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Transition networks for modeling the kinetics of conformational
change in macromolecules
Frank Noé1 and Stefan Fischer2

The kinetics and thermodynamics of complex transitions in

biomolecules can be modeled in terms of a network of

transitions between the relevant conformational substates.

Such a transition network, which overcomes the fundamental

limitations of reaction-coordinate-based methods, can be

constructed either based on the features of the energy

landscape, or from molecular dynamics simulations. Energy-

landscape-based networks are generated with the aid of

automated path-optimization methods, and, using graph-

theoretical adaptive methods, can now be constructed for large

molecules such as proteins. Dynamics-based networks, also

called Markov State Models, can be interpreted and adaptively

improved using statistical concepts, such as the mean first

passage time, reactive flux and sampling error analysis. This

makes transition networks powerful tools for understanding

large-scale conformational changes.
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Introduction
Conformational changes are crucial to the function of

proteins and nucleic acids. A variety of processes exist,

ranging from binding of macromolecules and their ligands

[1], over complex conformational rearrangements switch-

ing between native protein substates [2,3��] to the folding

of proteins and RNA [4,5]. Understanding the mechan-

isms of such transitions is challenging, as they involve

many degrees of freedom and often occur via various

pathways with many intermediates.

These processes are often simulated by driving the tran-

sition with a few (often one) pre-defined reaction coordi-

nates or order parameters [6–8] while allowing the

remaining degrees of freedom to relax. This assumes that

the chosen reaction coordinates suffice to define all

relevant states of the process, including the transition

states, such that the slow transition events are entirely

separated in the low-dimensional projection onto these

coordinates. Such an approach may work for simple

chemical systems, or for processes in which the driving

coordinate corresponds to an experimentally applied

external force, such as in force-clamp protein unfolding

[9,10]. However, reaction-coordinate-based simulation

methods tend to perturb the transition mechanism and

yield wrong rates for complex equilibrium processes

which, for example, involve domain rearrangements

and folding. A striking example of this is the method

of targeted (or steered) molecular dynamics (TMD), in

which a constraint is put on the RMS-difference between

the current and target coordinate-set in order to accelerate

the transition towards the target coordinate during mol-

ecular dynamics simulation. When the equilibrium tran-

sition mechanism involves a concerted interplay between

localized and large-scale motions, as it often does for

macromolecules, TMD biases the order of these motions

as illustrated in Figure 1[11].

Moreover, attempting to understand the thermodynamics

and kinetics of complex systems in terms of the free-

energy landscape in low-dimensional projections is,

although appealing, often highly deceptive. This is due

to the fact that low-dimensional projections shrink dis-

tances between points in space and produce overlaps

between conformations that are separated in the full-

dimensional state space. This makes free energy barriers

disappear in the low-dimensional projection, often pro-

ducing apparently smooth free energy surfaces with only

one or two basins even for systems that contain many

kinetically separated substates, as clearly shown in

[12,13�].

In order to get an unbiased description of the intrinsically

high-dimensional macromolecular dynamics, it is essen-

tial to abandon the attempt to control the molecular

system in some pre-defined low-dimensional subspace

and move instead towards a more comprehensive descrip-

tion of the transition process. The first step in this

paradigm shift was the introduction of path-optimization

methods [14,15], in which a curvilinear pathway describ-

ing the complete transition is treated as a continuous

flexible chain of segments, starting from some initial

guess (such as a linear interpolation between the two

end conformers). This chain can be optimized without
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application of external bias. An efficient method capable of

doing this automatically for proteins is conjugate peak

refinement (CPR) [14], which has allowed to determine

several transition mechanisms in proteins [16,17,2,18].

Another popular method is the nudged elastic band

(NEB) approach [15]. A typical application domain of

path-optimization methods are allosteric processes, that

is, conformational transitions where a small change in one

region of the protein (such as the binding or the chemical

modification of a ligand) triggers large changes in another

region of the protein (such as tertiary or quarternary re-

arrangements). This often involves a well-defined trans-

mission of structural information across the protein. For

example, using CPR, it was recently possible to explain in

detail the chemo-mechanical coupling between the cata-

lytic ATPase site and the distant force-generating domain

of myosin, an ATP-driven molecular motor [2,11].

