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Abstract
The Bayesian approach to inverse problems provides a rigorous framework for the
incorporation and quantification of uncertainties in measurements, parameters and
models. We are interested in designing numerical methods which are robust w.r.t. the
size of the observational noise, i.e., methods which behavewell in case of concentrated
posterior measures. The concentration of the posterior is a highly desirable situation
in practice, since it relates to informative or large data. However, it can pose a compu-
tational challenge for numerical methods based on the prior measure. We propose to
employ the Laplace approximation of the posterior as the base measure for numerical
integration in this context. The Laplace approximation is a Gaussian measure centered
at the maximum a-posteriori estimate and with covariance matrix depending on the
logposterior density. We discuss convergence results of the Laplace approximation
in terms of the Hellinger distance and analyze the efficiency of Monte Carlo meth-
ods based on it. In particular, we show that Laplace-based importance sampling and
Laplace-based quasi-Monte-Carlo methods are robust w.r.t. the concentration of the
posterior for large classes of posterior distributions and integrandswhereas prior-based
importance sampling and plain quasi-Monte Carlo are not. Numerical experiments are
presented to illustrate the theoretical findings.
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1 Introduction

The identification of unknown parameters from noisy observations arises in various
areas of application, e.g., engineering systems, biological models, environmental sys-
tems. In recent years, Bayesian inference has become a popular approach to model
inverse problems [39], i.e., noisy observations are used to update the knowledge of
unknown parameters from a prior distribution to the posterior distribution. The latter
is then the solution of the Bayesian inverse problem and obtained by conditioning
the prior distribution on the data. This approach is very appealing in various fields of
applications, since uncertainty quantification can be performed, once the prior distri-
bution is updated—barring the fact that Bayesian credible sets are not in a one-to-one
correspondence to classical confidence sets, see [7,40].

To ensure the applicability of the Bayesian approach to computationally demanding
models, there has been a lot of research effort towards improved algorithms allowing
for effective sampling or integrationw.r.t. the resulting posteriormeasure. For example,
the computational burden of expensive forward or likelihood models can be reduced
by surrogates or multilevel strategies [14,20,27,34] and for many classical sampling
or integration methods such as Quasi-Monte Carlo [12], Markov chain Monte Carlo
[6,32,42], and numerical quadrature [5,35] we now knowmodifications and conditions
which ensure a dimension-independent efficiency.

However, a completely different, but very common challenge for many numerical
methods has drawn surprisingly less attention so far: the challenge of concentrated
posterior measures such as

μn(dx) = 1

Zn
exp (−nΦn(x)) μ0(dx), Zn :=

∫
Rd

exp (−nΦn(x)) μ0(dx), (1)

Here, n � 1 and μ0 denotes a reference or prior probability measure on R
d and

Φn : Rd → [0,∞) are negative log-likelihood functions resulting, e.g., from n obser-
vations.

From a modeling point of view the concentration effect of the posterior is a highly
desirable situation due to large data sets and less remaining uncertainty about the
parameter to be inferred. From a numerical point of view, on the other hand, this can
pose a delicate situation, since standard integration methods may perform worse and
worse if the concentration increases due to n → ∞. Hence, understanding how sam-
pling or quadrature methods forμn behave as n → ∞ is a crucial task with immediate
benefits for purposes of uncertainty quantification. Since small noise yields “small”
uncertainty, one might be tempted to consider only optimization-based approaches in
order to compute a point estimator (i.e., the maximum a-posteriori estimator) for the
unknown parameter which is usually computationally much cheaper than a complete
Bayesian inference. However, for quantifying the remaining risk, e.g., computing the
posterior failure probability for some quantity of interest, we still require efficient
integration methods for concentrated posteriors as μn . Nonetheless, we will use well-
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known preconditioning techniques from numerical optimization in order to derive
such robust integration methods for the small noise setting.

Numerical methods are often based on the prior μ0, since μ0 is usually a simple
measure allowing for direct sampling or explicit quadrature formulas. However, for
large n most of the corresponding sample points or quadrature nodes will be placed
in regions of low posterior importance missing the needle in the haystack—the min-
imizers of Φn . An obvious way to circumvent this is to use a numerical integration
w.r.t. another reference measure which can be straightforwardly computed or sampled
from and concentrates around those minimizers and shrinks like the posterior mea-
suresμn as n → ∞. In this paper we consider numerical methods based on a Gaussian
approximation of μn—the Laplace approximation.

When it comes to integration w.r.t. an increasingly concentrated function, the well-
known and widely used Laplace’s method provides explicit asymptotics for such
integrals, i.e., under certain regularity conditions [44] we have for n → ∞ that

∫
Rd

f (x) exp(−nΦ(x))dx = f (x�)
(2π)d/2 exp(−nΦ(x�))

nd/2
√
det

(∇2Φ(x�)
)

(
1 + O(n−1)

)
(2)

where x� ∈ R denotes the assumed unique minimizer of Φ : Rd → R. This formula
is derived by approximating Φ by its second-order Taylor polynomial at x�. We could
now use (2) and its application to Zn in order to derive that

∫
Rd f (x) μn(dx) → f (x�)

as n → ∞. However, for finite n this is only of limited use, e.g., consider the compu-
tation of posterior probabilities where f is an indicator function. Thus, in practice we
still rely on numerical integration methods in order to obtain a reasonable approxima-
tion of the posterior integrals

∫
Rd f (x) μn(dx). Nonetheless, the second-order Taylor

approximation employed in Laplace’s method provides us with (a guideline to derive)
a Gaussian measure approximating μn .

This measure itself is often called the Laplace approximation of μn and will be
denoted by Lμn . Its mean is given by the maximum a-posteriori estimate (MAP) of
the posterior μn and its covariance is the inverse Hessian of the negative log poste-
rior density. Both quantities can be computed efficiently by numerical optimization
and since it is a Gaussian measure it allows for direct samplings and easy quadrature
formulas. The Laplace approximation is widely used in optimal (Bayesian) experi-
mental design to approximate the posterior distribution (see, for example, [1]) and
has been demonstrated to be particularly useful in the large data setting, see [25,33]
and the references therein for more details. Moreover, in several recent publications
the Laplace approximation was already proposed as a suitable reference measure
for numerical quadrature [5,38] or importance sampling [2]. Note that precondition-
ing strategies based on Laplace approximation are also referred to as Hessian-based
strategies due to the equivalence of the inverse covariance and the Hessian of the cor-
responding optimization problem, cp. [5]. In [38], the authors showed that a Laplace
approximation-based adaptive Smolyak quadrature for Bayesian inference with affine
parametric operator equations exhibits a convergence rate independent of the size of
the noise, i.e., independent of n.
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This paper extends the analysis in [38] for quadrature to the widely applied
Laplace-based importance sampling and Laplace-based quasi-Monte Carlo (QMC)
integration.

Before we investigate the scale invariance or robustness of these methods we exam-
ine the behaviour of the Laplace approximation and in particular, the density dμn

dLμn
.

The reason behind is that, for importance sampling as well as QMC integration, this
density naturally appears in the methods, hence, if it deteriorates as n → ∞, this will
be reflected in a deteriorating efficiency of the method. For example, for Φn ≡ Φ the
density w.r.t. the prior measure dμn

dμ0
= exp(−nΦ)/Zn deteriorates to a Dirac function

at the minimizer x� of Φ as n → ∞ which causes the shortcomings of Monte Carlo
or QMC integration w.r.t. μ0 as n → ∞. However, for the Laplace approximation
we show that the density dμn

dLμn
converges Lμn -almost everywhere to 1 which in turn

results in a robust—and actually improving—performancew.r.t. n of related numerical
methods. In summary, the main results of this paper are the following:

1. Laplace Approximation: Given mild conditions the Laplace approximation Lμn

converges in Hellinger distance to μn :

dH(μn,Lμn ) ∈ O(n−1/2).

This result is closely related to the well-known Bernstein–von Mises theorem for
the posterior consistency in Bayesian inference [41]. The significant difference
here is that the covariance in the Laplace approximation depends on the data and
the convergence holds for the particularly observed data whereas in the classical
Bernstein–von Mises theorem the covariance is the inverse of the expected Fisher
information matrix and the convergence is usually stated in probability.

2. Importance Sampling:We consider integrationw.r.t. measuresμn as in (1) where
Φn(x) = Φ(x) − ιn for a Φ : Rd → [0,∞) and ιn ∈ R.

– Prior-based Importance Sampling:We consider the case of prior-based impor-
tance sampling, i.e., the prior μ0 is used as the importance distribution for
computing the expectation of smooth integrands f ∈ L2

μ0
(R). Here, the

asymptotic variance w.r.t. such measures μn deteriorates like nd/2−1.
– Laplace-based Importance Sampling. The (random) error en,N ( f ) of Laplace-
based importance sampling for computing expectations of smooth integrands
f ∈ L2

μ0
(R) w.r.t. such measures μn using a fixed number of samples N ∈ N

decays in probability almost like n−1/2, i.e.,

nδen,N ( f )
P−−−→

n→∞ 0, δ < 1/2.

3. Quasi-Monte Carlo:We focus for the analysis of the quasi-Monte Carlo methods
on the bounded case of μ0 = U([ 12 , 1

2 ]d).

– Prior-based Quasi-Monte Carlo: The root mean squared error estimate for
computing integrals of the form (2) by QMC using randomly shifted Lattice
rules deteriorates like nd/4 as n → ∞.
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– Laplace-based Quasi-Monte Carlo: If the lattice rule is transformed by an
affine mapping based on the mean and the covariance of the Laplace approx-
imation, then the resulting root mean squared error decays like n−d/2 for
integrals of the form (2).

The outline of the paper is as follows: in Sect. 2 we introduce the Laplace approxi-
mation for measures of the form (1) and the notation of the paper. In Sect. 2.2 we study
the convergence of the Laplace approximation. We also consider the case of singular
Hessians or perturbed Hessians and provide some illustrative numerical examples. At
the end of the section, we shortly discuss the relation to the classical Bernstein–von
Mises theorem. The main results about importance sampling and QMC using the prior
measure and the Laplace approximation, respectively, are then discussed in Sect. 3.
We also briefly comment on existing results for numerical quadrature and provide sev-
eral numerical examples illustrating our theoretical findings. The appendix collects
the rather lengthy and technical proofs of the main results.

2 Convergence of the Laplace approximation

We start with recalling the classical Laplace method for the asymptotics of integrals.

Theorem 1 (variant of [44, Section IX.5]) Set

J (n) :=
∫

D
f (x) exp(−nΦ(x))dx, n ∈ N,

where D ⊆ R
d is a possibly unbounded domain and let the following assumptions

hold:

1. The integral J (n) converges absolutely for each n ∈ N.
2. There exists an x� in the interior of D such that for every r > 0 there holds

δr := inf
x∈Bc

r (x�)
Φ(x) − Φ(x�) > 0,

where Br (x�) := {x ∈ R
d : ‖x − x�‖ ≤ r} and Bc

r (x�) := R
d\Br (x�).

3. In a neighborhood of x� the function f : D → R is (2p + 2) times continuously
differentiable and Φ : Rd → R is (2p + 3) times continuously differentiable for
a p ≥ 0, i.e., and the Hessian H� := ∇2Φ(x�) is positive definite.

Then, as n → ∞, we have

J (n) = e−nΦ(x�) n−d/2

( p∑
k=0

ck( f )n−k + O
(

n−p−1
))

where ck( f ) ∈ R and, particularly, c0( f ) =
√
det(2π H−1

� ) f (x�).

Remark 1 As stated in [44, Section IX.5] the asymptotic

lim
n→∞

J (n)

c0( f ) exp(−nΦ(x�)) n−d/2 = 1
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with c0( f ) is as above, already holds for f : Rd → R being continuous andΦ : Rd →
Rbeing twice continuously differentiable in a neighborhood of x� with positive definite
∇2Φ(x�)—given that the first two assumptions of Theorem 1 are also satisfied.

Assume that Φ(x�) = 0, then the above theorem and remark imply

∣∣∣∣
∫
Rd

f (x) exp(−nΦ(x)) dx −
∫
Rd

f (x) exp(−n

2
‖x − x�‖2H�

) dx

∣∣∣∣ ∈ o(n−d/2)

for continuous and integrable f : Rd → R, where ‖ · ‖A = ‖A1/2 · ‖ for a symmetric
positive definite matrix A ∈ R

d×d . This is similar to the notion weak convergence
(albeit with two different non-static measures). If we additionally claim that f (x�) >

0, then also

lim
n→∞

∫
Rd f (x) exp(−nΦ(x)) dx∫

Rd f (x) exp(− n
2‖x − x�‖2H�

) dx
= 1 as n → ∞,

which is sort of a relative weak convergence. In other words, the asymptotic behaviour
of
∫

f e−nΦ dx , in particular, its convergence to zero, is the same as of the integral of
f w.r.t. an unnormalized Gaussian density with mean in x� and covariance (nH�)

−1.
If we consider now probability measures μn as in (1) but with Φn ≡ Φ where

Φ satisfies the assumptions of Theorem 1, and if we suppose that μ0 possesses a
continuous Lebesgue density π0 : R → [0,∞) with π0(x�) > 0, then Theorem 1 and
Remark 1 will imply for continuous and integrable f : Rd → R that

lim
n→∞

∫
Rd

f (x)μn(dx) = lim
n→∞

∫
Rd f (x)π0(x) exp(−nΦ(x)) dx∫

Rd π0(x) exp(−nΦ(x)) dx

= lim
n→∞

c0( f π0) n−d/2

c0(π0) n−d/2 = c0( f π0)

c0(π0)
= f (x�).

The same reasoning applies to the expectation of f w.r.t. a Gaussian measure
N (x�, (nH�)

−1) with unnormalized density exp(− n
2‖x − x�‖2H�

). Thus, we obtain

the weak convergence of μn toN (x�, (nH�)
−1), i.e., for any continuous and bounded

f : Rd → R we have

lim
n→∞

∣∣∣∣
∫
Rd

f (x) μn(dx) −
∫
Rd

f (x) Nx�,(nH�)−1(dx)

∣∣∣∣ = 0, (3)

where Nx,C is short for N (x, C). In fact, for twice continuously differentiable
f : Rd → R we get by means of Theorem 1 the rate

∣∣∣∣
∫
Rd

f (x) μn(dx) −
∫
Rd

f (x) Nx�,(nH�)−1(dx)

∣∣∣∣ ∈ O(n−1). (4)

Note that due to normalization we do not need to assume Φ(x�) = 0 here. Hence,
this weak convergence suggests to useNx�,(nH�)−1 as a Gaussian approximation toμn .
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In the next subsection we derive similar Gaussian approximation for the general case
Φn �≡ Φ, whereas Sect. 2.2 includes convergence results of the Laplace approximation
in terms of the Hellinger distance.
Bayesian inference We present some context for the form of equation (1) in the fol-
lowing. Integrals of the form (1) arise naturally in the Bayesian setting for inverse
problems with large amount of observational data or informative data. Note that the
mathematical results for the Laplace approximation given in Sect. 2 are derived in
a much more general setting and are not restricted to integrals w.r.t. the posterior in
the Bayesian inverse framework. We refer to [8,21] and the references therein for a
detailed introduction to Bayesian inverse problems.

Consider a continuous forward response operator G : Rd → R
K mapping the

unknown parameters x ∈ R
d to the data space RK , where K ∈ N denotes the number

of observations.We investigate the inverse problemof recovering unknown parameters
x ∈ R

d from noisy observations y ∈ R
K given by

y = G(x) + η,

where η ∼ N (0, Γ ) is a Gaussian random variable with mean zero and covariance
matrix Γ , which models the noise in the observations and in the model.

