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Affine Invariant Interacting Langevin Dynamics for Bayesian Inference\ast 

Alfredo Garbuno-Inigo\dagger , Nikolas N\"usken\ddagger , and Sebastian Reich\S 

Abstract. We propose a computational method (with acronym ALDI) for sampling from a given target distri-
bution based on first-order (overdamped) Langevin dynamics which satisfies the property of affine
invariance. The central idea of ALDI is to run an ensemble of particles with their empirical covari-
ance serving as a preconditioner for their underlying Langevin dynamics. ALDI does not require
taking the inverse or square root of the empirical covariance matrix, which enables application to
high-dimensional sampling problems. The theoretical properties of ALDI are studied in terms of
nondegeneracy and ergodicity. Furthermore, we study its connections to diffusion on Riemannian
manifolds and Wasserstein gradient flows. Bayesian inference serves as a main application area for
ALDI. In case of a forward problem with additive Gaussian measurement errors, ALDI allows for a
gradient-free approximation in the spirit of the ensemble Kalman filter. A computational comparison
between gradient-free and gradient-based ALDI is provided for a PDE constrained Bayesian inverse
problem.
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noise, affine invariance, gradient-free
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1. Introduction. In this paper, we propose an efficient sampling method for Bayesian in-
ference which is based on first-order (overdamped) Langevin dynamics [33] and which satisfies
the property of affine invariance [13]. Here affine invariance of a computational method refers
to the fact that a method is invariant under an affine change of coordinates. A classical exam-
ple is provided by Newton's method, while standard gradient descent is not affine invariant.
The importance of affine invariance as a general guiding principle for the design of Monte
Carlo sampling methods was first highlighted in the pioneering contribution [13].

Langevin dynamics--based sampling methods, on the other hand, have a long history in
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statistical physics [39] and computational statistics [38]. An important step towards affine
invariant Langevin sampling methods was taken through the introduction of Riemannian
manifold Langevin Monte Carlo methods in [12] with the metric tensor given by the Fisher
information matrix. However, the Fisher information matrix is typically not available in
closed form and/or is difficult to approximate numerically. Instead, an alternative approach
was put forward in the unpublished master's thesis [14], where an ensemble of Langevin
samplers is combined to provide an empirical covariance matrix resulting in a preconditioned
affine invariant MALA algorithm (see subsection 3.3 for more details). This methodology
was put into the wider context of dynamics-based sampling methods in [22] with a focus on
second-order Langevin dynamics.

An interesting link between ensembles of Langevin samplers and the ensemble Kalman
filter [10, 20, 35], both relying on ensemble-based empirical covariance matrices, has been
established more recently in [11], leading to a nonlinear Fokker--Planck equation for the asso-
ciated mean-field equations and an associated Kalman--Wasserstein gradient flow structure in
the space of probability measures. The same gradient flow structure was previously identified
for the time-continuous ensemble Kalman--Bucy filter mean-field equations [36, 35]. Further-
more, if applied to a Bayesian inverse problem with additive Gaussian measurement errors
and nonlinear forward map, a gradient-free approximate Langevin dynamics formulation was
proposed [11] which is again based on ideas previously exploited in the ensemble Kalman filter
literature [10, 4].

The present paper builds upon the unpublished note [30], which identifies a statistically
consistent finite ensemble size implementation of the mean-field equations put forward in [11].
More precisely, the proposed interacting Langevin dynamics possesses the desired posterior
target measure as an invariant measure provided an appropriate correction term is added,
which is due to the multiplicative noise in the preconditioned Langevin system. The correction
term vanishes in the mean-field limit. Furthermore, the invariance of our finite ensemble
size evolution equations (with acronym ALDI1) under affine coordinate transformations is
established through a particular choice of the multiplicative noise term, among all choices
consistent with the desired underlying Fokker--Planck equation. We emphasize that ALDI
is straightforward to implement, does not require inversion or other matrix factorizations of
the empirical covariance matrices (which is important for high-dimensional problems), and is
applicable to a wide range of sampling problems.

We have already emphasized that related computational methods have been considered in
the literature before. However, none of these contributions has investigated the nondegeneracy
and ergodicity properties of such methods. Hence, proof of nondegeneracy and ergodicity of
ALDI provides a key theoretical contribution of our paper which holds provided the ensemble
size, N , and the dimension, D, of the underlying random variable satisfy N > D + 1 and the
empirical covariance matrix is nondegenerate at initial time.

Finally, a gradient-free formulation of ALDI in the spirit of [11] is proposed for Bayesian
inverse problems with additive Gaussian measurement errors. While the invariance of the pos-
terior distribution is lost when making the gradient-free approximation, except for Gaussian
likelihood functions, affine invariance is maintained. Numerical experiments are conducted for

1The acronym stands for a permutation of the capital letters in Affine Invariant Langevin Dynamics.
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a PDE constrained Bayesian inference problem. The numerical results indicate in particular
that it is entirely sufficient to implement ALDI with N = D + 2 particles, the minimum size
required for ergodicity to hold. Thus the gradient-free implementation indeed provides an
accurate and computationally inexpensive alternative.

The remainder of this paper is structured as follows. Section 2 establishes the math-
ematical setting of the sampling problems considered in this paper and provides a unifying
mathematical framework for ensemble-based first-order Langevin dynamics. Given this frame-
work, we formulate the key algorithmic requirements on the ensemble formulation proposed
in this paper. We introduce the concept of affine invariance and prove affine invariance for
the nonlinear Fokker--Planck equations put forward in [11]. The algorithmic contributions of
this paper can be found in section 3. More specifically, the novel ALDI method is put forward
in subsection 3.1 and its gradient-free variant in subsection 3.2. Both methods are put into
the context of previous algorithmic work in subsection 3.3. Our theoretical investigations are
summarized in section 4, where the affine invariance, nondegeneracy, and ergodicity of ALDI
are proven. We also put our approach into the perspective of diffusion processes on Riemann-
ian manifolds [12, 24] and Wasserstein gradient flows [1, 42]. The importance of the correction
term is demonstrated for a PDE constrained inverse problem [11] in the numerical example
section 5. We also compare the performance of the gradient-based and gradient-free formula-
tions of ALDI and find that both lead to comparable numerical results, with the gradient-free
formulation, however, much cheaper to implement. We conclude the paper with a summary
section.

2. Mathematical problem formulation. We consider the computational problem of pro-
ducing samples from a random variable u with values in \BbbR D and given probability density
function (PDF)

(2.1) \pi \ast (u) =
1

Z
exp( - \Phi (u)),

where \Phi : \BbbR D \rightarrow \BbbR is an appropriate potential and

(2.2) Z :=

\int 
\BbbR D

exp( - \Phi (u)) du < \infty 

a normalization constant.

Example 2.1 (Bayesian inverse problems). The computational Bayesian inverse problem
(BIP) of sampling a random variable u conditioned on an observation y\mathrm{o}\mathrm{b}\mathrm{s} \in \BbbR K with forward
model

(2.3) y = \scrG (u) + \xi 

serves as the main motivation of this paper. Here, \scrG : \BbbR D \rightarrow \BbbR K denotes some nonlinear
forward map and the mean zero \BbbR K-valued Gaussian random variable \xi represents measure-
ment errors with positive definite error covariance matrix R \in \BbbR K\times K . We assume that \xi and
u \sim \pi 0 are independent. Then, by Bayes' theorem, the distribution of the conditional random
variable u| y\mathrm{o}\mathrm{b}\mathrm{s} is determined by

(2.4) \pi (du| y\mathrm{o}\mathrm{b}\mathrm{s}) =
1

Z
exp( - l(u; y\mathrm{o}\mathrm{b}\mathrm{s}))\pi 0(du),
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with the least-squares misfit function2

(2.5) l(u; y\mathrm{o}\mathrm{b}\mathrm{s}) =
1

2
\| R - 1

2 (y\mathrm{o}\mathrm{b}\mathrm{s}  - \scrG (u))\| 2 =:
1

2
\| y\mathrm{o}\mathrm{b}\mathrm{s}  - \scrG (u)\| 2R

and the normalization constant

(2.6) Z =

\int 
\BbbR D

exp( - l(u; y\mathrm{o}\mathrm{b}\mathrm{s}))\pi 0(du) < \infty .

If the prior PDF \pi 0 is Gaussian with mean \mu 0 \in \BbbR D and covariance matrix P0 \in \BbbR D\times D, then
the posterior is absolutely continuous with respect to the Lebesgue measure on \BbbR D with PDF

(2.7) \pi \ast (u) =
1

Z
exp( - \Phi (u; y\mathrm{o}\mathrm{b}\mathrm{s})),

where

(2.8) \Phi (u; y\mathrm{o}\mathrm{b}\mathrm{s}) := l(u; y\mathrm{o}\mathrm{b}\mathrm{s}) +
1

2
\| u - \mu 0\| 2P0

.