The path-optimization approach is itself limited when a

multitude of transition mechanisms co-exist and formu-

lating many initial guess-paths becomes difficult. This

could in principle be alleviated by path sampling methods

[19,20] which sample from an ensemble of dynamic

pathways connecting two end-states. However, this

approach may fail to converge for complex transitions

between well-defined end-states, or when the two end-

states are separated by multiple transition channels.

Thus, a further step towards obtaining a comprehensive

description of the transition process and its kinetics was to

partition the state space into discrete substates and cast

the complex process into a network of simpler transitions

between them (see Figure 2 for an illustration). In

particular, biomolecular function often depends on the

ability to undergo transitions between long-lived inter-

mediates, that is ‘metastable’ states [21], which are well

suited as substates in such a kinetic model. There are two

approaches to building a transition network, the ‘energy

landscape’ and the ‘dynamical’ approach, which are the

focus of the present review. We start with a short overview

of the theory underlying transition networks.

Modeling kinetics with discrete states
The transition process between conformational substates

is often described with the memoryless Master equation:

dpðtÞ
dt
¼ pðtÞK: (1)

with pðtÞ being an m-dimensional column vector contain-

ing the probability to find the system in each of its m states

at time t. K is a rate matrix with Ki j being the transition

rate constant from state i to state j. The diagonal elements

of K are Kii ¼ �
P

j 6¼ iKi j to ensure mass conservation.

Alternatively, the system dynamics can be described by a

discrete-time Markov process using the transition matrix,

TðtÞ, whose entries T i j provide the probability of the

system to be found in state j at time t þ t given that it was

in state i at time t (Figure 2b). The corresponding analog

to Eq. (1) is

pððkþ 1ÞtÞ ¼ pðktÞTðtÞ: (2)

Eqs. (1) and (2) provide equivalent results at discrete

times t ¼ kt, k2N0 and are related by TðtÞ ¼ exp ðtKÞ
[22]. Here, we will concentrate on TðtÞ. Each left eigen-

vector of T, qi, describes a particular ‘transition mode’

between substates, while the corresponding eigenvalue li

describes the fraction of molecules (i.e. li � 1) that have

not undergone the transition qi after time t (i.e., li� 0 are

fast modes, li � 1 are slow modes, see Figure 2c and d).

The first mode, q1, provides the stable equilibrium distri-

bution of the system (Fig 2c, top), that is no transitions,

and thus l1 ¼ 1. In the example of Figure 2, the second

transition mode, q2, corresponds to the slow (l2 ¼ 0:97)

exchange between basins A and basins B + C, as reflected

by the opposite signs of the elements of q2 in these

regions (Figure 2c, middle). The ‘implied’ timescale of

a transition mode is given by

t�i ¼ �
t

ln li
(3)

Transition networks for modeling the kinetics of conformational change in macromolecules Noé and Fischer 155

Figure 1

Sequential bias during targeted molecular dynamics (TMD). Example of a

transition between conformations A and B of a two-domain protein (shown

in black and white). The equilibrium transition channel (green area)

consists of paths in which soft domain motions (plotted vertically) alternate

with stiff local motions (such as side-chain rearrangements necessary at

the interfaces between domains, plotted horizontally). The RMSD-reaction

coordinate of TMD responds most when the motion involves many atoms,

thus, soft global motions react early to the pulling force, while localized

changes occur late in a TMD pathway. Consequently, pulling A!B and

B!A result in different pathways (red dotted lines), a clear indication that

the transition mechanism has been biased.
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For equilibrium molecular dynamics, TðtÞ is positive

definite (li > 0 for all i) and there exists a unique equi-

librium distribution, p, which fulfills detailed balance,

piT i j ¼ p jT ji.

