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Abstract. Stationary, long-lasting blocked weather patterns
can lead to extreme conditions such as anomalously high
temperatures or heavy rainfall. The exact locations of such
extremes depend on the location of the vortices that form the
block. There are two main types of blocking: (i) a high-over-
low block with a high located poleward of an isolated low
and (ii) an omega block with two lows that lie southeast and
southwest of the blocking high in the Northern Hemisphere.
In this work, we refine a novel method based on the kinematic
vorticity number and the point vortex theory that allows us to
distinguish between these two blocking types. Based on the
National Centers for Environmental Prediction–Department
of Energy (NCEP–DOE) Reanalysis 2 data, we study the
trends of the occurrence probability and the onset (forma-
tion), decay (offset) and transition probabilities of high-over-
low and omega blocking in the 30-year period from 1990
to 2019 in the Northern Hemisphere (90◦W–90◦ E) and in
the Euro-Atlantic sector (40◦W–30◦ E). First, we use logis-
tic regression to investigate long-term changes in blocking
probabilities for full years, seasons and months. While trends
are small for annual values, changes in occurrence probabil-
ity are more visible and also more diverse when broken down
to seasonal and monthly resolution, showing a prominent in-
crease in February and March and a decrease in December.
A three-state multinomial regression describing the occur-
rence of omega and high-over-low blocking reveals differ-
ent trends for both types. Particularly the February and De-
cember changes are dominated by the omega blocking type.
Additionally, we use Markov models to describe transition
probabilities for a two-state (unblocked, blocked) and a three-
state (unblocked, omega block, high-over-low block) Markov

model. We find the largest changes in transition probabili-
ties in the summer season, where the transition probabilities
towards omega blocks significantly increase, while the un-
blocked state becomes less probable. Prominent in winter are
decreasing probabilities for transitions from omega to high-
over-low and persistence of the latter. Moreover, we show
that omega blocking is more likely to occur and to be more
persistent than the high-over-low blocking pattern.

1 Introduction

A blocking is a quasi-stationary, persistent large-scale at-
mospheric flow pattern that blocks the typical westerly flow
and forces the jet and embedded pressure systems to bypass
on its northern and southern sides (e.g., Rex, 1950). Blocks
can last for several days up to weeks. Typically, a minimum
blocking duration of 4 to 10 d is assumed (e.g., Rex, 1950;
Pelly and Hoskins, 2003; Barriopedro et al., 2006, 2010;
Barnes et al., 2011). Northern Hemisphere blocks are char-
acterized by a steady high-pressure area accompanied by
one low-pressure area southwards, called high-over-low,
or by two low-pressure systems southwest- and southeast-
wards of the high, called omega block (see e.g., Bott, 2012;
Woollings et al., 2018). Transitions between the different
blocking types can be observed: an example is documented in
Schielicke (2017, Appendix A3, Fig. A69) for summer 2010,
where long-lasting blocking caused extreme heat and forest
fires over Russia, while downstream of the blocks “record-
breaking” floods occurred in Pakistan (Hong et al., 2011;
Schneidereit et al., 2012). Due to their persistence and quasi-
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stationarity, blocks can determine the weather, especially
temperature and precipitation patterns, in a large region over
a long period of time. Depending on their location, duration
and intensity, these weather situations can have devastating,
regional impacts ranging from heat waves and droughts in
the warm season to cold spells in winter and spring (e.g.,
Pfahl and Wernli, 2012; Russo et al., 2015; Brunner et al.,
2017, 2018; Hari et al., 2020). Furthermore, the blocking
type, i.e., high-over-low or omega block, determines the lo-
cation of observed or expected extreme weather phenomena.
For example, in June and July 2019, omega blocking caused
record-breaking temperatures far above 40 ◦C at several lo-
cations in western and central Europe (Vautard et al., 2020),
with an observed record temperature of 45.9 ◦C in southern
France (Henley et al., 2019) and 41.2 ◦C in western Ger-
many (Deutscher Wetterdienst, 2020, 2019; Bissolli et al.,
2019). In May and June 2018, an unusually high number of
slow-moving thunderstorms caused heavy rain rates and flash
floods in large parts of western and central Europe located at
the western flank of a quasi-stationary blocking over north-
ern Europe (Mohr et al., 2020). Hence, we expect that the
knowledge of the blocking type can help to better estimate
the regions which will be impacted.

In order to classify blocking types, the point vortex model
can be used. This idealized model gives one conceptual ex-
planation of the quasi-stationarity of atmospheric blocking
(see e.g., Obukhov et al., 1984; Kuhlbrodt and Névir, 2000;
Müller and Névir, 2014; Müller et al., 2015). It represents
a Lagrangian formulation of the vorticity equation with vor-
tices pictured as “particles” with circulation being conserved
for each vortex1. The motion of a set of point vortices is
determined by their circulations and the intervortical dis-
tances only; see e.g., Aref (1979) and Newton (2001). Hirt
et al. (2018) statistically confirmed the theory of Müller et al.
(2015) that the omega blocking pattern can be regarded as a
three-point vortex system (or tripole). If these three vortices
form an equilateral triangle (i.e., arranged as in Fig. 1b) with
the sum of their circulations being zero, the point vortex sys-
tem moves westwards opposing the typical westerly flow of
the mid-latitudes. Stationarity is achieved when the magni-
tude of the westerly flow matches the translation speed of the
point vortex system. Analogously, a high-over-low block can
be described by a point vortex pair (or dipole) of zero to-
tal circulation that moves westward (see Fig. 1d). The point
vortex concept allows us to classify the blocking state into
high-over-low or omega as well as to determine the location
and intensity of each vortex associated with the block in grid-

1It should be noted that the discrete point vortex perspective is
contrary to the explanation of blocking based on Rossby waves as
studied by, e.g., Tung and Lindzen (1979). Further authors, Tyrlis
and Hoskins (2008), Berrisford et al. (2007), and Altenhoff et al.
(2008), describe the onset of general blocks with the Rossby wave
breaking.

ded data. It is now possible to observe transitions between the
blocking states within a longer blocking period.

The numerical prediction of blocking onset and persis-
tence, i.e., the transition from zonal to blocked flow and vice
versa, is still a challenge. However, it is still important to
study these transitions; Ferranti et al. (2015) showed that
medium-range ensemble forecasts in the Euro-Atlantic re-
gion are less skillful in these situations. One way to describe
the probability of transitions between the states of a system
is the use of discrete-state Markov models. These models de-
scribe the probability of the system in a future state as depen-
dent on the present state only; the future state is hence inde-
pendent of all previous states (e.g., Grewal et al., 2019). Clus-
ter analyses followed by Markov chains have been used to
describe the transitions between different large-scale weather
regimes by several authors, e.g., Spekat et al. (1983), Egger
(1987), Vautard et al. (1990), and Kimoto and Ghil (1993).
Spekat et al. (1983) distinguish between zonal, mixed and
meridional weather regimes in central Europe. They found
relatively long residence times within the regimes of 5 to
7 d and relatively low daily transition probabilities of 5 %
to 11 % between the regimes. However, to the best of our
knowledge, the transition between different blocking types
within the same blocked period, i.e., the transition from
omega to high-over-low and vice versa, has not been studied
so far. While blocked periods last for at least 5 d, transitions
occur on a smaller timescale, and higher-temporal-resolution
data (e.g., 6 h) thus need to be analyzed.

Due to their socio-economic relevance, it is of common
interest to study and determine blocking climatologies and
trends. It is also observed that the identification of block-
ing depends on the specific definition and method used
(e.g., blocking indices). Blocking climatologies can, further-
more, differ with respect to the frequency and location of
blocking (e.g., Barriopedro et al., 2010) and also often de-
pend on the model data (Barnes et al., 2014). Although dif-
ferent methods yield different results, they agree on two gen-
eral aspects: (i) blocking maxima are observed in the North
Pacific and North Atlantic–European region, and (ii) higher
blocking numbers occur in boreal winter compared to the
summer season, but the details of the climatologies depend
on the blocking identification method used (e.g., Fig. 6 in
Pinheiro et al., 2019). However, larger variability among
methods can be observed even when looking at individual
blocking events (Pinheiro et al., 2019) and from year to year
(Davini et al., 2012). Davini and D’Andrea (2020) compare
the blocking frequency for different regions using different
models for the time period 1951–2017. Moreover, analyz-
ing seasonally resolved trends, they find a negative trend in
blocking frequency for the Northern Hemisphere in winter
and a positive trend in summer. Even though their results
show a general decrease in blocking frequency for the fu-
ture, the impact in some regions and seasons, e.g., the sum-
mer Ural blocking, might increase. Barnes et al. (2014) find
no general evident increase in blocking over the Northern
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Figure 1. Application of point vortex theory to two distinct atmospheric blocking types: (a, b) omega blocking, (c, d) high-over-low block-
ing. (a, c) Two exemplary blocking events observed at the 500 hPa level: displayed is the relative vorticity (color-shaded) and contours of
geopotential height in 8 dm intervals (bold contour represents 552 dm). (b, d) Illustration of how the corresponding blocking can be realized
in the point vortex model. Figure is adapted from Hirt et al. (2018, their Fig. 2; published under the terms of the Creative Commons Attri-
bution License (http://creativecommons.org/licenses/by/4.0/, last access: 12 September 2021)) with the upper right figure taken from Müller
et al. (2015). The point vortex systems become stationary if the typical westerly flow of the mid-latitudes and the propagation speed of the
dipole or tripole point vortex systems are of equal magnitude.

Hemisphere, but they further show that the results depend on
the region, season and also on the analyzed time period. For
example, there are significant seasonal increases for some re-
gions, such as Asia in boreal winter and the North Atlantic
in boreal summer. Additionally, Cheung et al. (2013) con-
firm a strong dependence of the blocking frequency on the
seasons. Their results indicate that the strength of blocking
events, in terms of intensity and extension, is stronger in win-
ter and weaker in summer. But they also state that the impact
of summer blocks might be higher. In this work, we study
climatologies and annually, seasonally and monthly resolved
trends of blocking occurrence probabilities with a novel strat-
egy: blocking type classification based on point vortex theory
followed by a description of occurrence and transition proba-
bilities with logistic regression and Markov models. Further-
more, we extend the existing literature on trends in block-
ing occurrence by the aspect of blocking types. Since these
blocking types are connected to different typical regions of
high-impact weather, their long-term occurrence trends are
of general interest. Hence, we refine the fluid-dynamically
based method developed in Hirt et al. (2018) to classify
blocking into high-over-low and omega and use logistic re-

gression and Markov models to address the following re-
search questions:

1. Do blocking occurrence probabilities undergo long-
term changes? Do these changes depend on season or
month?

2. Do onset (formation), decay (offset) or transition proba-
bilities from one blocking type to another undergo long-
term changes? Do these changes depend on season or
month?