We write \Phi (u) for simplicity and ignore the dependence on the data y\mathrm{o}\mathrm{b}\mathrm{s} from now on.

The sampling methods considered in this paper are based on stochastic processes of N
interacting particles moving in \BbbR D with the property that the marginal distributions in each
of the particles approximate \pi \ast as t \rightarrow \infty . The position of the ith particle is denoted by

u(i) \in \BbbR D and its value at time t \geq 0 by u
(i)
t , i = 1, . . . , N . For ease of reference, we collect

all particle positions into the D \times N -dimensional matrix

(2.9) U =
\Bigl( 
u(1), u(2), . . . , u(N)

\Bigr) 
\in \BbbR D\times N .

The interacting particle systems considered in this paper obey gradient-based stochastic evo-
lution equations of the form

(2.10) du
(i)
t =  - \scrA (Ut)\nabla u(i)\scrV (Ut) dt+ \Gamma (Ut) dW

(i)
t , i = 1, . . . , N.

Specific choices for the potential \scrV : \BbbR D\times N \rightarrow \BbbR , the positive semidefinite matrix-valued
\scrA (U) \in \BbbR D\times D, and \Gamma (U) \in \BbbR D\times L will be discussed below. L is a natural number with

typically either L = D or L = N . The W
(i)
t denote independent L-dimensional standard

Brownian motions, and the It\^o interpretation [33] of the multiplicative noise term in (2.10) is
to be used.

The main algorithmic contribution of this paper consists in developing a particular instance
of (2.10) with the following three properties:

(i) The product measure

(2.11) \pi 
(N)
\ast (U) :=

N\prod 
i=1

\pi \ast 

\Bigl( 
u(i)
\Bigr) 

2Here we have introduced the weighted l2-norm \| a\| B = (a\mathrm{T}B - 1a)1/2 for any symmetric positive definite
matrix B.
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is invariant under (2.10). Furthermore, \pi 
(N)
\ast is ergodic in the sense that the joint law

of the process converges towards \pi 
(N)
\ast as t \rightarrow \infty , in an appropriate sense and under

suitable conditions on the initialization. See [33] for an introduction to ergodicity in
the context of stochastic evolution equations.

(ii) Equations (2.10) are invariant under affine transformations of the state variables, that
is, for transformations of the form

(2.12) u = Mv + b

for any invertible M \in \BbbR D\times D and any shift vector b \in \BbbR D. A precise definition of
affine invariance is provided in Definition 2.2 below. See also [13, 14, 22].

(iii) Equations (2.10) are straightforward and computationally efficient to implement; that
is, they do not require the inversion or factorization of D-dimensional matrices and/or
higher-order derivatives of the potential \scrV .

Definition 2.2 (affine invariance). Following [13, 14, 22], a formulation (2.10) is called affine
invariant under transformations of the form (2.12), that is,

(2.13) u(i) = Mv(i) + b,

if the resulting equations in the transformed particle positions are given by

(2.14) dv
(i)
t =  - \scrA (Vt)\nabla v(i)

\widetilde \scrV (Vt) dt+ \Gamma (Vt) dW
(i)
t , i = 1, . . . , N,

for any invertible matrix M \in \BbbR D\times D and any shift vector b \in \BbbR D. Here

(2.15) V =
\Bigl( 
v(1), v(2), . . . , v(N)

\Bigr) 
\in \BbbR D\times N ,

and the potential \widetilde \scrV is defined by

(2.16) \widetilde \scrV (V ) = \scrV (U) = \scrV (MV + b 1\mathrm{T}N ),

where 1N \in \BbbR N denotes a column vector of ones.

Example 2.3 (Langevin dynamics). The classical example of (2.10) is provided by the scaled
first-order (overdamped) Langevin dynamics

(2.17) du
(i)
t =  - C\nabla u(i)\Phi 

\Bigl( 
u
(i)
t

\Bigr) 
dt+

\surd 
2C1/2dW

(i)
t ,

where W
(i)
t , i = 1, . . . , N , denotes independent D-dimensional Brownian motion, C \in \BbbR D\times D

is a constant symmetric positive definite matrix, and C1/2 denotes its symmetric positive
definite square root. In this case, the particles do not interact and \scrA = C. Furthermore,
\Gamma =

\surd 
2C1/2 and the potential \scrV is given by

(2.18) \scrV (U) =
N\sum 
i=1

\Phi 
\Bigl( 
u(i)
\Bigr) 
.
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We note that (2.17) satisfies items (i) and (iii) above for any N \geq 1 but not (ii), in general.
As pointed out in [22], the failure of (2.17) to be affine invariant potentially leads to inefficient
sampling when \Phi is poorly scaled with respect to C. More specifically, in the case of Bayesian
inverse problems with Gaussian posterior, this scenario occurs when C is vastly different from
the target covariance.

Let \pi 
(i)
t denote the PDF of the ith particle u

(i)
t at time t \geq 0 with evolution equation

(2.17). Then these PDFs satisfy the Fokker--Planck equation

(2.19) \partial t\pi t = \nabla u \cdot 
\biggl( 
\pi tC\nabla u

\delta KL(\pi t| \pi \ast )
\delta \pi t

\biggr) 
,

with \pi t = \pi i
t and the Kullback--Leibler divergence defined by

(2.20) KL(\pi | \pi \ast ) =
\int 
\BbbR D

log

\biggl( 
\pi (u)

\pi \ast (u)

\biggr) 
\pi (du).

It has been shown in [16] that the Fokker--Planck equation (2.19) corresponds to a gradient flow
structure in the space of probability measures. Furthermore, since the variational derivative
of the Kullback--Leibler divergence is given by

(2.21)
\delta KL(\pi t| \pi \ast )

\delta \pi t
= log \pi t  - log \pi \ast ,

the invariance of the product measure (2.11) under the stochastic evolution equations (2.17)
follows immediately.

An important generalization of the linear Fokker--Planck equation (2.19) was proposed
in [11]. It relies on making the matrix C dependent on the PDF \pi t itself, thus leading to a
nonlinear generalization of (2.19). More specifically, the nonlinear Fokker--Planck equation is
given by

(2.22) \partial t\pi t = \nabla u \cdot 
\biggl( 
\pi tC(\pi t)\nabla u

\delta KL(\pi t| \pi \ast )
\delta \pi t

\biggr) 
,

with

(2.23) C(\pi t) = \BbbE \pi t

\bigl[ 
(u - \mu t)(u - \mu t)

\mathrm{T}
\bigr] 
, \mu t = \BbbE \pi t [u] .

This choice of C is motivated by the ensemble Kalman--Bucy filter [34, 36, 11]. The associated
generalized gradient flow structure in the space of probability measures was first stated in [36]
in the context of the ensemble Kalman--Bucy filter mean-field equations and has been discussed
in detail under the notion of the so-called Kalman--Wasserstein gradient flow structure in [11].
See subsection 3.3 and Remark 4.11 below for more details.

A key observation for the present paper is that, contrary to the classical Fokker--Planck
equation (2.19) with constant C, the nonlinear Fokker--Planck equation (2.22) is affine invari-
ant.

Lemma 2.4 (affine invariance of Kalman--Wasserstein dynamics). The nonlinear Fokker--
Planck equation (2.22) is affine invariant.
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Proof. We define the pushforward PDFs

(2.24) \widetilde \pi t(v) = | M | \pi t(Mv + b), \widetilde \pi \ast (v) = | M | \pi \ast (Mv + b).

Then

\partial t\widetilde \pi t = | M | \partial t\pi t(2.25a)

= | M | \nabla u \cdot 
\biggl( 
\pi tC(\pi t)\nabla u

\delta KL(\pi t| \pi \ast )
\delta \pi t

\biggr) 
(2.25b)

= \nabla v \cdot 
\biggl( \widetilde \pi tC(\widetilde \pi t)\nabla v

\delta KL(\widetilde \pi t| \widetilde \pi \ast )
\delta \widetilde \pi t

\biggr) 
.(2.25c)

Here we have used that

(2.26) C(\widetilde \pi t) = M C(\pi t)M
\mathrm{T},

as well as \nabla v
\widetilde f(v) = \nabla vf(Mv + b) = M\mathrm{T}\nabla uf(u) for functions \widetilde f(v) = f(u) = f(Mv + b) and

an analogous statement for the divergence operator. Furthermore, the variational derivatives
of the Kullback--Leibler divergences satisfy

\delta KL(\pi t| \pi \ast )
\delta \pi t

= log

\biggl( 
\pi 

\pi \ast 

\biggr) 
= log

\biggl( \widetilde \pi \widetilde \pi \ast 
\biggr) 

=
\delta KL(\widetilde \pi t| \widetilde \pi \ast )

\delta \widetilde \pi t .(2.27)

Building upon the affine invariance property of the nonlinear Fokker--Planck equation
(2.22), we demonstrate in the following section how to obtain stochastic evolution equations
of the form (2.10) which satisfy all three properties (i)--(iii) from above. Their theoretical
properties are studied in the subsequent section 4. In particular, we establish nondegeneracy
and ergodicity, which provides the key theoretical contribution of this paper.

