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The kinetics and thermodynamics of complex transitions in
biomolecules can be modeled in terms of a network of
transitions between the relevant conformational substates.
Such a transition network, which overcomes the fundamental
limitations of reaction-coordinate-based methods, can be
constructed either based on the features of the energy
landscape, or from molecular dynamics simulations. Energy-
landscape-based networks are generated with the aid of
automated path-optimization methods, and, using graph-
theoretical adaptive methods, can now be constructed for large
molecules such as proteins. Dynamics-based networks, also
called Markov State Models, can be interpreted and adaptively
improved using statistical concepts, such as the mean first
passage time, reactive flux and sampling error analysis. This
makes transition networks powerful tools for understanding
large-scale conformational changes.
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Introduction

Conformational changes are crucial to the function of
proteins and nucleic acids. A variety of processes exist,
ranging from binding of macromolecules and their ligands
[1], over complex conformational rearrangements switch-
ing between native protein substates [2,3°°] to the folding
of proteins and RNA [4,5]. Understanding the mechan-
isms of such transitions is challenging, as they involve
many degrees of freedom and often occur vi@ various
pathways with many intermediates.

These processes are often simulated by driving the tran-
sition with a few (often one) pre-defined reaction coordi-
nates or order parameters [6-8] while allowing the

remaining degrees of freedom to relax. This assumes that
the chosen reaction coordinates suffice to define all
relevant states of the process, including the transition
states, such that the slow transition events are entirely
separated in the low-dimensional projection onto these
coordinates. Such an approach may work for simple
chemical systems, or for processes in which the driving
coordinate corresponds to an experimentally applied
external force, such as in force-clamp protein unfolding
[9,10]. However, reaction-coordinate-based simulation
methods tend to perturb the transition mechanism and
yield wrong rates for complex equilibrium processes
which, for example, involve domain rearrangements
and folding. A striking example of this is the method
of targeted (or steered) molecular dynamics (TMD), in
which a constraint is put on the RMS-difference between
the current and target coordinate-set in order to accelerate
the transition towards the target coordinate during mol-
ecular dynamics simulation. When the equilibrium tran-
sition mechanism involves a concerted interplay between
localized and large-scale motions, as it often does for
macromolecules, TMD biases the order of these motions
as illustrated in Figure 1[11].

Moreover, attempting to understand the thermodynamics
and kinetics of complex systems in terms of the free-
energy landscape in low-dimensional projections is,
although appealing, often highly deceptive. This is due
to the fact that low-dimensional projections shrink dis-
tances between points in space and produce overlaps
between conformations that are separated in the full-
dimensional state space. This makes free energy barriers
disappear in the low-dimensional projection, often pro-
ducing apparently smooth free energy surfaces with only
one or two basins even for systems that contain many
kinetically separated substates, as clearly shown in
[12,13°].

In order to get an unbiased description of the intrinsically
high-dimensional macromolecular dynamics, it is essen-
tial to abandon the attempt to control the molecular
system in some pre-defined low-dimensional subspace
and move instead towards a more comprehensive descrip-
tion of the transition process. The first step in this
paradigm shift was the introduction of path-optimization
methods [14,15], in which a curvilinear pathway describ-
ing the complete transition is treated as a continuous
flexible chain of segments, starting from some initial
guess (such as a linear interpolation between the two
end conformers). This chain can be optimized without
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Sequential bias during targeted molecular dynamics (TMD). Example of a
transition between conformations A and B of a two-domain protein (shown
in black and white). The equilibrium transition channel (green area)
consists of paths in which soft domain motions (plotted vertically) alternate
with stiff local motions (such as side-chain rearrangements necessary at
the interfaces between domains, plotted horizontally). The RMSD-reaction
coordinate of TMD responds most when the motion involves many atoms,
thus, soft global motions react early to the pulling force, while localized
changes occur late in a TMD pathway. Consequently, pulling A— B and
B — A result in different pathways (red dotted lines), a clear indication that
the transition mechanism has been biased.

