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We consider linear reaction systems with slow and fast reactions, which can be inter-
preted as master equations or Kolmogorov forward equations for Markov processes on
a finite state space. We investigate their limit behavior if the fast reaction rates tend
to infinity, which leads to a coarse-grained model where the fast reactions create micro-
scopically equilibrated clusters, while the exchange mass between the clusters occurs
on the slow time scale. Assuming detailed balance the reaction system can be written
as a gradient flow with respect to the relative entropy. Focusing on the physically rel-
evant cosh-type gradient structure we show how an effective limit gradient structure
can be rigorously derived and that the coarse-grained equation again has a cosh-type
gradient structure. We obtain the strongest version of convergence in the sense of the
Energy-Dissipation Principle (EDP), namely EDP-convergence with tilting.
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1. Introduction

Considering I ∈ N particles that interact linearly with each other with given rates

Aik, the evolution of the probability or concentration ci ∈ [0, 1] of a species i ∈
{1, . . . , I} =: I can be described by the master equation

ċ = Ac, (1.1)
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where A is the adjoint of the Markov generator L : RI → RI of the underlying

Markov process, i.e. A = L∗, see e.g. Refs. 9, 3 and 8 for more information. In

particular, this means Aki ≥ 0 for i �= k and
∑I
k=1 Aki = 0 for all i ∈ I. We

interpret the master equation as a rate equation defined on the state space

Q = Prob(I) :=
{
c ∈ [0, 1]I

∣∣∣ I∑
i=1

ci = 1

}
⊂ R

I .

In many applications, the number I of particles can be huge and the reaction

coefficients Aik may vary in a huge range. In such cases, the analysis or the numer-

ical treatment of system (1.1) is out of reach, and hence suitable simplifications

are necessary. One natural assumption is that reactions can happen with different

speeds. We will consider the case that the slow and fast reactions are distinguished,

the slow ones of order 1 and the fast ones of order 1/ε for a small parameter ε→ 0.

Hence, we decompose A = Aε into Aε = AS + 1
εA

F , “S” for slow and “F” for fast

reactions. Our equation then is ε-dependent and reads

ċε = Aεcε =

(
AS +

1

ε
AF

)
cε. (1.2)

The limit passage for ε→ 0 in linear and nonlinear slow-fast reaction systems is a

well-established field starting from pioneering work by Tikhonov41 and Fenichel.12

We refer to Refs. 4, 6 and 38 for modern approaches and to Ref. 19 for nonlinear

fast-slow reaction systems under the influence of stochastic fluctuations, see e.g.

Example 6.1 there for an mRNA-DNA system for I = 6 species with eight slow

reactions and two fast reactions.

While we repeat some of these arguments in Sec. 2, the main goal of this paper

is quite different. Our study is devoted to the associated gradient structures for

(1.2) and their limiting behavior for ε → 0. Gradient structures exist under the

additional assumption that the detailed-balance condition holds, means that there

exists a positive equilibrium state wε = (wεi )i∈I ∈ Q such that

detailed-balance condition (DBC): ∀ i, k ∈ I : Aεikw
ε
k = Aεkiw

ε
i . (1.3)

Following Refs. 25, 34 and 27, a gradient structure for a rate equation ċ = Vε(c)

on the state space Q means that there exist a differentiable energy functional Eε
and a dissipation potential Rε such that the rate equation can be generated as the

associated gradient-flow equation, namely

ċ = Vε(c) = DξR∗
ε(c,−DEε(c)) or equivalently 0 = DċRε(c, ċ) + DEε(c). (1.4)

Here Rε is called a dissipation potential if Rε(c, ·) : TcQ → [0,∞] is lower semicon-

tinuous and convex and satisfies Rε(c, 0) = 0. Then, R∗
ε is the (partial) Legendre–

Fenchel transform

R∗
ε(c, ξ) := sup

{
〈ξ, v〉 − Rε(c, v)

∣∣ v ∈ TcQ
}
.

For reaction systems of mass-action type (which includes all linear systems) sat-

isfying detailed balance, it was shown in Ref. 25 that an entropic gradient structure
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exists, i.e. Eε is the relative Boltzmann entropy EεBz(c) := H(c|wε) of c with respect

to wε, see Sec. 4.3.2. However, this fact was used implicitly in earlier works, see

e.g. Eq. (113) in Ref. 32 and Sec. VII in Ref. 42. For linear reaction systems, which

are master equations for Markov processes, a more general theory was developed

in Refs. 22 and 5 leading to a large class of possible gradient structures, see Sec. 3

and Sec. 2.5 in Ref. 23.

Here, we use the physically most natural gradient structure that has its origin

in the theory of large deviation, see Refs. 30 and 29. The dual dissipation potentials

R∗
ε(c, ·) : TcQ → R are not quadratic but rather exponential due to cosh terms,

namely

R∗
ε(c, ξ) =

1

2

∑
i<k

κεik
√
cickC

∗(ξi − ξk) with C∗(ζ) = 4 cosh(ζ/2)− 4 (1.5)

and κεik = Aεik
√
wεk/w

ε
i . The gradient structure (Q, EεBz,R∗

ε) exactly generates the

gradient-flow evolution (1.2), and we call it simply the cosh gradient structure. Note

that the dissipation potential v �→ Rε(c, v) is still superlinear, but grows only like

|v| log(1 + |v|). In particular, Rε does not induce a metric on Q.

This gradient structure is also in line with the first derivation of exponential

kinetic relations by Marcellin in 1915, see Ref. 24. Moreover, it arises as effective

gradient structure in EDP converging systems, see Refs. 20 and 14. In Ref. 15, it

is shown that the exponential function “cosh” arises due to the Boltzmann entropy

as inverse of the logarithm. For Lp-type entropies, the dual dissipation functional

R∗ will have a growth like |ξ|c0/(p−1).

Instead of passing to the limit ε → 0 in Eq. (1.2), our goal is to perform the

limit passage in the gradient system (Q, EεBz,R∗
ε) to obtain directly an effective

gradient system (Q, E0,R∗
eff) via the notion of EDP-convergence as introduced in

Refs. 20, 7 and 28. Roughly spoken this convergence asked for the Γ-convergence of

the energies, namely EεBz
Γ−→ E0 on Q, and for the dissipation functionals Dε

Γ−→ D0

on L2([0, T ];Q) with

Dε(c) =

∫ T

0

(
Rε(c, ċ) +R∗

ε(c,−DEε(c))
)
dt and

D0(c) =

∫ T

0

(
Reff(c, ċ) +R∗

eff(c,−DE0(c))
)
dt.