3. Affine invariant interacting Langevin dynamics. As noted in the previous section,
the nonlinear Fokker--Planck evolution (2.22)--(2.23) satisfies invariance of the target measure

\pi 
(N)
\ast (property (i)) as well as affine invariance (property (ii)). In this section, we address

(iii), that is, we present an interacting particle system of the form (2.10) which has (2.22)
as its mean-field limit while still maintaining properties (i) and (ii) for any finite number of
particles. We also introduce a gradient-free approximation which is applicable to BIPs of the
form (2.8). This section concludes with a summary of related previous algorithmic work.

3.1. ALDI: An exact gradient-based sampling method. In order to define our interacting
particle system, let us first define the empirical covariance matrix

(3.1) \scrC (U) :=
1

N

N\sum 
i=1

\Bigl( 
u(i)  - m(U)

\Bigr) \Bigl( 
u(i)  - m(U)

\Bigr) \mathrm{T}
with empirical mean

(3.2) m(U) :=
1

N

N\sum 
i=1

u(i) =
1

N
U 1N ,
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that is, the particle-based estimators of the quantities defined in (2.23). We also introduce
the D \times N matrix of the deviations of the particle positions from their mean value, that is,

(3.3) U \prime :=
\Bigl( 
u(1)  - m(U), u(2)  - m(U), . . . , u(N)  - m(U)

\Bigr) 
= U  - m(U) 1\mathrm{T}N ,

which allows us to write

(3.4) \scrC (U) =
1

N
U \prime (U \prime )\mathrm{T}.

Furthermore, we define a generalized (nonsymmetric) square root of \scrC (U) via

(3.5) \scrC 1/2(U) :=
1\surd 
N

U \prime ,

that is, \scrC = \scrC 1/2
\bigl( 
\scrC 1/2

\bigr) \mathrm{T}
. For a moment, let us assume that U \in \BbbR D\times N is such that \scrC (U) is in-

vertible (we will comment on this assumption following Definition 3.1; see also Proposition 4.4)
and choose the preconditioning matrix

(3.6) \scrA (U) = \scrC (U) =
1

N
U \prime (U \prime )\mathrm{T},

the potential

(3.7) \scrV (U) =
N\sum 
i=1

\Phi 
\Bigl( 
u(i)
\Bigr) 
 - D + 1

2
log | \scrC (U)| ,

and the diffusion matrix

(3.8) \Gamma (U) =
\surd 
2 \scrC 1/2(U) =

\surd 
2\surd 
N

U \prime 

in (2.10), that is, L = N . Note that the potential (3.7) contains the additional  - (D +
1)/2 log | \scrC (U)| term in comparison to (2.18), which is required to keep the target distribution
(2.11) invariant under the state-dependent diffusion matrix \scrC (U). See Proposition 4.1 below
and [30] for details.

Using the identity

(3.9) \scrC (U)\nabla u(i) log | \scrC (U)| = 2

N

\Bigl( 
u(i)  - m(U)

\Bigr) 
,

which follows from Jacobi's formula for the derivative of determinants (see the appendix
for more details), we derive the following explicit form of the proposed interacting particle
Langevin dynamics.

Definition 3.1 (ALDI method). The affine invariant Langevin dynamics (ALDI) is given by
the interacting particle system

(3.10) du
(i)
t =  - \scrC (Ut)\nabla u(i)\Phi 

\Bigl( 
u
(i)
t

\Bigr) 
dt+

D + 1

N

\Bigl( 
u
(i)
t  - m(Ut)

\Bigr) 
dt+

\surd 
2 \scrC 1/2(Ut) dW

(i)
t

for i = 1, . . . , N , where W
(i)
t denotes N -dimensional standard Brownian motion.
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We emphasize that the generalized square root \scrC 1/2(U), as defined in (3.5), does not require
a computationally expensive Cholesky factorization of \scrC (U), and hence the formulation (3.10)
satisfies the requirement (iii). Note that although defining \scrV as in (3.7) necessitates N > D
in order for the empirical covariance matrix \scrC (U) to be nonsingular, the terms in (3.10) are
well-defined also for N \leq D. While a nonsingular \scrC (U) is required generically for the ALDI

method to sample from the desired target measure \pi 
(N)
\ast (see the discussion in subsection 4.1),

a smaller number of particles, N , is sometimes desirable in order to reduce the computational
cost for high-dimensional BIPs.

If indeed N \leq D, then \scrC (U) is singular and the dynamics of the interacting particle system

(3.10) is restricted to the linear subspace spanned by the N initial particle positions u
(i)
0 , that

is,

(3.11) u
(i)
t =

N\sum 
j=1

mij
t u

(j)
0 .

Stochastic differential equations (SDEs) in the N2 scalar coefficients mij
t can easily be derived

from (3.10) using the ansatz (3.11). In other words, provided that the initial samples u
(i)
0 are

appropriately chosen, an implementation of (3.10) with N \leq D can lead to a computationally
efficient reduction of the BIP onto a lower-dimensional linear subspace. The affine invariance
of (3.10) holds regardless of the ensemble size and is discussed in subsection 4.2 in more detail.

3.2. Approximate gradient-free sampling. A central idea put forward in [11] (see also
[32]) in the context of BIPs described in Example 2.1 is to combine the preconditioned
Langevin dynamics with gradient-free formulations of the ensemble Kalman filter. Recall-
ing the forward map \scrG from (2.3), the empirical cross-correlation matrix \scrD (U) \in \BbbR D\times K is
defined via

(3.12) \scrD (U) =
1

N

N\sum 
i=1

\Bigl( 
u(i)  - m(U)

\Bigr) \Bigl( 
\scrG (u(i)) - m(\scrG (U))

\Bigr) \mathrm{T}
with empirical mean

(3.13) m(\scrG (U)) =
1

N

N\sum 
i=1

\scrG (u(i)) = 1

N
\scrG (U) 1N .

We now make the approximation \scrC (U)\nabla u\scrG (u) \approx \scrD (U), motivated by the fact that this
approximation becomes exact for affine forward maps, \scrG (u) = Gu + c. We refer the reader
to [10, Appendix A.1] for more details. In terms of the ALDI formulation (3.10) and the
potential \Phi (u), given by (2.8), we obtain the following definition.

Definition 3.2 (gradient-free ALDI). Given a potential \Phi (u) of the form (2.8), the gradient-
free ALDI formulation is given by the interacting particle system

du
(i)
t =  - 

\Bigl\{ 
\scrD (Ut)R

 - 1
\Bigl( 
\scrG 
\Bigl( 
u
(i)
t

\Bigr) 
 - y\mathrm{o}\mathrm{b}\mathrm{s}

\Bigr) 
+ \scrC (Ut)P

 - 1
0 (u

(i)
t  - \mu 0)

\Bigr\} 
dt(3.14a)

+
D + 1

N

\Bigl( 
u
(i)
t  - m(Ut)

\Bigr) 
dt+

\surd 
2\scrC 1/2(Ut) dW

(i)
t(3.14b)
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for i = 1, . . . , N , where W
(i)
t denote independent N -dimensional standard Brownian motions.

While the invariance of \pi 
(N)
\ast is lost under the gradient-free formulation (3.14) (except, of

course, for affine forward operators), affine invariance of the equations of motions is main-
tained; see subsection 4.2.

3.3. Related previous algorithmic work. The idea of an affine invariant Monte Carlo
method based on Langevin dynamics using an ensemble of particles and its empirical co-
variance first appeared in the unpublished master's thesis [14]. More specifically, the author
proposes an affine invariant modification of the popular MALA algorithm [38, 12], where each

particle u
(i)
k , i = 1, . . . , N , is sequentially updated at time step k using the proposal

(3.15) u
(i)
k+1 = u

(i)
k  - hM

(i)
k \nabla 

u
(i)
k

\Phi (u
(i)
k ) +

\surd 
2hL

(i)
k \xi 

(i)
k ,

where h > 0 is the step size, M
(i)
k is an empirical covariance matrix based on a set of particles

not including u
(i)
k , L

(i)
k is the Cholesky factor of M

(i)
k , that is, M

(i)
k = L

(i)
k (L

(i)
k )\mathrm{T}, and \xi 

(i)
k

is a D-dimensional Gaussian random variable with mean zero and covariance matrix ID\times D.
Independently of [14], a general time-continuous framework for affine invariant interacting
particle formulations was developed in [22], studying in detail affine invariant implementations
of second-order Langevin dynamics using empirical covariance matrices.