application of external bias. An efficient method capable of
doing this automatically for proteins is conjugate peak
refinement (CPR) [14], which has allowed to determine
several transition mechanisms in proteins [16,17,2,18].
Another popular method is the nudged elastic band
(NEB) approach [15]. A typical application domain of
path-optimization methods are allosteric processes, that
is, conformational transitions where a small change in one
region of the protein (such as the binding or the chemical
modification of a ligand) triggers large changes in another
region of the protein (such as tertiary or quarternary re-
arrangements). This often involves a well-defined trans-
mission of structural information across the protein. For
example, using CPR, it was recently possible to explain in
detail the chemo-mechanical coupling between the cata-
lytic A'TPase site and the distant force-generating domain
of myosin, an ATP-driven molecular motor [2,11].

The path-optimization approach is itself limited when a
multitude of transition mechanisms co-exist and formu-
lating many initial guess-paths becomes difficult. This
could in principle be alleviated by path sampling methods
[19,20] which sample from an ensemble of dynamic

pathways connecting two end-states. However, this
approach may fail to converge for complex transitions
between well-defined end-states, or when the two end-
states are separated by multiple transition channels.
Thus, a further step towards obtaining a comprehensive
description of the transition process and its kinetics was to
partition the state space into discrete substates and cast
the complex process into a network of simpler transitions
between them (see Figure 2 for an illustration). In
particular, biomolecular function often depends on the
ability to undergo transitions between long-lived inter-
mediates, that is ‘metastable’ states [21], which are well
suited as substates in such a kinetic model. There are two
approaches to building a transition network, the ‘energy
landscape’ and the ‘dynamical’ approach, which are the
focus of the present review. We start with a short overview
of the theory underlying transition networks.

Modeling kinetics with discrete states
"The transition process between conformational substates
is often described with the memoryless Master equation:

dp(7)

o~ PUK (1)
with p(7) being an m-dimensional column vector contain-
ing the probability to find the system in each of its # states
at time 7 K is a rate matrix with K;; being the transition
rate constant from state 7 to state /. The diagonal elements
of K are K;; = —Z/#,K,-/— to ensure mass conservation.
Alternatively, the system dynamics can be described by a
discrete-time Markov process using the transition matrix,
T(t), whose entries 7';; provide the probability of the
system to be found in state 7 at time 7 + T given that it was
in state 7 at time 7 (Figure 2b). The corresponding analog
to Eq. (1) is

p((¢ +1)7) = p(kr)T (7). (2)

Egs. (1) and (2) provide equivalent results at discrete
times 7 = 41, #€ N and are related by T(7) = exp (rK)
[22]. Here, we will concentrate on T(7). Each left eigen-
vector of T, q;, describes a particular ‘transition mode’
between substates, while the corresponding eigenvalue A;
describes the fraction of molecules (i.e. A; < 1) that have
not undergone the transition q; after time 7 (i.e., A; =0 are
fast modes, X; ~ 1 are slow modes, see Figure 2¢ and d).
"The first mode, q;, provides the stable equilibrium distri-
bution of the system (Fig 2c¢, top), that is no transitions,
and thus A; = 1. In the example of Figure 2, the second
transition mode, (,, corresponds to the slow (A, = 0.97)
exchange between basins A and basins B + C, as reflected
by the opposite signs of the elements of q, in these
regions (Figure 2c, middle). The ‘implied’ timescale of
a transition mode is given by
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The construction of a transition network. (a) Sample potential, defined over a one-dimensional coordinate that is discretized into 100 microstates. It
has three metastable basins (A, B, and C). (b) Transition matrix T(z) for a Markov lagtime of r = 200 steps. The transition probability T;; within time ¢
(blue: Tj; = 0, red: T;; > 0.1) was obtained from a Metropolis Monte Carlo (T = 1 /kg), jumping each step only to the current or adjacent microstates. T
exhibits three clusters corresponding to the metastable states. (c) Left eigenvectors of T indicating the transition modes among microstates. The first
eigenvector gives the stationary distribution. The sign structure of the second eigenvector partitions the state space into two metastable states (thick
magenta line), A and B + C. The sign structure of the third eigenvector further splits B and C (thin magenta line), obtaining three metastable states. (d)
The eigenvalue spectrum of T. The clear gaps after 2 and 3 eigenvalues indicate how many states are metastable. (e) Coordinates of the 100

microstates projected onto the second and third right eigenvectors of T. Metastable states are identified by clustering the microstates in this

eigenspace (magenta lines). (f) Transition network between the 3 metastable states A, B and C (the transition probabilities are obtained from Eq. (5)).