The notion of EDP-convergence produces a unique limit gradient system, and we

may have Rε
Γ−→ R0 while Reff �= R0, see Refs. 20 and 7. As a trivial consequence of

EDP-convergence we then find that 0 = DReff(c, ċ) + DE0(c) is the limit equation,

cf. Lemma 3.4.

We emphasize that constructing the limit equation ċ = V 0(c) for a family of

evolution equations ċ = V ε(c) depending on a small parameter ε → 0 is quite

different from our goal. In Fig. 1, this would mean to concentrate on the two

downward arrows on the right only. In general, an evolution equation may have
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gradient systems

(Q, Eε,Rε)

(Q, E0,Reff)

�
gradient-flow eqn.

ċ = ∂ξR∗
ε(c,−DEε(c)) = V ε(c) �

solutions

cε: [0, T ] → Q

ε
→

0

E
D
P

−→ � ⇀

� �ċ = ∂ξR∗
eff(c,−DE0(c)) = V 0(c) c0: [0, T ] → Q

Fig. 1. EDP-convergence leads to a commuting diagram, in particular EDP-convergence gen-
erates the correct limit equation ċ = V 0(c) and (subsequences of) the solutions cε converge to
solutions c0 of the limit equation. However, Reff provides information not contained in the limit
equation.

many gradient structures, and this is certainly true for the linear master equations

studied here. Thus, from knowing the limiting equation ċ = V 0(c) we cannot recover

a unique gradient structure (Q, E0,Reff).

Our philosophy is opposite: We consider the gradient structure (Q, Eε,Rε) asso-

ciated to ċ = V ε(c) as additional information that is not contained in the equation,

but of course they are compatible. Typically, the additional information is of ther-

modynamical nature and reflects the underlying microscopic properties of the model

that are no longer seen in the macroscopic model, see Refs. 30 and 29. In Ref. 35,

it is shown that the parabolic equation u̇ = uxx associates with different gradient

structures if one models diffusion or if one models heat transfer.

Thus, we turn around the usual limit analysis where one first works on the

gradient-flow equations (1.4) and the solutions cε : [0, T ] → Q, and then studies

gradient structures for the limit equations. As indicated in Fig. 1, EDP-convergence

works solely on the gradient systems and produces Reff as a nontrivial result, which

then gives the limit equation and the accumulation points c0 : [0, T ] → Q of the

solutions cε : [0, T ] → Q.

The choice of gradient structure for a given family of equations ċ = V ε(c)

may even be relevant for deriving the effective of limiting equation. Choosing the

gradient structures (Q, E(1)
ε ,R(1)

ε ) and (Q, E(1)
ε ,R(1)

ε ) we may have EDP convergence

to effective limits (Q, E(1)
0 ,R(1)

eff ) and (Q, E(2)
0 ,R(2)

eff ), such that the effective equations

ċ = V 0
(1)(c) = DξR(1)∗

eff

(
c,−DE(1)

0 (c)
)

and ċ = V 0
(2) = DξR(2)∗

eff

(
c,−DE(2)

0 (c)
)

give different dynamics. We refer to Sec. 3.3.5.2 in Ref. 27 for such a case.

In Sec. 3.3 in Ref. 20, an example of a simple linear reaction systems (with

I = 3) is considered, where it is shown that the cosh structure is distinguished by

the fact that it is the only one that is stable under EDP-convergence. It is one of our

major results that in our situation the same stability is true, i.e. EDP-convergence

yields a limit gradient structure of cosh-type again.

We now describe our results more precisely. We mainly work under the assump-

tion that our system (1.2) satisfies the DBC (1.3) for wε and assume that

wε → w0 ∈ ]0, 1[
I
, i.e. all components w0

i are positive. Then, clearly AF satisfies
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the DBC for w0. As is shown in Sec. 2, the fast reactions encoded in AF sepa-

rate I = {1, . . . , I} into J < I clusters, and we define a coarse graining operator

M ∈ RJ×I and a reconstruction operator N ∈ RI×J satisfying

MAF = 0 ∈ R
J×I , AFN = 0 ∈ R

I×J , and MN = idRJ .

The coarse graining operatorM satisfiesMji ∈ {0, 1} indicating whether the species
i belongs to the cluster j. The limit equation, which is derived in Theorem 2.9

independently of any EDP-convergence for clarity, then reads

Mċ(t) =MASc(t) and AF c(t) = 0. (1.6)

Although convergence of solutions of (1.2) is indeed well-known, we added a short

proof, as it shows similarities to the proof of EDP-convergence in using com-

plementary information to derive compactness. Using the coarse-grained states

ĉ(t) = Mc(t) ∈ Q̂ ⊂ RJ with probabilities ĉj(t) for the cluster j ∈ J one obtains

the coarse-grained linear reaction systems

˙̂c(t) = Â ĉ(t) with Â =MASN ∈ R
J×J . (1.7)

We refer to Sec. 2.4 for a detailed description and an interpretation of the coarse-

grained equation.

From the solutions ĉ we obtain all solutions of the limit equation (1.6) via c(t) =

Nĉ(t). In fact, setting ŵ := Mw0 ∈ ]0, 1[J and defining the diagonal mappings

Dw0 = diag(w0
i )i∈I and Dŵ = diag(ŵj)j∈J the reconstruction operator N is given

via N = Dw0M∗D−1
ŵ . The intrinsic definition of N becomes clear from duality

theory as Dw0 can be seen as a duality mapping from relative densities � ∈ (RI)∗

to concentrations c ∈ RI .

c ∈ RI � ∈ (RI)∗ ⊃M∗(RJ )∗

ĉ ∈ RJ �̂ ∈ (RJ)∗

D
−1
w0

M

D
−1
ŵ

N M∗

In Sec. 3, we discuss general gradient systems and define different notions of

EDP-convergence as in Refs. 7 and 28, while Sec. 4 recalls the different possible gra-

dient structures for linear reaction systems satisfying the DBC (1.3). In Sec. 4.4, we

address the important notion of tilting of Markov processes which means the change

of the equilibrium measure w into wη = 1
Z (e

−ηiwi)i∈I . It is another remarkable

feature of the cosh gradient structure that it is invariant under tilting (see Propo-

sition 4.1). Thus, the strong notion of EDP-convergence with tilting introduced in

Refs. 7 and 28 can only be shown for the cosh gradient structure.

In Sec. 5, we present our main result on the EDP-convergence with tilting of

the cosh-gradient systems (Q, EεBz,R∗
ε) defined via (1.5). While the Γ-convergence

EεBz
Γ−→ E0

Bz follows trivially from wε → w0, the Γ-convergence Dε
Γ−→ D0 in
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L2([0, T ],Q) is much more delicate. In fact, Theorem 5.3 even provides the Mosco-

convergence of Dε
M−→ D0, i.e. (i) the liminf estimate lim infε→0 Dε(c

ε) ≥ D0(c
0)

holds even under the weak convergence cε ⇀ c0 in L2([0, T ];Q) and (ii) for each

c0 ∈ L2([0, T ];Q) there exists a recovery sequence cε → c0 strongly(!) in L2([0, T ];Q)

such that lim supε→0 Dε(c
ε) ≤ D0(c

0).