The work is structured as follows. First, we shortly de-
scribe the data set and variables in Sect. 2. In Sect. 3.1 to 3.4,
we explain the steps of our identification and classification
strategy in more detail. Section 3.5 gives a short overview
of logistic and multinomial regression for the analysis of
occurrence probabilities; Sect. 3.6 introduces discrete-state
Markov processes for the analysis of transition probabilities
between blocking types. Results follow in Sect. 4 and are dis-
cussed subsequently in Sect. 5. We close with a conclusion
in Sect. 6.
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2 Data

We use the National Centers for Environmental Prediction–
Department of Energy (NCEP–DOE) Reanalysis 2 data set
(Kanamitsu et al., 2002) for our analysis. The data have a
grid spacing of 2.5◦× 2.5◦ on a regular latitude–longitude
grid and are available every 6 h. In our study, we used a pe-
riod of 30 years from 1990 to 2019. We restricted the anal-
ysis to the 500 hPa level, a level where the divergence of the
horizontal wind field is close to zero (Schielicke, 2017). This
allows us to apply the principles of point vortex theory, which
requires two-dimensional non-divergent flow. We use geopo-
tential height and the horizontal wind components (U,V ) at
500 hPa to compare the blocking behavior in two regions.
The first region covers half the Northern Hemisphere, from
90◦W to 90◦ E. The second region is a subset of this larger
region, covering the Euro-Atlantic area from 40◦W to 30◦ E.

3 Methods and study design

In the following we describe the six steps of the analysis,
starting from the identification of blocked latitudes (Step 1;
Sect. 3.1) and the calculation of blocking properties with
the trapezoid method (Step 2; Sect. 3.2) to classification
of blocking into omega and high-over-low types (Step 3;
Sect, 3.3), followed by the choice of the region of interest
(Step 4; Sect. 3.4). Finally, we introduce logistic and multi-
nomial regression to model occurrence probabilities (Step 5;
Sect. 3.5) as well as Markov models to describe transition
probabilities (Step 6; Sect. 3.6). The steps are summarized in
Fig. 2.

3.1 Step 1: identification of instantaneous blocked
longitudes (IBLs) and blocking events

In the first step, we use the Blocking plugin (Richling et al.,
2015) of the Freva system (Freie Universität Berlin Evalua-
tion System; see Freva, 2017; Kadow et al., 2021) to calcu-
late the so-called instantaneous blocking index. This index
is a binary 1D blocking index that determines instantaneous
blocked longitudes (IBLs) for every time step of a data se-
ries. The IBL was developed by Tibaldi and Molteni (1990)
and identifies blocks in terms of gradients of the geopoten-
tial height with regard to a central reference blocking lati-
tude (CRBL). While the CRBL is fixed to 50◦ N in the origi-
nal work, the Freva blocking plugin uses a modification (after
Barriopedro et al., 2010) that allows for a longitudinally de-
pendent, temporally varying CRBL in accordance with the
climatological storm track. A blocking is identified if the
geopotential height gradients on the northern (GHGN) and
on the southern (GHGS) side of the CRBL satisfy the fol-
lowing criteria (following Richling et al., 2015):

GHGS=
Z(φM)−Z(φS)

φM−φS
> 0

gpm
◦N
: corresponding to

an easterly directed flow (1)

GHGN=
Z(φN)−Z(φM)

φN−φM
<−10

gpm
◦N
: similar to a

westerly flow > 8ms−1, (2)

where Z is the geopotential height at 500 hPa, and the
latitudes are given as φS = (φC− 0.5δφ)+1, φM = (φC+

0.5δφ)+1 and φN = (φC+ 1.5δφ)+1. Here, δφ is set to
15◦ latitude. Here, the spatio-temporally varying CRBL φC is
determined based on the 30-year climatology (1990–2019)
of the 500 hPa geopotential height field. In order to capture
blocking that is not directly located at the CRBL, a possi-
ble shift 1 to the north and south is set to 10◦ latitude. For
each time step, we obtain a binary value for all longitudes
(1: blocked; 0: unblocked). For more details on the method
see Richling et al. (2015), and for the specific configurations
used in the analysis see the Supplement.

Prior to the blocking classification, the time series of IBLs
is post-processed in the following manner: first, we identify
blocking events as simply connected points of IBL= 1 in the
time–longitude field. Then we chose events with a minimum
duration of 5 d, i.e., 20 time steps, and a spatial extent of at
least 15◦ longitude. We only consider Northern Hemisphere
blocks in the longitudinal range of 90◦W to 90◦ E and north
of about 45◦ N. Note that two blocking events can exist at
the same time in different parts of the area since the region
is very large. In this case, only the first blocking is consid-
ered for the subsequent analysis. Further blocking events are
discarded since only one state can be used per time step.

3.2 Step 2: calculation of the blocking properties with
the trapezoid method

Based on the blocking event list from Step 1, we now search
for blocking patterns in the corresponding NCEP–DOE Re-
analysis fields with the trapezoid method (Müller et al., 2015;
Hirt et al., 2018) to detect high-over-low and omega block-
ing patterns. This approach uses aspects of flow kinematics to
identify the vortices as well as point vortex theory to deter-
mine blocking properties and to classify the blocking type.
In a regular latitude–longitude projection, a high-over-low
block can be outlined by a rectangle (or box) surrounding
the high and the low; an omega block instead can be out-
lined by a trapezoidal shape, where the two lows form the
broader base of the trapezoid and the high its smaller top.
By assigning specific parts of the trapezoid or box to each
low and high, we are able to determine the properties (cir-
culation, location of vortex center) of the associated vortices
(see Fig. 3 of Müller et al., 2015). The trapezoid method as it
is used here is based on the method introduced in Hirt et al.
(2018) with slight modifications. The reader is referred to
their publication for more details. We give a brief overview
of the method in the following.
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Figure 2. Structure diagram of the individual steps of the evaluation as explained in Sect. 3.

The highs and lows are detected by an analysis of the
kinematics of the flow. Therefore, we use the dimension-
less kinematic vorticity number Wk = ‖�‖/‖S‖ (Truesdell,
1953, 1954), which compares the local rotation rate ‖�‖ and
strain rate ‖S‖ at each grid point. Here, �= [∇v−(∇v)T ]/2
and S= [∇v+(∇v)T ]/2 denote the anti-symmetric and sym-
metric components of the velocity gradient tensor∇v that de-

scribes the kinematic flow properties around a point. In our
case, v = (u,v) represents the horizontal wind vector.

For two-dimensional flow in spherical coordinates with
longitude φ ∈ [0,2π ], latitude θ ∈ [−π/2,π/2] and Earth’s
radius R, the kinematic vorticity number Wk = |ζ |/|D| is
proportional to the magnitude of the horizontal deformation,

https://doi.org/10.5194/wcd-2-927-2021 Weather Clim. Dynam., 2, 927–952, 2021
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where

|D| =
1
R

√
2
(

1
cosθ

∂u

∂φ

)2

+ 2
(
∂v

∂θ

)2

+

(
1

cosθ
∂v

∂φ
+
∂u

∂θ

)2

. (3)

The vertical component of relative vorticity ζ (called vortic-
ity from now on) is given as

ζ =
1

R cosθ
∂v

∂φ
−

1
R

∂u

∂θ
. (4)

For the calculation of Wk , we use the two-dimensional,
horizontal wind components of the NCEP–DOE Reanaly-
sis data set at the 500 hPa level. A vortex is then defined
as a region of Wk > 1, i.e., as an area where the rotation
rate prevails over the strain rate (see Schielicke et al., 2016;
Schielicke, 2017, for further insight and more atmospheric
applications). Otherwise, the Wk values at all grid points
where Wk ≤ 1 are set to zero to obtain a field of vortex
patches. This field can then be multiplied with another field
of interest, for example the vorticity field, to get areas of pos-
itive and negative vorticity, i.e., cyclones and anticyclones in
the Northern Hemisphere. In this field, we search for the anti-
cyclone that lies closest to a duration-weighted IBL2. Inside
a box bounded by this duration-weighted IBL± 15◦ longi-
tude and between 55 and 85◦ N, the grid point with the most
negative circulation Pmax,neg is identified first. The circula-
tion of a grid point i is calculated as

0i = ζiAi, (5)

where ζi is the vorticity at that grid point, and Ai is the area
associated with grid point i. It is negative (positive) if the
vorticity is negative (positive). The circulation of the high 0H
is calculated as the sum of all grid points N with negative
circulation inside a radius of 1500 km around Pmax,neg as

0H =

N∑
i

0i for 0i < 0. (6)

The radius of 1500 km was chosen following Hirt et al.
(2018), who did a sensitivity study to find the optimal radius
that represents the circulation magnitude of the high. There-
fore, Hirt et al. (2018) started with a smaller radius of 500 km
around the high centroid and increased the size gradually by
250 km steps up to 3000 km. They observed that the circula-
tion magnitude stabilizes around a radius of 1500 km, which
was then chosen as a threshold (see Hirt et al., 2018, for more
details). Moreover, the Rossby radius of deformation in a sta-
bly stratified; dry high is indeed larger compared to a less sta-
ble low-pressure system because of the larger Brunt–Väisälä
frequency. This further supports the choice of 1500 km.

2This means that each IBL is assigned with the maximum num-
ber of time steps (duration) at which this IBL is blocked. For each
time step separately, each blocked IBL (either 0 or 1) is multiplied
with its maximum duration and the associated longitude. This prod-
uct is summed up and then divided by the sum of all IBL durations
at this time step to get the duration-weighted IBL.