For equilibrium molecular dynamics, T(t) is positive
definite (A; >0 for all /) and there exists a unique equi-
librium distribution, 7, which fulfills detailed balance,
7T,'T,'/' = JT/'T/,'.

A system without memory is said to be Markovian. This
means that, at any time 7, the future of the system will
depend only on its current state, p(#), and not on its past
history. Besides inertial effects on short timescales, the
most frequent cause of nonmarkovianity in macromol-
ecules is the presence of state-internal barriers (see
Figure 3). Any model will be Markovian for long enough
lagtimes, 7, but in order to achieve a model with a short
enough lagtime to be useful, the states should be defined
such that large internal barriers are avoided. Thus, the
model’s substates should be metastable, that is, having

minimal intra-state equilibration times and maximal
interstate transition times. Most approaches first finely
partition the configurational space of the molecule into a
large set of states, called here microstates, which are then
clustered together into fewer metastable states
(Figure 2e). Figure 2f shows a coarse-grained transition
network between metastable states.

Energy-landscape-based transition networks

In the ‘energy landscape’ approach, the microstates are
often taken as the a#traction basins, that is the set of
configurations that minimize to the same local minimum
[23], see Figure 4. Metastable substates are obtained by
lumping groups of basins that are separated by low energy
barriers [24,25]. The adjacent substates are connected to
form a network, and the transition rates in the network are
obtained from the energy of the saddle-points along the
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Figure 3
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Intra-state barriers increase the Markov lagtime. (a) A trajectory passing
from state 1 to state 2 at time t is, at a very short time t + At later, more
likely to go back to state 1 than to proceed to state 3 (which involves
crossing the internal barrier in state 2). Thus, the system retains memory
of its previous history as long as it did not equilibrate within state 2. After
a sufficiently long lagtime 7, the system loses the memory from where it
came into state 2. (b) This state definition has even higher state internal
equilibration times, requiring longer lagtimes 7 for a Markovian behavior,
too long to be of practical use.

Figure 4

connections. The first-order saddle-points can be located
directly with CPR [14], or with other path-optimization
methods combined with transition state optimizers ([26]
and [27°], pp. 284-287). For each connection in the net-
work, the energy barrier of the highest (rate-limiting)
saddle point is used in conjunction with a rate-law
(usually transition state theory) to determine the tran-
sition rate, £;;, from substate / to substate /. In the simplest
case, the barrier is assumed to be purely enthalpic, that is,
it is given by the potential energy difference between
minima and saddle points. Entropic contributions can be
included by, for example, using a harmonic approxi-
mation around the stationary points to estimate the
vibrational free energies [28].

The main advantage of the energy-landscape approach is
that it allows to explore transitions which involve high
individual energy barriers that could not be crossed by
unbiased molecular dynamics simulations. The main
challenge of this approach is that the number of stationary
points on the energy surface increases exponentially with
the system size [29] and that computing first-order saddle
points in large molecules is computationally expensive,
rendering it infeasible to compute all barriers of the
network. Therefore, energy-landscape based transition
networks have been used for small systems, such as atom
clusters and glasses (see e.g. [30,31]) or peptides
[12,32,33]. Somewhat larger systems may be treated by
employing methods that restrict the expensive saddle-
point computations to a relevant subnetwork, for example
by using discrete path sampling [20,34]. Recently, a

