELS

A physiologically based pharmacokinetic (PBPK)
whole body model is a special type of compart-
mental model, in which the compartments repre-
sent anatomical volumes, such as organs or tis-
sues, interconnected by the blood flow (e.g., Theil
et al., 2003, Nestorov, 2003). The conceptional
representation of a 14 compartment PBPK model
is shown in Fig. 1 (middle and right). In mathe-
matical terms, PBPK models are coupled systems

a reference: (Sugita et al., 1982)
b plasma clearance with unit [mL/min], based on a 80 kg
human
c unit [µM ]
d unit [min]
e reference: (Kirchheiner et al., 2002)
f determined in silico by the method developed by
Rodgers et al. (Rodgers and Rowland, 2006) using in vitro
parameters
g reference: (Sawada et al., 1985)
h reference: (Kamp et al., 2003)
i reference: http://www.syrres.com/esc/kowdemo.htm
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of ordinary differential equations, parameterized
by physiological and compound-specific parame-
ters. Due to recent advances in the determina-
tion of key parameters (Poulin and Theil, 2000;
Rodgers et al., 2005; Rodgers and Rowland, 2006),
parametrization of generic PBPK models is now
possible for many classes of compounds, even prior
to the performance of any in vivo experiments.

Recently, we have introduced a modular approach
to physiologically based pharmacokinetics (von
Kleist and Huisinga, 2007), in which each com-
partment is further sub-divided into the four
phases: erythrocytes, plasma, interstitium and
cellular space (see Fig. 1). Many physiological
processes in pharmacokinetics are now accessible
for a mechanistic description at this resolution.
In addition, we have introduced advanced soft-
ware concepts that enable a modular approach to
pharmacokinetic/pharmacodynamic modeling, al-
lowing for the user-friendly integration of systems
biology models (Huisinga et al., 2006; Telgmann et
al., 2006). These have been realized in the virtual
lab MEDICI-PK (CiT Rastede/Germany) that
has been used for the simulation studies herein.

4. TOLBUTAMIDE DRUG
CHARACTERISTICS

Tolbutamide is a weak mono-protonic acid that
rapidly passes cellular membranes by free dif-
fusion (Kamp et al., 2003). It is extensively
bound to albumin in the plasma and interstitial
space (Jakoby et al., 1995). Tolbutamide is ap-
proximately linearly cleared from the body by
metabolism, mainly by the liver enzyme CYP450
2C9. Compound specific parameters to model
tolbutamide pharmacokinetics are displayed in
Table 1—the relevant physiological parameters
can be found in (Poulin and Theil, 2000; Rodgers
and Rowland, 2006). Tolbutamide stimulates in-
sulin secretion from pancreatic β-cells. Its main
target is the sulfonylurea receptor of the β-cells, a
component of the ATP-sensitive potassium chan-
nel (KATP). This channel plays a major role in
controlling the β-cell membrane potential. At rest,
the KATP channel is open and maintains the mem-
brane potential at a hyperpolarized level that pre-
vents insulin secretion (McClenaghan and Flatt,
1999). Closure of the KATP channel by glycose
metabolism or sulfonylureas (Ashfield et al., 1999)
causes membrane depolarization which, in turn,
triggers Ca2+ influx through voltage gated Ca2+

channels and thereby stimulates the exocytosis of
insulin-containing secretory granules (Geng et al.,
2003), see Fig. 1(left picture).

A concentration of 8-9 [mM] glucose causes an
insulin release (McClenaghan and Flatt, 1999),
which is equivalent to a 90 % closure of the
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Fig. 2. MEDICI-PK Simulation results show-
ing the influence of polymorphism on
tolbutamide concentrations: Fast metabo-
lizer (1*/1* genotype, solid line), interme-
diate metabolizer (genotype 1*/3*, dashed-
dotted lines), and slow metabolizer (genotype
3*/3*, dashed lines). The left panel shows
the concentration-time profiles in the venous
plasma (experimentally accessible), while the
right panel shows the free (unbound) concen-
tration in the interstitial compartment of the
pancreas, which is the relevant concentration
in the effect compartment.

KATP channels. A concentration of 15-25 [µM]
tolbutamide has the same effect (Jonkers et al.,
2001).