The main point of the result is the exact characterization of Reff . Indeed, we

have

D0(c) =

⎧⎪⎨⎪⎩
∫ T

0

(
Reff(c, ċ) +R∗

eff(c,−DE0
Bz(c))

)
dt for c ∈ W1,1([0, 1];PQ),

∞ otherwise in L2([0, 1];Q),

where, for c ∈ PQ the effective dissipation potential Reff is given by

R∗
eff(c, ξ) = R∗

S(c, ξ) + χM∗(RJ )∗(ξ) or equivalently

Reff(c, v) = inf
z∈RI :Mz=Mv

RS(c, z).

Here P = NM is the projection mapping general c ∈ Q into microscopically equi-

librated reactions c = Nĉ with ĉ = Mc, and R∗
S is the dual dissipation potential

defined as in (1.5) but using only the slow reactions. Finally, the characteristic

function χΞ is 0 for ξ ∈ Ξ and ∞ else. The condition χΞ(−DE0
Bz(c)) <∞ is in fact

equivalent to c ∈ PQ, see Sec. 5.2.

It is easy to see that the degenerate gradient system (Q, E0
Bz,R∗

eff) generates

exactly the limit equation (1.6). Moreover, using the bijective linear mapping M :

PQ → Q̂ :=
{
ĉ ∈ [0, 1]J

∣∣ ĉ1 + · · · + ĉJ = 1
}
⊂ R

J with inverse N : Q̂ → PQ ⊂ R
I

we can define the coarse-grained gradient system (Q̂, Ê , R̂) for the coarse-grained

states ĉ =Mc via

Ê(ĉ) = E0
Bz(Nĉ), R̂(ĉ, v̂) = Reff(Nĉ,Nv̂), R̂∗(ĉ, ξ̂) = R∗

eff(Nĉ,M
∗ξ̂).

The construction and the explicit formula forR∗
eff yield that (Q̂, Ê , R̂) is again a cosh

gradient structure and the associated gradient-flow equation is the coarse-grained

equation (1.7), see Proposition 5.7.

This is indeed a rigorous coarse-graining in the sense of Sec. 6.1 in Ref. 23.

This paper is intended to be an easy-to-understand first approach to more general

results of EDP-convergence. In Ref. 31, we will cover nonlinear reaction systems,

for which the coarse-graining procedure based on Markov operators cannot work

and where the structure of the limiting equations will be more involved because of

nonlinear algebraic constraints. Moreover, reaction–diffusion systems are discussed

in Refs. 14 and 15. As already shown in Ref. 20, the cosh gradient structure may

appear automatically from quadratic diffusion models, and we expect that the cosh

gradient structure will also be stable in the more general situations in Ref. 39, where

also the reaction fluxes are coarse-grained and reconstructed.
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2. Fast-Slow Reaction Network

On Q := Prob(I) :=
{
c ∈ [0, 1]I

∣∣ ∑
i∈I ci = 1

}
⊂ X := RI we consider the

Kolmogorov forward equation or master equation

ċ = Ac with A ∈ R
I×I ,

where A is the adjoint of a Markov generator, i.e.

Aik ≥ 0 for all i �= k and ∀ k ∈ I : 0 =

I∑
i=1

Aik.

Some comments on the notation are in order. Usually, in the theory of Markov

operators and stochastic processes the state space is the set of probability measures

which is a subset of the dual space of continuous functions. So it would be more

convenient to denote the space of interest by X∗ and not X . Certainly, since we

are dealing with finite dimensional spaces, both are isomorphic and the notation

is just a question of manner. In that paper, the master equation is understood as

a rate equation of a gradient system in the sense of Sec. 3 which is an equation in

X . Strictly speaking, the operator A is the adjoint of a Markov generator L which

generates a semigroup of Markov operators etL : X∗ → X∗. By definition, a Markov

operator M∗ : X∗ → Y ∗ on a finite-dimensional state space maps positive vectors

on positive vectors and the constant one vector 11X∗ to a constant one vector 11Y ∗ .

Its adjoint maps the set of probability vectors onto the set of probability vectors.

The linear reactions given by A, naturally define a graph or reaction network,

where edges eik from node xi to node xk correspond to the entries Aik > 0. The

graph is directed, i.e. edges eik and eki are different and have an orientation. We

assume that A is irreducible, which means that the corresponding graph is irre-

ducible, or in other words, that any two nodes are connected via a directed path.

This implies that there is a unique steady state w ∈ Prob(I) which is positive, i.e.

wj > 0 for all j ∈ I, see e.g. Ref. 8.

The crucial assumption for our systems is the following symmetry condition.

The Markov process is said to satisfy the detailed-balance condition (DBC) with

respect to its stationary measure w > 0, if Aikwk = Akiwi for all i, k ∈ I. Assuming

detailed balance, the evolution equation ċ = Ac, which is an equation on X , can

also be written in another form. Let us introduce the duality operator

Dw = diag(w) :

{
X∗ → X,

� �→ c = Dw�
and X � c

D
−1
w−−→ � ∈ X∗.

Hence, Dw maps the relative densities � to the concentrations c, i.e. ci = �iwi. The

linear master equation can now be written as

ċ = B� with B = ADw.

Because of the DBC, B = ADw : X∗ → X is a symmetric operator on X , i.e.

B∗ = B.
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For our slow–fast systems, we introduce a scaling parameter 1/ε for ε > 0 and

the rates Aik on the right-hand side decompose into A = Aε = AS + 1
εA

F , where

“S” stands for slow and “F” for fast reactions. Our equation is ε-dependent and

reads

ċε = Aεcε =

(
AS +

1

ε
AF

)
cε. (2.1)

The aim of the paper is to investigate the system in the limit ε → 0. To do this,

some assumptions on the ε-dependent reaction network are needed.

2.1. Assumptions on the ε-dependency of the network

Our paper will be restricted to the case where the stationary measure wε ∈ Q

converges to a positive limit measure wε → w0 ∈ ]0, 1[
I
:

For all ε > 0, the reaction graph defined by Aε is connected.

Moreover, if there is a transition from state i to k (i.e. Aki > 0),

then there is also a transition backwards from k to i.

(2.2a)

For all ε > 0 there is a unique and positive stationary measure

wε ∈ Q, and the stationary measure converges wε → w0, where w0

is positive.