Similar to the definition of the circulation centroid of a
vortex system in point vortex theory, the circulation centroid
of the real, extended high is defined as (see also Hirt et al.,
2018)

CH =

N∑
i

0ixi

0H
for 0i < 0, (7)

where xi is the horizontal coordinate vector of grid point i,
andN is defined as above. Note that the (positive) circulation
and the circulation centroid of a low are calculated in a sim-
ilar way. The coordinates (CH,x , CH,y) of centroid CH are
finally used to define the rectangle that encloses the high by
a fixed distance (CH,x ± 1500 km, CH,y ± 1500 km), which
accounts for the typical length scale of a high in the mid-
latitudes and allows for some deviations from a pure circular
shape. The rectangle that encloses the high is then extended
equatorwards by steps of 2.5◦ latitude up to 20◦ N. These
boxes are then compared to identify the box that minimizes
the total circulation within the box. The total circulation is
defined as the sum of the negative circulation associated with
the high and the positive circulation associated with the low.
However, only grid points with negative circulation north-
wards of the low centroid and positive circulation south of
the high centroid are taken into account for the calculation
of the total circulation. This box outlines the high-over-low
configuration. At the same time, we search for a minimum
of total circulation within a trapezoidal shape, which repre-
sents an omega configuration. To this end, we increase the
southern edge of the box symmetrically by steps of 2.5◦ lon-
gitude (on each side) up to a total length of 2.5 times the east–
west length of the box around the high center. The northern
boundary remains fixed, and only grid points whose centers
lie within the trapezoidal shape are counted. Again, only cer-
tain areas of the trapezoid are attributed to the high (every-
thing north of the mean latitude of the low centers), to the
western low (everything south and west of the high centroid)
and the eastern low (everything south and east of the high
centroid).

Point vortex theory is the basis for this pattern-like identi-
fication. It states that a system of two or three vortices moves
westward if the sum of their circulations is zero, the high
lies poleward of the low(s), and the three-point vortex system
forms an equilateral triangle (Müller et al., 2015). Note that
we determine the box associated with the high-over-low pat-
tern as well as the trapezoid with the omega pattern for each
time step separately. We derive a number of block properties,
such as the circulations, the latitude and longitude associated
with the high and the lows (centroids), for each pattern. The
decision on the blocking type pattern is described in Step 3.
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3.3 Step 3: blocking type decision – high-over-low or
omega blocking

We inspect the relative vorticity in the area south of the circu-
lation centroid of the high with coordinates (longH, latH) for
the blocking type decision. To this end, a rectangle is cen-
tered around the coordinate (longH, latL), where latL is the
mean latitude of the low centroids that are associated with
the omega block pattern at that time step. This rectangle has
a latitudinal extent3 of at least 10◦. Its longitudinal extent is
bound to the size of the trapezoid. We split this rectangle into
three smaller rectangles, where the middle one has a width of
25◦ longitude, and the two outer rectangles are limited by the
outline of the trapezoid (see Fig. 3a)4. If the mean vorticity
inside the middle rectangle (Box 2 in Fig. 3a) is larger than
the sum of the mean vorticity of all three rectangles, we de-
fine the time step as a high-over-low block, otherwise as an
omega block. This results in a time series containing both
blocking types for a single blocking event (for an example
see Fig. 3b and the video in the Supplement). This is a new
addition to the trapezoid method in Hirt et al. (2018), who
assigned a single blocking type to each whole blocking pe-
riod. Finally, a blocking event is expected to consist of the
same anticyclone, and we check if this assumption holds: in
order to obtain configurations associated with the same high,
we split each blocking period into smaller periods if the dis-
tance between the centroid locations of two highs in succes-
sive time steps (6 h) is too large (distance criterion). We as-
sume that these two highs represent the same system if the
distance is smaller than 10◦ latitude (≈ 1000 km in north–
south direction) and smaller than 15◦ longitude (≈ 1000 km
in west–east direction). Otherwise, we assume that these two
highs represent two different systems. This allows for slow
motions of the blocks; “large jumps” in distances, however,
would rather indicate that a different high-pressure system
enters the configuration. If the lifetime of one or both events
in the split period is shorter than 5 d, the event(s) is (are)
removed from the analysis. This reduces the maximum dura-
tion of the blocking periods but is also more consistent with
following the blocking as a system of vortices (instead of a
weather regime that characterizes a larger region). This rather
Lagrangian view of blocking differs from the Eulerian per-

3More precisely, the latitude latLW and latLE of each cy-
clonic circulation centroid (low-pressure system) associated with
the omega block are determined. These latitudes are rounded to the
latitude of the closest grid point. The rectangle then extends from
min (latLW, latLE)− 2.5◦ to max (latLW, latLE)+ 5◦. If latLW =
latLE, then the height of the rectangle is 10◦ latitude.

4The middle box’s width of 25◦ has been carefully tested in Hirt
et al. (2018). At this width, the identified number of omega blocks
in comparison to high-over-low blocks was relatively stable. More-
over, the majority of the blocks remained in the same category while
changing the box width by some degrees longitude. Hence, we de-
cided to stick to this width in our analysis.

Table 1. Labeling of experiments with different distance criteria
that are used to estimate the uncertainty in the blocking identifi-
cation method. Differences in longitude 1long and latitude 1lat
are given in degrees. Most of the results presented in Sects. 4.2, 4.4
and 5 are based on the E05 setup; hence the entry is highlighted in
bold.

1lat/ 11◦ 12◦ 13◦ 14◦ 15◦ 16◦ 17◦ 18◦ 19◦

1long:

8◦ E04 E25 E26
10◦ E14 E15 E05 E17 E18
12◦ E27 E28 E06

spective we would get using only the instantaneous blocked
longitudes to identify blocking.

Note that we follow mostly the method described in Hirt
et al. (2018), who already tested the sensitivity of the trape-
zoid method regarding the choice of several parameters. We
would like to refer the interested reader to their paper for
more details. However, in order to better estimate the effect
of the distance criterion that we introduce in this work, we
did a number of experiments with different distances (see
Table 1). As we intend to bound the distance between high
centroids in successive time steps by the typical synoptic-
scale Rossby radiusLD ≈ 1000 km, all experiments have dis-
tances which are close to this value. In Sect. 4, we present re-
sults for experiment E05 (see Table 1) with criterion 1lat=
10◦/1long= 15◦ (if not mentioned otherwise).

3.4 Step 4: choose region of interest – Euro-Atlantic
region and half of Northern Hemisphere

Following Step 1 to 3, we are left with blocking events occur-
ring between 90◦W and 90◦ E with a lifetime of at least 5 d
(= 20 time steps). High centroids lie in the mid-latitudes be-
tween about 44.5 and 83◦ N. To analyze blocking in Europe
in more detail, we create a subset: the Euro-Atlantic sector
ranging from 40◦W to 30◦ E. Since this is a subset of the
larger blocking event list, blocks with lifetimes smaller than
5 d can occur in this region as at some point in their lifetime,
blocks might move in or out of the Euro-Atlantic sector.

3.5 Step 5: analysis of blocking occurrence probability
using logistic regression

Logistic regression is designed to model probabilities p (with
0≤ p ≤ 1) and is thus adequate to describe blocking occur-
rence probabilities and their temporal changes for a system
that can only yield two states: in our case blocking and no-
blocking patterns. Occurrence probabilities for a system with
three possible states – unblocked, omega and high-over-low
– can be analogously described with multinomial regression.
Both are briefly reviewed here.

Logistic regression is a special case of generalized linear
models (e.g., Wilks, 2011; Dobson and Barnett, 2008) de-
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Figure 3. (a) Schematic representation of the blocking type decision based on the trapezoid method. The positive relative vorticity is calcu-
lated for all three boxes, which lie on the mean latitude of the low-pressure areas (L1, L2). Depending on the magnitude of the mean vorticity
in these three boxes, the decision between high-over-low and omega is made. (b) An example blocking event, observed from 26 June 2019
at 18:00:00 UTC to 28 June 2019 at 00:00:00 UTC, is plotted for six time steps that include a transition between omega and high-over-low
blocking states. Shaded areas represent the identified vortex field (Wk > 1), which is colored by relative vorticity (in 10−5 s−1; blue: anticy-
clonic; yellow: cyclonic). Black contours are isolines of geopotential height in 8 dm intervals (the thick black contour is the 584 dm isoline).
The outline of the trapezoid or box is given for each time step; solid shapes represent the identified shape; circles are the circulation centroids
of the identified high (red) and low(s) (blue) for the omega pattern. In the same way, crosses are used for a high-over-low pattern. The red
bars at the bottom of the figures show the identified IBLs from Step 1. The figures were plotted with the help of Matlab (2016), and coastlines
were plotted with the built-in MATLAB file coast.mat. The full time series is given in the Supplement; see also steps 2 and 3.

signed to describe occurrence probabilities depending on a
set of external influences (covariates). These covariates can
be, for example, time in years as a proxy for climate change,
the season or month of occurrence as a proxy for the seasonal
cycle, or also large-scale atmospheric flow variables.

The setting can be viewed as a generalization to standard
linear models. Let Yt be a discrete random variable at discrete
times t ; observations of Yt are denoted as yt . The random
variable Yt describes the discrete states of a Markov chain.
We begin our analyses with the two-state model that is based
on these two states: no blocking (nB) and blocking (B). Ob-
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servations (coded in integers) can thus only be yt = 0 for nB
and yt = 1 for B. The random variable Yt follows a bino-
mial distribution completely determined by the expectation
value, which gives the occurrence probability of the block-
ing event E[Yt ] = Pr{Yt = 1} = pt . The probability of the
state no blocking is determined by the counter-probability
Pr{Yt = 0} = 1−pt .

Logistic regression describes the dependence of the block-
ing occurrence probability pt at time t as a function of co-
variates xl,t using a log odds (or logit) link function

logit(pt )= ln
(

pt

1−pt

)
= β0+6

L
l=1βlxl,t , (8)

with l = 1, . . . ,L covariates xl,t observed simultaneously
with observations and yt and βl being model parame-
ters to be estimated based on iteratively reweighted least
squares (IRLs). Further details can be found, e.g., in Dob-
son and Barnett (2008); Wilks (2011). We use the function
glm() from the package stats of the R environment for
statistical computing (R Core Team, 2018).

Rearranging Eq. (8) yields the following expression for the
blocking occurrence probability at time t as a function of the
covariates xl,t :

pt =
1

1+ e−
(
β0+6

L
l=1βlxl,t

) . (9)

In some cases, the influence of one covariate xi,t de-
pends on the value of another covariate xj,t , which can be
introduced in a linear model as a so-called interaction ef-
fect xi,t xj,t . Consider, for example, that the change in block-
ing occurrence probability with years is dependent on the
season we are looking at. A simple example with main ef-
fects of two covariates and one interaction is

logit(pt )= β0+β1x1,t +β2x2,t +β3x1,tx2,t . (10)

In the notation for generalized linear models introduced by
McCullagh and Nelder (1989) Eq. (10) reads

logit(pt )∼ x1,t ∗ x2,t ∼ x1,t + x2,t + x1,t : x2,t , (11)

with xi,t denoting main effects, x1,t : x2,t interaction effects
and x1,t ∗ x2,t their combination. This notation assumes an
offset (β0) being present by default and a parameter βi to be
estimated for each term in the equation. Nota bene: in this
notation, the symbols “+”, “:” and “∗” have special mean-
ings, namely addition of a term in the predictor, interacting
effects and combination of both, respectively.