The Bayesian approach for this inverse problem of inferring x from y (which is ill-
posed without further assumptions) works as follows: For fixed y ∈ R

K we introduce
the least-squares functional (or negative loglikelihood in the language of statistics)
Φ(·; y) : Rd → R by

Φ(x; y) = 1

2
‖y − G(x)‖2Γ−1

.

with ‖·‖Γ −1 := ‖Γ − 1
2 ·‖ denoting the weighted Euclidean norm inRK . The unknown

parameter x is modeled as a R
d -valued random variable with prior distribution μ0

(independent of the observational noise η), which regularizes the problem and makes
it well-posed by application of Bayes’ theorem: The pair (x, y) is a jointly varying
random variable on Rd ×R

K and hence the solution to the Bayesian inverse problem
is the conditional or posterior distribution μ of x given the data y where the law μ is
given by

μ(dx) = 1

Z
exp(−Φ(x; y))μ0(dx)

with the normalization constant Z := ∫
Rd exp(−Φ(x; y))μ0(dx). If we assume a

decaying noise-level by introducing a scaled noise covariance Γn = 1
n Γ , the resulting

noisemodel ηn ∼ N (0, Γn) yields an n-dependent log-likelihood termwhich results in
posterior measuresμn of the form (1) withΦn(x) = Φ(x; y). Similarly, an increasing
number n ∈ N of data y1, . . . , yn ∈ R

k resulting from n observations of G(x) with
independent noises η1, . . . , ηn ∼ N (0, Γ ) yields posterior measures μn as in (1) with
Φn(x) = 1

n

∑n
j=1 Φ(x; y j ).
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2.1 The Laplace approximation

Throughout the paper, we assume that the prior measure μ0 is absolutely continuous
w.r.t. Lebesgue measure with density π0 : Rd → [0,∞), i.e.,

μ0(dx) = π0(x)dx, and we set S0 := {x ∈ R
d : π0(x) > 0} = suppμ0. (5)

Hence, also the measuresμn in (1) are absolutely continuous w.r.t. Lebesgue measure,
i.e.,

μn(dx) = 1

Zn
1S0(x) exp (−nIn(x)) dx (6)

where In : S0 → R is given by

In(x) := Φn(x) − 1

n
logπ0(x). (7)

In order to define the Laplace approximation of μn we need the following basic
assumption.

Assumption 1 There holds Φn, π0 ∈ C2(S0,R), i.e., the mappings π0, Φn : S0 → R

are twice continuously differentiable. Furthermore, In has a uniqueminimizer xn ∈ S0
satisfying

In(xn) = 0, ∇ In(xn) = 0, ∇2 In(xn) > 0,

where the latter denotes positive definiteness.

Remark 2 Assuming that minx∈S0 In(x) = 0 is just a particular (but helpful) normal-
ization and in general not restrictive: If minx∈S0 In(x) = c > −∞, then we can simply
set

Φ̂n(x) := Φn(x) − c, În(x) := Φ̂n(x) − logπ0(x)

for which we obtain

μn(dx) = 1

Ẑn
exp

(
−nΦ̂n(x)

)
μ0(dx), Ẑn =

∫
Rd

exp
(
−nΦ̂n(x)

)
μ0(dx),

and minx∈S0 În(x) = minx Φ̂n(x) − 1
n logπ0(x) = 0.

Given Assumption 1 we define the Laplace approximation of μn as the following
Gaussian measure

Lμn := N (xn, n−1Cn), C−1
n := ∇2 In(xn). (8)

Thus, we have

Lμn (dx) = 1

Z̃n
exp

(
−n

2
‖x − xn‖2

C−1
n

)
dx, Z̃n := n−d/2

√
det(2πCn), (9)
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Table 1 Frequently used notation

Symbol Meaning References

μ0 Prior probability measure (5)

π0 Lebesgue density of the prior: μ0(dx) = π0(x)dx (5)

Z0 = 1 Hypothetically: Normalization constant of π0

μn Posterior probability measure (1), (6)

Φn (Scaled) negative loglikelihood of posterior (1)

In (Scaled) negative logdensity of posterior (7)

πn(x) Unnormalized Lebesgue density of the posterior Lemma 1

Zn Normalization constant of πn (1)

Lμn Laplace approximation of μn (9)

Ĩn = T2 In(xn) (scaled) negative logdensity of Lμn (10)

π̃n Unnormalized Lebesgue density of Lμn Lemma 1

Z̃n Normalization constant of π̃n (9)

where we can view

Ĩn(x) := 1

2
‖x − xn‖2

C−1
n

= In(xn)︸ ︷︷ ︸
=0

+∇ In(xn)�︸ ︷︷ ︸
=0

(x − xn) + 1

2
‖x − xn‖2∇2 In(xn)

(10)

as the second-order Taylor approximation Ĩn = T2 In(xn) of In at xn . This point of
view is crucial for analyzing the approximation

μn ≈ Lμn ,
1

Zn
exp(−nIn(x)) ≈ 1

Z̃n
exp

(−n Ĩn(x)
)
.

Notation and recurring equations Before we continue, we collect recurring important
definitions andwhere they can be found in Table 1 and provide the following important
equations cheat sheet

μ0(dx) = π0(x)dx (relative to Lebesgue measure)

μn(dx) = Z−1
n exp(−nΦn(x))μ0(dx) (relative to μ0)

= Z−1
n exp(−nIn(x))1S0(x)dx (relative to Lebesgue measure)

Lμn (dx) = Z̃−1
n exp(−nT2Φn(x; xn))μ0(dx) (relative to μ0)

= Z̃−1
n exp(−n

2
‖x − xn‖2∇2 In(xn)

)dx (relative to Lebesgue measure)
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2.2 Convergence in Hellinger distance

By a modification of Theorem 1 for integrals w.r.t. a weight e−nΦn(x) we may show a
corresponding version of (4), i.e., for sufficiently smooth f ∈ L1

μ0
(R)

∣∣∣∣
∫
Rd

f (x) μn(dx) −
∫
Rd

f (x) Lμn (dx)

∣∣∣∣ ∈ O(n−1). (11)

However, in this section we study a stronger notion of convergence of Lμn to μn ,
namely, w.r.t. the total variation distance dTV and the Hellinger distance dH. Given
two probability measures μ, ν on R

d and another probability measure ρ dominating
μ and ν the total variation distance of μ and ν is given by

dTV(μ, ν) := sup
A∈B(Rd )

|μ(A) − ν(A)| = 1

2

∫
Rd

∣∣∣∣dμdρ (x) − d̃ν

dρ
(x)

∣∣∣∣ ρ(dx)

and their Hellinger distance by

d2
H(μ, ν) :=

∫
Rd

∣∣∣∣∣
√
dμ

dρ
(x) −

√
dν

dρ
(x)

∣∣∣∣∣
2

ρ(dx).

It holds true that

d2
H(μ, ν)

2
≤ dTV(μ, ν) ≤ dH(μ, ν),

see [17, Equation (8)]. Note that, dTV(μn,Lμn ) → 0 implies that | ∫ f dμn −∫
f dLμn | → 0 for any bounded and continuous f : Rd → R. In order to estab-

lish our convergence result, we require almost the same assumptions as in Theorem
1, but now uniformly w.r.t. n:

Assumption 2 There holds Φn, π0 ∈ C3(S0,R) for all n ∈ N and

1. there exist the limits

x� := lim
n→∞ xn H� := lim

n→∞ Hn, Hn := ∇2Φn(xn) (12)

in Rd and Rd×d , respectively, with H� being positive definite and x� belonging to
the interior of S0.

2. For each r > 0 there exists an nr ∈ N, δr > 0 and Kr < ∞ such that

δr ≤ inf
x /∈Br (xn)∩S0

In(x) ∀n ≥ nr

as well as

max
x∈Br (0)∩S0

‖∇3 logπ0(x)‖ ≤ Kr , max
x∈Br (0)∩S0

‖∇3Φn(x)‖ ≤ Kr ∀n ≥ nr .
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3. There exists a uniformly bounding function q : S0 → [0,∞) with

exp(−nIn(x)) ≤ q(x), ∀x ∈ S0 ∀n ≥ n0

for an n0 ∈ N such that q1−ε is integrable, i.e.,
∫
S0

q1−ε(x) dx < ∞, for an
ε ∈ (0, 1).

The only additional assumptions in comparison to the classical convergence the-
orem of the Laplace method are about the third derivatives of π0 and Φn and the
convergence of xn → x�. We remark that (12) implies

lim
n→∞ C−1

n = lim
n→∞ ∇2

(
Φn(xn) − 1

n
logπ0(xn)

)
= H�

and, thus, also limn→∞ Cn = H−1
� . The uniform lower bound on In outside a ball

around xn as well as the integrable majorant of the unnormalized densities e−nIn ≤ 1
of μn can be understood as uniform versions of the first and second assumption of
Theorem 1. The third item of Assumption 2 implies the uniform integrabtility of
the e−nIn ≤ 1 and is obviously satisfied for bounded supports S0. However, in the
unbounded case it seems to be crucial1 for an increasing concentration of the μn .

We start our analysis with the following helpful lemma.

Lemma 1 Let Assumptions 1 and 2 be satisfied and let πn, π̃n : Rd → [0,∞) denote
the unnormalized Lebesgue densities of μn and Lμn , respectively, given by

πn(x) :=
{
exp (−nΦn(x)) π0(x), x ∈ S0,

0, otherwise,

and

π̃n(x) := exp
(
−n

2
‖x − xn‖2

C−1
n

)
, x ∈ R

d .

Then, for any p ∈ N

∫
Rd

∣∣∣∣∣
(

πn(x)

π̃n(x)

)1/p

− 1

∣∣∣∣∣
p

Lμn (dx) ∈ O(n−p/2).

Proof We define the remainder term

Rn(x) := In(x) − Ĩn(x) = In(x) − 1

2
‖x − xn‖2

C−1
n

,

1 We provide a counterexample of nonconcentrating measures μn in the case, when the third issue of
Assumptions 2 does not hold, in Appendix C of the arXiv preprint of this paper [37].
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926 C. Schillings et al.

i.e., for x ∈ S0 we have
πn(x)
π̃n(x)

= exp(−n Rn(x)). Moreover, note that for x ∈ Sc
0 there

holds πn(x) = 0. Thus, we obtain

∫
Rd

∣∣∣∣∣
(

πn(x)

π̃n(x)

)1/p

− 1

∣∣∣∣∣
p

Lμn (dx) =
∫
Sc
0

1p Lμn (dx)

+
∫
S0

∣∣∣e−n Rn(x)/p − 1
∣∣∣p Lμn (dx)

= J0(n) + J1(n) + J2(n)

where we define for a given radius r > 0

J0(n) := Lμn (S
c
0),

J1(n) :=
∫

Br (xn)∩S0

∣∣∣e−n Rn(x)/p − 1
∣∣∣p Lμn (dx),

J2(n) :=
∫

Bc
r (xn)∩S0

∣∣∣e−n Rn(x)/p − 1
∣∣∣p Lμn (dx).

In “Appendix B.1” we prove that

J0(n) ∈ O(e−cr n), J1(n) ∈ O(n−p/2), J2(n) ∈ O(e−ncr ,ε nd/2),

for cr , cr ,ε > 0, which then yields the statement. ��
Lemma 1 provides the basis for our main convergence theorem.

Theorem 2 Let the assumptions of Lemma 1 be satisfied. Then, there holds

dH(μn,Lμn ) ∈ O(n−1/2).

Proof We start with

d2
H(μn,Lμn ) =

∫
Rd

[√
πn(x)√

Zn
−

√
π̃n(x)√

Z̃n

]2

dx

≤ 2

Z̃n

∫
Rd

[√
πn(x) − √

π̃n(x)
]2

dx + 2

(
1√
Zn

− 1√
Z̃n

)2

Zn

= 2
∫
Rd

[√
πn(x)

π̃n(x)
− 1

]2

Lμn (dx) + 2

(
1√
Zn

− 1√
Z̃n

)2

Zn .

For the first term there holds due to Lemma 1

∫
Rd

[√
πn(x)

π̃n(x)
− 1

]2

Lμn (dx) ∈ O(n−1).

123



On the convergence of the Laplace approximation and… 927

For the second term on the right-hand side we obtain

2

(
1√
Zn

− 1√
Z̃n

)2

Zn = 2

Z̃n

(√
Zn −

√
Z̃n

)2

= 2

Z̃n

(
Zn − Z̃n√
Zn +

√
Z̃n

)2

≤ 2

∣∣Zn − Z̃n
∣∣2

Z̃2
n

.

Furthermore, due to Lemma 1 there exists a c < ∞ such that

|Zn − Z̃n| ≤
∫
Rd

|πn(x) − π̃n(x)| dx = Z̃n

∫
Rd

∣∣∣∣πn(x)

π̃n(x)
− 1

∣∣∣∣ Lμn (dx)

≤ cn−1/2 Z̃n .

This yields

2

(
1√
Zn

− 1√
Z̃n

)2

Zn ≤ 2

∣∣Zn − Z̃n
∣∣2

Z̃2
n

≤ 2c2n−1 ∈ O(n−1),

which concludes the proof. ��
Convergence of other Gaussian approximations Let us consider now a sequence of
arbitraryGaussian approximations μ̃n = N (an, 1

n Bn) to themeasuresμn in (1).Under
which conditions on an ∈ R

d and Bn ∈ R
d×d do we still obtain the convergence

dH(μn, μ̃n) → 0? Of course, an → x� seems to be necessary but how about the
covariances Bn? Due to the particular scaling of 1/n appearing in the covariance of
Lμn , one might suppose that for example μ̃n = N (xn, 1

n Id) or μ̃n = N (xn, 1
n B)with

an arbitrary symmetric and positive definite (spd) B ∈ R
d×d should converge to μn

as n → ∞. However, since∣∣dH(μn,Lμn ) − dH(Lμn , μ̃n)
∣∣ ≤ dH(μn, μ̃n) ≤ dH(μn,Lμn ) + dH(Lμn , μ̃n)

and dH(μn,Lμn ) → 0, we have

dH(μn, μ̃n) → 0 iff dH(Lμn , μ̃n) → 0. (13)

The following result shows that, in general, μ̃n = N (xn, 1
n Id) or μ̃n = N (xn, 1

n B)

do not converge to μn .

Theorem 3 Let the assumptions of Lemma 1 be satisfied.

1. For μ̃n := N (xn, 1
n Bn), n ∈ N, with spd Bn, we have that

lim
n→∞ dH(μn, μ̃n) = 0 iff lim

n→∞ det

(
1

2
(H1/2

� B1/2
n + H−1/2

� B−1/2
n )

)
= 1.

(14)

If so and if ‖Cn − Bn‖ ∈ O(n−1), then we even have dH(μn, μ̃n) ∈ O(n−1/2).
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928 C. Schillings et al.

2. For μ̃n := N (an, 1
n Bn), n ∈ N, with Bn satisfying (14) and ‖xn − an‖ ∈ O(n−1),

we have that dH(μn, μ̃n) ∈ O(n−1/2).

The proof is straightforward given the exact formula for the Hellinger distance of
Gaussian measures and can be found in “Appendix B.2”. Thus, Theorem 3 tells us
that, in general, the Gaussian measures μ̃n = N (xn, 1

n Id) do not converge to μn as
n → ∞ whereas it is easily seen that μ̃n = N (xn, 1

n H�), indeed, do converge.
Relation to the Bernstein–von Mises theorem in Bayesian inference The Bernstein–
von Mises (BvM) theorem is a classical result in Bayesian inference and asymptotic
statistics in R

d stating the posterior consistency under mild assumptions [41]. Its
extension to infinite-dimensional situations does not hold in general [9,15], but can
be shown under additional assumptions [3,4,16,28]. In order to state the theorem we
introduce the following setting: let Yi ∼ νx0 , i ∈ N, be i.i.d. random variables on RD ,
d ≤ D, following a distribution νx0(dy) = exp(−�(y, x0))1Sy (y)dy where Sy ⊂ R

D

and where � : Sy ×R
d → [−�min,∞) represents the negative log-likelihood function

for observing y ∈ Sy given a parameter value x ∈ R
d . Assuming a prior measure

μ0(dx) = π0(x)1S0(x) dx for the unknown parameter, the resulting posterior after n
observations yi of the independent Yi , i = 1, . . . , n, is of the form (1) with

Φn(x) = Φn(x; y1, . . . , yn) = 1

n

n∑
i=1

�(yi , x). (15)

We will denote the corresponding posterior measure by μ
y1,...,yn
n in order to highlight

the dependence of the particular data y1, . . . , yn . The BvM theorem states now the
convergence of this posterior to a sequence of Gaussian measures. This looks very
similar to the statement of Theorem 2. However, the difference lies in the Gaussian
measures as well as the kind of convergence. In its usual form the BvM theorem states
under similar assumptions as for Theorem 2 that there holds in the large data limit

dTV
(
μY1,...,Yn

n , N (x̂n, n−1I−1
x0 )

)
P−−−→

n→∞ 0 (16)

where μ
Y1,...,Yn
n is now a random measure depending on the n independent random

variables Y1, . . . , Yn and where the convergence in probability is taken w.r.t. random-
ness of the Yi . Moreover, x̂n = x̂n(Y1, . . . , Yn) denotes an efficient estimator of the
true parameter x0 ∈ S0—e.g., the maximum-likelihood or MAP estimator—and Ix0
denotes the Fisher information at the true parameter x0, i.e.,

Ix0 = E

[
∇2

x �(Yi , x0)
]

=
∫
RD

∇2
x �(Y , x0) exp(−�(y, x0)) dy.