Current Opinion in Structural Biology

Transition network on an energy landscape. The substates are local energy minima (white bullets, the two end-states are shown as large bullets),
connected by minimum energy subpaths (white lines) whose energy barriers can be calculated. Two essential properties of a transition network are the
best path between the end-states (along which the reactive flux is maximal, shown as red line) and the energy ridge (i.e., the collection of rate-limiting

saddle-points separating the end-states, shown as stars).
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methodological breakthrough has allowed to comprehen-
sively characterize the transition network of a complex
protein transition [3°%], the Ras p21 molecular switch. By
using an adaptive approach based on graph theory [35], this
method computes only those energy barriers which con-
tribute to the global network properties of interest, such as
the best path(s) connecting or the energy ridge(s) separ-
ating two transition end-states (Figure 4). Since this
method reduces the number of energy barriers required
by several orders of magnitude, it allows transition net-
works also to be constructed for complex transitions in large
molecules [3°°,35]. For example in the case of Ras p21,
the hydrolysis of bound G'TP induces a rearrangement of
the fold of two regions (Switches I and II). It is conceivable
that such a transition involves many pathways vie various
partially folded Switch regions. However, the computed
TN showed that all energetically feasible pathways in-
clude a coupling between the motions of Switches I and I1,
inducing a preferred order of events. The suggested mech-
anism can be experimentally validated, for example, via
point mutations in the key residues.

These works having spawned an energy-landscape theory
[27°,36], which allow to interpret the behavior of molecular
systems in terms of the features of the underlying energy
landscape. In practice, the size of the molecules that can be
meaningfully described by the energy-landscape approach
is still limited because the fluctuations of the potential
energy increases with the number of degrees of freedom in
the system, thus giving rise to unrealistic energy differ-
ences in large systems. For this reason, explicit solvation is
usually avoided and instead, implicit solvent methods (e.g.
Generalized-Born) are used. Moreover, to compute Kinetic
properties with the energy-landscape approach, the tran-
sition rates between substates need to be modeled by some
rate theory whose validity is often unclear. Finally, since
the actual system dynamics is not available, the validity of
the Markov property cannot be verified.

Dynamics-based transition networks

As a result of increased computational power and meth-
odological advances, the construction of kinetic multi-state
models directly from molecular dynamics (MD) data, often
called Markov State Models (MSM), is becoming increas-
ingly popular [37°°~39-40]. In contrast to the energy-land-
scape approach, MSMs require no rate theory — rates are
directly obtained from the observed dynamical transitions.
Furthermore, it can be tested explicitly whether the MSM
exhibits the Markov property and is consistent with the
MD simulations. In contrast to extracting slowly conver-
ging properties from lengthy dynamical trajectories, MSMs
can be constructed from simulations that need only to be
long enough to be in local equilibrium: they must be long
enough to equilibrate within individual substates and
occasionally undergo transition to neighboring substates.
Thus, processes that occur on very long timescales (such as
milliseconds) can be correctly modeled using many short

trajectories started from different conformations [42,43],
which was already exploited in massively parallel simu-
lation of peptide folding [43]. The main disadvantage of
the dynamical approach is that it will fail if, for the process
of interest to occur, individual barriers between microstates
must be crossed that are too high to be sampled within the
individual simulation times.

The microstates can be defined by geometrical proximity
[37°°,38°%°,41]. It is important to choose microstates such
that they do not merge kinetically separated regions of
state space, as this would prevent the model to be
Markovian (see Figure 3 and [37°°,42]). After assigning
each structure along a given MD trajectory to one of the
microstates, the transition matrix, T(t), is computed for
each pair of microstates (7, j), as

number of transitions/ — 7in time T
ij =

“)

number of starts in/

To maximize the time resolution of the model, the
lagtime 7 is chosen to be the minimal lagtime needed
for the model to remain Markovian. This can be deter-
mined by exploiting the fact that, if the dynamics is
Markovian at lagtime t, it will also be Markovian at larger
lagtimes ' > 7, and any kinetic properties computed from
the model should then be converged in 7. The method
used in [37°%,43,44] computes, for different lagtimes T,
T(7) and its set of implied timescales from Eq. (3). At
lagtimes greater than or equal to the Markov lagtime, the
implied timescales have converged.