(2.2b)

(DBC): For all ε > 0 the detailed-balance condition with respect

to wε holds, i.e. Aεikw
ε
k = Aεkiw

ε
i for all i, k ∈ I. (2.2c)

These three conditions are not independent of each other, but it is practical to state

them as above. In particular, if (2.2a) and the DBC (2.2c) hold, then (2.2b) follow,

which is the content of the following results. See Ref. 37 and the references therein

for generalizations.

Proposition 2.1. Let the reaction network satisfy (2.2a) and (2.2c) and define,

for transitions according (2.2a), the transition quotients

qεik =
Aεik
Aεki

=
ASik +

1
εA

F
ik

ASki +
1
εA

F
ki

.

If there is a (universal) bound q∗ <∞ such that for all transitions from i to k and

for all ε ≥ 0 the transition quotients qεik satisfy 1/q∗ ≤ qεik ≤ q∗, then wε converges

and its limit w0 is positive, i.e. (2.2b) holds.

Proof. Using the DBC (2.2c), the stationary measure wε only depends on the

transition quotient qεik. Hence, each ε �→ wεi ∈ [0, 1] is a rational polynomial in ε

and thus converges to w0
i with w0 ∈ Q = Prob(I) with polynomial dependency on

ε > 0. Moreover, qεik = 1/qεki converges to q
0
ik ∈ [1/q∗, q∗]. Since the limit w0 again

depends only q0ik, we conclude that it is positive.

We now comment on the relevance of the above assumptions and give two non-

trivial examples.
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Remark 2.2. (a) In the chemical literature, our assumption (2.2a) is often called

(weak) reversibility. It implies already that the stationary measure wε for Aε

is unique and positive.

(b) The assumptions in Proposition 2.1 say that the quotients qεij are bounded even

for ε → 0 and hence, they converge. In particular, this means that if there

is a fast reaction AFik �= 0 then necessarily also the backward reaction is fast,

i.e. AFki �= 0. So, the graph does not change its topology in the limit process

ε→ 0. Without this assumption the mass wεi may vanish for some species i, see

Example 2.3(b). This case is more delicate and will be considered in subsequent

work.

(c) It was observed in Refs. 42 and 25 that reaction systems of mass-action type

have an entropic gradient structure, if the DBC holds. For linear reaction sys-

tems this was independently found in Refs. 22 and 5. However, our work will

not use the quadratic gradient structure derived in the latter works, but will

rely on the cosh-type generalized gradient structure derived in Refs. 30 and 29,

see Sec. 4.

(d) Assuming (2.2a), (2.2c), and additionally that the reaction quotients qεik scale

either with 1 or with 1/ε, i.e. AFik �= 0 ⇒ ASik = 0, then the transition quotients

qεik are ε-independent. In particular, the stationary measure wε as well as the

energy Eε (see Sec. 4.2) are independent of ε.

Example 2.3. We discuss two cases highlighting the relevance of our assumptions.

(a) A prototype example is the following, where four states are involved:

321 4

A1,2
A2,3

ε

A3,2

ε
A2,1 A4,3

A3,4

As in all reaction chains, this example satisfies the DBC (2.2c).

We observe that the reaction rates Aεik scale either with 1 or with 1/ε and

hence, the reaction ratios as well as the stationary measure do not depend on ε,

see Remark 2.2(d). Hence, the assumptions (2.2) are satisfied. We expect that

in the limit ε→ 0 a local equilibrium between the states 2 and 3 occurs, which

means that the system can be described by only three states.

ε = 0 1 {2, 3} 4

Â23,1 Â4,23

Â23,4Â1,23

(b) In Ref. 20, the authors considered the following reaction chain:
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ε > 0

21 3

2 2
ε

22
ε ε = 0

31

1

1

The DBC (2.2c) is again satisfied. The stationary measure is wε =
1

2+ε (1, ε, 1).

The transition quotients are qε12 = ε and qε23 = 1
ε , which converge to 0 or ∞,

respectively. Hence assumption (2.2b) is violated. In fact the limit stationary

measure is w0 = (12 , 0,
1
2 ), which is no longer strictly positive. In Sec. 3.3 in

Ref. 20, the EDP-convergence is performed for different gradient structures and

only the cosh-gradient structure as defined in Sec. 4.3.3 turned out to be stable.

2.2. Capturing the states connected by fast reactions

In the limit species which are connected by fast reactions have to be treated like one

large particle. Let i1 ∼F i2 denote the relation if states i1 and i2 are connected via

fast reactions. Assumptions (2.2a)–(2.2c) guarantee that ∼F defines an equivalence

relation on I and decomposes I into different equivalence classes J := {α1, . . . , αJ},
where the index of ∼F , i.e. the number of (different) equivalence classes, is denoted

by J . By definition all αj are non-empty. Obviously, we have 1 ≤ J ≤ I. In par-

ticular, J = I means that there are no fast reactions; J = 1 means that each two

species are connected via at least one reaction path consisting only of fast reac-

tions. Let φ : {1, . . . , I} → {α1, . . . , αJ} be the function, which maps a state i to

its equivalence class αj , i.e. i �→ φ(i) = [i]∼F = αj . To make notation simpler, we

denote the set of equivalence classes by J = {1, . . . , J} and further use j ∈ J and

i ∈ I.
The function φ : I → J defines a deterministic Markov operator M∗ : Y ∗ →

X∗, where Y ∗ is a J-dimensional real vector space, by

(M∗�̂)i := �̂φ(i), �̂ ∈ Y ∗, i ∈ I.

Deterministic Markov operator means that its dualM : X → Y maps pure concen-

trations, i.e. unit vectors ei, to pure concentrations.

Some facts on deterministic Markov operators are in order. Clearly for a deter-

ministic Markov operator it holds M∗(�̂ · ψ̂) =M∗�̂ ·M∗ψ̂ where the multiplication

is meant pointwise. (This, by the way, characterizes all deterministic Markov oper-

ator.) We want to write the multiplicative relation in form of operators. To do this

let us define the multiplication by �̂ as Π�̂ : Y ∗ → Y ∗, with (Π�̂ψ̂)j = �̂j · ψ̂j .
Hence, we conclude for a deterministic Markov operator that M∗Π�̂ = ΠM∗�̂M

∗.

Dualizing this equation, we get Π∗
�̂M = MΠ∗

M∗�̂. Note, that the adjoint operator

has a simple form: Π∗
�̂ : Y → Y , Π∗

�̂ĉ = Dĉ�̂. So summarizing

Π∗
�̂M =MΠ∗

M∗�̂ and Π∗
�̂ĉ = Dĉ�̂. (2.3)

In the limit process the species connected by fast reactions are identified. This is

done by a linear coarse-graining-operator, which is the adjoint of M∗, M : X → Y .
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In matrix representation induced by the canonical basis, we have

M : X ≈ R
I → Y ≈ R

J , Mji :=

{
1, for i ∈ αj ,

0, otherwise.
(2.4)

Note that the construction is such that M maps X ⊃ Prob(I) onto Y ⊃ Prob(J ).