Now both, the BvM theorem and Theorem 2, state the convergence of the posterior
to a concentrating Gaussian measure where the rate of concentration of the latter (or
better: of its covariance) is of order n−1. Furthermore, also the rate of convergence
in the BvM theorem can be shown to be of order n−1/2 [19]. However, the main
differences are:
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– The BvM states convergence in probability (w.r.t. the randomness of the Yi ) and
takes as basic covariance the inverse expected Hessian of the negative log likeli-
hood at the data generating parameter value x0.Workingwith this quantity requires
the knowledge of the true value x0 and the covariance operator is obtained by
marginalizing over all possible data outcomes Y . This Gaussian measure is not a
practical tool to be used but rather a limiting distribution of a powerful theoreti-
cal result reconciling Bayesian and classical statistical theory. For this reason, the
Gaussian approximation in the statement of the BvM theorem can be thought of
as being a “prior” approximation (in the loosest meaning of the word). Usually,
a crucial requirement is that the problem is well-specified meaning that x0 is an
interior point of the prior support S0—although there exist results for misspecified
models, see [22]. Here, a BvM theorem is proven without the assumption that x0
belongs to the interior of S0. However, in this case the basic covariance is not the
Fisher information but the Hessian of the mapping x �→ dKL(ν0||νx ) evaluated at
its unique minimizer where dKL(ν0||νx ) denotes the Kullback–Leibler divergence
of the data distribution νx given parameter x ∈ S0 w.r.t. the true data distribution
ν0.

– Theorem 2 states the convergence for given realizations yi and takes the Hessian
of the negative log posterior density evaluated at the current MAP estimate xn

and the current data y1, . . . , yn . This means that we do not need to know the true
parameter value x0 and we employ the actual data realization at hand rather than
averaging over all outcomes. Hence, we argue that the Laplace approximation (as
stated in this context) provides a “posterior” approximation converging to the
Bayesian posterior as n → ∞. Also, we require that the limit x� = limn→∞ xn is
an interior point of the prior support S0.

– From a numerical point of view, the Laplace approximation requires the compu-
tation of the MAP estimate and the corresponding Hessian at the MAP, whereas
the BvM theorem employs the Fisher information, i.e. requires an expectation
w.r.t. the observable data. Thus, the Laplace approximation is based on fixed and
finite data in contrast to the BvM.

The following example illustrates the difference between the two Gaussian mea-
sures: Let x0 ∈ R be an unknown parameter. Consider n measurements yk ∈ R,
k = 1, . . . , n, where yk is a realization of

Yk = x30 + ηk

with ηk ∼ N (0, σ 2) i.i.d.. For the Bayesian inference we assume a prior N (0, τ 2) on
x . Then the Bayesian posterior is of the form μn(dx) ∝ exp(−nIn(x)) where

In(x) = x2

n · 2τ 2 + 1

n · 2σ 2

n∑
k=1

(yk − x3)2

︸ ︷︷ ︸
=Φn(x)

.

The MAP estimator xn is the Laplace approximation’s mean and can be computed
numerically as a minimizer of In(x). It can be shown that xn converges to x� = x0 for
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almost surely all realizations yk of Yk due to the strong law of large numbers. Now we
take the Hessian (w.r.t. x) of In ,

∇2 In(x) = 1

n · τ 2
+ 15

σ 2 · x4 − 6x · 1

n · σ 2

n∑
k=1

yk

and evaluate it in xn to obtain the covariance of the Laplace approximation, and, thus,

Lμn = N
(

xn,
1

1
n·τ 2 + 15

σ 2 · x4n − 6xn · 1
n·σ 2

∑n
k=1 yk

)
.

On the other hand we compute the Gaussian BvM approximation: The Fisher infor-
mation is given as (recall that Φ is the loglikelihood term as defined above)

E
x0 [∇2Φ(x0)] = E

[
15

σ 2 · x40 − 6x0 · 1

n · σ 2

n∑
k=1

Yk

]

= 15

σ 2 · x40 − 6x0 · 1

σ 2 x30 = 9

σ 2 x40

and hence we get the Gaussian approximation

μBVM = N
(

xn,
σ 2

9 · x40

)
.

Now we clearly see the difference between the two measures and how they will be
asymptotically identical, since xn → x� = x0 due to consistency, 1

n

∑n
k=1 yk con-

verging a.s. to x30 due to the strong law of large numbers, and with the prior-dependent
part vanishing for n → 0.

Remark 3 Having raised the issue whether the BvM approximationN (x̂n, n−1I−1
x0 ) or

the Laplace oneLμn is closer to a given posteriorμn , one can of course ask for the best
Gaussian approximation ofμn w.r.t. a certain distance or divergence. Thus,wemention
[26,30] where such a best approximation w.r.t. the Kullback–Leibler divergence is
considered. The authors also treat the case of best Gaussian mixture approximations
for multimodal distributions and state a BvM like convergence result for the large data
(and small noise) limit. However, the computation of such a best approximation can
become costly whereas the Laplace approximation can be obtained rather cheaply.

2.3 The case of singular Hessians

The assumption, that the Hessians Hn = ∇2Φn(xn) as well as their limit H� are
positive definite, is quite restrictive. For example, for Bayesian inference with more
unknown parameters than observational information, this assumption is not satisfied.
Hence, we discuss in this subsection the convergence of the Laplace approximation in
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case of singular Hessians Hn and H�. Nonetheless, we assume throughout the section
that Assumption 1 is satisfied. This yields that the Laplace approximationLμn is well-
defined. This means in particular that we suppose a regularizing effect of the log prior
density logπ0 on the minimization of In(x) = Φn(x) − 1

n logπ0(x).
We first discuss necessary conditions for the convergence of the Laplace approxi-

mation and subsequently state a positive result for Gaussian prior measures μ0.
Necessary conditions Let us consider the simple case of Φn ≡ Φ, i.e., the probability
measures μn are given by

μn(dx) ∝ exp (−nΦ(x)) μ0(dx),

where we assume now that Φ : S0 → [c,∞) with c > −∞. Intuitively, μn should
converge weakly to the Dirac measure δMΦ

on the set

MΦ := argminx∈S0 Φ(x).

On the other hand, the associated Laplace approximations Lμn will converge weakly
to the Dirac measure δML in the affine subspace

ML := {x ∈ R
d : (x − x�)

�H�(x − x�) = 0}.

Hence, it is necessary for the convergence Lμn → μn in total variation or Hellinger
distance that MΦ = ML, i.e., that the set of minimizers of Φ is linear. In order to
ensure the latter, we state the following.

Assumption 3 Let X ⊆ R
d be a linear subspace such that for a projection PX onto X

there holds

Φn ≡ Φn ◦ PX on S0 for each n ∈ N

and let the restriction Φn : X → R possess a unique and nondegenerate global mini-
mum for each n ∈ N.

For the case Φn = Φ this assumption implies, that

MΦ = argminx∈S0 Φ(x) = x� + X c

whereX c denotes a complementary subspace toX , i.e.,X ⊕X c = R
d and x� ∈ X the

uniqueminimizer ofΦ overX . Besides that,Assumption 3 also yields that x� Hn x = 0
iff x ∈ X c. Hence, this also holds for the limit H� = limn→∞ Hn and we obtain

ML = x� + X c = MΦ.

Moreover, since Assumption 3 yields

μn(dx) ∝ exp (−nΦn(xX )) μ0(dxX dxc),

123



932 C. Schillings et al.

where xX := PX x and xc := PX c x = x − xX , the marginal of μn coincides with
the marginal of μ0 on X c. Hence, the Laplace approximation can only converge to
μn in total variation or Hellinger distance if this marginal is Gaussian. We, therefore,
consider the special case of Gaussian prior measures μ0.

Remark 4 Please note that, despite this to some extent negative result for the Laplace
approximation for singular Hessians, the preconditioning of sampling and quadrature
methods via the Laplace approximation may still lead to efficient algorithms in the
small noise setting. The analysis of Laplace approximation-based sampling methods,
as introduced in the next section, in the underdetermined case will be subject to future
work.

Convergence for Gaussian prior μ0. A useful feature of Gaussian prior measures μ0
is that the Laplace approximation possesses a convenient representation via its density
w.r.t. μ0.

Proposition 1 (cf. [43, Proposition 1]) Let Assumption 1 be satisfied and μ0 be Gaus-
sian. Then there holds

dLμn

dμ0
(x) ∝ exp(−nT2Φn(x; xn)), x ∈ R

d , (17)

where T2Φn(·; xn) denotes the Taylor polynomial of order 2 of Φn at the point xn ∈ R
d .

In fact, the representation (17) does only hold for prior measures μ0 with Lebesgue
density π0 : Rd → [0,∞) satisfying ∇3 logπ0 ≡ 0.

Corollary 1 Let Assumption 1 be satisfied and μ0 be Gaussian. Further, let Assumption
3 hold true and assume that the restriction Φn : X → R and the marginal density π0
on X satisfy Assumption 2 on X . Then the approximation result of Theorem 2 holds.

Proof By using Proposition 1, we can express the Hellinger distance dH(μn,Lμn ) as
follows

d2
H(μn,Lμn ) =

∫
Rd

(√
dμn

dμ0
(x) −

√
dLμn

dμ0
(x)

)2

μ0(dx)

=
∫
Rd

(√
exp(−nΦn(x))

Zn
−
√
exp(−nT2Φn(x; xn))

Z̃n

)2

μ0(dx).

We use now the decomposition R
d = X ⊕ X c with x := xX + xc for x ∈ R

d with
xX ∈ X and xc ∈ X c. We note, that due to Assumption 3, we have that

T2Φn(x; xn) = T2Φn(xX ; xn), x ∈ R
d .

We then obtain by disintegration and denoting Φ̃n(x) := T2Φn(x; xn) = Φ̃n(xX )

d2
H(μn,Lμn ) =

∫
Rd

⎛
⎝
√
e−nΦn(xX )

Zn
−
√
e−nΦ̃n(xX )

Z̃n

⎞
⎠

2

μ0(dxX dxc)
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Fig. 1 Plots of the Lebesgue densities of μn (left) and Lμn (middle) for n = 128 as well as the Hellinger
distance between μn and Lμn for Example 1. The red line in the left and middle panel represents the set
MΦ andML around which μn and Lμn , respectively, concentrate as n → ∞

=
∫
X

∫
X c

⎛
⎝
√
e−nΦn(xX )

Zn
−
√
e−nΦ̃n(xX )

Z̃n

⎞
⎠

2

μ0(dxc|xX ) μ0(dxX )

=
∫
X

⎛
⎝
√
e−nΦn(xX )

Zn
−
√
e−nΦ̃n(xX )

Z̃n

⎞
⎠

2

μ0(dxX ),

where μ0(dxX ) denotes the marginal of μ0 on X . Since Φn and In(xX ) = Φn(xX )−
1
n logπ0(xX ), where π0(xX ) denotes the Lebesgue density of the marginal μ0(dxX ),
satisfy the assumptions of Theorem 2 on S0 ∩ X = X , the statement follows. ��

We provide some illustrative examples for the theoretical results stated in this
subsection.

Example 1 (Divergence of the Laplace approximation in the singular case)We assume
a Gaussian prior μ0 = N (0, I2) on R2 and Φ(x) = ‖y − G(x)‖2 where

y = 0, G(x) = x2 − x21 , x = (x1, x2) ∈ R
2. (18)

We plot the Lebesgue densities of the resulting μn and Lμn for n = 128 in the left
and middle panel of Fig. 1. The red line in both plots indicate the different sets

MΦ = {x ∈ R
2 : x2 = x21 }, ML = {x ∈ R

2 : x2 = 0},

around which μn and Lμn , respectively, concentrate as n → ∞. As MΦ �= ML,
we observe no convergence of the Laplace approximation as n → ∞, see the right
panel of Fig. 1. Here, the Hellinger distance is computed numerically by applying a
tensorized trapezoidal rule on a sufficiently large subdomain of R2.

Example 2 (Convergence of the Laplace approximation in the singular case in the
setting of Corollary 1) Again, we suppose a Gaussain prior μ0 = N (0, I2) and Φ in
the form of Φ(x) = ‖y − G(x)‖2 with

y =
(

π
2
0.5

)
, G(x) =

(
exp((x2 − x1)/5)
sin(x2 − x1)

)
, x = (x1, x2) ∈ R

2. (19)
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Fig. 2 Same as in Fig. 1 but for Example 2

Thus, the invariant subspace is X c = {x ∈ R
2 : x1 = x2}. In the left and middle

panel of Fig. 2 we present the Lebesgue densities ofμn and its Laplace approximation
Lμn for n = 25 and by the red line the sets MΦ = ML = x� + X c. We observe
the convergence guaranteed by Corollary 1 in the right panel of Fig. 2 where we can
also notice a preasymptotic phase with a shortly increasing Hellinger distance. Such a
preasmyptotic phase is to be expected due to dH(μn,Lμn ) ∈ O(n−1/2)+O(e−nδr nd/2)

as shown in the proof of Theorem 2.

3 Robustness of Laplace-basedMonte Carlo methods

In practice, we are often interested in expectations or integrals of quantities of interest
f : Rd → R w.r.t. μn such as

∫
Rd

f (x) μn(dx).

For example, in Bayesian statistics the posterior mean ( f (x) = x) or posterior prob-
abilities ( f (x) = 1A(x), A ∈ B(Rd)) are desirable quantities. Since μn is seldom
given in explicit form, numerical integration must be applied for approximating such
integrals. To this end, since the prior measure μ0 is typically a well-known measure
for which efficient numerical quadrature methods are available, the integral w.r.t. μn

is rewritten as two integrals w.r.t. μ0

∫
Rd

f (x) μn(dx) =
∫
Rd f (x) exp(−nΦn(x)) μ0(dx)∫

Rd exp(−nΦn(x)) μ0(dx)
=: Z ′

n

Zn
. (20)

If then a quadrature rule such as
∫
Rd g(x) μ0(dx) ≈ 1

N

∑N
i=1 wi g(xi ) is used, we end

up with an approximation

∫
Rd

f (x) μn(dx) ≈
∑N

i=1 wi f (xi ) exp(−nΦn(xi ))∑N
i=1 wi exp(−nΦn(xi ))

.

This might be a good approximation for small n ∈ N. However, as soon as n → ∞
the likelihood term exp(−nΦn(xi )) will deteriorate and this will be reflected by a
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deteriorating efficiency of the quadrature scheme—not in terms of the convergence
rate w.r.t. N , but w.r.t. the constant in the error estimate, as we will display later in
examples.

If the Gaussian Laplace approximation Lμn of μn is used as the prior measure for
numerical integration instead of μ0, we get the following approximation

∫
Rd

f (x) μn(dx) ≈
∑N

i=1 wi f (xi )
πn(xi )
π̃n(xi )∑N

i=1 wi
πn(xi )
π̃n(xi )

,

where πn and π̃n denote the unnormalized Lebesgue density of μn and Lμn , respec-
tively. This time, we can not only apply well-known quadrature and sampling rules for
Gaussian measures, but moreover, we also know due to Lemma 1, that the ratio πn(x)

π̃n(x)
converges inmeanw.r.t.Lμn to 1. Hence, we do not expect a deteriorating efficiency of
the numerical integration as n → ∞. On the contrary, as we subsequently discuss for
several numerical integration methods, their efficiency for a finite number of samples
N ∈ N will even improve as n → ∞ if they are based on the Laplace approximation
Lμn .