For more than two states, the model can be extended to
multinomial logistic regression. We next consider a multi-
nomial random variable Yt with three states: no block-
ing (nB), high-over-low (HoL) and omega blocking (�). For
the multinomial distribution, one probability, e.g., Pr{Yt =
nB} = pnB,t , is set as a reference, and the other two (Pr{Yt =

HoL} = pHoL,t and Pr{Yt =�} = p�,t ) need to be esti-
mated using

ln
(
pHoL,t

pnB,t

)
∼ x1,t + x2,t + . . . (12)

ln
(
p�,t

pnB,t

)
∼ x1,t + x2,t + . . .. (13)

The remaining occurrence probability for no blocking can
then be derived as pnB,t = 1− (p�,t+pHoL,t ). We thus need
to solve two regression equations simultaneously. This can
be formulated in the framework of (vector) generalized lin-
ear models (VGLMs) (Yee, 2015). Parameter estimation
is somewhat more cumbersome in this case, realized us-
ing iteratively reweighted least squares and detailed in Yee
(2015). Estimation is carried out using the function vglm()
from the R package VGAM (Yee, 2015). Confidence intervals
(95 %) are based on asymptotic normality of the estimator
using an interval [θ̂ ± 1.96σ

θ̂
] around the estimator θ̂ with

standard deviation σ
θ̂
.

3.6 Step 6: analysis of blocking transition probabilities
using Markov models

We use Markov models with two and three states to describe
transition probabilities between the states related to the dif-
ferent blocking types and the no-blocking state. For both
cases, there is thus a discrete set of possible states:

1. two-state model, consisting of blocked (B) and un-
blocked (nB) states

2. three-state model, consisting of high-over-low (HoL),
omega (�) and unblocked (nB) states.

The system evolves along a discrete time axis t and can
switch between these discrete states. We obtain a discrete-
time Markov chain on a finite-state space. The underlying
theory was developed by the Russian mathematician An-
drey Andreyevich Markov. For the translated original work
see Markov (2006).

Let Yt be a sequence of discrete random variables denot-
ing the possible states the Markov chain can be found in;
e.g., Yt = i implies Y being in state i at time t . In general
i ∈ {1, 2, 3, . . . , I }; here, I = 2 and I = 3 for the two-state-
model or three-state-model, respectively. We speak of a tran-
sition when Yt−1 = i changes to Yt = j . Transitions from
Yt−1 = i→ Yt = j are described with conditional probabili-
ties which, in general, depend on the history of the process;
i.e.,

pij,t = P (Yt = j |Yt−1 = i,Yt−2,Yt−3, . . .) . (14)

Formally, Yt−1 = i→ Yt = i is also called a transition from
state i to itself. The Markovian assumption (or Markov prop-
erty) requires these transition probabilities to depend only on
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the actual state and not the full history of the process:

pij,t = P (Yt = j |Yt−1 = i,Yt−2,Yt−3, . . .)

= P (Yt = j |Yt−1 = i) . (15)

This assumption makes handling these processes a lot easier.
For homogeneous Markov chains, the transition probabilities
are independent of external factors or time, i.e., pij,t = pij .
Otherwise we speak of a non-homogeneous Markov chain.
The probability for finding the system at time t in state j ,
i.e., Pr{Yt = j}, is determined by the transition probabili-
ties pij from all states i into state j weighted with the prob-
ability Pr{Yt−1 = i) of finding the system in state i; thus

Pr {Yt = j} =
∑
i

Pr {Yt = j |Yt−1 = i}Pr{Yt−1 = i)

=

∑
i

pij,tPr {Yt−1 = i} . (16)

The simplest Markov Chain is a Bernoulli process con-
sisting of two states. In our case, the two-state model with
the states no blocking (nB) and blocking (B) (i, j ∈ {nB,B})
has the transition matrix

M2 =

(
pnB,nB pnB,B
pB,nB pB,B ,

)
(17)

with transition probabilities pnB,B = Pr{Yt = B|Yt−1 = nB}.
For the three-state-model with the states high-over-low
blocking (HoL), omega blocking (�) and no blocking (nB)
(i, j ∈ {nB,HoL,�}), the transition matrix is

M3 =

 pnB,nB pnB,HoL pnB,�
pHoL,nB pHol,HoL pHoL,�
p�,nB p�,HoL p�,�

 . (18)

Transition probabilities are between 0 and 1 (0≤ pij ≤ 1),
and rows sum up to unity, implying that the probability that
any of the possible states’ i is reached at time t + 1 is one.
Transition probabilities together with the probability distri-
bution of Y0 (initial distribution) fully describe the Markov
chain.

Homogeneous (time-independent) Markov chains can be
illustrated using a network diagram. Figure 4 shows an exam-
ple with two states. The circles describe the different states,
and the arrows indicate the direction of the transition with the
corresponding transition probability pij . In the homogeneous
case, transition probabilities can be estimated from relative
frequencies. A more general description of Markov chains
and their matrices of transition probabilities can be found in
chap. 9.2 in Wilks (2011). More examples of atmospheric
applications of (finite-state) Markov chains can be found in
Gottwald et al. (2016, chap. 3.4). For further details on ho-
mogeneous Markov processes, see e.g., Baclawski (2008).

For a non-homogeneous (time-dependent) Markov pro-
cess, we use logistic regression to estimate time-varying tran-
sition probabilities. For the two-state model with the two

Figure 4. A general example of a network diagram of a homo-
geneous Markov chain with two states: nB (no blocking) and
B (blocking). Arrows indicate transitions and pij the associated
transition probabilities between state i and j with, i,j ∈ {nB,B}.
After Baclawski (2008).

states blocking (Yt = B) and no blocking (Yt = nB), we de-
scribe transition probabilities changing with year as

logit(P (Yt = B|Yt−1))∼ Yt−1 ∗ year (19)

using the notation for generalized linear models as well
the parameter estimation strategies introduced above. This
results in probabilities for blocking conditioned on be-
ing in an unblocked state Pr{Yt = B|Yt−1 = nB} and con-
ditioned on being in a blocked state Pr{Yt = B|Yt−1 = B}

varying in time, as do their counter probabilities Pr{Yt =
nB|Yt−1 = nB} = 1−Pr{Yt = B|Yt−1 = nB} and Pr{Yt =
nB|Yt−1 = B} = 1−Pr{Yt = B|Yt−1 = B}. Analogously, we
can describe time-varying (with “year” and season “seas”
or month “mon”) transition probabilities for the three-state
model using multinomial logistic regression, setting the ref-
erence to Pr{Yt = nB|Yt−1} and

ln
(

Pr {Yt = HoL} |Pr {Yt−1}

Pr {Yt = nB|Yt−1}

)
∼ Yt−1 ∗ year ∗ seas, (20)

ln
(

Pr {Yt =�} |Pr {Yt−1}

Pr {Yt = nB|Yt−1}

)
∼ Yt−1 ∗ year ∗ seas. (21)

Probabilities for all transitions can be derived with the condi-
tion Pr{Yt = HoL}+Pr{Yt =�}+P {Yt = nB} = 1. For de-
tails on main and interaction effects with categorical terms in
the predictor, see e.g., Wilks (2011) and Dobson and Barnett
(2008).

4 Results

The results are divided into four subsections in order to
answer the research questions posed in the introduction:
(1) whether the blocking occurrence probabilities undergo
long-term changes and (2) whether onset (formation), decay
(offset) or transition probabilities between blocking types
undergo long-term changes. In both cases, we ask if these
long-term changes depend on season or month. We start with
an overview of blocking properties and explore the uncer-
tainty in the identification algorithm in Sect. 4.1. It follows a
description of the temporal development of blocking occur-
rence probabilities for yearly, seasonal and monthly changes
in the two-state Markov model (blocking, no blocking) in
Sect. 4.2 and for the three-state Markov model (no blocking,
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omega, high-over-low) in Sect. 4.3. Section 4.4 discusses the
transition probabilities of two and three states for the 30-year
period.

4.1 Uncertainty estimates of the identification method
and general overview of blocking properties

A number of experiments with different distance criteria be-
tween the high-pressure centroids of subsequent time steps
allow us to estimate the sensitivity of the identification
method with respect to the distance criterion (see Table 1).
The results of these sensitivity experiments are given as a
footnote to the results presented. The number of identified
blocking events turns out to be sensitive to the distance crite-
rion, with a lower number for stricter (i.e., smaller) maximum
distances.

Furthermore, we take a closer look at some general block-
ing properties such as frequency and duration and their sensi-
tivity to the distance criterion. Generally, the total number of
blocks as well as the mean blocked days per year is lower for
stricter distance criteria and increases almost linearly with
relaxation of the criterion (Fig. 5b and c). The longitudinal
distance has a higher impact, while a change in the latitudinal
distance criterion only leads to slight differences (e.g., com-
pare experiments E05, E28 and E25 in Fig. 5b and c, which
differ by 2 to 4◦ latitude but have the same longitudinal dis-
tance criterion).