Since for αj there is at least one i with i ∈ αj , the matrix of M has full rank and

each column is a unit vector. Moreover, we point out that M and M∗ only depend

on the reaction network topology and the locations of the fast reactions, the specific

reaction rates Aij do not matter (see Example 2.6).

2.3. Properties of the coarse-graining operator M

and the reconstruction operator N

Recall the duality map Dw0 , which is a represented by a diagonal matrix with

entries w0 > 0, connects the concentrations and the relative densities, i.e.

� ∈ X∗ Dw0−−→ c ∈ X.

The subset of X∗ which consists of the equilibrated densities �i is denoted by

X∗
eq, i.e.

X∗
eq :=

{
� ∈ X∗ ∣∣∀ i1 ∼F i2 : �i1 = �i2

}
.

For the limit system, we define the stationary measure (denoted by ŵ) by ŵ =Mw0.

SinceM∗ is a deterministic Markov operator, we have the following characterization

of the multiplication operator induced by ŵ.

Lemma 2.4. Let M∗ : Y ∗ → X∗ be a deterministic Markov operator induced by a

function φ : {1, . . . , I} → {1, . . . , J} and let w ∈ X. Then Mw = ŵ if and only if

Dŵ =MDwM
∗.

Proof. Assume that Dŵ = MDwM
∗ holds. Evaluating both sides at the constant

vector 11Y ∗ , we get Dŵ11Y ∗ = ŵ and MDwM
∗11Y ∗ =MDw11X∗ =Mw, since M∗ is

a Markov operator which maps 11Y ∗ �→ 11X∗ . This proves the claim in one direction.

Assume ŵ = Mw we have to show that DMw = MDwM
∗. We use statement

(2.3) for deterministic Markov operators and find DMw �̂ = Π∗
�̂Mw = MΠ∗

M∗�̂w =

MDwM
∗�̂.

If M∗ is not a deterministic Markov operator but a general one, then the above

relation will not hold.

We assumed that all equivalence classes αj are non-empty and hence, each row

of our coarse-graining operator M defined in (2.4) has at least one entry “1”. In
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particular, this implies that ŵ is strictly positive and hence, Dŵ is invertible. In

particular, we proved that the following diagram commutes:

c ∈ X � ∈ X∗ ⊃ X∗
eq =

{
� ∈ X∗ ∣∣ ∀ i1 ∼F i2 : �i1 = �i2

}
ĉ ∈ Y Y ∗

D
−1

w0

M

D
−1
ŵ

M∗

The crucial object is the following operator N : Y → X , which “inverts” the

coarse-graining operator M : X → Y , by mapping coarse-grained concentrations

ĉ ∈ Y to concentrations c ∈ X (see also Ref. 40, where the operator is introduced

for its connection to the direction of time). We call N a reconstruction operator as

it reconstructs the full information on the density c ∈ X from the coarse-grained

vector ĉ ∈ Y assuming, of course, microscopic equilibrium. More precisely, N is

defined via

N := Dw0M∗
D

−1
ŵ : Y → X such that N∗ = D

−1
ŵ MDw0 : X∗ → Y ∗. (2.5)

While the coarse-graining operator M simply merges the masses within the cor-

responding equivalence classes, the reconstruction operator N redistributes the

masses in each equivalence class proportional to the equilibrium measure. As a result

P = NM will be a projection from general states to states in local equilibrium.

These and other important properties of the operator M and N and their

adjoints M∗ and N∗ are summarized in the next proposition, which is independent

of the generators Aε = AS + 1
εA

F .

Proposition 2.5. Let M∗ : Y ∗ → X∗ be a deterministic Markov operator as in

Lemma 2.4 with adjoint M : X → Y and let ŵ :=Mw0 for some w0 ∈ ]0, 1[
I ⊂ Q.

Moreover, N and N∗ be defined as in (2.5), then the following holds:

(1) N∗ is a Markov operator.

(2) MN = idY or N∗M∗ = idY ∗ , i.e. N∗ is a left-inverse of the Markov operator

M∗.

(3) P := NM is a projection on X, which leaves the range of Dw0M∗ : Y ∗ → X

invariant. The adjoint M∗N∗ is a projection as well, which leaves the range of

M∗ invariant.

(4) Nŵ = w0, i.e. N inverts with respect to the stationary measure.

(5) The operator P ∗ =M∗N∗ is a Markov operator on X∗ and its adjoint P = NM

has the stationary measure w0. Moreover, P ∗ satisfies detailed balance with

respect to w0.

Proof. Clearly, N∗ is non-negative and N∗11X∗ = D
−1
ŵ MDw011X∗ = D

−1
ŵ Mw0 =

11Y ∗ holds. This proves the first statement.

Lemma 2.4 implies that MN = idY and that NM is a projection on X , which

leaves the range of Dw0M∗ : Y ∗ → X invariant. The fourth claim is also trivial. It
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is also not hard to see that P ∗ is a Markov operator and that its adjoint has the

stationary measure w0. Moreover, detailed balance holds:

Dw0P ∗ = Dw0M∗N∗ = Dw0M∗
D

−1
ŵ MDw0 = NMDw0 = PDw0 .

This proves the result.

The following example shows how the operators look like in a specific case.

Example 2.6. For the reaction network in Example 2.3(a) we have I = 4 with

only one fast reaction 2 ∼F 3, hence J = 3. Using the numbering α1 = {1},
α2 = {2, 3}, and α3 = {4} and the stationary measures w = (w1, w2, w3, w4)

� ∈ X

and ŵ = (w1, w2 + w3, w4)
� ∈ Y , respectively, we find

M =

⎛⎜⎜⎝
1 0 0 0

0 1 1 0

0 0 0 1

⎞⎟⎟⎠, N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0
w2

w2 + w3
0

0
w3

w2 + w3
0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and

P = NM =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0
w2

w2 + w3

w2

w2 + w3
0

0
w3

w2 + w3

w3

w2 + w3
0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

2.4. The limit equation and the coarse-grained equation

As a direct consequence of Proposition 2.5 we obtain a decomposition of the state

space X ≈ RI into the microscopically equilibrated states

c = Pc ∈ Qeq := PQ ⊂ Xeq := PX =
{
c ∈ X

∣∣AF c = 0
}
,

which are measures having constant density with respect to w0, and the component

(I − P )c ∈ Xfast := (I − P )X that disappears exponentially on the time scale of

the fast reactions. We emphasize that the following result does not use the DBC

(2.2c).