A meaningful way of clustering the microstates into a set
of ¢ metastable states is to require that the transitions
between microstates within each metastable state are
much faster than the transitions between metastable
states. This can be achieved by using an iterative split-
ting-and-lumping procedure [38°]. A similar partition can
be obtained efficiently with the improved Perron cluster
cluster analysis (PCCA) method [45,46], which exploits
the fact that kinetically closely connected microstates
have similar coordinates in the first € right eigenvectors
(see Figure 2e). Note that simple geometric clustering is
often unable to identify metastable states since large free
energy barriers may lie between geometrically close
conformations [37°°]. A practical way to choose the num-
ber of clusters, (), is to define a timescale 7, of interest. ¢
is chosen equal to the number of implied timescales
greater than 7, . Note that Cis a user-defined parameter
and its choice is a compromise between improving
conformational resolution and reducing statistical error.
If there is a large gap between the ¢ th and the (€ + 1) th
timescales, the total transition probability between meta-
stable states / and J is approximately:

Zie[./e./”iTij(T)

T/J(t) ~ ST
el

®)
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Figure 5

Current Opinion in Structural Bickogy

Hierarchical transition network for the Ala;» peptide, computed for either 4, 6, and 8 metastable sets. Each circle corresponding to one metastable
state contains its free energy relative to the most populated state, a (in kcal/mol, top), and its lifetime (bottom) at 300 K. Solid lines represent transitions
that have occurred within a 4 . s MD simulation. Dotted lines relate corresponding metastable states.
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The resulting coarse-grained transition network captures
the essential features of the transition process, as shown
for example in Figure 2f.

The Markovianity of MSMs is often tested directly via
convergence of the implied timescale test (see above) but
this method is unreliable when statistics are poor. Other
Markov tests have been proposed [44,47], but many of
them suffer from being too tolerant, or from being ambig-
uous (John D Chodera, Stanford, personal communi-
cation). Ultimately, the best test for the model is to
compare the molecular dynamics simulations to the pre-
dictions of Eq. (2)[37°°,48]. A systematic test for Marko-
vianity based on this criterion is still elusive.

So far, MSMs have been used mainly to model the
dynamics of small polypeptides for which sufficient
sampling could be achieved [43,40], some also testing
the validity of the Markov assumption and checking for
consistency with the dynamics [37°°,38°°,48]. An example
application on Alay; is shown in Figure 5.

Interpretation of transition networks

In principle, any property that can be calculated directly
from simulation data, can also be obtained from the
transition network. For example, the equilibrium distri-
bution is obtained from the elements in the first left
eigenvector of T(t) or the rate matrix K, scaled such that
they sum to 1 (see Figure 2c, top). This is how the relative
free energies of the Ala;, macrostates in Figure 5 were
calculated.

Another property of interest is the mean first passage time
(mfpt), defined as the mean time f; it takes to reach a
given metastable state # for the first time when starting
from another state 7. All mfpt’s (f;,7=1,...,m —1) can
be computed simultaneously from the transition matrix
by solving the following linear system of equations [49°]:

[T —1 Tim
Tzz -1 TZm
Tml e Tmfl,mfl -1 Tmflwl
L0 0o .- 0 1
[ /1 —7
fZ -7
X : = :
fmfl -t
L S 0

A useful property is the committor probability ¢;, defined
as the probability to transition from a metastable state 7 to
set B without hitting set A first, where A and B are given

sets of metastable states. For example in protein folding,
A and B can be chosen as the set of fully unfolded and
folded conformers, respectively (¢; is then often referred
to as py.1q, the probability of folding for conformer 7). The
set of states with ¢; = 0.5 (i.e., having equal chance to fold
or unfold) can be used as a definition for the transition
state ensemble [50]. The committor can be calculated
directly from the transition matrix by solving the follow-
ing system of linear equations:

> (Tij=8ij)ci=0, Vi¢(AUB)

7
6 =0, vied ©

=1, VieB

with §;; = 1 for i = j and 0 otherwise.