For the sake of simplicity, we consider the simple case of Φn ≡ Φ + const in
the following presentation—nonetheless, the presented results can be extended to the
general case given appropriate modifications of the assumptions. Thus, we consider
probability measures μn of the form

μn(dx) ∝ e−nΦ(x) μ0(dx) (21)

where we assume that Φ satisfies the assumptions of Theorem 1. However, when
dealing with the Laplace approximation of μn and, particularly, with the ratios of the
corresponding normalizing constants, it is helpful to use the following representation

μn(dx) = 1

Zn
e−nΦn(x)μ0(dx), Φn(x) := Φ(x) − ιn, (22)

where ιn := minx∈S0 Φ(x) − 1
n logπ0(x) and Zn = enιn

∫
Rd e−nΦ(x)π0(x) dx . By

this construction the resulting In(x) := Φn(x) − 1
n logπ0(x) satisfies In(xn) = 0 as

required inAssumption 1 for the construction of the Laplace approximationLμn . Note,
that for Φn = Φ − ιn the Assumptions 1 and 2 imply the assumptions of Theorem 1
for f = π0 and p = 0.
Preliminaries Before we start analyzing numerical methods based on the Laplace
approximation as their reference measure, we take a closer look at the details of the
asymptotic expansion for integrals provided in Theorem 1 and their implications for
expectations w.r.t. μn given in (22).
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936 C. Schillings et al.

1. The coefficients: The proof of Theorem 1 in [44, Section IX.5] provides explicit
expressions2 for the coefficients ck ∈ R in the asymptotic expansion

∫
D

f (x) exp(−nΦ(x))dx = e−nΦ(x�)n−d/2

( p∑
k=0

ck( f )n−k + O
(

n−p−1
))

,

namely—given that f ∈ C2p+2(D,R) and Φ ∈ C2p+3(D,R)—that

ck( f ) =
∑

α∈Nd
0 : |α|=2k

κα

α! Dα F(0) (23)

where for α = (α1, . . . , αd) we have |α| = α1 + · · · + αd , α! = α1! · · · αd !,
Dα = Dα1

x1 · · · Dαd
xd and

F(x) := f (h(x)) det(∇h(x))

with h : Ω → U (x�) being a diffeomorphism between 0 ∈ Ω ⊂ R
d and a partic-

ular neighborhood U (x�) of x� mapping h(0) = x� and such that det(∇h(0)) = 1.
The diffeomorphism h is specified by thewell-knownMorse’sLemmaanddepends
only on Φ. In particular, if Φ ∈ C2p+3(D,R), then h ∈ C2p+1(Ω, U (x�)).
For the constants κα = κα1 · · · καd ∈ R we have καi = 0 if αi is odd and
καi = (2/λi )

(αi +1)/2Γ ((αi + 1)/2) otherwise with λi > 0 denoting the i th eigen-
value of H� = ∇2Φ(x�). Hence, we get

ck( f ) =
∑

α∈Nd
0 : |α|=k

κ2α

(2α)! D2α F(0). (24)

2. The normalization constant of μn : Theorem 1 implies that if π0 ∈ C2(Rd;R)

and Φ ∈ C3(Rd ,R), then

∫
Rd

π0(x) exp(−nΦ(x)) dx = e−nΦ(x�)n−d/2
(

(2π)d/2 π0(x�)√
det(H�)

+ O(n−1)

)
.

Hence, we obtain for the normalizing constant Zn in (22) that

Zn = en(ιn−Φ(x�))n−d/2
(

(2π)d/2 π0(x�)√
det(H�)

+ O(n−1)

)
. (25)

If we compare this to the normalizing constant Z̃n = n−d/2√det(2πCn) of its
Laplace approximation we get

Zn

Z̃n
= en(ιn−Φ(x�))

π0(x�)√
det(H�)

+ O(n−1)
√
det(Cn)

.

2 There is a typo in [44, Section IX.5] stating that the sum in (23) is taken over all α ∈ N
d
0 with |α| = k.
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We now show that
Zn

Z̃n
= 1 + O(n−1). (26)

First, we get due toCn → H−1
� that

√
det(Cn) → 1√

det(H�)
as n → ∞. Moreover,

en(ιn−Φ(x�)) = exp(n(Φ(xn) − Φ(x�)))

π0(xn)
.

Since xn → x� continuity implies π0(xn) → π0(x�) as n → ∞. Besides that,
the strong convexity of Φ in a neighborhood of x�—due to ∇2Φ(X�) > 0 and
Φ ∈ C3(Rd ,R)—implies that for a c > 0

Φ(xn) − Φ(x�) ≤ 1

2c
‖∇Φ(xn)‖2,

also known as Polyak–Łojasiewicz condition. Because of

∇Φ(xn) = 1

n
∇ logπ0(xn),

since ∇ In(xn) = 0, we have that |Φ(xn) − Φ(x�)| ∈ O(n−2), and hence,

lim
n→∞ en(ιn−Φ(x�)) = 1/π0(x�).

This yields (26).
3. The expectation w.r.t. μn : The expectation of a f ∈ L1

μ0
(R) w.r.t. μn is given by

Eμn [ f ] =
∫
S0

f (x)π0(x) exp(−nΦ(x)) dx∫
S0

π0(x) exp(−nΦ(x)) dx
.

If f , π0 ∈ C2(Rd ,R) and and Φ ∈ C3(Rd ,R), then we can apply the asymptotic
expansion above to both integrals and obtain

Eμn [ f ] = e−nΦ(x�)n−d/2 (c0( f π0) + O(n−1))

e−nΦ(x�)n−d/2 (c0(π0) + O(n−1))
= f (x�) + O(n−1). (27)

If f , π0 ∈ C4(Rd ;R) andΦ ∈ C5(Rd ,R), then we canmake this more precise by
using the next explicit terms in the asymptotic expansions of both integrals, apply
the rule for the division of asymptotic expansions and obtain Eμn [ f ] = f (x�) +
c̃1( f , π0)n−1 + O(n−2) where c̃1( f , π0) = 1

c0(π0)
c1( f π0) − c1(π0)

c20(π0)
c0( f π0).

4. The variance w.r.t. μn : The variance of a f ∈ L2
μ0

(R) w.r.t. μn is given by

Varμn ( f ) = Eμn

[
f 2
]

− Eμn [ f ]2 .
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938 C. Schillings et al.

If f , π0 ∈ C2(Rd;R) and Φ ∈ C3(Rd ,R), then we can exploit the result for the
expectation w.r.t. μn from above and obtain

Varμn ( f ) = f 2(x�) + O(n−1) −
(

f (x�) + O(n−1)
)2 ∈ O(n−1). (28)

If f , π0 ∈ C4(Rd ,R) and Φ ∈ C5(Rd ,R), then a straightforward calculation
using the explicit formulas for c1( f 2π0) and c1( f π0) as well as∇h(0) = I yields

Varμn ( f ) = n−1‖∇ f (x�)‖2H−1
�

+ O(n−2). (29)

Hence, the variance Varμn ( f ) decays like n−1 provided that ∇ f (x�) �= 0—
otherwise it decays (at least) like n−2.

Remark 5 As already exploited above, the assumptions of Theorem 1 imply that
Φ is strongly convex in a neighborhood of x� = limn→∞ xn , where xn =
argminx∈S0 Φ(x) − 1

n logπ0(x). This yields |Φ(xn) − Φ(x�)| ∈ O(n−2), and thus

‖xn − x�‖ ∈ O(n−1). (30)

3.1 Importance sampling

Importance sampling is a variant of Monte Carlo integration where an integral w.r.t. μ
is rewritten as an integral w.r.t. a dominating importance distribution μ � ν, i.e.,

∫
Rd

f (x) μ(dx) =
∫
Rd

f (x)
dμ

dν
(x) ν(dx).

The integral appearing on the righthand side is then approximated by Monte Carlo
integration w.r.t. ν: given N independent draws xi , i = 1, . . . , N , according to ν we
estimate

∫
Rd

f (x) μ(dx) ≈ 1

N

N∑
i=1

w(xi ) f (xi ), w(xi ) := dμ

dν
(xi ).

Often the density or importance weight function w = dμ
dν : Rd → [0,∞) is only

known up to a normalizing constant w̃ ∝ dμ
dν . In this case, we can use self-normalized

importance sampling

∫
Rd

f (x) μ(dx) ≈
∑N

i=1 w̃(xi ) f (xi )∑N
i=1 w̃(xi )

=: IS(N )
μ,ν ( f ).
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As for Monte Carlo, there holds a strong law of large numbers (SLLN) for self-
normalized importance sampling, i.e.,

∑N
i=1 w̃(Xi ) f (Xi )∑N

i=1 w̃(Xi )

a.s.−−−−→
N→∞ Eμ [ f ] ,

where Xi ∼ ν are i.i.d., which follows from the ususal SLLN and the continuous
mapping theorem.Moreover, by the classical central limit theorem (CLT) andSlutsky’s
theorem also a similar statement holds for self-normalized importance sampling: given
that

σ 2
μ,ν( f ) := Eν

[(
dμ

dν

)2

( f − Eμ [ f ])2
]

< ∞

we have

√
N

(∑N
i=1 w̃(Xi ) f (Xi )∑N

i=1 w̃(Xi )
− Eμ [ f ]

)
D−−−−→

N→∞ N (0, σ 2
μ,ν( f )).

Thus, the asymptotic variance σ 2
μ,ν( f ) serves as a measure of efficiency for self-

normalized importance sampling. To ensure a finite σ 2
μ,ν( f ) for many functions of

interest f , e.g., bounded f , the importance distribution ν has to have heavier tails than
μ such that the ratio dμ

dν belongs to L2
ν(R), see also [31, Section 3.3]. Moreover, if we

even have dμ
dν ∈ L∞

ν (R) we can bound

σ 2
μ,ν( f ) ≤

∥∥∥∥dμdν
∥∥∥∥

L∞
ν

Eμ

[
( f − Eμ [ f ])2

]
⇔ σ 2

μ,ν( f )

Varμ( f )
≤
∥∥∥∥dμdν

∥∥∥∥
L∞

ν

, (31)

i.e., the ratio between the asymptotic variance of importance sampling w.r.t. ν and
plain Monte Carlo w.r.t. μ can be bounded by the L∞

ν - or supremum norm of the
importance weight dμ

dν .
For themeasuresμn a natural importance distribution (called ν above)which allows

for direct sampling are the prior measure μ0 and the Gaussian Laplace approximation
Lμn . We study the behaviour of the resulting asymptotic variances σ 2

μn ,μ0
( f ) and

σ 2
μn ,Lμn

( f ) in the following.
Prior importance sampling First, we consider μ0 as importance distribution. For this
choice the importance weight function wn := dμn

dμ0
is given by

wn(x) = 1

Zn
exp(−nΦn(x)), x ∈ S0,

withΦn(x) = Φ(x)−ιn , see (22).Concerning the bound in (31)we immediately obtain
for sufficiently smooth π0 andΦ by (25), assuming w.l.o.g. minx Φ(x) = Φ(x�) = 0,
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940 C. Schillings et al.

that

‖wn‖L∞ = Z−1
n enιn = c̃nd/2, c̃ > 0,

explodes as n → ∞. Of course, this is just the deterioration of an upper bound, but
in fact we can prove the following rather negative result where we use the notation
g(n) ∼ h(n) for the asymptotic equivalence of functions of n, i.e., g(n) ∼ h(n) iff
limn→∞ g(n)

h(n)
= 1.

Lemma 2 Given μn as in (22)with Φ satisfying the assumptions of Theorem 1 for p =
1 and π0 ∈ C4(Rd ,R) with π0(x�) �= 0, we have for any f ∈ C4(Rd ,R) ∩ L1

μ0
(R)

with ∇ f (x�) �= 0 that

σ 2
μn ,μ0

( f ) ∼ c̃ f nd/2−1, c̃ f > 0,

which yields
σ 2

μn ,μ0
( f )

Varμn ( f )
∼ c̃ f nd/2 for another c̃ f > 0.

Proof W.l.o.g. we may assume that f (x�) = 0, since σ 2
μn ,μ0

( f ) = σ 2
μn ,μ0

( f − c) for
any c ∈ R. Moreover, for simplicity we assume w.l.o.g. that Φ(x�) = 0. We study

σ 2
μn ,μ0

( f ) = 1

Z2
n

∫
S0
e−2nΦn(x) ( f (x) − Eμn [ f ])2 μ0(dx)

= 1

e−2nιn Z2
n

∫
S0
e−2nΦ(x) ( f (x) − Eμn [ f ])2 μ0(dx)

by analyzing the growth of the numerator and denominator w.r.t. n. Due to the
preliminaries presented above we know that e−2nιn Z2

n = c20n−d + O(n−d−1) with
c0 = (2π)d/2 π0(x�)/

√
det(H�) > 0. Concerning the numerator we start with decom-

posing

∫
S0
e−2nΦ(x) ( f (x) − Eμn [ f ])2 μ0(dx) = J1(n) − 2J2(n) + J3(n)

where this time

J1(n) :=
∫
S0

f 2(x)e−2nΦ(x) μ0(dx),

J2(n) := Eμn [ f ]
∫
S0

f (x)e−2nΦ(x) μ0(dx),

J3(n) := Eμn [ f ]2
∫
S0
e−2nΦ(x) μ0(dx).

We derive now asymptotic expansions of these terms based on Theorem 1. It is easy
to see that the assumptions of Theorem 1 are also fulfilled when considering integrals
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w.r.t. e−2nΦ . We start with J1 and obtain due to f (x�) = 0 that

J1(n) =
∫
S0

f 2(x)e−2nΦ(x) μ0(dx) = c′
1( f 2π0)n

−d/2−1 + O(n−d/2−2)

where c′
1( f 2π0) ∈ R is the same as c1( f 2π0) in (23) but for 2Φ instead of Φ.

Next, we consider J2 and recall that due to f (x�) = 0 we have Eμn [ f ] ∈
O(n−1), see (27). Furthermore, f (x�) = 0 also implies

∫
S0

f (x)π0(x) e−2nΦ(x) dx ∈
O(n−1−d/2), see Theorem 1. Thus, we have

J2(n) = Eμn [ f ]
∫
S0

f (x)e−2nΦ(x) μ0(dx) ∈ O
(

n−d/2−2
)

.

Finally, we take a look at J3. By Theorem 1 we have
∫
S0
exp(−2nΦ(x)) μ0(dx) ∈

O(n−d/2) and, hence, obtain

J3(n) = Eμn [ f ]2
∫
S0
exp(−2nΦ(x)) μ0(dx) ∈ O(n−2−d/2).

Hence, J1 has the dominating power w.r.t. n and we have that

∫
S0
e−2nΦ(x) ( f (x) − Eμn [ f ])2 μ0(dx) ∼ c′

1( f 2π0)n
−d/2−1.

At this point, we remark that due to the assumption ∇ f (x�) �= 0 we have
c′
1( f 2π0) �= 0: we know by (24) that c′

1( f 2π0) = 1
2

∑d
j=1 κ2e j D2e j F(0) where

F(x) = π0(h′(x)) f 2(h′(x)) det(∇h′(x)) and h′ denotes the diffeomorphism for
2Φ appearing in Morse’s lemma and mapping 0 to x�; applying the product for-
mula and using f (x�) = 0 as well as det(∇h′(0)) = 1 we get that D2e j F(x�) =
π0(x�)D2e j ( f 2(h′(x�))); similarly, we get using f (x�) = 0 that D2e j ( f 2(h′(x�))) =
2|e�

j ∇h′(0)∇ f (x�)|2; since h′ is a diffeomorphishm ∇h′(0) is regular and, thus,

c′
1( f 2π0) �= 0. The statement follows now by

σ 2
μn ,μ0

( f ) = c′
1( f 2π0)n−d/2−1 + O(n−d/2−2)

c20n−d + O(n−d−1)
∼ c′

1( f 2π0)

c20
nd/2−1

and by recalling that Varμn ( f ) ∼ cn−1 because of ∇ f (x�) �= 0, see (29). ��

Thus, Lemma 2 tells us that the asymptotic variance of importance sampling for μn

with the prior μ0 as importance distribution grows like nd/2−1 as n → ∞ for a large
class of integrands. Hence, its efficiency deteriorates like nd/2−1 for d ≥ 3 as the
target measures μn become more concentrated.
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942 C. Schillings et al.