Proposition 2.7. Under the assumptions (2.2a)-(2.2b) we have

PAF = AFP = 0 ∈ R
I×I , MAF = 0 ∈ R

J×I , AFN = 0 ∈ R
I×J , (2.6a)

X = Xeq ⊕Xfast with (2.6b)

Xeq = ker(AF ) = range(P ) = range(N) and (2.6c)

Xfast = range(AF ) = ker(P ) = ker(M). (2.6d)
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Here, Xfast depends on M only, i.e. only on the reaction graph of AF , whereas Xeq

depends on AS and AF through w0.

Proof. By construction of M from the reaction network induced by AF we imme-

diately obtain range(AF ) = ker(M). Indeed, the entries of M are all 0 or 1, where

the jth row contains only the entry 1 exactly for i ∈ α(j). Thus, these 1s correspond

to the mass conservation in the corresponding equivalence class α(j) ⊂ {1, . . . , I},
and MAF = 0 follows, which implies range(AF ) ⊂ ker(M). Dimension counting

gives the desired equality.

Using the injectivity of N and P = NM we have shown (2.6d).

To establish the relation for Xeq it suffices to show ker(AF ) = range(N), since

the surjectivity of M and P = NM gives range(N) = range(P ).

Using the dimension counting it is even sufficient to show AFN = 0. Firstly, we

use 0 = Aεwε = (AS + 1
εA

F )wε, which gives AFwε → 0, and hence AFw0 = 0.

Moreover, we observe that the jth column of N = Dw0M∗Dŵ contains the unique

equilibrium measure associated with the equivalence class α(j) ⊂ {1, . . . , I}, which
implies that AFN = 0.

Based on the above result we can formally pass to the limit in our linear reaction

system ċε = (AS + 1
εA

F )cε. Multiplying the equation from the left by M we can

use MAF = 0 and see that the term of order 1
ε disappears. Moreover, it is expected

that the fast reactions equilibrate, so in the limit ε→ 0 we expect the microscopic

equilibrium condition AF cε → 0. Hence, we expect that cε : [0, T ] → Q converges

to a function c0 : [0, T ] → Q which solves the limit equation

Mċ(t) =MASc(t) and AF c(t) = 0. (2.7)

Before giving a proof for the convergence cε → c we want state that this system has a

unique solution for each initial condition c(0) that is compatible, i.e. AF c(0) = 0 and

that this solution is characterized by solving the so-called coarse-grained equation.

Theorem 2.8. (Coarse-grained equation) For each c0 ∈ Q with AF c0 = 0 there is

a unique continuous solution c : [0, T ] → Q of (2.7) with c(0) = c0. This solution

is obtained by solving the coarse-grained ODE

˙̂c =MASNĉ, ĉ(0) =Mc0 (2.8)

and setting c(t) = Nĉ(t). Moreover, the stationary solution is ŵ =Mw0.

Proof. On the one hand, by (2.6c) we know that AF c = 0 is equivalent to c =

Pc = NMc. Thus, for any solution c of (2.7) the coarse-grained state ĉ = Mc

satisfies the coarse-grained equation (2.8).

On the other hand, (2.8) is a linear ODE in Q̂ ⊂ Y which has a unique solution

satisfying ĉ(t) ∈ Q̂. This proves the first result.

To see that ŵ = Mw0 is a stationary measure, we use AFw0 = 0 and (2.6b)

implies Pw0 = w0. On the other hand using MAF = 0 we can pass to the limit in
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0 = M0 = MAεwε = MASwε to obtain MASw0 = 0. Combining the two results

we find

Âŵ =MASN(Mw0) =MAS Pw0 =MASw0 = 0,

which is the desired result.

We emphasize that the coarse-grained equation (2.8) is again a linear reaction

system, describing the master equation for a Markov process on J = {1, . . . , J}.
The effective operator Â := MASN can be interpreted in the following way: N

divides the coarse-grained states into microscopically equilibrated states, AS is the

part of the slow reactions, and M collects the states according to their equivalence

classes α(j).

Using Mji = δjφ(i) and Nij =
w0

i

ŵj
δjφ(i) the coefficients of the generator Â =

MASN are easily obtained by a suitable average, namely

Âj1j2 =
∑
i1∈αj1

∑
i2∈αj2

ASi1i2
w0
i2

ŵj2
. (2.9)

2.5. Convergence of solutions on the level of the ODE

Finally, for mathematical completeness, we provide a simple and short convergence

proof. It can also be obtained as a special case of the result in Ref. 4. Of course, the

convergence of solutions is also a byproduct of the EDP-convergence given below,

see Lemma 3.4. The latter result, which is the main goal of this work, provides

convergence of the gradient structures, which is a significantly stronger concept,

because the coarse-grained equation (2.8) has many different gradient structures,

while the EDP-limit is unique.

Theorem 2.9. (Convergence of cε to c0) Assume (2.2) and consider solutions

cε : [0, T ] → Q of (1.2) such that Mcε(0) → ĉ0. Then, we have the convergences

Mcε →Mc0 in C0([0, T ];X) and cε → c0 in L2([0, T ];X),

where c0 is the unique solution of (2.7) with c0(0) = Nĉ0.

Proof. Step 1: Weak compactness. We first observe that cε : [0, T ] → Q ⊂
[0, 1]I provides a trivial a priori bound for cε in L∞([0, T ];RI). Hence, we may

choose a subsequence (not relabeled) such that cε → c0 weakly in L2([0, T ];RI).

Step 2: Compactness of coarse-grained concentrations. With Step 1 we see

that âε := Mcε is bounded in CLip([0, T ];RI), because of ˙̂aε = Mċε = MAScε.

Thus, there is a subsequence (not relabeled) such that âε → â0 in C0([0, T ];RJ)

and â0(0) = ĉ0. Moreover, with Step 1 we have â0 =Mc0.
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Step 3: Generation of microscopic equilibrium. We take the dot product of

the ODE with the vector of relative densities cε/wε := (cεi /w
ε
i )i=1,...,I . Defining the

quadratic form Bε(c) =
∑I

i=1
c2i
2wε

i
we obtain

d

dt
Bε(cε) = ċε · c

ε

wε
= (Aεcε) · c

ε

wε

=
1

ε
(Bεcε) · cε with εD−1

wεAε =: Bε = (Bε)∗ ≥ 0. (2.10)

The latter relations follow from the DBC (2.2c). Defining the quadratic functional

Qε(c) :=
∫ T
0 Bεc(t) · c(t)dt and integrating (2.10) over [0, T ] gives

Qε(c
ε) = εB(cε(0))− εB(cε(T )) ≤ C1ε.