In the 30-year period from 1990 to 2019 in the region
90◦W to 90◦ E, we detect a total of 389 blocks (≈ 13 blocks
per year) that lasted for 5 or more days (see Fig. 5a, blue
columns), with an average of about 94 blocked days per year
(92± 16 for all experiments). Over all experiments, we ob-
serve a mean (± standard deviation) of 381± 52 blocks in
total in this period (or 12.7± 1.7 blocks per year). A total of
289 blocks (284± 40 blocks in total for all experiments) out
of the 389 blocks affected the Euro-Atlantic region (40◦W to
30◦ E) for at least some of their lifetime, with an average of
about 55 blocked days per year (53± 9 for all experiments).
Since the Euro-Atlantic blocks are a subset of the blocks that
occur in the larger region, blocking lifetimes can be smaller
than 5 d. However, only 87 of the 289 blocks remained less
than 5 d in the Euro-Atlantic region, while the majority af-
fected the region for 5 to 8 d (153 blocks; see Fig. 5a, green
columns). Since blocks are observed to be quasi-stationary
with usually low propagation speeds, the small number of
short-lived blocks in the Euro-Atlantic region probably start
or end close to the region boundaries and move either in or
out of the region during their lifetime. The mean duration
of the blocks is 7.25 d for the larger region and 5.70 d for
the Euro-Atlantic region (vertical red lines in Fig. 5a). Con-
sidering all experiments, the mean duration is 7.19± 0.30 d
for 90◦W to 90◦ E, and 5.62± 0.15 d for 40◦W to 30◦ E;
i.e., the variability in the mean duration is only about one
time step (6 h) between all considered experiments. The in-
terquartile range (IQR; purple boxes in Fig. 5a) of the differ-

ent experiments remains relatively consistent up to a duration
of 8 d for the Euro-Atlantic region, with IQR= 5.3 blocks
per class. For this region, the largest disagreement between
the experiments is found for blocks with a duration between
8 and 9 d, with IQR= 16.5 blocks. Interestingly in the larger
region, the lowest IQR of four blocks is found in the class
with the highest block number, with a duration between 5 and
6 d. In all other classes, the experiments differ more strongly
with IQR≈ 12 blocks on average for lifetimes between 6 and
12 d. The number of blocks is sensitive to the distance crite-
rion (Fig. 5c), which leads to splits of blocking events of the
IBL-detected blocking periods into two or more smaller pe-
riods and can hence increase (or decrease if the new periods
are less than 5 d) the overall number of blocks. In terms of
averaged blocked days per year (Fig. 5b), the standard devi-
ations are 16 d for the larger region and 9 d for the smaller
one. These values account for a fraction of 0.05 and 0.025,
respectively, of additional (or fewer) blocked days per year.

The temporal development of the annual blocking fre-
quency and duration for the larger and the smaller Euro-
Atlantic region is shown in Fig. 6. For both regions, clear
upward or downward trends in blocking frequency over the
30 years are not obvious. However, inter-annual variability
is high; see black squares in Fig. 6a and b. Variability be-
tween different experiments is relatively large. This spread
does, however, not show trends over time; see gray boxes in
Fig. 6a and b5. Considering the fraction of blocked time steps
per year (green, Fig. 6a and b), the inter-annual variability is
still obvious. However, the spread between the experiments
is smaller. There is no obvious trend, neither in the values
of experiment E05 (corresponding to the lines in Fig. 6) nor
in the spread over all experiments. However, the spread is
smaller in the Euro-Atlantic region (Fig. 6b) compared to the
larger region (Fig. 6a).

The mean duration of blocking events shows a small inter-
annual and inter-experimental variability compared to the
maximum duration (see red and blue crosses and bars in
Fig. 6c and d). Note that the maximum is given by only one
data point per year and experiment. The spread between ex-
periments is thus very large in both regions, whereas it is
smaller for the Euro-Atlantic region. Note that the residence
time of blocks in the smaller region also depends on the prop-
agation speed of the blocking, and a larger variability in the
mean duration could be caused by a year-to-year variability
in faster or slower propagation speeds.

4.2 Temporal development of blocking probabilities –
two-state blocking model

We investigate the inter-annual variability in blocking occur-
rence probability taking only two states into account: block-
ing and no blocking; both omega and high-over-low blocks
are for now considered to be blocking. Starting with annual

5Note that block numbers can only take integer values.
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Figure 5. (a) Histogram of the duration of all blocking events in the period 1990–2019 for two selected regions. Blue (green) columns
represent the region 90◦W to 90◦ E (40◦W to 30◦ E) for experiment E05 with a total of 389 identified blocks (289 blocks); solid (dashed)
vertical red lines indicate the mean of this data set. Boxplots on top of the bars show the range of the identified block numbers given by
different distance criteria (see Table 1). Boxes show the interquartile range (IQR); whiskers indicate 1.5 times IQR; the “x” is an outlier
(larger region). (b) Mean blocked days per year and (c) total number of identified blocks in the period 1990–2019 in dependence on the
distance criterion. Here the distance criterion was calculated by the longitude criterion of the respective experiments at 61◦ N, which is the
mean latitude of all identified highs.

probabilities, we resolve the blocking occurrence seasonally
and monthly in further steps.

4.2.1 Annual blocking probability

We study annual blocking occurrence probability with logis-
tic regression as described in Sect. 3.5 using

logit(p)∼ year. (22)

The black lines in Fig. 7 show the model’s expectation for the
probability that a time step is part of a blocking event that
lasted a minimum of 5 d (blocking occurrence probability)
for 90◦W to 90◦ E (Fig. 7a) and the Euro-Atlantic region
(40◦W to 30◦ E; Fig. 7b). Shading gives 95 % confidence
intervals. We use a Wald test (z test) to test for a significant
trend with years, with p values encoded as

0<
(
∗∗∗
)
< 0.001<

(
∗∗
)
< 0.01<

(
∗
)
< 0.05< (). (23)

We find an increase of 2 percentage points (∗∗) for the large
region and 1 percentage point (∗) in the North Atlantic re-
gion. The average probability is about 25 % blocked time
steps between 90◦W and 90◦ E and about 15 % blocked time
steps between 40◦W and 30◦ E. This is in accordance with
the fraction of blocked time steps per year plotted in Fig. 6a
and b.

4.2.2 Seasonal blocking probability

The colored lines in Fig. 7 show analogously the expecta-
tion resolved by season obtained with a model with interac-

tions (Eq. 24)

logit(p)∼ year ∗ seas, (24)

with seas ∈ {DJF,MAM,JJA,SON} being a categorical term
in the predictor. The months December, January, Febru-
ary, etc. have been abbreviated by capital letters D, J, F
and so forth. The seasonal resolution now allows us to as-
sign the increase for the region 90◦W to 90◦ E over the
30 years to a large extent to a significant increase in occur-
rence probability of blocked time steps in summer (JJA) (∗∗∗)
and winter (DJF) (∗∗∗). During spring (MAM) (∗) and au-
tumn (SON) (∗∗∗) occurrence probability is decreasing (see
Fig. 7a).

In the Euro-Atlantic region, the occurrence probability in-
crease is weaker in summer (JJA) (∗∗∗) and not significant
in winter (DJF) ( ). However, we observe now an increase in
probability also in spring (MAM) (∗∗∗); in autumn (SON) ( )
the slight decrease is not significant. The difference between
the two regions suggests that the occurrence behavior of
blocking is not the same across the larger region 90◦W to
90◦ E.

4.2.3 Monthly blocking probability in the
Euro-Atlantic region

We now break down trends in occurrence probability in the
Euro-Atlantic sector to a monthly resolution using a categor-
ical term for the month mon ∈ {1, 2, 3, . . . , 12} in the predic-
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Figure 6. Temporal development of (a, b) blocking number (black) and fraction of annual blocked time steps (green); (c, d) mean (red) and
maximum (blue) duration of a blocking event (a, c) for the whole domain (90◦W to 90◦ E) and (b, d) for the Euro-Atlantic region (40◦W
to 30◦ E). Boxes represent the interquartile range of the experiments described in Table 1 to test the uncertainty in the method for different
distance criteria between two time steps. The whiskers are 1.5 times the interquartile range, and single points in appropriate colors represent
outliers. Note that blocking numbers are given as integers. Experiment E05 is explicitly plotted in colors corresponding to the boxplots by
symbols and lines. These lines are just plotted to ease the identification of E05.

Figure 7. Blocking probability over time for the full year (black line, Eq. 22) and for individual seasons (colored lines; Eq. 24). Shading
shows 95 % confidence intervals; (a) 90◦W to 90◦ E and (b) selected Euro-Atlantic region (40◦W to 30◦ E).
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tor, interacting with year

logit(p)∼ year ∗mon. (25)

Figure 8 shows monthly resolved trends in blocking occur-
rence probability for the Euro-Atlantic region. Figure 8a sug-
gests that a strong decrease in December (∗∗∗) compensated
by a strong increase in February (∗∗∗) and a weak increase in
January ( ) results in the approximately constant occurrence
probability shown in Fig. 7b. Similarly, in Fig. 8b we see that
the strong increase in blocking probability in March (∗∗∗) is
partly offset by a weaker decrease in May (∗), while April is
approximately constant. This is consistent with the increase
visible for spring in Fig. 7b. The summer months June (∗)
and August (∗∗∗) exhibit an increase in blocking occurrence
probability; the change in July is not significant (Fig. 8c).
This consistent increase adds up to the significant increase
observed for summer in Fig. 7b. In autumn, we see a decrease
in November (∗∗) and non-significant changes for September
and October (Fig. 8d). This is reflected in the slight and not
significant increase seen for autumn in Fig. 7b. Moreover, all
experiments with different distance criteria agree on the de-
crease in December and the increases in February, March and
August.

The consistency between seasonally and monthly resolved
results gives confidence in the analysis. Furthermore, it
seems worth looking at both resolutions as strong monthly
resolved signals can average out when aggregated to the sea-
son as in winter, or weak but consistent monthly signals
can add to a stronger seasonal signal as in summer. The
monthly resolution now allows us to postulate that in the
Euro-Atlantic region there are signs for blocking occurrence
probability increases at the beginning of the year (JFM) and
decreases towards the end of the year (SOND); inter-annual
variation in between is comparably small.

4.3 Temporal development of blocking probabilities –
three-state blocking model

We now additionally distinguish between the two block-
ing types high-over-low and omega, considering occurrence
probabilities for three states in a multinomial logistic model.

4.3.1 Annual cycle of blocking probability

Taking a look at the annual cycle of blocking probability
reveals that the colder months from September to March
are characterized by blocking probabilities of about 22 %
(≈ 15 %) between 90◦W and 90◦ E (40◦W to 30◦ E), with
a smaller peak in January (see Fig. 9). The main peak in both
regions occurs in April. While the larger region (90◦W to
90◦ E) shows a broader peak with high values also in May
and a secondary peak in July, in the Euro-Atlantic region the
blocking probability only peaks in April and shows a broader
minimum in June to August. In the larger region, the low-

est blocking probability occurs in August, too, but June and
July have higher probabilities. In general, about 2/3 of the
blocked time steps can be classified as omega blocks and
about 1/3 as high-over-low blocks. Only in December and
January does this classification change to about 1/2 (both
regions; red and blue triangles in Fig. 9). Note that a block-
ing does not have to occur in every month of every year (see
Figs. S6 and S7). The occurrence frequency of omega blocks
shows a larger intra-annual fluctuation (see Figs. S6 and S7
for more details). It is possible that only a few time steps of a
blocking lie in 1 month, while the other time steps are in an
adjacent month.