More recently, ensemble preconditioned first-order Langevin dynamics was revisited in
[11] with an emphasis on its mean-field limit and its connection to the ensemble Kalman filter
[10, 20, 35]. In fact, (3.10) appeared first in [11] with the potential (3.7) replaced by (2.18),
that is, without the correction term

(3.16)
D + 1

N

\Bigl( 
u
(i)
t  - m(Ut)

\Bigr) 
,

and with \scrC 1/2(U) being replaced by the symmetric matrix square root of the covariance
matrix \scrC (U). The resulting method is called the ensemble Kalman sampler (EKS) in [11].

The correction term (3.16) is, however, needed in (3.10) in order for \pi 
(N)
\ast to be an invariant

distribution under the resulting interacting particle system (2.10) and first appeared in the

unpublished note [30]. The invariance of \pi 
(N)
\ast under (3.10) is proven in subsection 4.1.

The correction term (3.16) vanishes as N \rightarrow \infty for D fixed, which justifies the nonlinear
Fokker--Planck equation (2.22) in this mean-field limit. See [11] for more details.

We note that a general discussion on necessary correction terms for Langevin dynamics
with multiplicative noise can, for example, be found in [38, 12] from the perspective of Rie-
mannian Brownian motion. We also note that general conditions on diffusion processes that
guarantee invariance of a given target distribution were investigated in [8, section 2.2] and
[25, 22].

The gradient-free approximation of the form \scrC (U)\nabla u\scrG (u) \approx \scrD (U) originated in the en-
semble Kalman filter literature [10]. More precisely, the time-continuous formulation of the
ensemble Kalman filter, the so-called ensemble Kalman--Bucy filter given by

(3.17) du
(i)
t =  - \scrC (Ut)\nabla u(i)\scrG 

\Bigl( 
u
(i)
t

\Bigr) 
R - 1

\biggl( 
1

2

\Bigl\{ 
\scrG 
\Bigl( 
u
(i)
t

\Bigr) 
+m(\scrG (Ut))

\Bigr\} 
 - y\mathrm{o}\mathrm{b}\mathrm{s}

\biggr) 
,
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fits into the interacting particle dynamics framework (2.10) with \scrA (U) = \scrC (U), \Gamma (U) = 0,
and

(3.18) \scrV (U) =
1

4

N\sum 
i=1

\bigm\| \bigm\| \bigm\| y\mathrm{o}\mathrm{b}\mathrm{s}  - \scrG 
\Bigl( 
u(i)
\Bigr) \bigm\| \bigm\| \bigm\| 2

R
+

1

4
\| y\mathrm{o}\mathrm{b}\mathrm{s}  - m(\scrG (U))\| 2R.

See [34, 36, 35] for more details. Its gradient-free formulation becomes

(3.19) du
(i)
t =  - \scrD (Ut)R

 - 1

\biggl( 
1

2

\Bigl\{ 
\scrG 
\Bigl( 
u
(i)
t

\Bigr) 
+m(\scrG (Ut))

\Bigr\} 
 - y\mathrm{o}\mathrm{b}\mathrm{s}

\biggr) 
[4, 35]. The derivative-free ensemble Kalman inversion (EKI) method [40, 19] is a slight modi-

fication of (3.19) with the mean contribution m(\scrG (U)) replaced by \scrG 
\bigl( 
u
(i)
t

\bigr) 
. This modification

leads to a faster decay in the ensemble deviations U \prime 
t and, hence, in the covariance matrix

\scrD (Ut) while retaining the evolution equation in the ensemble mean m(Ut).
The extension of such gradient-free formulations to Langevin dynamics was first proposed

in [11]. Gradient-free formulations have been found to work well for unimodal posterior
distributions in [11], but fail for multimodal distributions, as demonstrated in [37]. A localized
covariance formulation of ALDI was proposed in [37] to overcome this limitation. Localized
covariance matrices were already considered in [22], but not in the context of gradient-free
formulations.

4. Theoretical analysis of ALDI. The aim of this section is to analyze some of the proper-
ties of the dynamics (3.10), in particular verifying conditions (i) and (ii) outlined in section 2.
The key observation (crucially depending on the correction term D+1

2 log | \scrC (U)| to the poten-
tial \scrV in (3.7)) is that the corresponding Fokker--Planck equation has the same mathematical
structure as its counterpart (2.22) for the mean-field regime.

Proposition 4.1 (linear Fokker--Planck equation). Let Ut, as defined by (2.9), satisfy the

stochastic evolution equations (3.10) and assume that the time-marginal PDF \pi 
(N)
t of Ut is

smooth. Then \pi 
(N)
t satisfies the linear Fokker--Planck equation

(4.1) \partial t\pi 
(N)
t =

N\sum 
i=1

\nabla u(i) \cdot 

\left(  \pi 
(N)
t \scrC \nabla u(i)

\delta KL
\Bigl( 
\pi 
(N)
t | \pi (N)

\ast 

\Bigr) 
\delta \pi 

(N)
t

\right)  .

Proof. The proof can be found in the appendix. See also the technical report [30].

Note that the PDF \pi 
(N)
t in (4.1) is defined on the extended space \BbbR D\times N , whereas \pi t in

(2.22) is defined on \BbbR D. In contrast to (4.1), the mean-field equation (2.22) is nonlinear since
C(\pi t) depends on the solution \pi t itself.

4.1. Nondegeneracy and ergodicity. As a first result, we have that property (i) is satisfied
for the extended target measure (2.11) on the joint state space \BbbR D\times N . This follows directly
from Proposition 4.1.

Corollary 4.2 (invariance of the posterior measure). The extended target measure (2.11) is

invariant for (3.10); that is, if U0 \sim \pi 
(N)
\ast , then Ut \sim \pi 

(N)
\ast for all t \geq 0.
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Proof. Observe that KL(\pi (N)| \pi (N)
\ast ) is minimized for \pi (N) = \pi 

(N)
\ast , and hence

\delta KL
\Bigl( 
\pi (N)| \pi (N)

\ast 

\Bigr) 
\delta \pi (N)

\bigm| \bigm| \bigm| 
\pi (N)=\pi 

(N)
\ast 

= 0.

Using (4.1), we immediately see that \partial t\pi 
(N)
\ast = 0, implying the claimed result.

Note that \pi 
(N)
\ast is not the unique invariant measure for the dynamics (3.10). For instance,

if U =
\bigl( 
u(1), . . . , u(N)

\bigr) 
with u(1) = u(2) = \cdot \cdot \cdot = u(N), then \scrC (U) = 0 and u(i) = m(U),

and hence \delta U (the Dirac measure centered at U) is invariant. To ensure favorable ergodic

properties, we need to prove that \pi 
(N)
\ast is the unique invariant measure that is reachable by

the dynamics from an appropriate set of initial conditions. First, we shall make the following
assumption on the potential \Phi :

Assumption 4.3 (regularity and growth conditions on the potential \Phi ). Assume that \Phi \in 
C2(\BbbR D)\cap L1(\pi \ast ). Furthermore, assume that there exist a compact set K \subset \BbbR D and constants
c2 > c1 > 0 such that

c1| u| 2 \leq \Phi (u) \leq c2| u| 2,(4.2a)

c1| u| \leq | \nabla \Phi (u)| \leq c2| u| ,(4.2b)

c1ID\times D \leq Hess\Phi (u) \leq c2ID\times D(4.2c)

for all u \in \BbbR D \setminus K.

The bound (4.2c) is to be understood in the sense of quadratic forms. Assumption 4.3 is
satisfied for target measures with Gaussian tails. Indeed, \Phi = \Phi 0 + \Phi 1 is admissible, where
\Phi 0(u) =

1
2u\cdot Su is quadratic (with S \in \BbbR D\times D strictly positive definite), and \Phi 1 \in C\infty 

c (\BbbR D) is a
smooth perturbation with compact support. We would like to emphasize that Assumption 4.3
can be relaxed with minimal effort, but we refrain from doing so for ease of exposition.

Due to the fact that \scrC (U) is not uniformly bounded from below on \BbbR D\times N , the associ-
ated Fokker--Planck operator is not uniformly elliptic and standard ergodicity results are not
applicable. However, we have the following nondegeneracy result.