Laplace-based importance samplingWenow consider the Laplace approximationLμn

as importance distribution which yields the following importance weight function

wn(x) := dμn

dLμn

(x) = Z̃n

Zn
exp(−n Rn(x))1S0(x), x ∈ R

d , (32)

with Rn(x) = In(x) − Ĩn(x) = In(xn) − 1
2‖x − xn‖2

C−1
n

for x ∈ S0. In order to ensure

wn ∈ L2
Lμn

(R) we need that

ELμn

[
exp(−2n Rn)

] = 1

Z̃n

∫
S0
exp(−n[2In(x) − Ĩn(x)]) dx < ∞.

Despite pathological counterexamples a sound requirement forwn ∈ L2
Lμn

(R) is that

lim‖x‖→∞ 2In(x) − Ĩn(x) = +∞,

for example by assuming that there exist δ, c1 > 0, c0 > 0, and n0 ∈ N such that

In(x) ≥ c1‖x‖2+δ + c0, ∀x ∈ S0 ∀n ≥ n0. (33)

If the Lebesgue density π0 of μ0 is bounded, then (33) is equivalent to the existence
of n0 and a c̃0 such that

Φn(x) ≥ c1‖x‖2+δ + c̃0, ∀x ∈ S0 ∀n ≥ n0.

Unfortunately, condition (33) is not enough to ensure a well-behaved asymptotic vari-
ance σ 2

μn ,Lμn
( f ) as n → ∞, since

‖wn‖L∞ = Z̃n

Zn
exp(−n min

x∈S0
Rn(x)).

Although, we know due to (26) that Z̃n
Zn

→ 1 as n → ∞, the supremum norm
of the importance weight wn of Laplace-based importance sampling will explode
exponentially with n if minx Rn(x) < 0. This can be sharpened to proving that even
the asymptotic variance of Laplace-based importance sampling w.r.t. μn as in (22)
deteriorates exponentially as n → ∞ for many functions f : Rd → R if

∃x ∈ S0 : Φ(x) <
1

2
Φ(x�) + 1

4
‖x − x�‖2H−1

�

by means of Theorem 1 applied to

∫
Rd

( f (x) − Eμn [ f ])2 exp(−n[2In(x) − Ĩn(x)]) dx .
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This means, except when Φ is basically strongly convex, the asymptotic variance of
Laplace-based important sampling can explode exponentially or not even exist as n
increases. However, in the good case, so to speak, we obtain the following.

Proposition 2 Consider the measures μn as in (22)with Φn = Φ−ιn and π0 satisfying
Assumptions 1 and 2. If there exist an n0 ∈ N such that for all n ≥ n0 we have

In(x) ≥ In(xn) + 1

2
(x − xn)�∇2 In(xn)(x − xn) ∀x ∈ S0, (34)

then for any f ∈ L2
μ0

( f )

lim
n→∞

σ 2
μn ,Lμn

( f )

Varμn ( f )
= 1.

Proof The assumption (34) ensures that Rn(x) = In(x) − Ĩn(x) ≥ 0 for each x ∈ S0.
Thus,

‖wn‖L∞ = Z̃n

Zn

and the assertion follows by (31) and the fact that limn→∞ Z̃n
Zn

= 1 due to (26). ��
Condition (34) is for instance satisfied, if In is strongly convex with a constant

γ ≥ λmin(∇2 In(xn)) where the latter denotes the smallest eigenvalue of the positive
definite Hessian ∇2 In(xn). However, this assumption or even (34) is quite restrictive
and, probably, hardly fulfilled formany interesting applications.Moreover, the success
in practice of Laplace-based importance sampling is well-documented. How come that
despite a possible infinite asymptotic variance Laplace-based importance sampling
performs that well? In the following we refine our analysis and exploit the fact that
the Laplace approximation concentrates around the minimizer of In . Hence, with an
increasing probability samples drawn from the Laplace approximation are in a small
neighborhood of the minimizer. Thus, if In is, e.g., only locally strongly convex—
which the assumptions of Theorem 2 actually imply—then with a high probability the
mean squared error might be small.

We clarify these arguments in the following and present a positive result for Laplace-
based importance sampling under mild assumptions but for a weaker error criterion
than the decay of the mean squared error.

First we state a concentration result for N samples drawn from Lμn which is an
immediate consequence of Proposition 4.

Proposition 3 Let N ∈ N be arbitrary and let X (n)
i ∼ Lμn be i.i.d. where i =

1, . . . , N. Then, for a sequence of radii rn ≥ r0n−q > 0, n ∈ N, with q ∈ (0, 1/2) we
have

P

(
max

i=1,...,N
‖X (n)

i − xn‖ ≤ rn

)
= 1 − e−c0Nn1−2q −−−→

n→∞ 1.
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Remark 6 In the following we require expectations w.r.t. restrictions of the measures
μn in (22) to shrinking balls Brn (xn). To this end, we note that the statements of Theo-
rem 1 also hold true for shrinking domains Dn = Brn (x�) with rn = r0n−q as long as
q < 1/2. This can be seen from the proof of Theorem 1 in [44, Section IX.5]. In partic-
ular, all coefficients in the asymptotic expansion for

∫
Dn

f (x) exp(−nΦ(x))dx with
sufficiently smooth f are the same as for

∫
D f (x) exp(−nΦ(x))dx and the difference

between both integrals decays for increasing n like exp(−cnε) for an ε > 0 and c > 0.
Concerning the balls Brn (xn) with decaying radii rn = r0n−q , q ∈ [0, 1/2), we have
due to ‖xn − x�‖ ∈ O(n−1)—see Remark 5—that Brn/2(x�) ⊂ Brn (xn) ⊂ B2rn (x�)

for sufficiently large n. Thus, the facts for μn as in (22) stated in the preliminaries
before Sect. 3.1 do also apply to the restrictions of μn to Brn (xn) with rn = r0n−q ,
q ∈ [0, 1/2). In particular, the difference between Eμn [ f ] and Eμn

[
f | Brn (xn)

]
decays faster than any negative power of n as n → ∞.

The next result shows that the mean absolute error of the Laplace-based importance
sampling behaves like n−(3q−1) conditional on all N samples belonging to shrinking
balls Brn (xn) with rn = r0n−q , q ∈ (1/3, 1/2).

Lemma 3 Consider the measures μn in (22) and suppose they satisfy the assumptions
of Theorem 2. Then, for any f ∈ C2(Rd ,R) ∩ L2

μ0
(R) there holds for the error

en,N ( f ) :=
∣∣∣IS(N )

μn ,Lμn
( f ) − Eμn [ f ]

∣∣∣ ,
of the Laplace-based importance sampling with N ∈ N samples that

E

[
en,N ( f )

∣∣ X (n)
1 , . . . , X (n)

N ∈ Brn (xn)
]

∈ O(n−(3q−1)),

where rn = r0n−q with q ∈ (1/3, 1/2).

Proof We start with

en,N ( f ) :=
∣∣∣IS(N )

μn ,Lμn
( f ) − Eμn [ f ]

∣∣∣
≤
∣∣∣IS(N )

μn ,Lμn
( f ) − Eμn

[
f | Brn (xn)

]∣∣∣ + ∣∣Eμn [ f ] − Eμn

[
f | Brn (xn)

]∣∣ .
The second term decays subexponentially w.r.t. n, see Remark 6. Hence, it remains to
prove that

E

[ ∣∣∣IS(N )

μn ,Lμn
( f ) − Eμn

[
f | Brn (xn)

]∣∣∣
∣∣∣ X (n)

1 , . . . , X (n)
N ∈ Brn (xn)

]
∈ O(n−(3q−1)).

To this end, we write the self-normalizing Laplace-based importance sampling esti-
mator as

IS(N )

μn ,Lμn
( f ) =

1
N

∑N
i=1 w̃n(X (n)

i ) f (X (n)
i )

1
N

∑N
i=1 w̃n(X (n)

i )
= Hn,N Sn,N
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where we define

Hn,N := Zn

Z̃n

1
1
N

∑N
i=1 w̃n(X (n)

i )
, Sn,N = 1

N

N∑
i=1

wn(X (n)
i ) f (X (n)

i ),

and recall that wn is as in (32) and w̃n(x) = exp(−n Rn(x)). Notice that

E
[
Sn,N

] = Eμn [ f ] , E

[
Sn,N | X (n)

1 , . . . , X (n)
N ∈ Brn (xn)

]
= Eμn

[
f | Brn (xn)

]
.

Let us denote the event that X (n)
1 , . . . , X (n)

N ∈ Brn (xn) by An,N for brevity. Then,

E

[ ∣∣∣IS(N )

μn ,Lμn
( f ) − Eμn

[
f | Brn (xn)

]∣∣∣
∣∣∣ An,N

]

= E
[ ∣∣Hn,N Sn,N − E

[
Sn,N | An,N

]∣∣ ∣∣ An,N
]

≤ E
[ ∣∣Sn,N − E

[
Sn,N | An,N

]∣∣ ∣∣ An,N
]

+ E
[ ∣∣(Hn,N − 1

)
Sn,N

∣∣ ∣∣ An,N
]

The first term in the last line can be bounded by the conditional variance of Sn,N given
X (n)
1 , . . . , X (n)

N ∈ Brn (xn), i.e., by Jensen’s inequality we obtain

E
[ ∣∣Sn,N − E

[
Sn,N | An,N

]∣∣ ∣∣ An,N
]2 ≤ Var( Sn,N

∣∣ An,N )

= 1

N
Varμn

(
f | Brn (xn)

) ∈ O(n−1),

see Remark 6 and the preliminaries before Sect. 3.1. Thus,

E
[ ∣∣Sn,N − E

[
Sn,N | An,N

]∣∣ ∣∣ An,N
] ∈ O(n−1/2) ⊂ O(n−(3q−1))

and it remains to study if E
[ ∣∣(Hn,N − 1

)
Sn,N

∣∣ ∣∣ An,N
] ∈ O(n−(3q−1)). Given that

X (n)
1 , . . . , X (n)

N ∈ Brn (xn) we can bound the values of the random variable Hn,N for
sufficiently large n: first, we have Zn/Z̃n = 1 + O(n−1), see (26), and second

exp

(
−n max|x−xn |≤rn

|Rn(x)|
)

≤ 1
1
N

∑N
i=1 w̃n(X (n)

i )
≤ exp

(
n max|x−xn |≤rn

|Rn(x)|
)

.

Since |Rn(x)| ≤ c3‖x − xn‖3 for |x − xn| ≤ rn due to the local boundedness of the
third derivative of In and rn = r0n−q , we have that

exp
(
−cn1−3q

)
≤ 1

1
N

∑N
i=1 w̃n(X (n)

i )
≤ exp

(
cn1−3q

)
,
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946 C. Schillings et al.

where c > 0. Thus, there exist αn ≤ 1 ≤ βn with αn = e−cn1−3q
(1 + O(n−1)) and

βn ∼ ecn1−3q
(1 + O(n−1)) such that

P

(
αn ≤ Hn,N ≤ βn | X (n)

1 , . . . , X (n)
N ∈ Brn (xn)

)
= 1.

Since e±cn1−3q
(1+O(n−1)) = 1± cn1−3q +O(n−1)we get that for sufficiently large

n there exists a c̃ > 0 such that

P

(∣∣Hn,N − 1
∣∣ ≤ cn1−3q + c̃n−1 | X (n)

1 , . . . , X (n)
N ∈ Brn (xn)

)
= 1.

Hence,

E
[ ∣∣(Hn,N − 1

)
Sn,N

∣∣ ∣∣ An,N
] ≤

(
cn1−3q + c̃n−1

)
E
[ |Sn,N | ∣∣ An,N

]

∈ O(n−(3q−1)),

since E
[|Sn,N | | An,N

] ≤ Eμn

[| f | | Brn(xn)

]
is uniformly bounded w.r.t. n. This con-

cludes the proof. ��
We now present our main result for the Laplace-based importance sampling which

states that the corresponding error decays in probability to zero as n → ∞ and the
order of decay is arbitrary close to n−1/2.

Theorem 4 Let the assumptions of Lemma 3 be satisfied. Then, for any f ∈
C2(Rd ,R) ∩ L2

μ0
(R) and each sample size N ∈ N the error en,N ( f ) of Laplace-

based importance sampling satisfies

nδen,N ( f )
P−−−→

n→∞ 0, δ ∈ [0, 1/2).

Proof Let 0 ≤ δ < 1/2 and ε > 0 be arbitrary. We need to show that

lim
n→∞P

(
nδen,N ( f ) > ε

) = 0.

Again, let us denote the event that X (n)
1 , . . . , X (n)

N ∈ Brn (xn) by An,N for brevity. By
Proposition 3 we obtain for radii rn = r0n−q with q ∈ (1/3, 1/2) that

P
(
nδ en,N ( f ) ≤ ε

) ≥ P
(
nδen,N ( f ) ≤ ε and X1, . . . , X N ∈ Brn (xn)

)
= P

(
nδen,N ( f ) ≤ ε | An,N

)
P(An,N )

≥ P
(
nδen,N ( f ) ≤ ε | An,N

) (
1 − CN e

−c0Nn1−2q
)

.

The second termon the righthand side in the last line obviously tends to 1 exponentially
as n → ∞. Thus, it remains to prove that

lim
n→∞P

(
nδen,N ( f ) ≤ ε | X1, . . . , X N ∈ Brn (xn)

) = 1
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To this end, we apply a conditional Markov inequality for the positive random variable
en,N ( f ), i.e.,

P
(
nδen,N ( f ) > ε | An,N

) ≤ nδ

ε
E
[
en,N ( f ) | An,N

] ∈ O
(

nδ−min(3q−1,1/2)
)

where we used Lemma 3. Choosing q ∈ (1/3, 1/2) such that q > 1+δ
3 ∈ [1/3, 1/2)

yields the statement. ��

3.2 Quasi-Monte Carlo integration

We now want to approximate integrals as in (20) w.r.t. measures μn(dx) ∝
exp(−nΦ(x))μ0(dx) as in (22) by Quasi-Monte Carlo methods.

These will be used to estimate the ratio Z ′
n/Zn by separately approximating the

two integrals Z ′
n and Zn in (20). The preconditioning strategy using the Laplace

approximation will be explained exemplarily for Gaussian and uniform priors, two
popular choices for Bayesian inverse problems.

We start the discussion by first focusing on a uniform prior distribution μ0 =
U([− 1

2 ,
1
2 ]d). The integrals Z ′

n and Zn are then

Z ′
n =

∫
[− 1

2 , 12 ]d
f (x)Θn(x)dx, Zn =

∫
[− 1

2 , 12 ]d
Θn(x)dx, (35)

where we set Θn(x) := exp(−nΦ(x)) for brevity.
We consider Quasi-Monte Carlo integration based on shifted Lattice rules: an N -

point Lattice rule in the cube [− 1
2 ,

1
2 ]d is based on points

xi = frac
( i z

N
+ Δ

)
− 1

2
, i = 1, . . . , N , (36)

where z ∈ {1, . . . , N − 1}d denotes the so-called generating vector, Δ is a uniformly
distributed random shift on [− 1

2 ,
1
2 ]d and frac denotes the fractional part (component-

wise). These randomly shifted points provide unbiased estimators

Z ′
n,QMC := 1

N

N∑
i=1

f (xi )Θ(xi ), Zn,QMC := 1

N

N∑
i=1

Θ(xi )

of the two integrals Z ′
n and Zn in (35). Under the assumption that the quantity of

interest f : Rd → R is linear and bounded, we can focus in the following on the
estimation of the normalization constant Zn , the results can be then straightforwardly
generalized to the estimation of Z ′

n . For the estimator Zn,QMC we have the following
well-known error bound.