A system without memory is said to be Markovian. This

means that, at any time t, the future of the system will

depend only on its current state, pðtÞ, and not on its past

history. Besides inertial effects on short timescales, the

most frequent cause of nonmarkovianity in macromol-

ecules is the presence of state-internal barriers (see

Figure 3). Any model will be Markovian for long enough

lagtimes, t, but in order to achieve a model with a short

enough lagtime to be useful, the states should be defined

such that large internal barriers are avoided. Thus, the

model’s substates should be metastable, that is, having

minimal intra-state equilibration times and maximal

interstate transition times. Most approaches first finely

partition the configurational space of the molecule into a

large set of states, called here microstates, which are then

clustered together into fewer metastable states

(Figure 2e). Figure 2f shows a coarse-grained transition

network between metastable states.

Energy-landscape-based transition networks
In the ‘energy landscape’ approach, the microstates are

often taken as the attraction basins, that is the set of

configurations that minimize to the same local minimum

[23], see Figure 4. Metastable substates are obtained by

lumping groups of basins that are separated by low energy

barriers [24,25]. The adjacent substates are connected to

form a network, and the transition rates in the network are

obtained from the energy of the saddle-points along the

156 Theory and simulation

Figure 2

The construction of a transition network. (a) Sample potential, defined over a one-dimensional coordinate that is discretized into 100 microstates. It

has three metastable basins (A, B, and C). (b) Transition matrix TðtÞ for a Markov lagtime of t ¼ 200 steps. The transition probability Ti j within time t

(blue: Ti j ¼ 0, red: Ti j � 0:1) was obtained from a Metropolis Monte Carlo (T ¼ 1=kB), jumping each step only to the current or adjacent microstates. T

exhibits three clusters corresponding to the metastable states. (c) Left eigenvectors of T indicating the transition modes among microstates. The first

eigenvector gives the stationary distribution. The sign structure of the second eigenvector partitions the state space into two metastable states (thick

magenta line), A and B + C. The sign structure of the third eigenvector further splits B and C (thin magenta line), obtaining three metastable states. (d)

The eigenvalue spectrum of T. The clear gaps after 2 and 3 eigenvalues indicate how many states are metastable. (e) Coordinates of the 100

microstates projected onto the second and third right eigenvectors of T. Metastable states are identified by clustering the microstates in this

eigenspace (magenta lines). (f) Transition network between the 3 metastable states A, B and C (the transition probabilities are obtained from Eq. (5)).
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connections. The first-order saddle-points can be located

directly with CPR [14], or with other path-optimization

methods combined with transition state optimizers ([26]

and [27�], pp. 284–287). For each connection in the net-

work, the energy barrier of the highest (rate-limiting)

saddle point is used in conjunction with a rate-law

(usually transition state theory) to determine the tran-

sition rate, ki j , from substate i to substate j. In the simplest

case, the barrier is assumed to be purely enthalpic, that is,

it is given by the potential energy difference between

minima and saddle points. Entropic contributions can be

included by, for example, using a harmonic approxi-

mation around the stationary points to estimate the

vibrational free energies [28].

The main advantage of the energy-landscape approach is

that it allows to explore transitions which involve high

individual energy barriers that could not be crossed by

unbiased molecular dynamics simulations. The main

challenge of this approach is that the number of stationary

points on the energy surface increases exponentially with

the system size [29] and that computing first-order saddle

points in large molecules is computationally expensive,

rendering it infeasible to compute all barriers of the

network. Therefore, energy-landscape based transition

networks have been used for small systems, such as atom

clusters and glasses (see e.g. [30,31]) or peptides

[12,32,33]. Somewhat larger systems may be treated by

employing methods that restrict the expensive saddle-

point computations to a relevant subnetwork, for example

by using discrete path sampling [20,34]. Recently, a
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Figure 3

Intra-state barriers increase the Markov lagtime. (a) A trajectory passing

from state 1 to state 2 at time t is, at a very short time t þ Dt later, more

likely to go back to state 1 than to proceed to state 3 (which involves

crossing the internal barrier in state 2). Thus, the system retains memory

of its previous history as long as it did not equilibrate within state 2. After

a sufficiently long lagtime t, the system loses the memory from where it

came into state 2. (b) This state definition has even higher state internal

equilibration times, requiring longer lagtimes t for a Markovian behavior,

too long to be of practical use.