Proposition 4.4 (nondegeneracy of the empirical covariance matrix). Let Assumption 4.3 be
satisfied and assume that \scrC (U0) is strictly positive definite. Then (3.10) admits a unique global
strong solution, and \scrC (Ut) stays strictly positive definite for all t \geq 0, almost surely.

Proof. The proof rests on the identity (3.9) so that (3.10) can be written in the form

(4.3) du
(i)
t =  - \scrC (Ut)\nabla u(i)\scrV (Ut) dt+

\surd 
2\scrC 1/2(Ut) dW

(i)
t , i = 1, . . . , N,

with the potential \scrV given by (3.7), making use of the repulsive effect of the term

 - D + 1

2
log | \scrC (U)| .

Details can be found in the appendix.
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With Proposition 4.4 in place, the proof of the following ergodicity result is relatively
straightforward.

Proposition 4.5 (ergodicity). Assume the conditions from Proposition 4.4, and furthermore

that N > D + 1. Then the dynamics is ergodic, that is, \pi 
(N)
t \rightarrow \pi 

(N)
\ast as t \rightarrow \infty in total

variation distance.

Proof. The proof can be found in the appendix.

Remark 4.6. In the case when N \leq D, ergodicity will not hold, since the dynamics is
constrained to a subspace according to the discussion following Definition 3.1. In the case
when N = D + 1 one can show that the set

(4.4) E =
\bigl\{ 
U \in \BbbR D\times N : \scrC (U) is invertible

\bigr\} 
has two connected components. The dynamics will then be ergodic with respect to \pi 

(N)
\ast 

restricted to one of these, depending on the initial condition. This is acceptable from an
algorithmic viewpoint, but we do not treat this case separately for simplicity.

4.2. Affine invariance. We show that (3.10) and its gradient-free variant (3.14) are affine-
invariant in the terminology introduced in [13, 14] and summarized in Definition 2.2.

Lemma 4.7 (affine invariance of ALDI). The Fokker--Planck equation (4.1), its associated
interacting particle system (3.10), as well as its gradient-free formulation (3.14) are all affine
invariant.

Proof. We follow the proof of Lemma 2.4. Since \scrC (U) = M \scrC (V )M\mathrm{T} we also have \scrA (U) =
M\scrA (V )M\mathrm{T}. Furthermore,

(4.5) \nabla v(i)
\widetilde f(V ) = \nabla v(i)f

\bigl( 
MV + b 1\mathrm{T}N

\bigr) 
= M\mathrm{T}\nabla u(i)f(U)

for functions \widetilde f(V ) = f(U) = f
\bigl( 
MV + b 1\mathrm{T}N

\bigr) 
, and an analogous statement holds for the

divergence operator. Finally, equality (2.27) also holds for the Kullback--Leibler divergences
over extended state space. Along the same lines, the affine invariance can also be checked
directly at the level of the stochastic differential equations (3.10). In particular, it holds that
\scrC 1/2(U) = M\scrC 1/2(V ). Furthermore,

(4.6) \scrD (U) = M\scrD (V )

with \widetilde \scrG (v) = \scrG (Mu+ b) and \scrD (V ) the empirical covariance matrix between v and \widetilde \scrG (v). This
implies the affine invariance of the gradient-free formulation (3.14).

Remark 4.8 (pathwise versus distributional affine invariance). Definition 2.2 is based on
pathwise affine invariance at the level of the SDEs (2.10). Pathwise invariance implies affine

invariance of the associated time-marginal distributions \pi 
(N)
t , that is, affine invariance of the

implied Fokker--Planck equation. The converse is not true, in general.

4.3. Geometric properties and gradient flow structure. In this section, we place the
dynamics (3.10) in a geometric context, viewing (a suitable subset of) \BbbR D\times N as a Riemannian
manifold when equipped with an appropriate metric tensor. This approach has been pioneered
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in [12]; we also recommend the review paper [24]. Leveraging this perspective, we show that
the evolution induced by (3.10) on the set of smooth PDFs can be interpreted as a gradient
flow in the sense of [16]. In the limit as N \rightarrow \infty we formally recover the Kalman--Wasserstein
geometry introduced in [11].

We restrict our attention to the case N > D+1 in this section, when the dynamics (3.10)
is ergodic on the set E, as defined in (4.4), according to Proposition 4.5. Extending the
framework to the case when N \leq D + 1 is the subject of ongoing work. We now turn E into
a D \times N -dimensional Riemannian manifold. Denoting the \gamma th coordinate of the ith particle
by U (\gamma ,i), we introduce the metric tensor

(4.7) g =
N\sum 
i=1

D\sum 
\gamma ,\sigma =1

\scrC  - 1
\gamma \sigma dU

(\gamma ,i) dU (\sigma ,i).

In what follows, we will denote by dvolg the Riemannian volume, by \nabla g the Riemannian
gradient, by (W g

t )t\geq 0 Riemannian Brownian motion, and by dg the geodesic distance on
(E, g). For more details, we refer the reader to [15, 21] and, in the context of computational
statistics, to [24]. Using these objects induced by g, both the SDE (3.10) and the corresponding
Fokker--Planck equation (4.1) admit a compact formulation.

Proposition 4.9 (Riemannian interpretation of ALDI). Let \pi (N),g denote the density of \pi (N)

with respect to the Riemannian volume, that is, \pi (N),g dvolg = \pi (N) dU and \pi 
(N),g
\ast dvolg =

\pi 
(N)
\ast dU . Then the dynamics (3.10) can be written in the form

(4.8) dUt = \nabla g
U log \pi 

(N),g
\ast (Ut) dt+

\surd 
2 dW g

t ,

and the Fokker--Planck equation (4.1) can be written in the form

(4.9) \partial t\pi 
(N),g
t = \nabla g

U \cdot 

\Biggl( 
\pi 
(N),g
t \nabla g

U

\delta KL(\pi 
(N)
t | \pi (N)

\ast )

\delta \pi 
(N)
t

\Biggr) 
.

Remark 4.10. Note that the Kullback--Leibler divergence and its functional derivative de-
pend on the measures but not on the respective densities, in contrast to the Onsager operator

[26, 29, 31] \phi \mapsto \rightarrow  - \nabla g
U \cdot 
\bigl( 
\pi 
(N),g
t \nabla g

U\phi 
\bigr) 
.

Proof. Using the results from [24], in particular (46)--(47), the proof of the first statement
reduces to verifying that

(4.10) \partial Jg
IJ =

D + 1

N

\Bigl( 
u(i)  - m(U)

\Bigr) 
\gamma 
,

where gIJ stands for the components of the inverse of g, and we have used the notation
I = (\gamma , i) and J = (\sigma , j). Furthermore, we apply Einstein's summation convention here and
in the remainder of this proof. The statement (4.10) follows directly from the definition of g
and the identity [30]

(4.11) \nabla u(i) \cdot \scrC (U) =
D + 1

N
(u(i)  - m(U)),
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giving rise to the drift correction (3.16). Indeed, together with the coordinate expressions

(4.12) \nabla g
U \cdot f =

1\sqrt{} 
| g| 

\partial I

\Bigl( \sqrt{} 
| g| f I

\Bigr) 
, (\nabla g

UV )I = gIJ\partial JV

for vector-valued functions f and scalar-valued V , the result follows by direct substitution.
For the second statement, note that dvolg =

\sqrt{} 
| g| dU , and hence \pi (N),g = | g|  - 1/2\pi (N).

To exhibit the gradient flow structure, we recall that the natural quadratic Wasserstein
distance between probability measures defined on (E, g) is given by

(4.13) \scrW 2
g

\Bigl( 
\mu (N), \nu (N)

\Bigr) 
= inf

\gamma \in \Pi (\mu (N),\nu (N))

\int 
E\times E

d2g(U, V ) d\gamma (U, V ),

where \Pi 
\bigl( 
\mu (N), \nu (N)

\bigr) 
denotes the set of probability measures on E\times E with marginals \mu (N) and

\nu (N). It is well known that the evolution (4.9) can be interpreted as gradient flow dynamics of
the Kullback--Leibler divergence on the set of probability measures equipped with the distance
(4.13); see, for instance, [42, Chapter 15] or [23]. By the Benamou--Brenier formula [3], we
have the representation

\scrW 2
g

\Bigl( 
\mu (N), \nu (N)

\Bigr) 
= inf

\{ \pi t,\Phi t\} 

\Biggl\{ \int 1

0

\int 
E
g(\nabla g

U\Phi t,\nabla g
U\Phi t) d\pi t dt :(4.14a)

\partial t\pi 
g
t +\nabla g

U \cdot (\pi g
t \nabla 

g
U\Phi t) = 0, \pi 0 = \mu (N), \pi 1 = \nu (N)