Theorem 5 [12, Thm. 5.10] Let γ = {γν}ν⊂{1,...,d} denote POD (product and order
dependent) weights of the form γν = α|ν|

∏
j∈ν β j specified by two sequences α0 =
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948 C. Schillings et al.

α1 = 1, α2, . . . ≥ 0 and β1 ≥ β2 ≥ . . . > 0 for ν ⊂ {1, . . . , d} and |ν| = #ν.
Then, a randomly shifted Lattice rule with N = 2m, m ∈ N, can be constructed via
a component-by-component algorithm with POD weights at costs of O(d N log N +
d2N ) operations, such that for sufficiently smooth Θ : [− 1

2 ,
1
2 ]d → [0,∞)

EΔ[(Zn−Zn,QMC )2]1/2 ≤
⎛
⎝2

∑
∅�=ν⊂{1,...,d}

γ κ
ν

(
2ζ(2κ)

(2π2)κ

)|ν|
⎞
⎠

1
2κ

‖Θn‖γ N− 1
2κ (37)

for κ ∈ (1/2, 1] with

‖Θn‖2γ :=
∑

ν⊂{1,...,d}

1

γν

∫
[− 1

2 , 12 ]|ν|

(∫
[− 1

2 , 12 ]d−|ν|
∂ |ν|Θn

∂xν
(x)dx1:d\ν

)2

dxν

and ζ(a) := ∑∞
k=1 k−a.

The norm ‖Θn‖γ in the convergence analysis depends on n, in particular, it can
grow polynomially w.r.t. the concentration level n of the measures μn as we state in
the next result.

Lemma 4 Let Φ : Rd → [0,∞) satisfy the assumptions of Theorem 1 for p = 2d.
Then, for the norm ‖Θn‖γ in the error bound in Theorem 5 there holds

lim
n→∞ n−d/4‖Θn‖γ > 0.

The proof of Lemma 4 is rather technical and can be found in “Appendix B.3”. We
remark that Lemma 4 just tells us that the root mean squared error estimate for QMC
integration based on the prior measure explodes like nd/4. This does in general not
indicate that the error itself explodes; in fact the QMC integration error for the normal-
ization constant is bounded by 1 in our setting. Nonetheless, Lemma 4 indicates that
a naive Quasi-Monte Carlo integration based on the uniform prior μ0 is not suitable
for highly concentrated target or posterior measuresμn . We subsequently propose and
study a Quasi-Monte Carlo integration based on the Laplace approximation Lμn .
Laplace-based Quasi-Monte Carlo To stabilize the numerical integration for con-
centrated μn , we propose a preconditioning based on the Laplace approximation,
i.e., an affine rescaling according to the mean and covariance of Lμn . In the uni-
form case, the functionals In are independent of n. The computation of the Laplace
approximation requires therefore only one optimization to solve for xn = x� =
argminx∈[− 1

2 , 12 ]d Φ(x). In particular, the Laplace approximation of μn is given by

Lμn = N (x�,
1
n H−1

� ) where H� denotes the positive definite Hessian ∇2Φ(x�).
Hence, H� allows for an orthogonal diagonalization H� = Q DQ� with orthog-
onal matrix Q ∈ R

d×d and diagonal matrix D = diag(λ1, . . . λd) ∈ R
d×d ,

λ1 ≥ · · · ≥ λd > 0.
We now use this decomposition in order to construct an affine transformation which

reverses the increasing concentration ofμn and yields a QMC approach robust w.r.t. n.
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This transformation is given by

gn(x) := x� +
√
2| ln τ |

n
Q D− 1

2 x, x ∈ [−1

2
,
1

2
]d ,

where τ ∈ (0, 1) is a truncation parameter. The idea of the transformation gn is to
zoom into the parameter domain and thus, to counter the concentration effect. The
domain will then be truncated to Gn := gn([− 1

2 ,
1
2 ]d) ⊂ [− 1

2 ,
1
2 ]d and we consider

Ẑn :=
∫

Gn

Θn(x) dx = Ctrans,n

∫
[− 1

2 , 12 ]d
Θn(gn(x)) dx . (38)

The determinant of the Jacobian of the transformation gn is given by det(∇gn(x)) ≡
Ctrans,n =

(
2| ln τ |

n

) d
2 √

det(H�) ∼ cτ n−d/2. We will now explain how the parameter

τ effects the truncation error. For given τ ∈ (0, 1), the Laplace approximation is used
to determine the truncation effect:

∫
Gn

Lμn (dx) = Ctrans,n

Z̃n

∫
[− 1

2 , 12 ]d
exp

(
−n

2
‖gn(x) − x�‖2H�

)
dx

=
( | ln τ |

π

)d/2 ∫
[− 1

2 , 12 ]d
exp

(
−| ln τ |x2

)
dx

=
( | ln τ |

π

)d/2 (√
πerf(0.5

√| ln τ |)√| ln τ |)
)d

= erf(0.5
√| ln τ |)d .

Thus, since due to the concentration effect of the Laplace approximation we have∫
S0

Lμn (dx) → 1 exponentially with n, we get

∫
S0\Gn

Lμn (dx) ≤ 1 − erf(0.5
√| ln τ |)d ,

thus, the truncation error
∫
S0\Gn

Lμn (dx) becomes arbitrarily small for sufficiently
small τ � 1, since erf(t) → 1 as t → 1. If we apply now QMC integration using
shifted Lattice rule in order to compute the integral over [− 1

2 ,
1
2 ]d on the righthand

side of (38), we obtain the following estimator for Ẑn in (38):

Ẑn,QMC := Ctrans,n

N

N∑
i=1

Θ(gn(xi ))

with xi as in (36). Concerning the norm ‖Θn ◦ gn‖γ appearing in the error bound for
|Ẑn − Ẑn,QMC | we have now the following result.
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Lemma 5 Let Φ : Rd → [0,∞) satisfy the assumptions of Theorem 1 for p = 2d.
Then, for the norm ‖Θn ◦ gn‖γ with gn as above there holds

‖Θn ◦ gn‖γ ∈ O(1) as n → ∞.

Again, the proof is rather technical and can be found in “Appendix B.4”. This propo-
sition yields now our main result.

Corollary 2 Given the assumptions of Lemma 5, a randomly shifted lattice rule with
N = 2m, m ∈ N, can be constructed via a component-by-component algorithm with
product and order dependent weights at costs ofO(d N log N +d2N ) operations, such
that for κ ∈ (1/2, 1]

EΔ[(Zn − Ẑn,QMC )2]1/2 ≤ n− d
2

(
c1h(τ ) + c2n− 1

2 + c3N− 1
2κ

)
(39)

with constants c1, c2, c3 > 0 independent of n and h(τ ) = 1 − erf(0.5
√| ln τ |)d .

Proof The triangle inequality leads to a separate estimation of the domain truncation
error of the integral w.r.t. the posterior and the QMC approximation error, i.e.

EΔ[(Zn − Ẑn,QMC )2]1/2 ≤ |Zn − Ẑn| + EΔ[(Ẑn − Ẑn,QMC )2]1/2.

The second term on the right hand side corresponds to the QMC approximation error.
Thus, Theorem 5 and Lemma 5 imply

EΔ[(Ẑn − Ẑn,QMC )2]1/2 ≤ c3n− d
2 N− 1

2κ , κ ∈ (1/2, 1],

where the term n− d
2 is due to Ctrans,n ∼ cλn− d

2 . The domain truncation error can be
estimated similar to the proof of Lemma 1:

|Zn − Ẑn| = ∣∣
∫
S0\Gn

Θn(x) dx
∣∣

= ∣∣
∫
S0\Gn

Θn(x) dx − Z̃n

∫
S0\Gn

Lμn (dx) + Z̃n

∫
S0\Gn

Lμn (dx)

∣∣∣
= ∣∣Z̃n

∫
S0\Gn

e−nΦ(x)enΦ̃(x)Lμn (dx) − Z̃n

∫
S0\Gn

Lμn (dx)

+Z̃n

∫
S0\Gn

Lμn (dx)

∣∣∣
≤ Z̃n

∫
S0\Gn

∣∣e−n R̃n(x) − 1
∣∣Lμn (dx) + Z̃n

∣∣ ∫
S0\Gn

Lμn (dx)

∣∣∣
≤ Z̃n

∫
S0

∣∣e−n R̃(x) − 1
∣∣Lμn (dx) + Z̃n

(
1 − erf(0.5

√| ln τ |)d
)

where Z̃n = n− d
2

√
det(2π H−1

� ). The result follows by the proof of Lemma 1. ��
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Remark 7 In the case ofGaussian priors, the transformation simplifies tow = gn(x) =
x� + n

1
2 Q D− 1

2 x due to the unboundedness of the prior support. However, to show
an analogous result to Corollary 2, uniform bounds w.r. to n on the norm of the
mixed first order derivatives of the preconditioned posterior density Θn(gn(T −1x))

in a weighted Sobolev space, where T −1 denotes the inverse cumulative distribution
function of the normal distribution, need to be proven. See [23] for more details on
the weighted space setting in the Gaussian case. Then, a similar result to Corollary 2
follows straightforwardly from [23, Thm 5.2]. The numerical experiments shown in
Sect. 3.3 suggest that we can expect a noise robust behavior of Laplace-based QMC
methods also in the Gaussian case. This will be subject to future work.

Remark 8 Note that the QMC analysis in Theorem 5 can be extended to an infinite
dimensional setting, cp. [23] and the references therein for more details. This opens
up the interesting possibility to generalize the above results to the infinite dimen-
sional setting and to develop methods with convergence independent of the number
of parameters and independent of the measurement noise. Furthermore, higher order
QMC methods can be used for cases with smooth integrands, cp. [10,11,13], leading
to higher convergence rates than the first order methods discussed here. In the uniform
setting, it has been shown in [38] that the assumptions on the first order derivatives (and
also higher order derivatives) of the transformed integrand are satisfied for Bayesian
inverse problems related to a class of parametric operator equations, i.e., the proposed
approach leads to a robust performance w.r.t. the size of the measurement noise for
integrating w.r.t. posterior measure resulting from this class of forward problems. The
theoretical analysis of this setting will be subject to future work.

Remark 9 (Numerical quadrature) Higher regularity of the integrand allows to use
higher order methods such as sparse quadrature and higher order QMC methods,
leading to faster convergence rates. In the infinite dimensional Bayesian setting with
uniform priors, we refer to [35,36] for more details on sparse quadrature for smooth
integrands. In the case of uniform priors, the methodology introduced above can be
used to bound the quadrature error for the preconditioned integrand by the truncation
error and the sparse grid error.

3.3 Examples

In this subsection we present two examples illustrating our previous theoretical results
for importance sampling and quasi-MonteCarlo integration based on the priormeasure
μ0 and the Laplace approximation Lμn of the target measure μn . Both examples are
Bayesian inference or inverse problems where the first one uses a toy forward map
and the second one is related to inference for a PDE model.

3.3.1 Algebraic Bayesian inverse problem

We consider inferring x ∈ [− 1
2 ,

1
2 ]d for d = 1, 2, 3, 4 based on a uniform prior

μ0 = U([− 1
2 ,

1
2 ]d) and a realisation of the noisy observable of Y = G(X) + ηn
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Fig. 3 Growth and decay of the empirical RMSE of prior-based (left) and Laplace-based (right) importance
sampling for the example in Sect. 3.3.1 for decaying noise level n−1 and various dimensions d

where X ∼ μ0 and the noise ηn ∼ N (0, n−1Γd), Γd = 0.1Id , are independent, and
G(x) = (G1(x), . . . ,Gd(x)) with

G1(x) = exp(x1/5), G2(x) = x2 − x21 , G3(x) = x3, G4(x) = 2x4 + x21 ,

for x = (x1, . . . , xd). The resulting posterior measure μn on [− 1
2 ,

1
2 ]d are of the form

(22) with

Φ(x) = 1

2
‖y − G(x)‖2

Γ −1
d

.

We used y = G(0.25 · 1d) throughout where 1d = (1, . . . , 1) ∈ R
d . We then compute

the posterior expectation of the quantity of interest f (x) = x1 +· · ·+ xd . To this end,
we employ importance sampling and quasi-Monte Carlo integration based on μ0 and
the Laplace approximation Lμn as outlined in the precious subsections. We compare
the output of these methods to a reference solution obtained by a brute-force tensor
grid trapezoidal rule for integration. In particular, we estimate the root mean squared
error (RMSE) of the methods and how it evolves as n increases.

Results for importance sampling In order to be sufficiently close to the asymptotic
limit, we use N = 105 samples for self-noramlized importance sampling. We run
1000 independent simulations of the importance sampling integration and compute
the resulting empirical RMSE. In Fig. 3 we present the results for increasing n and
various d for prior-based and Laplace-based importance sampling. We obtain a good
match to the theoretical results, i.e., the RMSE for choosing the prior measure as
importance distribution behaves like nd/4−1/2 in accordance to Lemma 2. Besides that
the RMSE for choosing the Laplace approximation as importance distribution decays
like n1/2 after a preasymptotic phase. This is relates to the statement of Theorem 4
where we have shown that the absolute error3 decays in probability like n1/2. Note that
the assumptions of Proposition 2 are not satisfied for this example for all d = 1, 2, 3, 4.

Results for quasi-Monte CarloWe use N = 210 quasi-Monte Carlo points for prior-
and Laplace-based QMC. For the Laplace-case we employ a truncation parameter

3 We have also computed the empirical L1-error which showed a similar behaviour as the RMSE.
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Fig. 4 Empirical relativeRMSEof prior-based quasi-MonteCarlo for the example inSect. 3.3.1 for decaying
noise level n−1 and various dimensions d

of τ = 10−6 and discard all transformed points outside of the domain [− 1
2 ,

1
2 ]d .

Again, we run 1000 random shift simulations for both QMCmethods and estimate the
empirical RMSE.However, for QMCwe report the relative RMSE, since, for example,
the decay of the normalization constant Zn ∈ O(n−d/2) dominates the growth of the
absolute error of prior QMC integration for the normalization constant. In Fig. 4 and
5 we display the resulting relative RMSE for the quantity related integral Z ′

n , the
normalization constant Zn , i.e.,

Z ′
n =

∫
[− 1

2 , 12 ]d
f (x) exp(−nΦ(x)) μ0(dx), Zn =

∫
[− 1

2 , 12 ]d
1 exp(−nΦ(x)) μ0(dx),

and the resulting ratio Z ′
n

Zn
for increasing n and various d for prior-based and Laplace-

based QMC. For prior-based QMC we observe for dimensions d ≥ 2 a algebraic
growth of the relative error. In the previous subsection we have proven that the corre-
sponding classical error bound will explode which does not necessary imply that the
error itself explodes—as we can see for d = 1. However, this simple example shows
that also the error will often grow algebraically with increasing n. For the Laplace-
based QMC we observe on the other hand in Fig. 5 a decay of the relative empirical
RMSE. By Corollary 2 we can expect that the relative errors stay bounded as n → ∞.
This provides motivation for a further investigation. In particular, we will analysize

the QMC ratio estimator for Z ′
n

Zn
in a future work.