Figure 4

Transition network on an energy landscape. The substates are local energy minima (white bullets, the two end-states are shown as large bullets),

connected by minimum energy subpaths (white lines) whose energy barriers can be calculated. Two essential properties of a transition network are the

best path between the end-states (along which the reactive flux is maximal, shown as red line) and the energy ridge (i.e., the collection of rate-limiting

saddle-points separating the end-states, shown as stars).
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methodological breakthrough has allowed to comprehen-

sively characterize the transition network of a complex

protein transition [3��], the Ras p21 molecular switch. By

using an adaptive approach based on graph theory [35], this

method computes only those energy barriers which con-

tribute to the global network properties of interest, such as

the best path(s) connecting or the energy ridge(s) separ-

ating two transition end-states (Figure 4). Since this

method reduces the number of energy barriers required

by several orders of magnitude, it allows transition net-

works also to be constructed for complex transitions in large

molecules [3��,35]. For example in the case of Ras p21,

the hydrolysis of bound GTP induces a rearrangement of

the fold of two regions (Switches I and II). It is conceivable

that such a transition involves many pathways via various

partially folded Switch regions. However, the computed

TN showed that all energetically feasible pathways in-

clude a coupling between the motions of Switches I and II,

inducing a preferred order of events. The suggested mech-

anism can be experimentally validated, for example, via

point mutations in the key residues.

These works having spawned an energy-landscape theory

[27�,36], which allow to interpret the behavior of molecular

systems in terms of the features of the underlying energy

landscape. In practice, the size of the molecules that can be

meaningfully described by the energy-landscape approach

is still limited because the fluctuations of the potential

energy increases with the number of degrees of freedom in

the system, thus giving rise to unrealistic energy differ-

ences in large systems. For this reason, explicit solvation is

usually avoided and instead, implicit solvent methods (e.g.

Generalized-Born) are used. Moreover, to compute kinetic

properties with the energy-landscape approach, the tran-

sition rates between substates need to be modeled by some

rate theory whose validity is often unclear. Finally, since

the actual system dynamics is not available, the validity of

the Markov property cannot be verified.

Dynamics-based transition networks
As a result of increased computational power and meth-

odological advances, the construction of kinetic multi-state

models directly from molecular dynamics (MD) data, often

called Markov State Models (MSM), is becoming increas-

ingly popular [37��–39–40]. In contrast to the energy-land-

scape approach, MSMs require no rate theory — rates are

directly obtained from the observed dynamical transitions.

Furthermore, it can be tested explicitly whether the MSM

exhibits the Markov property and is consistent with the

MD simulations. In contrast to extracting slowly conver-

ging properties from lengthy dynamical trajectories, MSMs

can be constructed from simulations that need only to be

long enough to be in local equilibrium: they must be long

enough to equilibrate within individual substates and

occasionally undergo transition to neighboring substates.

Thus, processes that occur on very long timescales (such as

milliseconds) can be correctly modeled using many short

trajectories started from different conformations [42,43],

which was already exploited in massively parallel simu-

lation of peptide folding [43]. The main disadvantage of

the dynamical approach is that it will fail if, for the process

of interest to occur, individual barriers between microstates

must be crossed that are too high to be sampled within the

individual simulation times.

The microstates can be defined by geometrical proximity

[37��,38��,41]. It is important to choose microstates such

that they do not merge kinetically separated regions of

state space, as this would prevent the model to be

Markovian (see Figure 3 and [37��,42]). After assigning

each structure along a given MD trajectory to one of the

microstates, the transition matrix, TðtÞ, is computed for

each pair of microstates ði; jÞ, as

T i j ¼
number of transitions i! j in time t

number of starts in i
(4)

To maximize the time resolution of the model, the

lagtime t is chosen to be the minimal lagtime needed

for the model to remain Markovian. This can be deter-

mined by exploiting the fact that, if the dynamics is

Markovian at lagtime t, it will also be Markovian at larger

lagtimes t0> t, and any kinetic properties computed from

the model should then be converged in t. The method

used in [37��,43,44] computes, for different lagtimes t,

TðtÞ and its set of implied timescales from Eq. (3). At

lagtimes greater than or equal to the Markov lagtime, the

implied timescales have converged.