\Biggr\} 
,(4.14b)

where the constraining continuity equation in (4.14b) is to be interpreted in a weak form and
we again denoted by \pi g the density of \pi with respect to dvolg. In standard coordinates (using
the definition (4.7) as well as the formulas (4.12)) we see that

\scrW 2
g

\Bigl( 
\mu (N), \nu (N)

\Bigr) 
= inf

\{ \pi t,\Phi t\} 

\Biggl\{ \int 1

0

\int 
E
\nabla U\Phi t \cdot \scrC \nabla U\Phi t d\pi tdt :(4.15a)

\partial t\pi t +\nabla U \cdot (\pi t\scrC \nabla U\Phi t) = 0, \pi 0 = \mu (N), \pi 1 = \nu (N)

\Biggr\} 
,(4.15b)

revealing a close similarity with the Kalman--Wasserstein distance (here denoted by \scrW \mathrm{K}\mathrm{a}\mathrm{l}\mathrm{m}\mathrm{a}\mathrm{n})
introduced in [11]. Indeed, let us choose \mu (N) := \otimes N

i=1\mu 
(i) and \nu (N) := \otimes N

i=1\nu 
(i), the prod-

uct measures on \BbbR D\times N associated to \mu , \nu \in \scrP (\BbbR D), where \mu (i) and \nu (i), i = 1, . . . , N , are
understood to be identical copies of \mu and \nu . We formally expect that

(4.16)
1

N
\scrW 2

g

\Bigl( 
\mu (N), \nu (N)

\Bigr) 
N\rightarrow \infty  -  -  -  - \rightarrow \scrW \mathrm{K}\mathrm{a}\mathrm{l}\mathrm{m}\mathrm{a}\mathrm{n}(\mu , \nu ),

using that \scrC (U) \approx C(\pi ) for sufficiently large N , where C(\pi ) was defined in (2.23). A rigorous
passage from\scrW g to the Kalman--Wasserstein distance might be a rewarding direction for future
research; we note that a similar analysis (relating the gradient flow structures associated to a
finite particle system and its mean-field limit) was carried out recently in [5].
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Remark 4.11 (gradient flow structure of the ensemble Kalman--Bucy filter). Taking the for-
mal mean-field limit of the ensemble Kalman--Bucy filter (3.17) leads to the following evolution
equation in the marginal densities \pi t:

(4.17) \partial t\pi t = \nabla u \cdot 
\biggl( 
\pi tC(\pi t)\nabla u

\delta \scrF \mathrm{E}\mathrm{n}\mathrm{K}\mathrm{B}\mathrm{F}(\pi t)

\delta \pi t

\biggr) 
with potential

(4.18) \scrF \mathrm{E}\mathrm{n}\mathrm{K}\mathrm{B}\mathrm{F}(\pi ) =
1

4

\int 
\BbbR D

\| y\mathrm{o}\mathrm{b}\mathrm{s}  - \scrG (u)\| 2R \pi (u) du+
1

4
\| y\mathrm{o}\mathrm{b}\mathrm{s}  - \BbbE \pi [\scrG (u)]\| 2R,

which arises naturally from (3.18) in the limit N \rightarrow \infty [36, 35]. Note that (4.17) is exactly
of the form (2.22) with the Kullback--Leibler divergence replaced by the potential (4.18). Its
gradient flow structure in the space of probability measures was first discussed in [36, 35] and
is equivalent to the Kalman--Wasserstein gradient flow structure introduced in [11]. The mean-
field limit of the EKI [40, 19] also fits within this framework with the potential \scrF \mathrm{E}\mathrm{n}\mathrm{K}\mathrm{B}\mathrm{F}(\pi )
replaced by

(4.19) \scrF \mathrm{E}\mathrm{K}\mathrm{I}(\pi ) =
1

2

\int 
\BbbR D

\| y\mathrm{o}\mathrm{b}\mathrm{s}  - \scrG (u)\| 2R \pi (u) du.

The affine invariance of both the EnKBF and EKI follows along the lines of Lemma 2.4. As
for the finite ensemble size formulations, one expects a slower decay of \scrF \mathrm{E}\mathrm{n}\mathrm{K}\mathrm{B}\mathrm{F}(\pi t) compared
to \scrF \mathrm{E}\mathrm{K}\mathrm{I}(\pi ).

5. Numerical experiment: A PDE constrained inverse problem. We consider the inverse
problem of determining the permeability field a(x) > 0 in the elliptic PDE

(5.1)  - \partial x(a(x)\partial xp(x)) = f(x), x \in \Omega = [0, 2\pi ),

from K = 10 observed grid values

(5.2) yj = p(xj) + \eta j , xj =
2\pi (j  - 1)

K
,

j = 1, . . . ,K, of the pressure field p for a given forcing f . Both p and f are assumed to
integrate to zero over the domain \Omega . The measurement errors \eta j in (5.2) are i.i.d. Gaussian
with mean zero and variance \sigma R = 10 - 4. A related 2-dimensional Darcy flow problem was
studied in [11]. In this paper, we restrict the simulations to the 1-dimensional formulation
(5.1) for computational simplicity.

This infinite-dimensional problem is made finite-dimensional by introducing a computa-
tional grid,

(5.3) xi =
2\pi i

D
, i = 0, . . . , D  - 1,

with D = 50 grid points. Hence (5.1) gets replaced by the finite-difference formulation

(5.4)
ai+1/2(pi+1  - pi) - ai - 1/2(pi  - pi - 1)

h2
=  - fi,
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i = 1, . . . , D. Here h = 2\pi /D denotes the mesh size and pi \approx p(xi), etc. We also make use of
the periodicity and set pD = p0 as well as fD = f0 .

Since the permeability field should be nonnegative, we set

(5.5) ai - 1/2 = exp(ui)

for i = 1, . . . , D. The computational forward problem is now given by the solution \{ pi\} D - 1
i=0

to (5.4) for given \{ fi\} D - 1
i=0 and \{ ui\} Di=1 and its restriction to the observation grid \{ xj\} Kj=1. We

denote this map by \scrG (u), suppressing the dependence on the forcing given by

(5.6) fi = exp

\biggl( 
 - (2xi  - L)2

40

\biggr) 
 - cf ,

where cf > 0 is chosen such that the forcing has mean zero. The measurement error covariance
matrix is given by R = \sigma RIK\times K . This completes the description of our forward model (2.3).

The prior distribution on u \in \BbbR D is assumed to be Gaussian with mean zero and covariance
matrix P0 defined by

(5.7) P - 1
0 = 4h

\Bigl( \mu 

D
1D1

\mathrm{T}
D  - \Delta h

\Bigr) 2
,

where \Delta h denotes the standard second-order finite-difference operator over \Omega with mesh size
h and periodic boundary conditions, that is, the operator defined by the left-hand side of (5.4)
with ai\pm 1/2 = 1. The parameter \mu > 0 is set to \mu = 102, leading to a penalty on the (spatial)

mean of u = \{ ui\} Di=1 to be close to zero.
The observations (5.2) are generated numerically by solving (5.4) with the reference per-

meability field given by

(5.8) a\dagger i - 1/2 = exp(u\dagger i ),

where

(5.9) u\dagger i =
1

2
sin(xi  - h/2)

for i = 1, . . . , D, and setting

(5.10) yj = pl + \eta j , l =
D

K
j = 5j, \eta j \sim \scrN (0, \sigma R),

j = 1, . . . ,K.
We implemented the gradient-based ALDI formulation (3.10) as well as the gradient-free

ALDI formulation (3.14) using the Euler--Maruyama method with step size \Delta t = 0.01 over
a time interval t \in [0, 20]. In line with [11] we refer to the ALDI implemented without the
correction term (3.16) as the ensemble Kalman sampler (EKS). The ensemble sizes were taken
as N = 25, 52, 100, 200. Except for the smallest ensemble size, all other choices resulted in
nonsingular empirical covariance matrices \scrC (Ut).
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We compare the simulation results based on the estimation bias

(5.11) BIAS =
h

T

\int \tau +T

\tau 
\| m(exp(Ut)) - a\dagger \| 1 dt,

where \| a\| 1 denotes the l1-norm of a vector a \in \BbbR D, and the ensemble spread

(5.12) SPREAD =
h

T

\int \tau +T

\tau 
trace (\scrC (Ut))

computed along numerical solutions for \tau = 12 and T = 8. Each experiment was repeated
ten times to reduce the impact of random effects. The results can be found in Tables 1 and 2,
respectively. It can be seen that the correction term has a profound impact on both the bias
as well as the ensemble spread for the smallest ensemble size N = 25. This effect is largely
diminished for the largest ensemble size of N = 200. We also find that the gradient-free
implementations yield results which are essentially indistinguishable from those based on the
exact gradient while being computationally much more efficient. Finally, the results for ALDI
indicate that it is entirely sufficient to implement it with N = D + 2 = 52 particles, the
minimum size required for ergodicity to hold.