3.3.2 Bayesian inference for an elliptic PDE

In the following we illustrate the preconditioning ideas from the previous section by
Bayesian inference with differential equations. To this end we consider the following
model parametric elliptic problem

− div(ûd∇q) = f in D := [0, 1], q = 0 in ∂ D, (40)
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Fig. 5 Empirical relative RMSE of Laplace-based quasi-Monte Carlo for the example in Sect. 3.3.1 for
decaying noise level n−1 and various dimensions d

with f (t) = 100 · t , t ∈ [0, 1], and diffusion coefficient

ûd(t) = exp

(
d∑

k=1

xk ψk(t)

)
, d ∈ {1, 2, 3},

where ψk(t) = 0.1
k sin(kπ t) and the xk ∈ R, k = 1, . . . , d, are to be inferred by

noisy observations of the solution q at certain points t j ∈ [0, 1]. For d = 1, 2 these
observations are taken at t1 = 0.25 and t2 = 0.75 and for d = 3 they are taken
at t j ∈ {0.125, 0.25, 0.375, 0.6125, 0.75, 0.875}. We suppose an additive Gaussian
observational noise η ∼ N (0, Γn) with noise covariance Γn = n−1Γobs and Γobs ∈
R
2×2 or Γobs ∈ R

7×7, respectively, specified later on. In the following we place a
uniform and a Gaussian prior μ0 on Rd and would like to integrate w.r.t. the resulting
posterior μn on Rd which is of the form (22) with

Φ(x) = 1

2
‖y − G(x)‖2

Γ −1
obs

where G : Rd → R
2 for d = 1, 2, and G : Rd → R

7 for d = 3, respectively, denotes
the mapping from the coefficients x := (xk)

d
k=1 to the observations of the solution q of

the elliptic problem above and the vector y ∈ R
2 or y ∈ R

7, respectively, denotes the
observational data resulting from Y = G(X) + η with η as above. Our goal is then to
compute the posterior expectation (i.e., w.r.t. μn) of the following quantity of interest
f : Rd → R: f (u) is the value of the solution q of the elliptic problem at t = 0.5.
Uniform prior We place a uniform prior μ0 = U([− 1

2 ,
1
2 ]d) for d = 1, 2 or 3 and

choose Γobs = 0.01I2 for d = 1, 2 and Γobs = 0.01I7 for d = 3. We display the
resulting posteriors μn for d = 2 in Fig. 6 illustrating the concentration effect of
the posterior for various values of the noise scaling n and the resulting transformed
posterior with Φ ◦ gn based on Laplace approximation. The truncation parameter is
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Fig. 6 The first row shows the posterior distribution for various values of the noise scaling, the second row
shows the corresponding preconditioned posteriors based on Laplace approximation, 2d test case, uniform
prior distribution, τ = 10−6

set to τ = 10−6. We observe the almost quadratic behavior of the preconditioned
posterior, as expected from the theoretical results.

We are now interested in the numerical performance of the Importance Sampling
and QMC method based on the prior distribution compared to the performance of the
preconditioned versions based on Laplace approximation. The QMC estimators are
constructed by an off-the-shelf generating vector (order-2 randomly shifted weighted
Sobolev space), which can be downloaded from https://people.cs.kuleuven.be/~dirk.
nuyens/qmc-generators/ (exod2_base2_m20_CKN.txt). The reference solution used
to estimate the error is based on a (tensor grid) trapezoidal rule with 106 points in
1D, 4× 106 points in 2D in the original domain, i.e., the truncation error is quantified
and in the transformed domain in 3D with 106 points. Figure 7 illustrates the robust
behavior of the preconditioning strategy w.r.t. the scaling 1/n of the observational
noise. Though we know from the theory that in the low dimensional case (1D, 2D),
the importance sampling method based on the prior is expected to perform robust,
we encounter numerical instabilities due to the finite number of samples used for the
experiments. The importance sampling results are based on 106 sampling points, the
QMC results on 8192 shifted lattice points with 26 random shifts.

Figure 8 shows the RMSE of the normalization constant Zn using the precondi-
tioned QMC approach with respect to the noise scaling 1/n. We observe a numerical
confirmation of the predicted dependence of the error w.r.t. the dimension (cp. Corol-
lary 2).
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Fig. 7 The (estimated) root mean square error (RMSE) of the approximation of the quantity of interest for
different noise levels (n = 102, . . . , 1010) using the Importance Sampling strategy and QMC method for
d = 1, 2, 3
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Fig. 8 The (estimated) root mean square error (RMSE) of the approximation of the normalization constant
Z for different noise levels (n = 102, . . . , 1010) using the preconditioned QMC method for d = 1, 2, 3

We remark that the numerical experiments for the ratio suggest a behavior n−1/2,
i.e., a rate independent of the dimension d, of the RMSE for the preconditioned QMC
approach, cp. Figure 7. This will be subject to future work.
Gaussian prior We choose as prior μ0 = N (0, I2) for the coefficients x = (x1, x2) ∈
R
2 for û2 in the elliptic problemabove. For the noise covariancewe set this timeΓobs =

I2. The performance of the prior based and preconditioned version of Importance
Sampling is depicted in Fig. 9. Clearly, the Laplace approximation as a preconditioner
improves the convergence behavior; we observe a robust behavior w.r.t. the noise level.
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Fig. 9 The (estimated) root mean square error (RMSE) of the approximation of the quantity of interest for
different noise levels (n = 100, . . . , 108) using the Importance Sampling strategy. The first row shows the
result based on prior information (Gaussian prior), the second row the results using the Laplace approxi-
mation for preconditioning. The reference solution is based on a tensor grid Gauss–Hermite rule with 104

points for the preconditioned integrand using the Laplace approximation

The convergence of the QMC approach is depicted in Fig. 10, showing a consistent
behavior with the considerations in the previous section.

4 Conclusions and outlook to future work

This paper makes a number of contributions in the development of numerical methods
for Bayesian inverse problems, which are robust w.r.t. the size of the measurement
noise or the concentration of the posterior measure, respectively. We analyzed the
convergence of the Laplace approximation to the posterior distribution in Hellinger
distance. This forms the basis for the design of variance robust methods. In particular,
we proved that Laplace-based importance sampling behaves well in the small noise or
large data size limit, respectively. For uniform priors, Laplace-based QMC methods
have been developed with theoretically and numerically proven errors decaying with
the noise level or concentration of the measure, respectively. Some future directions
of this work include the development of noise robust Markov chain Monte Carlo
methods and the combination of dimension independent and noise robust strategies.
This will require the study of the Laplace approximation in infinite dimensions in a
suitable setting. Finally, we could study in more details the error in the ratio estimator
using Laplace-based QMC methods. The use of higher order QMC methods has been

123



958 C. Schillings et al.

100 101 102 103 104 105

# samples

10-8

10-6

10-4

10-2

100
R

M
S

E
QMC

n=1

n=101

n=102

n=103

n=104

n=105

n=106

n=107

n=108

100 101 102 103 104 105

# samples

10-8

10-6

10-4

10-2

100

R
M

S
E

QMC transformed
n=1

n=101

n=102

n=103

n=104

n=105

n=106

n=107

n=108

Fig. 10 The (estimated) root mean square error (RMSE) of the approximation of the quantity of interest for
different noise levels (n = 100, . . . , 108) using the QMC method (below). The first row shows the result
based on prior information (Gaussian prior), the second row the results using the Laplace approximation
for preconditioning. The reference solution is based on a tensor grid Gauss–Hermite rule with 104 points
for the preconditioned integrand using the Laplace approximation

proven to be a promising direction for a broad class of Bayesian inverse problems and
the design of noise robust versions is an interesting and potentially fruitful research
direction.
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Appendix A: Concentration of the Laplace approximation

Due to the well-known Borell-TIS inequality for Gaussian measures on Banach spaces
[24, Chapter 3] we obtain the following useful concentration result for the Laplace
approximation.

Proposition 4 Let Assumptions 1 and 2 be satisfied. Then, for any r > 0 there exists
an cr > 0 such that

Lμn

(
Bc

r (xn)
) ∈ O (

e−cr n) ,

where Bc
r (xn) = {x ∈ R

d : ‖x − xn‖ > r}.

Proof Let Xn ∼ N (
0, n−1Cn

)
. Then

Lμn

(
Bc

r (xn)
) = P (‖Xn‖ > r) .

We now use the well-known concentration of Gaussian measures, namely,

P (|‖Xn‖ − E [‖Xn‖]| > r) ≤ 2 exp

(
− r2

2σ 2
n

)
,

where σ 2
n := sup‖x‖≤1 E

[|x� Xn|2], see [24, Chapter 3]. There holds σ 2
n =

λmax(n−1Cn) = ‖n−1Cn‖ and we get

P (‖Xn‖ > r + E [‖Xn‖]) = P (‖Xn‖ − E [‖Xn‖] > r) ≤ P (|‖Xn‖ − E [‖Xn‖]| > r)

≤ 2 exp

(
−n

r2

2‖Cn‖
)

.

Due to Assumption 2, i.e., Cn → H−1
� > 0, there exists a finite constant 0 < c such

that ‖Cn‖ ≥ c for all n ∈ N. Analogously, there exist a constant K < ∞ such that
tr (Cn) ≤ K for all n. The latter implies

E [‖Xn‖] ≤ E

[
‖Xn‖2

]1/2 = tr (n−1Cn)1/2 ≤ n−1/2
√

K .

Hence, for an arbitrary r let n0 be such that E [‖Xn‖] ≤ r/2 for all n ≥ n0, which
yields

P (‖Xn‖ > r) ≤ P

(
‖Xn‖ >

r

2
+ E [‖Xn‖]

)
≤ exp

(
−n

r2

8c

)
.

��
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Appendix B: Proofs

We collect the rather technical proofs in this appendix.

B.1 Proof of Lemma 1

Recall that we want to bound

J0(n) := Lμn (S
c
0),

J1(n) :=
∫

Br (xn)∩S0

∣∣∣e−n Rn(x)/p − 1
∣∣∣p Lμn (dx),

J2(n) :=
∫

Bc
r (xn)∩S0

∣∣∣e−n Rn(x)/p − 1
∣∣∣p Lμn (dx)

where Rn(x) := In(x) − Ĩn(x) = In(x) − In(xn) − 1
2‖x − xn‖2

C−1
n

and r > 0 is an at

the moment arbitrary radius which will be specified in the following first paragraph.
Bounding J1. Due to Φn, logπ0 ∈ C3(S0;R), we have that for any x ∈ Br (xn) there
exists a ξx,n ∈ Br (xn) such that

|Rn(x)| ≤ 1

6
‖∇3 In(ξx,n)‖ ‖x − xn‖3.

Moreover, since xn → x� there exists an 0 < r0 < ∞ such that

Br (xn) ⊂ Br0(0) ∀n ∈ N.

Hence, the local uniform boundedness of ‖∇3 In(·)‖, see Assumption 2, implies the
existence of a finite c3 > 0 such that for sufficiently large n, i.e., n ≥ nr , we have

|Rn(x)| ≤ c3 ‖x − xn‖3 ∀x ∈ Br (xn).

Thus, we obtain, due to |e−t − 1| = 1 − e−t ≤ et − 1 for t ≥ 0,

∣∣∣e−n Rn(x)/p − 1
∣∣∣ ≤ enc3 ‖x−xn‖3/p − 1,

which yields

J1(n) ≤
∫

Br (xn)

(
enc3 ‖x−xn‖3/p − 1

)p Lμn (dx)

≤
∫

Br (xn)

(
1 − e−nc3 ‖x−xn‖3/p

)p
e
−n( 12 ‖x−xn‖2

C−1
n

−c3‖x−xn‖3) dx

Z̃n
.
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Now, since C−1
n → H� > 0, there exists for sufficiently large n a γ > 0 such that

1

2
‖x − xn‖2

C−1
n

≥ γ ‖x − xn‖2 ∀x ∈ R
d .

Hence, for x ∈ Br (xn), i.e., ‖x − xn‖ ≤ r , we get

1

2
‖x − xn‖2

C−1
n

− c3‖x − xn‖3 ≥ (γ − c3r)‖x − xn‖2.

By choosing r := γ
2c3

we obtain further

J1(n) ≤
∫

Br (xn)

(
1 − e−nc3 ‖x−xn‖3/p

)p
e−nγ ‖x−xn‖2/2 dx

Z̃n
.

Let us now introduce the auxiliary Gaussian measure νn := N
(
0, 1

nγ
I
)
with which

we get

J1(n) ≤
√
det(2π(nγ )−1 I )

Z̃n

∫
Rd

(
1 − e−nc3 ‖x‖3/p

)p
νn(dx).

There holds now

lim
n→∞

√
det(2π(nγ )−1 I )

Z̃n
= lim

n→∞
n−d/2

√
det(2πγ −1 I )

n−d/2
√
det(2πCn)

=
√
det(γ −1 I )√
det (2π H�)

< ∞

due to the continuity of the determinant and H� > 0. Moreover, since 1− e−t ≤ t for
t ≥ 0 we obtain with ξ ∼ N (0, I ) that

∫
Rd

(
1 − e−nc3 ‖x‖3/p

)p
νn(dx) ≤

∫
Rd

(nc3/p)p ‖x‖3p νn(dx)

= n p(c3/p)p
E

[
‖(γ n)−1/2ξ‖3p

]

= n−p/2 cp
3

p pγ 3p/2 E

[
‖ξ‖3

]
∈ O(n−p/2).

This yields J1(n) ∈ O(n−p/2) for the particular choice r = γ
2c3

. In the following two
paragraphs we will use exactly this particular radius.
Bounding J0. Due to Assumption 2, we have xn → x� as n → ∞. Hence, there exists
an n0 < ∞ such that ‖xn − x�‖ ≤ r/2 for all n ≥ n0. This implies by Assumption 2

Br/2(xn) ⊆ Br (x�) ⊆ S0

and, hence, Sc
0 ⊆ Bc

r/2(xn). By Proposition 4, we obtain

J0(n) = Lμn (S
c
0) ≤ Lμn (Bc

r/2(xn)) ∈ O(e−cr/2n),
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with a 0 < cr/2 < ∞.
Bounding J2. We divide the set Bc

r (xn) ∩ S0 into several subsets in order to bound
J2(n). First, we define

Pn := {x ∈ Bc
r (xn) ∩ S0 : Rn(x) > 0}, Pc

n := {x ∈ Bc
r (xn) ∩ S0 : Rn(x) ≤ 0},

i.e., Bc
r (xn) ∩ S0 = Pn∪̇Pc

n , and notice that

∣∣∣e−n Rn(x)/p − 1
∣∣∣ = 1 − e−n Rn(x)/p ≤ 1 ∀x ∈ Pn .

Hence, due to Proposition 4 there exists a cr ∈ (0,∞) such that

∫
Pn

∣∣∣e−n Rn(x)/p − 1
∣∣∣p Lμn (dx) ≤ Lμn (Pn) ≤ Lμn (Bc

r (xn)) ∈ O(e−cr n).

Since for x ∈ Pc
n we have Rn(x) ≤ 0, we get

∫
Pc

n

∣∣∣e−n Rn(x)/p − 1
∣∣∣p Lμn (dx) ≤

∫
Pc

n

e−n Rn(x) Lμn (dx) = 1

Z̃n

∫
Pc

n

e−nIn(x) dx

We now prove that

∫
Pc

n

e−nIn(x) dx ∈ O(exp(−εδr n)) (41)

with ε ∈ (0, 1) as in Assumption 2. To this end, we observe that due to In(x) ≥ δr for
all x ∈ Pc

n ⊂ Bc
r (xn) the functions

gn(x) := e−nIn(x)enεδr ≤ e−n(1−ε)δr x ∈ PC
n ,

converge pointwise to zero as n → ∞. Moreover, In(x) ≥ δr yields

gn(x) = e−nIn(x)enεδr ≤ e−n(1−ε)In(x) ≤ q1−ε(x)

with the bounding function q introduced in Assumption 2. Thus, since q1−ε is inte-
grable we obtain by Lebesgue’s dominated convergence theorem

enεδr

∫
Pc

n

e−nIn(x) dx =
∫
Pc

n

gn(x) dx → 0

as n → ∞. Hence, (41) holds. Since Z̃n ∈ O(n−d/2) we get in summary,

J2(n) =
∫
Pn

∣∣∣e−n Rn(x)/p − 1
∣∣∣p Lμn (dx) +

∫
Pc

n

∣∣∣e−n Rn(x)/p − 1
∣∣∣p Lμn (dx)
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≤
∫
Pn

1p Lμn (dx) + 1

Z̃n

∫
Pc

n

e−nIn(x) dx

∈ O(e−cr n + e−nεδr nd/2) ⊆ O(e−ncr ,ε nd/2)

with cr ,ε := min{cr , εδr } > 0.

B.2 Proof of Theorem 3

A straightforward calculation, see also [29, Exercise 1.14], yields that for Gaussian
measures Na,Q := N (a, Q), Nb,Q := N (b, Q) and Na,R := N (a, R) we have

dH(Na,Q,Nb,Q) =
√
2 − 2 exp

(
1

8
‖a − b‖2

Q−1

)
,

dH(Na,Q,Na,R) =
√
2 − 2

det
( 1
2 (Q−1/2R1/2 + Q1/2R−1/2)

) ,

By (13) we obtain for μ̃n := N (xn, 1
n Bn) that

lim
n→∞ dH(μn, μ̃n) = 0 iff lim

n→∞ det

(
1

2
(C−1/2

n B1/2
n + C1/2

n B−1/2
n )

)
= 1.