A meaningful way of clustering the microstates into a set

of C metastable states is to require that the transitions

between microstates within each metastable state are

much faster than the transitions between metastable

states. This can be achieved by using an iterative split-

ting-and-lumping procedure [38�]. A similar partition can

be obtained efficiently with the improved Perron cluster

cluster analysis (PCCA) method [45,46], which exploits

the fact that kinetically closely connected microstates

have similar coordinates in the first C right eigenvectors

(see Figure 2e). Note that simple geometric clustering is

often unable to identify metastable states since large free

energy barriers may lie between geometrically close

conformations [37��]. A practical way to choose the num-

ber of clusters, C, is to define a timescale t�min of interest. C
is chosen equal to the number of implied timescales

greater than t�min . Note that C is a user-defined parameter

and its choice is a compromise between improving

conformational resolution and reducing statistical error.

If there is a large gap between the C th and the ðC þ 1Þ th

timescales, the total transition probability between meta-

stable states I and J is approximately:

T̄IJðtÞ�
P

i2 I; j 2 J piT i jðtÞP
i2 I pi

: (5)

158 Theory and simulation
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Figure 5

Hierarchical transition network for the Ala12 peptide, computed for either 4, 6, and 8 metastable sets. Each circle corresponding to one metastable

state contains its free energy relative to the most populated state, a (in kcal/mol, top), and its lifetime (bottom) at 300 K. Solid lines represent transitions

that have occurred within a 4 m s MD simulation. Dotted lines relate corresponding metastable states.
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The resulting coarse-grained transition network captures

the essential features of the transition process, as shown

for example in Figure 2f.

The Markovianity of MSMs is often tested directly via
convergence of the implied timescale test (see above) but

this method is unreliable when statistics are poor. Other

Markov tests have been proposed [44,47], but many of

them suffer from being too tolerant, or from being ambig-

uous (John D Chodera, Stanford, personal communi-

cation). Ultimately, the best test for the model is to

compare the molecular dynamics simulations to the pre-

dictions of Eq. (2)[37��,48]. A systematic test for Marko-

vianity based on this criterion is still elusive.

So far, MSMs have been used mainly to model the

dynamics of small polypeptides for which sufficient

sampling could be achieved [43,40], some also testing

the validity of the Markov assumption and checking for

consistency with the dynamics [37��,38��,48]. An example

application on Ala12 is shown in Figure 5.

Interpretation of transition networks
In principle, any property that can be calculated directly

from simulation data, can also be obtained from the

transition network. For example, the equilibrium distri-

bution is obtained from the elements in the first left

eigenvector of TðtÞ or the rate matrix K, scaled such that

they sum to 1 (see Figure 2c, top). This is how the relative

free energies of the Ala12 macrostates in Figure 5 were

calculated.

Another property of interest is the mean first passage time

(mfpt), defined as the mean time f i it takes to reach a

given metastable state m for the first time when starting

from another state i. All mfpt’s ( f i, i ¼ 1; . . . ;m� 1) can

be computed simultaneously from the transition matrix

by solving the following linear system of equations [49�]:

T 11 � 1 � � � T 1m

T 22 � 1 T 2m

..

.
} ..

.

T m1 � � � T m�1;m�1 � 1 T m�1;m

0 0 � � � 0 1

2
66666664

3
77777775

	

f 1

f 2

..

.

f m�1

f m

2
66666664

3
77777775
¼

�t

�t

..

.

�t

0

2
6666664

3
7777775

A useful property is the committor probability ci, defined

as the probability to transition from a metastable state i to

set B without hitting set A first, where A and B are given

sets of metastable states. For example in protein folding,

A and B can be chosen as the set of fully unfolded and

folded conformers, respectively (ci is then often referred

to as pfold, the probability of folding for conformer i). The

set of states with ci� 0:5 (i.e., having equal chance to fold

or unfold) can be used as a definition for the transition

state ensemble [50]. The committor can be calculated

directly from the transition matrix by solving the follow-

ing system of linear equations:

X
j

ðT i j � di jÞci ¼ 0; 8 i =2 ðA[BÞ

ci ¼ 0; 8 i2A
ci ¼ 1; 8 i2B

; (6)

with di j ¼ 1 for i ¼ j and 0 otherwise.