Moreover, using |wε − w0| ≤ C2ε we find |Qε(c) −Q0(c)| ≤ C3ε. Hence Q0(c
ε) ≤

Qε(c
ε)+C3ε ≤ C1ε+C3ε. Using the convexity of Q0 the weak limit c0 of cε satisfies

0 ≤ Q0(c
0) ≤ lim inf

ε→0
Q0(c

ε) ≤ lim inf
ε→0

(C1 + C3)ε = 0.

Since B0 = D
−1
w0A

F is symmetric and positive semidefinite we conclude AF c0(t) = 0

a.e. in [0, T ]. More precisely, by (2.6d) c �→ (B0c · c)1/2 defines a norm on Xfast

that is equivalent to c �→ |(I − P )c|. Thus, we conclude (I − P )cε → (I − P )c0.

Moreover, Step 2 gives Pcε = NMcε = Nâε → NMc0 = Pc0 such that cε → c0 in

L2([0, T ;RI) follows.

Step 4. Limit passage in the ODE. To see that c0 satisfies the limit equation

(2.7) we pass to the limit in

Mcε(t) =Mcε(0) +

∫ t

0

MAScε(s)ds,

where the left-hand side converges by Step 2, and the right-hand side converges

by the assumption on the initial condition, by Step 3, and Lebesgue’s dominated

convergence theorem. Thus,Mc0(t) =Mc0(0)+
∫ t
0 MASc0(s)ds, and with AF c0 =

0 from Step 3 the desired limit equation (2.7) is established.

As we already know that the solution of (2.7) is unique, we conclude convergence

of the whole family (cε)ε>0, instead of a subsequence only.

In the above proof the DBC (2.2c) is not really necessary, but it simplified our

proof considerably.

3. Generalized Gradient Structures

This small section provides the general notions of gradient systems, gradient-flow

equations, the energy-dissipation principle (EDP), and the three notions of EDP

convergence. We follow the survey paper27 and the more recent works.7,28
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3.1. Gradient systems and the energy-dissipation principle

A triple (Q, E ,R) is called a gradient system if

• Q is a closed convex subset of a Banach space X ,

• E : Q → R∞ := R ∪ {∞} is a differentiable functional (e.g. free energy, negative

entropy)

• R : Q × X → R∞ is a dissipation potential, i.e. for all u ∈ Q the functional

R(u, ·) : X → R∞ is lower semicontinuous (lsc), nonnegative, convex and satisfies

R(u, 0) = 0.

(More general, Q can be a manifold, then R is defined on the tangent bundle TQ,

but this generalization is not needed in this work.) A gradient system (Q, E ,R) is

called classical ifR(u, ·) is quadratic, i.e. if there are symmetric and positive definite

operators G(u) : X → X∗ such that R(u, v) = 1
2 〈G(u)v, v〉. But often R(u, ·)

is not quadratic (e.g. for rate-independent processes such as elastoplasticity), see

Ref. 27 and reference therein. We define the dual dissipation potential R∗ using the

Legendre transform via

R∗(u, ξ) = (R(u, ·))∗(ξ) := sup
{
〈ξ, v〉 − R(u, v)

∣∣ v ∈ X
}
.

The gradient system is uniquely described by (Q, E ,R) or, equivalently by

(Q, E ,R∗) and, in particular, in this paper we prefer the second representation.

The evolution of the states u(t) in a gradient system is given in terms of the

so-called gradient-flow equation that is given in terms of E and R and can be

formulated in three equivalent ways:

(I) force balance in X∗. 0 ∈ ∂u̇R(u, u̇) + DE(u) ∈ X∗,

(II) power balance in R. R(u, u̇) +R∗(u,−DE(u)) = −〈DE(u), u̇〉,

(III) rate equation in X. u̇ ∈ ∂ξR∗(u,−DE(u)) ∈ X,

(3.1)

where ∂ is the set-valued partial subdifferential with respect to the second variable.

In general, we cannot expect that the solution of the gradient-flow equation

fill the whole state space. Clearly, along solutions we want to have E(u(t)) < ∞
for t > 0. Moreover, relation (III) asks that −DE(u(t)) lies in the domain of

∂ξR∗(u(t), ·) for a.a. t ∈ [0, T ]. Thus, we set

Dom(Q, E ,R) :=
{
u ∈ Q

∣∣DE(u) exists, ∂ξR∗(u,−DE(u)) is nonempty
}
. (3.2)

Typically, one expects that solutions exist for all initial conditions in the closure of

Dom(Q, E ,R).

These three formulations are the same due to the so-called Fenchel equivalences

(cf. Ref. 11): Let Z be a reflexive Banach space and Ψ : Z → R∞ be a proper,

convex and lsc, then for every all pairs (v, ξ) ∈ Z×Z∗ the following holds:

(i) ξ ∈ ∂Ψ(v) ⇐⇒ (ii) Ψ(v) + Ψ∗(ξ) = 〈ξ, v〉 ⇐⇒ (iii) v ∈ ∂Ψ∗(ξ).
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We emphasize that (ii) and (II) should be seen as scalar optimality conditions,

because the definition of the Legendre transform easily gives the Young–Fenchel

inequality, namely Ψ(v) + Ψ∗(ξ) ≥ 〈ξ, v〉 for all (v, ξ) ∈ Z×Z∗.

Integrating the power balance (II) in (3.1) over [0, T ] along a solution u :

[0, T ] → Q and using the chain rule 〈DE(u(t)), u̇(t)〉 = d
dtE(u(t)) we find the Energy-

Dissipation Balance (EDB):

E(u(T )) +
∫ T

0

(
R(u(t), u̇(t)) +R∗(u(t),−DE(u(t)))

)
dt = E(u(0)). (3.3)

The following Energy-Dissipation Principle (EDP) states that solving (3.3) is equiv-

alent to solving the gradient-flow equation (3.1).

Theorem 3.1. (Energy-dissipation principle, see e.g. Theorem 3.2 in Ref. 27)

Assume that Q is a closed convex subset of X = RI , that E ∈ C1(Q,R), and that

the dissipation potential R(u, ·) is superlinear uniformly in u ∈ Q. Then, a function

u ∈ W1,1([0, T ];Q) is a solution of the gradient-flow equation (3.1) if and only if u

solves the energy-dissipation balance (3.3).

Again, the EDB is an optimality condition, because integrating the Young–

Fenchel inequality for arbitrary ũ ∈ W1,1([0, T ];Q) and using the chain rule we

obtain the estimate

E(ũ(T )) +
∫ T

0

(
R(ũ(t), ˙̃u(t)) +R∗(ũ(t),−DE(ũ(t)))

)
dt ≥ E(ũ(0)). (3.4)

The above considerations show that an important quantity associated with a

gradient system (Q, E ,R) is given by the dissipation functional

D(u) :=

∫ T

0

(
R(u(t), u̇(t)) +R∗(u(t),−DE(u(t))

))
dt,

which is defined for all curves u ∈ W1,1([0, T ];Q).