Due to the local Lipschitz continuity of the determinant and ‖C−1
n − H�‖ → 0

we obtain the first statement for μ̃n := N (xn, 1
n Bn). Furthermore, by the triangle

inequality

dH(μn, μ̃n) ≤ dH(μn,Lμn ) + dH(Lμn , μ̃n)

≤ cn−1/2 + √
2

⎛
⎝1 − 1

det
(
1
2 (C

−1/2
n B1/2

n + C1/2
n B−1/2

n )
)
⎞
⎠

1/2

and exploiting the local Lipschitz continuity of f (x) = 1
x and of the determinant, we

obtain

∣∣∣∣∣∣
1

det(I )
− 1

det
(
1
2 (C

−1/2
n B1/2

n + C1/2
n B−1/2

n )
)
∣∣∣∣∣∣

≤ c‖I − 0.5(C−1/2
n B1/2

n + C1/2
n B−1/2

n )‖
≤ c

(
‖I − C−1/2

n B1/2
n ‖ + ‖I − C1/2

n B−1/2
n ‖

)
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with a generic constant c > 0. Moreover, due to the local Lipschitz continuity of the
square root of a matrix, we get

‖I − C−1/2
n B1/2

n ‖ ≤ ‖C−1/2
n ‖ ‖C1/2

n − B1/2
n ‖ ≤ c‖C1/2

n − B1/2
n ‖ ≤ c‖Cn − Bn‖

where we used that ‖C−1/2
n ‖ → ‖H1/2

� ‖.
Furthermore, we get analogously that ‖I − C1/2

n B−1/2
n ‖ ≤ c‖Bn − Cn‖ using that

‖B−1/2
n ‖ → ‖H1/2

� ‖. Thus, the second statement of the first item follows by

dH(μn, μ̃n) ≤ dH(μn,Lμn ) + dH(Lμn , μ̃n) ≤ cn−1/2 + c (2‖Cn − Bn‖)1/2 ∈ (n−1/2).

The second item follows by applying the triangle inequality, expressing the
Hellinger distance between N (xn, 1

n Bn) and N (an, 1
n Bn) by

dH(Nan ,n−1Bn
,Nxn ,n−1Bn

) = √
2

√
1 − exp

(n

8
‖xn − an‖2

B−1
n

)

and estimating

∣∣∣1 − exp
(n

8
‖xn − an‖2

B−1
n

)∣∣∣ ≤ n

8
‖xn − an‖2

B−1
n

≤ cn‖xn − an‖2 ∈ O(n−1),

where we used the fact that the spd matrices Bn converge to the spd matrix H�, hence,
the sequence of the smallest eigenvalue of Bn is bounded away from zero.

B.3 Proof of Lemma 4

For the following proof we use the famous Faa di Bruno-formula for higher order
derivatives of compositions given in [18]. To this end, let v : Rd → R and u : R → R

be sufficiently smooth functions and define w := u ◦v, i.e.,w : Rd → R. For a subset

ν ⊂ {1, . . . , d} we consider the partial derivative ∂ |ν|w
∂xν

where we set

∂xν = ∂xν1 · · · ∂xν|ν| , ν = {ν1, . . . , ν|ν|} with ordered ν1 < ν2 < · · · < ν|ν|.

We then obtain (see [18])

∂ |ν|

∂xν
w(x) =

∑
P∈Π(ν)

∂ |P|u(v(x)) ·
∏
B∈P

∂ |B|

∂xB
v(x),

where Π(ν) denotes the set of all partitions P of the set ν ⊂ {1, . . . , d}, B ∈ P refers
to running through the elements or blocks of the partition P with |B| denoting the
cardinality of B ⊂ ν and |P| the number of blocks in P , and the same notational
convention for ∂xB as above, i.e.,

∂xB = ∂xν1 · · · ∂xν|B| , B = {ν1, . . . , ν|B|} ⊂ ν with ν1 < ν2 < · · · < ν|B|.
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By the application of the multivariate Faa di Bruno-formula to

Θn(x) = exp(−nΦ(x)) = u(v(x)) with u(t) = exp(−nt), v(x) = Φ(x),

we obtain for ν ⊂ {1, . . . , d} that

∂ |ν|

∂vν
Θn(x) =

∑
P∈Π(ν)

(−n)|P|Θn(v) ·
∏
B∈P

∂ |B|

∂xB
Φ(x).

By setting x−ν := x{1,...,d}\ν we get

‖Θn‖2γ =
∑

ν⊂{1,...,d}

1

γν

∫
[− 1

2 , 12 ]|ν|

(∫
[− 1

2 , 12 ]d−|ν|
∂ |ν|

∂xν
Θn(x) dx−ν

)2

dxν

≥
∑

ν={1,...,d}

1

γν

∫
[− 1

2 , 12 ]|ν|

(∫
[− 1

2 , 12 ]d−|ν|
∂ |ν|

∂xν
Θn(x) dx−ν

)2

dxν

= 1∏
j γ j

∫
[− 1

2 , 12 ]d

⎛
⎝ ∑

P∈Πd

(−n)|P|Θn(v) ·
∏
B∈P

∂ |B|

∂xB
Φ(x)

⎞
⎠

2

dx,

where we shortened Πd := Π({1, . . . , d}). We will now investigate, how—i.e., to
which power w.r.t. n—

Fd(n) :=
∫

[− 1
2 , 12 ]d

⎛
⎝ ∑

P∈Πd

(−n)|P|Θn(x) ·
∏
B∈P

∂ |B|

∂xB
Φ(x)

⎞
⎠

2

dx (42)

decays as n → ∞. To this end, we write

Fd(n) =
∑

P∈Πd

∑
P̃∈Πd

(−n)|P|+|P̃|
∫

[− 1
2 , 12 ]d

Θ2
n (x)

∏
B∈P

∂ |B|

∂xB
Φ(x)

∏
B̃∈P̃

∂ |B̃|

∂xB̃
Φ(x)dx

and apply in the following Laplace’s method in order to derive the asymptotics of

∫
[− 1

2 , 12 ]d
h P,P̃ (x)e−2nΦ(x)dx, h P,P̃ (x) :=

∏
B∈P

∂ |B|

∂xB
Φ(x)

∏
B̃∈P̃

∂ |B̃|

∂xB̃
Φ(x).

Since in the considered setting of a uniform prior on [− 1
2 ,

1
2 ]d we have In(x) =

Φ(x) for x ∈ [− 1
2 ,

1
2 ]d , there holds that xn = x�, Φ(xn) = 0, and, by construction,

also ∇Φ(xn) = 0. The latter may cause a faster decay of
∫
[− 1

2 , 12 ]d h P,P̃e
−2nΦdx
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than the usual n−d/2 depending on the partitions P, P̃ . For example, let P = P̃ =
{{1}, . . . , {d}}, i.e., P and P̃ consist only of single blocks B = {i}, i = 1, . . . , d, then

h P,P̃ (x) =
d∏

j=1

(
∂

∂x j
Φ(x)

)2

.

Exploiting (24) for the coefficients in the asymptotic expansionof
∫
[− 1

2 , 12 ]d h P,P̃e
−2nΦdx

one can calculate that for these particular partitions P = P̃ = {{1}, . . . , {d}}we have

ck(h P,P̃ ) = 0 for k = 0, . . . , d − 1,

but

cd(h P,P̃ ) =
d∏

j=1

κ2e j

2

∂2

∂x2j
Φ(x�) �= 0,

since ∂2

∂x2j
Φ(x�) �= 0 due to∇2Φ(x�) being positive definite.Hence, for these partitions

|P| = |P̃| = d we get

∫
[− 1

2 , 12 ]d
h P,P̃ (x)e−2nΦ(x)dx = cd(h P,P̃ )n−d/2−d + O(n−3d/2−1).

We can extend this reasoning to arbitrary partitions P, P̃ ∈ Πd . To this end, let
|P|1 := |{B ∈ P : |B| = 1}| denote the number of single blocks |B| = 1 in P ∈ Πd .
Then, we know by the definition of h P,P̃ that h P,P̃ posseses a zero of order |P|1+|P̃|1
in x�. This in turn, implies that the first

⌊ |P|1+|P̃|1
2

⌋
coefficients in the asymptotic

expansion of
∫
[− 1

2 , 12 ]d h P,P̃e
−2nΦdx are zero, hence,

∫
[− 1

2 , 12 ]d
h P,P̃ (x)e−2nΦ(x)dx ∼ cP,P̃ n−d/2−#|P|1/2+|P̃|1/2$.

Thus, for arbitrary P, P̃ ∈ Πd we have

(−n)|P|+|P̃|
∫

[− 1
2 , 12 ]d

Θ2
n (x)

∏
B∈P

∂ |B|

∂xB
Φ(x)

∏
B̃∈P̃

∂ |B̃|

∂xB̃
Φ(x)dx

∼ cP,P̃ n−d/2+|P|+|P̃|−#|P|1/2+|P̃|1/2$.

If we maximize the exponent on the righthand side we get that

max
P,P̃∈Πd

|P| + |P̃| − ⌊|P|1/2 + |P̃|1/2
⌋ = d
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where themaximum is obtained, e.g., for the above choice of P = P̃ = {{1}, . . . , {d}}.
This means that certain summands in Fd(n) grow like nd/2 whereas the other ones
grow slower w.r.t. n. Thus, we get that Fd(n) ∼ cnd/2 which yields the statement.

B.4 Proof of Lemma 5

Since the transformation

gn(x) := x� + n−1/2Ax, A := √
2 ln |τ |Q D−1/2,

is linear, we have for j ∈ {1, . . . , d}
∂

∂x j
Φ(gn(x)) = n−1/2 (∇Φ) (gn(x))� A· j

where A· j denotes the j th column of A. Thus, for a ν ⊂ {1, . . . , d} we get

∂ |ν|

∂xν
Φ(gn(x)) = n−|ν|/2 (∇|ν|Φ

)
(gn(x))[A·ν1 , . . . , A·ν|ν| ]

where the last termon the righthand side denotes the application of themultilinear form
(∇|ν|Φ)(gn(x)) : Rd×|ν| → R to the |ν| arguments A·ν j ∈ R

d . To keep the notation
short, we denote by ∇|ν|Φ(gn(x))[Aν] the term (∇|ν|Φ)(gn(x))[A·ν1 , . . . , A·ν|ν| ]. By
Faa di Bruno we obtain now for any ν ⊂ {1, . . . , d} that

∂ |ν|

∂vν
Θn(gn(x)) =

∑
P∈Π(ν)

(−n)|P|−|ν|/2Θn(gn(x)) ·
∏
B∈P

∇|B|Φ(gn(x))[AB]

which yields

‖Θn ◦ gn‖2γ =
∑

ν⊂{1,...,d}

1

γν

∫
[− 1

2 , 12 ]|ν|

(∫
[− 1

2 , 12 ]d−|ν|
∂ |ν|

∂vν
(Θn ◦ gn)(x) dx−ν

)2

dxν

≤
∑

ν⊂{1,...,d}

Fν(n)

γν

where

Fν(n) :=
∫

[− 1
2 , 12 ]|ν|

⎛
⎝
∫

[− 1
2 , 12 ]d−|ν|

∑
P∈Π(ν)

n|P|−|ν|/2 |Θn(gn(x))|

×
∏
B∈P

∣∣∣∇|B|Φ(gn(x))[AB]
∣∣∣ dx−ν

)2

dxν . (43)
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968 C. Schillings et al.

Note, that we can bound

∣∣∣∇|B|Φ(gn(x))[AB]
∣∣∣ ≤

∥∥∥∇|B|Φ(gn(x))

∥∥∥ ∏
j∈B

‖A j‖

where we set the “norm” of the multilinear form ∇|B|Φ(gn(x)) : Rd×|B| → R as

∥∥∥∇|B|Φ(gn(x))

∥∥∥ := sup
‖x j ‖≤1

∣∣∣∇|B|Φ(gn(x))[x1, . . . , x|B|]
∣∣∣ .

Setting cA := ∏d
j=1 ‖A j‖ we get

∣∣∏
B∈P ∇|B|Φ(gn(x))[AB]∣∣ ≤ cA

∏
B∈P∥∥∇|B|Φ(gn(x))

∥∥ and obtain by multiplication—omitting the integral domains for a
moment—that

Fν(n) =
∑

P∈Π(ν)

∑
P̃∈Π(ν)

n|P|+|P̃|−|ν|

×
∫ (∫ ∣∣∣∣∣Θn(gn(x))

∏
B∈P

∇|B|Φ(gn(x))[AB]
∣∣∣∣∣ dx−ν

)

×
⎛
⎝
∫ ∣∣∣∣∣∣Θn(gn(x))

∏
B̃∈P̃

∇|B̃|Φ(gn(x))[AB̃]
∣∣∣∣∣∣ dx−ν

⎞
⎠ dxν

≤
∑

P,P̃∈Π(ν)

n|P|+|P̃|−|ν|
∥∥∥∥∥(Θn ◦ gn) cA

∏
B∈P

∥∥∥
(
∇|B|Φ

)
◦ gn

∥∥∥
∥∥∥∥∥

L2([− 1
2 , 12 ]d )

×
∥∥∥∥∥∥(Θn ◦ gn) cA

∏
B̃∈P̃

∥∥∥
(
∇|B̃|Φ

)
◦ gn)

∥∥∥
∥∥∥∥∥∥

L2([− 1
2 , 12 ]d )

≤ c2A

⎛
⎝ ∑

P∈Π(ν)

n|P|−|ν|/2
∥∥∥∥∥(Θn ◦ gn)

∏
B∈P

∥∥∥
(
∇|B|Φ

)
◦ gn

∥∥∥
∥∥∥∥∥

L2([− 1
2 , 12 ]d )

⎞
⎠

2

where we used the Cauchy–Schwarz and Jensen’s inequality in the second line. We
apply Laplace’s method in order to examine the L2-norm above:

‖(Θn ◦ gn)(h P ◦ gn)‖2L2([− 1
2 , 12 ]d )

=
∫

[− 1
2 , 12 ]d

e−2nΦ(x�+n−1/2 Ax) h2
P (x� + n−1/2Ax) dx

where h P = ∏
B∈P

∥∥(∇|B|Φ
) ◦ gn

∥∥. By the substitution y := gn(x) = x� +n−1/2Ax
we get

‖(Θn ◦ gn)(h P ◦ gn)‖2L2([− 1
2 , 12 ]d )

= 1

CJT rans (n)

∫
[− 1

2 , 12 ]d
exp(−2nΦ(y)) h2

P (y) dy,
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whereCJT rans (n) = det(n−1/2A) = n−d/2 det(A). Since also 2Φ satisfies the assump-
tions of Theorem 1 and Φ(x�) = 0 we obtain

‖(Θn ◦ gn)(h P ◦ gn)‖2L2([− 1
2 , 12 ]d )

= (2P)d/2h2
P (x�)

det(∇2Φ(x�))
+ O(n−1).

However, since ∇Φ(x�) = 0 there holds h2
P (x�) = 0 if there exists a single block

|B| = 1 in P which then yields to a decay of the L2-norm as least as fast as n−1. In
particular, denoting by |P|1 the number of single blocks in P we obtain by the same
reasoning as in Sect. 1 that

1

CJT rans (n)

∫
[− 1

2 , 12 ]d
exp(−2nΦ)

∏
B∈P

(
∂ |B|

∂xB
Φ

)2

dy ∼ cP n−|P|1

where cP = c|P|1(h2
P ) as in (23). Hence,

Fν(n) ∼ c2A

⎛
⎝ ∑

P∈Π(ν)

cP n|P|−|ν|/2−|P|1/2
⎞
⎠

2

.

Similarly to Sect. 1 we can derive maxP∈Π(ν) |P| − |P|1/2 = |ν|/2 which yields that
Fν(n) ∈ O(1) as n → ∞ and concludes the proof.
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