4.3.2 Seasonal blocking probabilities in the
Euro-Atlantic sector

Having now three states with distinct high-over-low and
omega blocks, we use multinomial logistic regression
(Sect. 3.5) with reference to Pr{Yt = nB|Yt−1}. The basic
model is given by

ln
(

Pr {Yt = HoL}
Pr {Yt = nB}

)
∼ year,

ln
(

Pr {Yt =�}
Pr {Yt = nB}

)
∼ year, (26)

using two equations: one for Pr{Yt = HoL} and one for
Pr{Yt =�}. This can be straightforwardly extended to sea-
sonally resolved trends by

ln
(

Pr {Yt = HoL}
Pr {Yt = nB}

)
∼ year ∗ seas,

ln
(

Pr {Yt =�}
Pr {Yt = nB}

)
∼ year ∗ seas. (27)

To avoid problems with significance testing due to the Hauk–
Donner effect (Yee, 2015, chap. 2.3.6.2), we avoid the Wald
test in favor of a likelihood-ratio test. This implies that
we test the null hypothesis of constant probabilities against
the alternative with probabilities depending on the covari-
ate year. Consequently, we cannot infer significant trends
in occurrence probability individually for high-over-low or
omega.

Figure 10 shows the expectation of the multinomial model
(Eq. 27) for the temporal evolution of the probabilities of
the two blocking types for annual occurrence probabilities
(black line) and broken down to seasons (colored lines). An-
nual occurrence probabilities are constant for high-over-low
and slightly increase (∗) for omega. In winter, we observe a
significant (∗∗∗) decrease in high-over-low (Fig. 10a), which
is offset by an increase in omega (Fig. 10b)6, leading to al-
most constant overall blocking in that season (Fig. 7b). The

6A total of 8 (omega) and 11 (high-over-low) out of 11 exper-
iments agree on the trend in DJF, and confidence intervals are not
compatible with a constant occurrence or transition probability.
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Figure 8. Blocking probability over time for individual month (Eq. 25). Shading shows 95 % confidence intervals. (a) Winter (DJF),
(b) spring (MAM), (c) summer (JJA) and (d) autumn (SON) in the Euro-Atlantic region (40◦W–30◦ E). Significance is encoded as 0< (∗∗∗),
< 0.001< (∗∗), < 0.01< (∗), < 0.05< ().

Figure 9. Blocking probability estimated for individual months for blocking in general as well as separately for high-over-low and omega.
(a) Whole domain (90◦W to 90◦ E) and (b) Euro-Atlantic subsection (40◦W to 30◦ E). Whiskers show 95 % confidence intervals assuming
Gaussian asymptote for estimating binomial probabilities.

overall increase in blocking probability in spring, seen earlier
in Fig. 7b, can now be attributed to a significant (∗) increase
in both high-over-low and omega blocking; see Fig. 10. In
summer (∗∗∗), a strong increase in omega occurrence proba-
bility is partly offset by a decrease in high-over-low, leading
to a significant increase in summer blocking occurrence in
Fig. 7b7. The weak autumn decrease in total blocking oc-

7A total of 10 out of 11 experiments agree on the increasing
trend of the omega blocks in JJA, and confidence intervals are not
compatible with a constant occurrence or transition probability.

currence in Fig. 7b can now be attributed to a strong (∗∗)
decrease in omega blocks, which is only partly offset by an
increase in high-over-low occurrence (Fig. 10)8.

8A total of 9 (high-over-low) and 5 (omega) out of 11 experi-
ments agree on the trend in SON, and confidence intervals are not
compatible with a constant occurrence or transition probability.
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Figure 10. Blocking probability over time for the full year (black line; Eq. 26) and for individual seasons (colored lines; Eq. 27) for the
Euro-Atlantic (40◦W–30◦ E) region for (a) high-over-low and (b) omega blocking. Shading shows 95 % confidence intervals.

Figure 11. Blocking probability over time for individual months (Eq. 28) for high-over-low (solid) and omega (dashed) blocking. Shading
shows 95 % confidence intervals. (a) Winter (DJF), (b) spring (MAM), (c) summer (JJA) and (d) autumn (SON) in the Euro-Atlantic region
(40◦W − 30◦E). Significance is encoded as 0< (∗∗∗), < 0.001< (∗∗), < 0.01< (∗), < 0.05< ().

4.3.3 Monthly blocking probability in the
Euro-Atlantic sector

We now estimate monthly resolved trends in blocking occur-
rence probabilities for the three-state model in Eq. (28).

ln
(

Pr {Yt = HoL}
Pr {Yt = nB}

)
∼ year ∗mon

ln
(

Pr {Yt =�}
Pr {Yt = nB}

)
∼ year ∗mon (28)

Figure 11 shows the expected occurrence probabilities for
high-over-low (solid lines) and omega (dashed lines) block-
ing resolved by month. Significance from a likelihood-ratio

test is again given in the legend of the plot. The probabil-
ities of omega and high-over-low agree on the decrease in
December and increase in February, consistent with Fig. 8a;
in both cases the trend for omega blocks is stronger. In Jan-
uary, the increase in omega is partly offset by the decrease
in high-over-low, leading to a slight increase in total block-
ing for this month (Fig. 8a). Figure 11b shows that omega
and high-over-low occurrence probabilities increase simulta-
neously in March and decrease simultaneously in May, being
consistent with the trends of total blocking occurrence in that
month (Fig. 8b). April shows weakly increasing (omega) and
decreasing (high-over-low) trends averaging out to almost
constant total blocking (Fig. 8b). Figure 11c shows a weak
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Figure 12. Graph representation of the transition matrix estimated for a Markov process (a) with two states (Eq. 17) and (b) with three states
(Eq. 18) in the Euro-Atlantic region (40◦W–30◦ E). Standard errors in the estimates are given in Tables 2 and 3.

increase in June (∗) and August (∗∗∗) occurrence probability
for both blocking types, consistent with the weak increase in
total blocking shown in Fig. 8c. In July (∗∗∗), high-over-low
is decreasing, while omega is increasing, resulting in very
weakly increasing total blocking probability (Fig. 8c). In Oc-
tober, both blocking types decrease (∗∗∗) consistently as well
as the overall blocking probability. In September ( ) omega
decreases, while high-over-low increases and vice versa in
November (∗), both leading to almost constant total blocking
occurrence probability in the 2 months; see Fig. 8d.

4.4 Transition probabilities

We conceive the dynamics between different blocking and
no-blocking states as a stochastic process with Markov prop-
erties (see Sect. 3.6). We can thus give transition probabili-
ties for the two- and three-state model in the Euro-Atlantic
region. We start with assuming a homogeneous Markov pro-
cess and give stationary transition probabilities. In a second
step, we allow transition probabilities to vary with years.
Analogously to the model presented in Sect. 4.3.2, we break
the trends in years down to the four seasons.

4.4.1 Transition probabilities of two- and of three-state
models

Within the framework of homogeneous Markov processes,
we estimate stationary transition probabilities. Figure 12 vi-
sualizes the transition matrices for the two-state model (no
blocking and blocking) in panel a and the three-state model
(no blocking, high-over-low and omega block) in panel b.
The estimate for the transition probability from no blocking
to blocking is pnB,B = 0.0113, denoting that in about 1 % of
all time steps (6 h resolution) we observe an onset of block-
ing. Being in a blocked state, we estimate the persistence to
remain in this state as pB,B = 0.9361 and the decay to a non-
blocked state as pB,nB = 0.0639. Thus, being in a blocked
state, the probability to remain (persistence) there is about
94 %, and the probability that this blocking decays is about
6 %. Being in the no-blocking state, we find a probability to
remain there of pnB,nB = 0.9887.

Considering the three-state model, we can now break
down the total blocking onset probability into the onset of

Table 2. Probability estimates± standard errors (SE) for the two-
state model. Probabilities give the transition to the state given in the
column conditioned on the state given in the row.

nB B

nB 0.09887± 0.0052 0.0113± 0.0006
B 0.0639± 0.0031 0.9361± 0.0119

Table 3. Probability estimates±SE for the three-state model. Prob-
abilities give the transition to the state given in the column condi-
tioned on the state given in the row.

nB HoL �

nB 0.9887± 0.0052 0.0035± 0.0003 0.0078± 0.0005
HoL 0.0701± 0.0055 0.6216± 0.0161 0.3075± 0.1136
� 0.0599± 0.0038 0.1843± 0.0066 0.7558± 0.0134

high-over-low (pnB,HoL = 0.0035) and the onset of omega
(pnB,� = 0.0078). Thus in about two of three blocking on-
sets, we see an omega blocking rather than a high-over-low9.
This does not hold for the offset as in the three-state model
offset probability is conditioned on omega or high-over-low.
Furthermore, we see two indications for omega blocks being
more stable than high-over-lows: (i) the persistence of omega
blocking is with p�,� = 0.7558 larger than the persistence
of high-over-low (pHoL,HoL = 0.6216), and (ii) the transition
from high-over-low to omega is with pHoL,� = 0.3075 larger
than the reverse transition with p�,HoL = 0.1843. Probability
estimates and standard errors are given in Tables 2 and 3.

4.4.2 Trends of transition probabilities of two- and of
three-state models

We describe the change in transition probabilities with time
(years) using logistic and multinomial regression on the an-
nual timescale and broken down into seasons. For the two-

9Note that for blocking onset, both probabilities (pnB,HoL
and pnB,�) are conditioned on the no-blocking state, and thus
pnB,HoL+pnB,� = pnB,B = 0.0113 sum up to the total onset prob-
ability.
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Figure 13. Transition probabilities analogous to the matrix of a three-state Markov process (Eq. 18) as a function of years (Eq. 29) in the
Euro-Atlantic region (40◦W–30◦ E); (a) pnB|nB, (b) pHoL|nB, (c) p�|nB, (d) pnB|HoL, (e) pHoL|HoL, (f) p�|HoL, (g) pnB|�, (h) pHoL|�
and (i) p�|�. Shading shows 95 % confidence intervals.

state Markov model (Eq. 19) no significant changes can be
identified, neither for the full annual probabilities nor broken
down into seasons; see Figs. S8 and S9. Changes in transition
probabilities for the three-state Markov model with annual
occurrence probabilities are described by

ln
(

Pr {Yt = HoL} |Pr {Yt−1}

Pr {Yt = nB|Yt−1}

)
∼ Yt−1 ∗ year,

ln
(

Pr {Yt =�} |Pr {Yt−1}

Pr {Yt = nB|Yt−1}

)
∼ Yt−1 ∗ year. (29)

Figure 13 shows the temporally varying transition prob-
abilities for the three-state model as a function of the year.
Rows and columns are arranged analogously to the transi-
tion matrix (Eq. 18, Table 3); shading gives 95 % confidence
intervals. Analogously to Sect. 4.3.2, we use the likelihood-
ratio test to infer whether inclusion of the trend in years re-

sults in a significantly better model than the homogeneous
Markov process. With a p value< 0.05 we find significance
on the 5 % level. Besides the first row, confidence intervals
are larger than the signal itself, and we refrain from detailed
inferences on the trends for transitions from the two block-
ing states high-over-low and omega. However, we can see a
positive trend for the transition from no blocking to omega
(Fig. 13c) and a consistent decline in the persistence of no-
blocking states (Fig. 13a), while the transition from no block-
ing to high-over-low is approximately constant (Fig. 13b).
This is in line with (i) the slight increase in overall blocking
probability (Fig. 7b, black line) and (ii) the increase in omega
blocking (Fig. 10b, black line). It further indicates that omega
blocking is more favored for a blocking onset towards the end
of our study period.