5. IN SILICO STUDY OF THE EFFECT OF
POLYMORPHISMS

As described in Sec. 2, we are interested in the
implications of polymorphism in the metabolis-
ing enzyme 2C9 on tolbutamide pharmacokinetics
and its effects on insulin and glucose levels. This
is the first step towards analysing the clinical
study outcome performed by (Kirchheiner et al.,
2002). We set up a physiologically based phar-
macokinetic model using the parameters listed in
Table 1. Convincing agreement with experimental
results could be established (e.g., comparison with
experimental results by Sugita et al., 1982 for
rats, data not shown). The simulations for hu-
mans shown in Fig. 2 clearly illustrate the impact
of polymorphism on tolbutamide pharmacokinet-
ics. In particular, the genotype related to poor–
metabolisers (*3/*3) shows prolonged exposure to
tolbutamide.

The above study only considers the pharmacoki-
netics of tolbutamide. Concerning the insulin-
glucose interactions, the predictions according to
the Maki and Keizer model are shown in Fig. 3.
The uptake of glucose from the inflow and its sub-
sequent metabolism triggers the release of insulin.
Positive and negative feedback mechanism result
in oscillatory behaviour.

The next step is the integration of a systems
biology model of tolbutamide-glucose-insulin in-
teraction in the interstitial and cellular space of
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Fig. 3. Oscillatory release of insulin (solid,
blue line) triggered by intracellular glucose
(dashed, green line) as predicted by the Maki
and Keizer model based on a constant glucose
inflow of 12 [mM].

the pancreas, as shown in Fig. 1 (left picture).
This would allow to study the implications of the
different drug levels on the insulin and glucose
levels. Maki and Keizer have shown that oscilla-
tory behaviour and insulin release is sensitive to
the incoming glucose concentration. Similar be-
haviour can be expected in relation to tolbutamide
concentrations. Consequently, only the coupling
of the full time-dependent pharmacokinetics to a
cellular model of insulin release would correctly
account for the complex interaction. Due to the
modularity and resolution of the chosen PBPK
model, such a combined model is now accomplish-
able.

6. DISCUSSION & OUTLOOK

We have established a physiologically based phar-
macokinetic (PBPK) model for tolbutamide that
serves as a starting point for the subsequent in-
tegration of pharmacodynamic processes, like the
model by Maki and Keizer (see Sec. 2). There is
much work to be done to model, simulate and
finally interpret the implications of polymorphism
on the effect on glucose and insulin levels. Our
studies should rather been seen as an illustra-
tive example for the rich field of applications of
systems biology in future drug discovery and de-
velopment, when tightly coupled to mechanistic
pharmacokinetic models.

This combined approach has also several direct
implications on the way systems biology models
of cellular response should be constructed. Ideally,
the models should be parameterized, e.g., by cor-
respondingly designed in vitro experiments. More-
over, the cellular model and the corresponding pa-
rameters should allow for a physiological interpre-
tation. This is typically the case for PBPK models
where, e.g., tissue partitioning is predicted based
on compound-specific parameters combined with
tissue decomposition data, or liver metabolism is
estimated via in vitro assays using hepatocytes.

The overall model then predicts the complex in-
teraction of all its ”simple” constituents—rather
than being fitted to experimental data to repro-
duce those data. Allowing for physiologically in-
terpretation is a main advantage of PBPK mod-
els over empirical pharmacokinetic models. This
offers, e.g., the possibility to extrapolate between
different species, which empirical models rarely do
or is rather difficult to perform with.

When analyzing detailed cellular models, e.g., in-
volving a drug target molecule and downstream
effects, constant drug concentrations are often as-
sumed as an input signal. Here PBPK models offer
the possibility to integrate more realistic drug
concentration profiles as stimulating input signals,
thus accounting for the ”neglected” environment.

The tolbutamide-insulin-glucose study has much
further research to offer: The question of possible
intracellular targets of tolbutamide, besides the
well known effects of tolbutamide on the KATP

channel of the pancreatic β-cells could be an-
alyzed in silico. The question of how glucagon
influences the glucose insulin metabolism needs
to be addressed, too. Glucagon is secreted by the
pancreatic α cells and it is known to have a coun-
teracting effect compared to insulin. Experimental
results suggest a direct impact of tolbutamide on
glucagon secretion that is both inhibitory and
stimulative and comparable to that of glucose.
In order to explain the experimental findings of
the mentioned clinical study (Kirchheiner et al.,
2002), it might also be necessary to take the
electrophysiology of the pancreatic α cells into
account (Diderichsen and Gopel, 2006).
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