Finally, a statistically rigorous approach to computing the

full set of individual transition pathways A!B along with

their relative contributions to the overall A!B rate is

given by the Transition Path Theory (P Metzner, C

Schütte, E Vanden-Eijnden, Transition path theory for

Markov jump processes, Annu Appl Prob, unpublished

data). First, the flux from state i to state j that effectively

contributes to the transition A!B is given by:

f i j ¼ pið1� ciÞki jc j ;

where pi is the probability to start in i, ð1� ciÞ is the

probability to come from A rather than from B, ki j is the

transition rate from i to j, and c j is the probability to

transition to B rather than to A. The net flux is obtained

from:

f̄i j ¼ f i j � f ji;

and provides a network of directed net fluxes. This net-

work can be decomposed into individual A!B pathways,

which can be sorted according to their contribution to the

overall A!B flux, thus providing something similar to the

best path, the next best path, etc.

The sampling problem
Even with the help of massively parallel computing

platforms, such as folding@home, it is currently challen-

ging to run enough MD sampling such as to obtain a well-

converged kinetic model of complex conformational

change in a protein. However, this may be achieved by

using an adaptive approach, such that the sampling is

limited to the statistically most rewarding parts of state

space [3��,35,49�,51].

Since the transition matrix TðtÞ is estimated from finite

MD trajectories, any property calculated from TðtÞ will

have a degree of uncertainty. The first step is to estimate

this uncertainty. Assuming an a priori uniform distri-

bution of matrices, the likelihood that all the transitions

160 Theory and simulation

Current Opinion in Structural Biology 2008, 18:154–162 www.sciencedirect.com



Author's personal copy

observed during the MD runs are consistent with a

particular matrix TðtÞ is proportional to

p½TðtÞ
/
Y
i; j

T
ci j

i j ; (7)

where ci j denotes the actual number of transition events

observed from state i to state j. The matrix that maximizes

this likelihood turns out to be the transition matrix

resulting from Eq. (4). The width of this likelihood

density measures the statistical uncertainty of the matrix

entries T i j [49�]. Since generally one is more interested in

the distribution (and corresponding uncertainty) of some

target property AðTðtÞÞ that is computed from the tran-

sition matrix, this distribution can be computed by first

generating transition matrices according to the density of

Eq. (7), and then computing AðTðtÞÞ for each of the

generated TðtÞ [49�]. Fast but approximate analytical

methods have also been proposed [49�,51]. The devel-

opment of efficient error analysis methods which evaluate

the distribution of transition matrices that obey particular

conditions (such as detailed balance or positive definite-

ness) is in progress.

Once the statistical uncertainty of A has been determined,

the next step is to chose in which state i the next MD

simulation should be started in order to give the largest

decrease of this statistical uncertainty. This approach was

considered in [49�] and it was shown that with adaptive

sampling a given uncertainty could be achieved within a

fraction of the computational effort compared to non-

adaptive sampling.

Conclusion
Modeling the kinetics of macromolecules based on tran-

sition networks is a promising concept in current com-

putational structural biology. This concept has been

spawned by the energy-landscape approach, whose main

limitation is that kinetics are only secondary to the model

and must be recovered via a rate theory. Markov state

models are computationally more demanding, but can be

tested and analyzed using standard tools from statistics

and algebra. Major open problems in the field include:

First, the development of a reliable and unsupervised test

for Markovianity; second, the development of efficient

methods to generate transition matrices that exhibit a

number of properties such as detailed balance or positive

definiteness; thus allowing for a better estimation of the

statistical uncertainty; third, the development of a

numerically stable and algorithmically efficient adaptive

sampling strategy, which includes an adaptive re-defi-

nition of microstates and metastable states, thus alleviat-

ing the sampling problem. Upon solving these problems,

transition networks are set to become the standard tool for

studying and understanding complex transitions in

macromolecules.
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