Weather Clim. Dynam., 2, 927–952, 2021 https://doi.org/10.5194/wcd-2-927-2021



C. Detring et al.: Blocking type statistics 945

Figure 14. Transition probabilities analogous to the matrix of a three-state Markov process (Eq. 18) as a function of years for individual
seasons (Eqs. 20 and 21) in the Euro-Atlantic region (40◦W–30◦ E). Panels are ordered analogously to Fig. 13; season is color-coded.
Shading shows 95 % confidence intervals.

We now use the model given in Eqs. (20) and (21) to
break the previous results down into seasons. Analogously to
Fig. 13, Fig. 14 shows trends in transition probabilities with
lines colored according to the season.

Inclusion of the trend in years broken down to seasons is
– according to the likelihood-ratio test – a significant im-
provement over a homogeneous Markov process for summer
– JJA, (∗∗∗), winter – DJF, (∗) and spring – MAM, (∗); for
autumn (SON), improvement is not significant on the 5 %
level. Figure 14c now suggests that the previously observed
increase in blocking onset to omega (Fig. 13c) is strongest
in summer, weaker in spring and winter, and even reversed
in autumn. This is consistent with the negative trend in the
probability to remain in a no-blocking state being strongest in
summer (Fig. 13a). For most other cases, the confidence in-

tervals are so large that they are also consistent with constant
probabilities. Detailed interpretation is thus to be taken with
care. Having said that, Fig. 13e suggests that high-over-low
becomes slightly more stable in spring and autumn and less
stable in summer and winter; stability for omega is even less
clear to determine from Fig. 13i; however a slight increase in
winter and decrease in spring can be observed (in both cases
confidence intervals are compatible with a constant transition
probability). Further interesting aspects are changes in tran-
sition probabilities from omega to high-over-low and vice
versa. These are difficult to infer based on the data set used
here (large confidence intervals). However, there seems to
appear a slight increase in transitions from high-over-low to
omega in winter and summer; the opposite transitions in win-
ter and summer decrease. Furthermore, the transition from
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high-over-low to omega shows a slight decrease in spring
and autumn and the opposite transition a slight increase. Al-
though inference is difficult here, these results are consistent
with the significant increasing (decreasing) occurrence prob-
ability of omega (high-over-low) blocking in summer and
winter (Fig. 10).

5 Summary and discussion

Point vortex theory and the kinematic vorticity number al-
low us to automatically classify atmospheric blocking into
high-over-low and omega blocking; the two types are distin-
guished by the position of the associated low-pressure sys-
tem(s). These positions are of general importance as the as-
sociated blocking types can affect and impact different re-
gions due to their different structures. A key element is the
Lagrangian framework, within which we require the high-
pressure system to remain the same vortex over the whole
lifetime of the system. We do, however, allow for local vari-
ations in and replacements of the low(s). This distinguishes
our approach from other studies that rather focus on block-
ing as a large-scale weather regime within a defined region
(Eulerian perspective). We thus refine the method developed
by Hirt et al. (2015) to identify and distinguish omega and
high-over-low blocking. With logistic regression we describe
occurrence probabilities for blocking and blocking types and
identify potential trends in these broken down for individual
seasons and months. This is finally extended with Markov
models, giving additional transition probabilities between
blocked and unblocked states.

5.1 Discussing the two-state model

Investigating blocking without the distinction of omega and
high-over-low, we see a slight increase in annual occurrence
probability in both regions (Fig. 7, black lines). A low proba-
bility of blocking in the summer months in the Euro-Atlantic
sector is clearly recognizable. Tyrlis and Hoskins (2008)
and Brunner et al. (2017) show similar results regarding the
blocking minimum in summer. This minimum can be ex-
plained by the variation in the pressure anomalies. In spring
and autumn the amplitudes of the pressure anomalies are
larger than in summer (see e.g., Wallace et al., 1993). There-
fore, the high- and low-pressure systems are more distinct
and can last longer. Allowing for different trends in each sea-
son reveals increasing trends in occurrence probabilities in
summer and winter and decreasing trends in the transition
seasons for the larger region (90◦W–90◦ E). These opposing
trends add up to the slight increase for the full year. In the
Euro-Atlantic region we see an increase in spring and sum-
mer and weaker trends for the other seasons, again summing
up to a weak trend for the full year (Fig. 7, colored lines).
This difference among the two regions implies that the sea-
sonal dependence of trends varies regionally. The increasing

blocking trends in summer support the authors’ perception
that occurrences of exceptional droughts that were experi-
enced 2018 and 2019 in central Europe (Hari et al., 2020)
are likely to occur more frequently at the end of our study pe-
riod than at the beginning. A further breakdown to individual
months for the Euro-Atlantic region reveals that an investiga-
tion of trends for a season is not necessarily the best choice to
identify changes. While in summer, the trends in occurrence
probability are all positive (adding up to a strong positive
summer trend), monthly resolved trends in winter, spring and
autumn are not in agreement and weaken the seasonal sig-
nal (Fig. 8). Particularly the late winter/early spring (Febru-
ary/March) blocks can have a significant impact on the vege-
tation and on agriculture in general since they are often con-
nected to temperature extremes. For example, Brunner et al.
(2017) found a strong link between cold spell days in Febru-
ary and co-occurrence of blocking and a link between warm
spell days and blocking in late spring in Europe, but they
found “no apparent trend in the number of blocked days”.
However, their study focused on temperature extremes and
not on blocking trends, and their identification method dif-
fered from ours. Nonetheless, we find a significant increase
in blocking occurrence probability in February and March.

In their work on observed blocking trends during the time
period 1980–2012, Barnes et al. (2014) found the following:
“No clear hemispheric increase in blocking is evident in any
season for any blocking index, although robust seasonal in-
creases and decreases are found for isolated regions.” We can
partly confirm this statement: although we find significant
trends regarding the seasons, these trends are small and de-
pend on the region.

5.2 Discussing the three-state model

Distinguishing between omega and high-over-low blocking,
we find occurrence probabilities of omega blocking being
larger than of high-over-low (Figs. 9–11). Both types ex-
hibit a different trend in annual occurrence probabilities.
While the occurrence probability of high-over-low blocking
remains about constant in the study period, a slight increase
can be seen for omega blocking (Fig. 10, black lines). Re-
solving these trends seasonally amplifies the difference be-
tween the two types: while occurrence probabilities for high-
over-low show a slight decrease in summer and winter and
increase in the transition seasons (Fig. 10a, colors), occur-
rence probabilities for omega decrease only in autumn and
increase in the other seasons, leading to an overall increase
(Fig. 10), colors). A further breakdown of trends for individ-
ual months allows for an even more detailed investigation:
within one season, the monthly resolved trends do not neces-
sarily agree, as we found for the two-state model. The three-
state model now reveals whether a specific type is contribut-
ing to changes in blocking occurrence probability or if there
are opposing changes for both types, leading to minor or no
change in overall blocking. Strong trends can be observed
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for omega blocking occurrence probability for all 3 winter
months, decreasing in December and increasing in January
and February; trends are weaker for high-over-low and even
opposing in January (Fig. 11a). In spring, monthly resolved
trends agree among both types, especially on the increasing
trend in March. This reflects the overall blocking trends given
in Fig. 8b and the seasonal type-specific trends in Fig. 10.
Trends in July disagree for omega and high-over-low, with
the latter decreasing. This results in the small change (non-
significant) for overall blocking shown in Fig. 8c. In autumn,
we see strong and opposing trends in September and weak
opposing trends in November (Fig. 11d). Both lead to (al-
most) vanishing trends for overall blocking (Fig. 8). For Oc-
tober, both types behave consistently with overall blocking.
In some cases, we have thus seen the necessity to be able
to distinguish blocking types and also to model trends for
individual months. Otherwise, we would – in some cases –
remain with the impression of (almost) constant blocking oc-
currence probabilities as shown in Figs. 7 and 8 for some sea-
sons or months. The description of type-specific and monthly
resolved trends suggested here is important, particularly as
the location of the associated lows differs between types, and
therefore their impact does to. Hence with respect to warm
and cold spells in early spring and for heat waves in sum-
mer, this distinction between the blocking type is especially
relevant to society and should be studied further. However,
adding more detail to the analysis by considering blocking
types and individual months leads on the one hand to larger
uncertainties as more model parameters are needed to be esti-
mated, but on the other hand, this might also lead to stronger
signals, making statistically significant results possible.

5.3 Discussing transition probabilities for the two-state
model

Within the two-state model, the probability of remaining in
a blocked state for the next 6 h is pB,B = 0.94 (Table 2
and written at the associated arrows in Fig. 12a). The on-
set probability, i.e. the transition from the state no block-
ing to blocking, is much lower (pnB,B ≈ 0.01), and so is the
decay probability pB,nB ≈ 0.06. Spekat et al. (1983) found
daily transition probabilities for the onset of a meridional
weather regime of 8 % (zonal→meridional) to 11 % (mixed
state→meridional) and high probabilities to stay within the
same weather regime (between 0.81 and 0.86). Their decay
probabilities range from 5 % (meridional→ zonal) to 9 %
(meridional→mixed state). Their onset values are compa-
rable to our results if we upscale the 6-hourly data to daily
time steps. Moreover, we can confirm that the probability is
higher to remain within the same state. We refrain from a
more detailed comparison as their method differs in many
respects from the one we use. While Spekat et al. (1983)
use a large-scale weather regime classification, our method
is based on the identification of the blocking pattern itself
and is rather event-based. Trends in the transition probabili-

ties for the two-state model are not significant (see Figs. S8
and S9). This is different for some of the observed trends in
the three-state model.