Finally, a statistically rigorous approach to computing the
full set of individual transition pathways A — B along with
their relative contributions to the overall A — B rate is
given by the Transition Path Theory (P Metzner, C
Schiitte, E Vanden-Eijnden, Transition path theory for
Markov jump processes, Annu Appl Prob, unpublished
data). First, the flux from state 7 to state j that effectively
contributes to the transition A — B is given by:

fi./:”i(l

where 7; is the probability to start in 4, (1 —¢;) is the
probability to come from A rather than from B, £;; is the
transition rate from 7 to 7, and ¢; is the probability to
transition to B rather than to A. The net flux is obtained
from:

— [,'),é,'/f/‘,

fi=1 ij f Jiv

and provides a network of directed net fluxes. This net-
work can be decomposed into individual A — B pathways,
which can be sorted according to their contribution to the
overall A — B flux, thus providing something similar to the
best path, the next best path, etc.

The sampling problem

Even with the help of massively parallel computing
platforms, such as folding@home, it is currently challen-
ging to run enough MD sampling such as to obtain a well-
converged kinetic model of complex conformational
change in a protein. However, this may be achieved by
using an adaptive approach, such that the sampling is

limited to the statistically most rewarding parts of state
space [3°°,35,49°,51].

Since the transition matrix T(7) is estimated from finite
MD trajectories, any property calculated from T(r) will
have a degree of uncertainty. The first step is to estimate
this uncertainty. Assuming an « priori uniform distri-
bution of matrices, the likelihood that all the transitions

Current Opinion in Structural Biology 2008, 18:154-162

www.sciencedirect.com



Transition networks for modeling the kinetics of conformational change in macromolecules Noé and Fischer 161

observed during the MD runs are consistent with a
particular matrix T(7) is proportional to

PO [[ 77 (7)
i.j

where ¢;; denotes the actual number of transition events
observed from state 7 to state /. The matrix that maximizes
this likelihood turns out to be the transition matrix
resulting from Eq. (4). The width of this likelihood
density measures the statistical uncertainty of the matrix
entries 7, [49°]. Since generally one is more interested in
the distribution (and corresponding uncertainty) of some
target property A(T(7)) that is computed from the tran-
sition matrix, this distribution can be computed by first
generating transition matrices according to the density of
Eq. (7), and then computing A(T(z)) for each of the
generated T(t) [49°]. Fast but approximate analytical
methods have also been proposed [49°,51]. The devel-
opment of efficient error analysis methods which evaluate
the distribution of transition matrices that obey particular
conditions (such as detailed balance or positive definite-
ness) is in progress.

Once the statistical uncertainty of A has been determined,
the next step is to chose in which state 7 the next MD
simulation should be started in order to give the largest
decrease of this statistical uncertainty. This approach was
considered in [49°] and it was shown that with adaptive
sampling a given uncertainty could be achieved within a
fraction of the computational effort compared to non-
adaptive sampling.

Conclusion

Modeling the kinetics of macromolecules based on tran-
sition networks is a promising concept in current com-
putational structural biology. This concept has been
spawned by the energy-landscape approach, whose main
limitation is that Kinetics are only secondary to the model
and must be recovered viz a rate theory. Markov state
models are computationally more demanding, but can be
tested and analyzed using standard tools from statistics
and algebra. Major open problems in the field include:
First, the development of a reliable and unsupervised test
for Markovianity; second, the development of efficient
methods to generate transition matrices that exhibit a
number of properties such as detailed balance or positive
definiteness; thus allowing for a better estimation of the
statistical uncertainty; third, the development of a
numerically stable and algorithmically efficient adaptive
sampling strategy, which includes an adaptive re-defi-
nition of microstates and metastable states, thus alleviat-
ing the sampling problem. Upon solving these problems,
transition networks are set to become the standard tool for
studying and understanding complex transitions in
macromolecules.
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