Table 1
Computed estimation bias (5.11) for ensemble sizes N \in \{ 25, 51, 100, 200\} and implementations of ALDI

and EKS as well as with exact gradient (g) and gradient-free (gf).

N gf-EKS gf-ALDI g-EKS g-ALDI

25 0.5035 0.4113 0.4940 0.4042
52 0.3748 0.3028 0.3706 0.2957
100 0.3215 0.3070 0.3166 0.3016
200 0.3088 0.3081 0.3030 0.3009

Table 2
As in Table 1, but reporting the results for the ensemble spread (5.12).

N gf-EKS gf-ALDI g-EKS g-ALDI

25 0.0082 0.0724 0.0083 0.0738
52 0.0135 0.0475 0.0134 0.0476
100 0.0219 0.0457 0.0218 0.0457
200 0.0337 0.0453 0.0336 0.0453

In order to provide better insight into the impact of the correction term (3.16) on the
final ensemble distributions, we display results for M = 25 and M = 200 in Figures 1 and 2,
respectively.

We conclude from this simple experiment that the correction term (3.16) is required for
implementations of ALDI whenever the ensemble size is of the order of the dimension of the
parameter space or less. The experiments also confirm that gradient-free implementations can
offer a computationally attractive alternative to gradient-based implementations of ALDI.
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Figure 1. Displayed are the initial (top row) and final (bottom row) ensembles of the permeability fields
a(x) = exp(u(x)) for N = 25. The left column is from the EKS, while the right column is from the ALDI
method.

6. Conclusions. We have proposed a finite ensemble size implementation of the Kalman--
Wasserstein gradient flow formalism put forward in [11], which requires the inclusion of a
correction term (3.16) due to the multiplicative nature of the noise in the Langevin equations
(3.10) [30]. In addition to sampling from the desired target distribution, it has also been
demonstrated that the equations of motion are affine invariant. While ALDI can be used
with N \leq D ensemble members, effectively leading to a linear subspace sampling method, it
has also been proven that N > D + 1 and a nonsingular initial empirical covariance matrix
\scrC (U0) ensure that | \scrC (Ut)| \not = 0 for all t \geq 0 and that the equations of motion (3.10) are ergodic

with invariant measure \pi 
(N)
\ast . Further computational savings can be achieved through the

gradient-free implementation (3.14) for BIPs as introduced in Example 2.1. The effectiveness
of gradient-free affine invariant sampling methods has been demonstrated for a Darcy flow
inversion problem. This example has also demonstrated the significance of the correction term
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Figure 2. As in Figure 1, except for ensemble size N = 200.

for reducing estimation errors both for N < D as well as for N = \scrO (D) implementations of
the ALDI method (3.10).

A numerical issue which has not been studied in this paper is the choice of an efficient time-
stepping method for ALDI. In particular, adaptive and semi-implicit time-stepping methods
might be necessary whenever the initial distribution \pi 0 is not close to the target measure \pi \ast .
This issue was studied for the related continuous-time ensemble Kalman--Bucy filter in [2].
We also reemphasize that multimodal target distributions might require localized empirical
covariance matrices in (3.10), as first suggested in [22] and further explored in [37].

While this paper has focused on a theoretical investigation and computational implemen-
tation of finite-sample size interacting Langevin dynamics, we wish to point out that the
Kalman--Wasserstein gradient flows proposed in [36, 11] have also become the focus of theo-
retical studies. We mention in particular [7], which provides a rigorous mean-field limit with
rates in Wasserstein-2 for the linear case, and [6], which studies the decay for the mean-field
limit in Wasserstein-2 in the linear case using explicitly the dynamics of the covariance matrix.
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Appendix A. Proofs for nondegeneracy and ergodicity.

Proof of Proposition 4.1. The Fokker--Planck equation is given by

(A.1) \partial t\pi 
(N)
t = \scrL \dagger \pi 

(N)
t ,

where \scrL denotes the infinitesimal generator of (3.10) and \scrL \dagger refers to its adjoint in L2(\BbbR D\times N ),
given by

\Bigl( 
\scrL \dagger \pi (N)

\Bigr) 
(U) =

N\sum 
i=1

\nabla u(i) \cdot 
\biggl( 
\pi (N)(U)

\biggl\{ 
\scrC (U)\nabla u(i)\Phi (u(i)) - 

D + 1

N
(u(i)  - m(U)

\biggr\} \biggr) 
(A.2a)

+
N\sum 
i=1

\nabla u(i) \cdot 
\Bigl\{ 
\pi (N)(U)\nabla u(i) \cdot \scrC (U) + \scrC (U)\nabla u(i)\pi (N)(U)

\Bigr\} 
;(A.2b)

see [33, Chapter 4] and [22]. Here the divergence of the matrix-valued \scrC (U) is componentwise
given by (in terms of the notation introduced in subsection 4.3)

(A.3) \{ (\nabla u(i) \cdot \scrC (U))\} k =
D\sum 

\gamma =1

\partial 

\partial U (\gamma ,i)
\{ \scrC (U)\} k\gamma , k = 1, . . . , D.

An explicit calculation [30] leads to (4.11), and the Fokker--Planck operator \scrL \dagger reduces to

\scrL \dagger \pi (N) =
N\sum 
i=1

\nabla u(i) \cdot 
\Bigl( 
\pi (N) \scrC 

\Bigl\{ 
\nabla u(i)\Phi +\nabla u(i) log \pi (N)

\Bigr\} \Bigr) 
(A.4a)

=

N\sum 
i=1

\nabla u(i) \cdot 

\Biggl( 
\pi (N) \scrC \nabla u(i) log

\pi (N)

\pi 
(N)
\ast 

\Biggr) 
,(A.4b)

from which the desired result follows since

\delta KL(\pi (N)| \pi (N)
\ast )

\delta \pi (N)
= log

\pi (N)

\pi (N)\ast 
.(A.5)

For the proof of Proposition 4.4 we recall the definition (4.4) of the set E \subset \BbbR D\times N .
We will use the potential \scrV defined in (3.7) as a Lyapunov function. The key calculation is
summarized in the following lemma.

Lemma A.1. There exists a constant \gamma > 0 such that

(A.6) (\scrL \scrV )(U) \leq \gamma \scrV (U), U \in E,

where \scrL is the generator of (3.10), that is, the L2(\BbbR D\times N )-adjoint of \scrL \dagger as defined in (A.4).

Proof. It follows from (A.4) that the generator of (3.10) takes the form

(A.7) (\scrL \scrV )(U) =  - 
N\sum 
i=1

\nabla u(i)\Phi (u(i)) \cdot \scrC (U)\nabla u(i)\scrV (U) +
N\sum 
i=1

\nabla u(i) \cdot (\scrC (U)\nabla u(i)\scrV (U)) .
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For convenience, let us introduce the notation

(A.8) \scrV \scrC (U) =  - D + 1

2
log | \scrC (U)| , \scrV \Phi (U) =

N\sum 
i=1

\Phi (u(i)).

Since \scrL vanishes on constants, (A.6) is equivalent to \scrL \scrV \leq \gamma \scrV + \~C for some constant \~C.
Here and in the following, \~C denotes a generic constant that can change from line to line.
Furthermore, by the growth condition on \Phi there exists a constant \~C such that  - 2\scrV \scrC \leq \scrV \Phi + \~C.
Therefore, it is sufficient to show the bound \scrL \scrV \leq \~C(1 + \scrV \Phi ). In the remainder of the proof,
we achieve the latter bound termwise for the contributions in (A.7).

First note that

(A.9) \nabla u(i) log | \scrC (U)| = 2

N
\scrC  - 1(U)(u(i)  - m(U)), i = 1, . . . , N.