5.4 Discussing transition probabilities for the
three-state model

The transition probabilities for the three-state model (Ta-
ble 3 and written at the associated arrows in Fig. 12b) show
that (i) omega blocks are more persistent than high-over-
low blocks, (ii) blocking formation or onset is more likely
to start with omega than with high-over-low blocking, and
(iii) the transition probability from high-over-low to omega
pHoL,� = 0.3 is almost 1.5 times larger than the probabil-
ity for the opposite transition (pHoL,� = 0.18). This suggests
that the omega blocking is more stable and more likely to
develop than high-over-low. It is unclear why omega block-
ing is more stable than high-over-low blocks. Lucarini et al.
(2016) find that blocking periods, in general, are character-
ized by higher instability than unblocked flows. This might
also justify the occurrence of blocking type changes from
high-over-low to omega and vice versa. Additionally, the au-
thors speculate that a vortex configuration of three vortices
is more stable and less disturbed by other vortices embedded
in the jet, but this needs to be studied further before a clear
answer can be given.

The likelihood-ratio test suggests a significant improve-
ment when including the covariate years to describe a trend.
However, the large confidence intervals in Fig. 13 do not al-
low a detailed interpretation of individual transition proba-
bilities other than those conditioned on the no-blocking state
(first row). Estimating these trends in transition probabilities
individually for every season leads to a more complex model
with more parameters and thus larger confidence intervals;
see Fig. 14. However, this model now reveals stronger sig-
nals, which are in part opposing and thus to superimpose
the weaker signals we see in Fig. 13. Particularly interesting
are the trends found in summer as described in Sect. 4.4.2.
Again, the complex model allowing for two blocking types
and for different trends in each seasons is necessary to reveal
signals which otherwise average out.

5.5 Discussion of the method

Characterizing blocking and blocking types is to a large
degree dependent on time resolution and methods. The 6-
hourly time resolution yields a larger data basis compared
to daily means but potentially contains also more uninterest-
ing variability (noise). Our identification and classification
strategy starts with the well-accepted instantaneous blocked
longitudes (IBLs) after Tibaldi and Molteni (1990); see also
Richling et al. (2015). However, the subsequent algorithm
(Step 1–4; Sect. 3; see also Fig. 2) is complex and requires
many assumptions. The choice of the reference latitude (sea-
sonally varying vs. annual) and the fixed thresholds for the
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Figure 15. Number of total blocked time steps for omega and high-over-low blocks (columns) and percentage of omega (solid red line) and
high-over-low (dashed red line) blocks with respect to total blocked time steps. Note that this analysis is based on (a) all blocked time steps
and (b) blocked time steps in JJA in the period 1990–2019. No distinction has been made between onset and decay (offset).

geopotential height gradients can be critical. This might ex-
plain why there are fewer blocks detected in summer; see
also, e.g., Scherrer et al. (2006), who show that the fre-
quency of blocks is strongly dependent on the reference lat-
itude. Changing the minimum duration criterion leads to a
higher or lower number of identified blocks. Furthermore,
the results can depend on the specific blocking identification
method used, the region and season (Pinheiro et al., 2019):
investigating the blocking identification methods based on
the vertically averaged potential vorticity anomaly (Schwierz
et al., 2004), the geopotential height anomaly (Dole and Gor-
don, 1983) and geopotential height gradient after Tibaldi and
Molteni (1990) that is applied here, Pinheiro et al. (2019)
found that “each of the three algorithms produce distinct re-
gional and seasonal differences in their overall global block-
ing climatology”. Moreover, the decision between high-over-
low and omega blocking types is based on a comparison of
the vortex field south of the high center. The vortex field is
inspected in a box with a width of 25◦ longitude directly be-
low the high and compared to the two neighboring boxes (see
Fig. 3). A change in the box width obviously can affect the
fraction of identified high-over-lows vs. omega blocks. In
our setting, the method identifies about 2/3 of all blocking
as omega types. However, using a different box width might
change the ratio of identified omega vs. high-over-low blocks
but does not explain the partially contrary trends we observe
in their probability in some months such as the increase in
omega blocks in summer, while the high-over-lows decrease.
These must stem from another mechanism, such as a change
in the underlying large-scale flow or the position or strength
of the jet (Woollings and Blackburn, 2012).

However, we want to point out that a major benefit of our
method is the identification and location of each single vor-
tex – the high-pressure area as well as the one or two low-
pressure areas – forming the high-over-low and the omega
block, respectively. This allows us to distinguish between
the blocking types within and for each single blocking pe-
riod separately. This gives more detail compared to averaging
over multiple blocking periods as is typically done to derive
composites; e.g., analyzing composites of the blocking onset
in the time period June to August, Drouard and Woollings
(2018) found that western and central Europe are dominated
by a high-over-low pattern, while they found dominating
omega patterns for eastern Europe east of 35◦ E. In order
to compare their results to (and complement) our work, we
plot the total number of blocked time steps with respect to
the blocking types and longitudes of occurrence in Fig. 15.
In general, we observe more omega blocks (about 2/3) than
high-over-lows (about 1/3). The share of high-over-lows in
total number of blocked time steps is largest between about
0◦− 40◦E and between about 60–75◦ E for the whole year
(Fig. 15a). The western region with a large fraction of high-
over-lows is shifted to the west in summer to 25◦W–20◦ E,
and the eastern region 60–75◦ E shows an even higher frac-
tion of about 1/2 (Fig. 15b). The fraction of omega blocks
is highest for longitudes west of 25◦W and for the region
between about 40–60◦ E. In summer the contrast in west-
ern Russia is even more pronounced, with a maximum of
about 80 % omega blocks compared to the whole year. This
is comparable to the results of Drouard and Woollings (2018)
for their regions between 0–55 ◦E. Their composites for the
western area (south-central Europe) (40–50◦ N, 0–20◦ E),
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central area (50–60◦ N, 20–40◦ E) and western Russia (45–
55◦ N, 35–55◦ E) indeed showed rather high-over-low pat-
terns for the first two regions and an omega pattern for west-
ern Russia.

6 Conclusion

Blocked weather situations are usually analyzed with respect
to the persistent high-pressure system. This quasi-stationary
high can for example lead to droughts with devastating con-
sequences. Here, we additionally consider the position(s)
of the low-pressure system(s) in a blocking identification
method. This is a novel approach and provides possibilities
for further studies, for example on the impact of the steady
low-pressure systems such as heavy rainfall and flooding
events.

This novel strategy is based on point vortex theory to iden-
tify and classify blocking. Combined with logistic regression
and Markov processes, this allows a fresh view on blocking
occurrence and transition dynamics. We consider the time
period 1990–2019 in the Euro-Atlantic sector (40◦W–30◦ E)
and for a larger region in the Northern Hemisphere (90 ◦W–
90◦ E). A blocking type identification method based on the
kinematic vorticity number and point vortex principles clas-
sifies high-over-low and omega patterns for each blocked
time step, separately. This method was developed by Hirt
et al. (2018) and refined in this paper. In general, we observe
that about 2/3 of all blocks are omega blocks, and about 1/3
are high-over-low blocks, although these fractions can vary
with longitude, season and year (Figs. 9 and 15).

Conclusions with respect to the two research questions
posed in the introduction are given in the following.

1. Do blocking occurrence probabilities undergo long-
term changes? Do these changes depend on the sea-
son or month? For the time period under investigation,
trends in annual blocking occurrence probabilities are
small compared to their long-term averages. The anal-
ysis of seasonal occurrence probabilities reveals that
stronger but partly opposing seasonal trends exist; these,
however, averaged over seasons, exhibit the observed
weak annual signal. A similar effect emerges when
breaking trends down to monthly occurrence proba-
bilities. Particularly for winter and spring, individual
months (February and March) show strong trends which
are opposing the trends in other months of the same sea-
son. On the one hand, this highlights problems associ-
ated with aggregating time series and on the other hand
reveals changes in blocking occurrence in late winter
and early spring, with a potential impact on vegetation
and agriculture, which would have been hidden other-
wise. The key element of this study – the distinction
between omega and high-over-low – allows us to break
down the monthly resolved trends to the two types. This
reveals different magnitudes (December, February) and

opposing trends (January, July, September). This infor-
mation is potentially relevant for weather impact related
to the different locations of the low-pressure systems as-
sociated with the two blocking types. Furthermore, we
can now state that (i) blocking in summer has become
more prominent in recent years over the European con-
tinent, and (ii) this is due to a strong increase in omega
blocking which cannot be set off by a slight decrease
in high-over-low. Additionally, this distinction is an in-
teresting starting point for further research on blocking
mechanisms; Markov models provide a first small step
in this direction to describe onset and decay of as well
as transitions between the blocking types.

2. Do onset (formation), decay (offset) or transition proba-
bilities from one blocking type to another undergo long-
term changes? Do these changes depend on season or
month? Trends in annual transition probabilities show
an increase in the onset of omega patterns; other an-
nual transition probabilities have confidence intervals
that are compatible with constant values and should be
interpreted with care. Again, a breakdown into season-
ally resolved trends gives more robust results and shows
once more opposing trends for different seasons, which
are the reason for the weak annual signals. Most promi-
nent are trends in summer, with an increase in onset to
omega and an increase in transition from high-over-low
to omega accompanied by a decrease in the opposite di-
rection; persistence of omega increases until about 2010
and stagnates thereafter, accompanied by a slight decay
of the latter.

Our strategy to distinguish omega and high-over-low
blocking with subsequent logistic regression involving
Markov models can provide the basis for future studies to
investigate the dependence of onset and decay of blocking
on, for example, the North Atlantic Oscillation (NAO) in-
dex, temporal gradients in mid-latitude wind speeds, or the
speed and location of the jet that could influence the block-
ing process in Europe; see e.g., Luo et al. (2019) or Riboldi
et al. (2020), who show that periods of reduced Rossby wave
phase speed are systematically related to atmospheric block-
ing. Additionally, diabatic effects such as latent heat release
play an important role in blocking dynamics (Pfahl et al.,
2015; Steinfeld and Pfahl, 2019). Thus, studying this relation
with respect to different blocking types might be insightful.
Moreover, the authors suggest identifying blocking by means
of identifying and tracking the associated vortices in addi-
tion to the blocking identification based on indices. This can
be achieved, for example, based on the kinematic vorticity
number (Schielicke et al., 2016).

We finally conclude that distinguishing blocking types and
describing their occurrence and transition probabilities with
logistic regression combined with Markov models give valu-
able insight into the dynamics of atmospheric blocking and
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their changes for the Euro-Atlantic and potentially also for
other regions.
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