Indeed, again following the notation introduced in subsection 4.3, we have that

\partial 

\partial U (\gamma ,i)
log | \scrC (U)| =

\left(  1

| \scrC | 

D\sum 
\alpha ,\beta =1

\partial | \scrC | 
\partial \scrC \alpha \beta 

\partial \scrC \alpha \beta 

\partial U (\gamma ,i)

\right)  (U)(A.10a)

=
D\sum 

\alpha ,\beta =1

(\scrC  - 1)\alpha \beta 

\biggl( 
1

N
\delta \alpha \gamma (u

(i)  - m(U))\beta +
1

N
\delta \beta \gamma (u

(i)  - m(U))\alpha 

\biggr) 
(A.10b)

=
2

N

\Bigl( 
\scrC  - 1(u(i)  - m(U))

\Bigr) 
\gamma 
,(A.10c)

using Jacobi's formula for determinants in the second line. For the first term in (A.7) we thus
obtain

 - 
N\sum 
i=1

\nabla u(i)\Phi (u(i)) \cdot \scrC (U)\nabla u(i)\scrV (U)(A.11a)

=  - D + 1

N

N\sum 
i=1

\nabla u(i)\Phi (u(i)) \cdot (u(i)  - m(U)) - 
N\sum 
i=1

\nabla u(i)\Phi (u(i)) \cdot \scrC (U)\nabla u(i)\Phi (u(i))\underbrace{}  \underbrace{}  
\leq 0

(A.11b)

\leq \~C (1 + \scrV \Phi (U)) .(A.11c)

To bound the second term in (A.7), we first notice the estimate

(A.12)
N\sum 
i=1

\nabla u(i) \cdot 
\Bigl( 
\scrC (U)\nabla u(i)\Phi (u(i))

\Bigr) 
\leq \~C (1 + \scrV (U)) ,

again easily obtained from Assumption 4.3. The other contribution is

N\sum 
i=1

\nabla u(i) \cdot (\scrC (U)\nabla u(i)\scrV \scrC (U)) =  - D + 1

N

N\sum 
i=1

\nabla u(i) \cdot 
\Bigl( 
u(i)  - m(U)

\Bigr) 
(A.13a)

=  - (D + 1)D

2N
(N  - 1) .(A.13b)
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Since the result is a constant, we clearly have the required estimate of the form \scrL \scrV \leq \~C(1+\scrV \Phi ).
In conjunction with (A.11) and (A.12), the claim follows.

Proposition 4.4 now essentially follows from adapting [28, Theorem 2.1]. Textbook ac-
counts of similar arguments can be found in [17, Chapter 5] and [9, Chapter 2]. For the
convenience of the reader we provide the following self-contained proof.

Proof of Proposition 4.4. The potential \scrV is bounded from below by the growth condition
on \Phi (see Assumption 4.3). We can therefore choose a constant c\scrV such that \scrV + := \scrV + c\scrV 
is nonnegative. Since \scrC (U0) is assumed to be nondegenerate, there exists k0 \in \BbbN such that
\scrV +(U0) < k0. For k \geq k0, let us define the sets

(A.14) Ek = \{ U \in E : \scrV +(U) < k\} 

and the stopping times

(A.15) \tau k = inf\{ t \geq 0 : Ut /\in Ek\} = inf \{ t \geq 0 : \scrV +(Ut) = k\} .

The stopping times \tau k are increasing in k, and so the limit

lim
k\rightarrow \infty 

\tau k =: \xi 

exists in [0,+\infty ]. To prove the claim, it is sufficient to show that \BbbP [\xi = +\infty ] = 1. We now
define

(A.16) g(U, t) := e - \gamma t\scrV +(U), (U, t) \in E \times [0,\infty ),

where \gamma is the constant obtained in Lemma A.1. By using It\^o's formula, optional stopping,
and the bound (A.6) we see that

\BbbE [g(Ut\wedge \tau k , t \wedge \tau k)] = g(U0, 0) + \BbbE 
\biggl[ \int t\wedge \tau k

0
e - \gamma s ( - \gamma \scrV +(Us) + \scrL \scrV +(Us)) ds

\biggr] 
(A.17a)

\leq g(U0, 0) = \scrV +(U0)(A.17b)

for any t \geq 0 and k \geq k0. On the other hand,

\BbbE [g(Ut\wedge \tau k , t \wedge \tau k)] \geq e - \gamma t\BbbE [\scrV +(Ut\wedge \tau k)](A.18a)

\geq e - \gamma t (\BbbE [1t<\tau k\scrV +(Ut)] + \BbbP [\tau k \leq t] \cdot k) \geq e - \gamma t (\BbbP [\tau k \leq t] \cdot k) ,(A.18b)

where the last estimate uses the fact that \scrV + \geq 0. Combining (A.17) and (A.18), we see that

(A.19) e\gamma t\scrV +(U0) \geq \BbbP [\tau k \leq t] \cdot k

for every t \geq 0 and k \geq k0. It follows immediately that

(A.20) lim
k\rightarrow \infty 

\BbbP [\tau k \leq t] = 0,

and further

(A.21) \BbbP [\xi \leq t] = 0

by monotone convergence. Since (A.21) holds for all t \geq 0, we conclude that \BbbP [\xi = \infty ] = 1,
as required.
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For the proof of Proposition 4.5 we will need the following lemma.

Lemma A.2. Let N \geq D + 2. Then E is path-connected.

Proof. We begin by fixing some additional notation. For j \in \{ 1, . . . , N\} , define the ``leave-
one-out"" versions of the empirical mean and covariance,

(A.22) m - j(U) =
1

N  - 1

N\sum 
i=1
i \not =j

u(i), \scrC  - j(U) =
1

N  - 1

N\sum 
i=1
i \not =j

(u(i) - m - j(U))(u(i) - m - j(U))\mathrm{T}.

Notice the update formula

(A.23) \scrC (U) =
N  - 1

N
\scrC  - j(U) +

N  - 1

N2
(u(j)  - m - j(U))(u(j)  - m - j(U))\mathrm{T},

holding for any j \in \{ 1, . . . , N\} . Consider now the set

(A.24) \widetilde E :=
\bigl\{ 
U \in \BbbR D\times N : \scrC  - j is invertible for all j \in \{ 1, . . . , N\} 

\bigr\} 
.

We see that \widetilde E \subset E since the second term on the right-hand side of (A.23) is positive semi-
definite. Importantly, the condition N \geq D + 2 ensures that \widetilde E is nonempty.

Observe that \widetilde E has the representation

(A.25) \widetilde E =

\left\{   U \in \BbbR D\times N :

N\prod 
j=1

| \scrC  - j(U)| > 0

\right\}   ,

immediately implying that \widetilde E is open. We now show that \widetilde E is dense in \BbbR D\times N . To this end,
let X \in \BbbR D\times N and Y \in \widetilde E. It is sufficient to prove that for every \varepsilon > 0 there exists t \in (0, \varepsilon )
such that (1 - t)X + tY \in \widetilde E. For this, define P : \BbbR \rightarrow \BbbR by

(A.26) P (t) =
N\prod 
j=1

| \scrC  - j((1 - t)X + tY )| ,

which is clearly a polynomial. Since Y \in \widetilde E we have that P (1) > 0, and so P has only finitely
many zeros. This proves that indeed for all \varepsilon > 0 there exists t \in (0, \varepsilon ) such that P (t) > 0,
and hence (1 - t)X + tY \in \widetilde E.

We now show how to construct a continuous path between arbitrary X,Y \in E. By
density of \widetilde E, it is enough to find a path between \widetilde X \in \widetilde E and \widetilde Y \in \widetilde E lying in connected
neighborhoods of X and Y , respectively. Since \widetilde E is open, there exist open neighborhoods
U \widetilde X , U\widetilde Y \subset \widetilde E. It is then sufficient to find points in these neighborhoods that can be connected

by a continuous path. Denoting \widetilde X = (x(1), . . . , x(N)) and \widetilde Y = (y(1), . . . , y(N)), we can choose
a continuous path \gamma (1) : [0, 1] \rightarrow \BbbR D with \gamma (1)(0) = x(1) and \gamma (1)(1) = y(1), and set \gamma (1)(t) =
(\gamma 1(t), x(2), . . . , x(N)). By (A.23), it is clear that \gamma (1)(t) \in E for all t \in [0, 1]. By density of \widetilde E
we can perturb \gamma (1)(1) in order to ensure that \gamma (1)(1) \in \widetilde E. We can now proceed iteratively
to move the remaining particles using paths \gamma (2), . . . , \gamma (N) and concatenate them, yielding
the required total path. Note that the perturbation of the endpoints of \gamma (i) can be chosen
arbitrarily small in order to ensure that the final point \gamma (N)(1) belongs to U\widetilde Y .
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Proof of Proposition 4.5. Since the diffusion matrix \Gamma (U)\Gamma (U)\mathrm{T} is strictly positive definite
on E, E is path-connected by Lemma A.2, and the process (Ut)t\geq 0 admits an invariant measure
with strictly positive Lebesgue density by Corollary 4.2, the process is positively recurrent
and irreducible by the result in [18]. We also refer the reader to [41, section 2.2.2.1]. The
convergence in total variation distance then follows from [27, Theorem 6.1].

Acknowledgments. We would like to thank Christian B\"ar, Andrew Duncan, Franca Hoff-
mann, Andrew Stuart, and Jonathan Weare for valuable discussions related to the sampling
methods proposed in this paper.
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