3.2. General gradient systems and EDP-convergence

In the following, we consider a family of gradient systems (X, Eε,Rε) and define a

notion of convergence on the level of gradient systems which uniquely defines the

limit or effective system (Q, E0,Reff). Our notion relies on the energy-dissipation

principle from above and the so-called sequential Γ-convergence for functionals,

which is defined as follows.

Definition 3.2. (Γ-convergence, see e.g. Ref. 1) For functionals (Iε)ε>0 on a

Banach space Z we say Iε (strongly) Γ-converges to I, and write Iε
Γ−→ I, if the

following two conditions hold:

(1) Liminf estimate.

if uε → u in Z, then I(u) ≤ lim infε→0 Iε(uε),
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(2) Existence of recovery sequences.

for all ũ ∈ Z there exists (ũε)ε>0 such that ũε → ũ and limε→0 Iε(ũε) = I(ũ).

If the same conditions hold when the strong convergences “→” are replaced by

weak convergences “⇀”, we say that Iε weakly Γ-converges to I and write Iε
Γ
⇀ I.

If Iε
Γ
⇀ I and Iε

Γ−→ I hold, we say that Iε Mosco converges to I and write Iε
M−→ I.

Clearly, for finite-dimensional Banach spaces Z the convergences
Γ−→,

Γ
⇀, and

M−→
coincide.

The energy dissipation principle allows us to formulate the gradient-flow equa-

tion in terms of the two functionals Eε andDε. However, to explore the full structure

of gradient systems it is useful to embed the given gradient system into a family of

tilted gradient systems (Q, Eη,R), where the tilted energies Eη are given by

Eη(u) = E(u)− �η(u) with �η(u) := 〈η, u〉 (3.5)

with an arbitrary tilt η ∈ X∗. Moreover, introducing the tilted dissipation functional

Dη
ε(u) :=

∫ T

0

(
Rε(u, u̇) +R∗

ε(u, η −DEε(u))
)
dt, (3.6)

we can now define three versions of EDP-convergence for a family ((Q, Eε,Rε))ε>0

as follows.

Definition 3.3. (EDP-convergence, cf. Refs. 7 and 28) Let Q be a closed convex

subset of a Banach space X and let Eε be Gateaux differentiable.

(A) We say that the gradient systems (Q, Eε,Rε)ε>0 converge in the simple EDP

sense to (Q, E0,Reff), and write (Q, Eε,Rε)
EDP−−−→ (Q, E0,Reff), if the following

conditions hold:

(i) Eε Γ
⇀ E0 on Q ⊂ X , and

(ii) Dε
Γ
⇀ D0 on L2([0, T ];Q) with D0(u) =

∫ T
0
(Reff(u, u̇) +R∗

eff(u,−DE0(u)))dt.

(B) We say that (Q, Eε,Rε) EDP-converges with tilting to (Q, E0,Reff), if for all

η ∈ X∗ we have (Q, Eε − �η,Rε)
EDP−−−→ (Q, E0 − �η,Reff).

(C) We say that (Q, Eε,Rε) contact EDP-converges with tilting to (Q, E0,Reff), if

(i) holds and for all η ∈ X∗ we have Dη
ε

Γ
⇀ Dη

0 with Dη
0(u) =

∫ T
0
M(u(t), u̇(t), η −

DE0(u(t)))dt, where M satisfies the contact conditions

(c1) M(u, v, ξ) ≥ 〈ξ, v〉 for all (v, ξ) ∈ X×X∗,

(c2) M(u, v, ξ) = 〈ξ, v〉 ⇐⇒ Reff(u, v) +R∗
eff(u, ξ) = 〈ξ, v〉.

Clearly, “tilted EDP-convergence” is a stronger notion than “contact EDP-

convergence” since the contact potential M is explicitly given in R+R∗ form. We

refer to Refs. 7 and 28 for a general discussions of EDP-convergence and remark that

“contact EDP-convergence with tilting” was called “relaxed EDP-convergence” in

Ref. 7. We emphasize that there are cases where we have the Γ (or even Mosco)
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convergence Rε → R0, but EDP-convergence yields Reff �= R0. In general, EDP-

convergence allows for effective dissipation potentials Reff that inherit properties

of the family (Eε)ε>0.

The most important feature of the three different notions of EDP-convergence

is that the effective gradient system is uniquely determined through the family

(Q, Eε,Rε). This is a much stronger statement than the one obtained by the clas-

sical approach, where the effective or limiting equation is derived first and then a

gradient structure is constructed afterwards. Obviously, uniqueness cannot guar-

anteed because one equation may have several gradient structures. We also refer

to Sec. 3.3.5.2 in Ref. 27, where for one family of evolution equations two differ-

ent gradient structures are considered such that the EDP-limit exists and but is

different.

A further interesting observation is that the notion of EDP-convergence does not

involve the solutions of the associated gradient-flow equation. This may look like

an advantage, since solutions need not be characterized, however typically showing

EDP-convergence is at least as difficult. Another important feature is that EDP-

convergence automatically implies the convergence of the corresponding solutions

uε of the gradient-flow equations to the solutions of the effective equation

0 ∈ ∂vReff(u(t), u̇(t)) + DE0(u(t)) for a.a. t ∈ [0, T ]. (3.7)

Lemma 3.4. Let the assumption of Theorem 3.1 be satisfied for all ε ≥ 0. Assume

that the gradient systems (Q; Eε,Rε) EDP-converge to (Q, E0,Reff) in one of the

three senses of Definition 3.3, then the following holds. If uε : [0, T ] → Q are solu-

tions for (3.1) and u : [0, T ] → Q is such that

uε(0) → u(0), Eε(uε(0)) → E0(u(0)), and uε(t)⇀ u(t) in X for t ∈ [0, T ],

then u ∈ W1,1([0, T ];X) and it is a solution of the gradient-flow equation (3.7).

Proof. By Theorem 3.1 we know that the EDB (3.3) holds for uε as solutions for

the gradient system (Q, Eε,Rε). Using the liminf estimates for Eε(uε(t)) and for

D0
ε(u

ε) and the convergence of Eε(uε(0)), we obtain

E0(u(T )) +
∫ T

0

(
Reff(u(t), u̇(t)) +R∗

eff(u(t),−DE0(u(t)))
)
dt ≤ E0(u(0)). (3.8)

Together with (3.4) and the EDP in Theorem 3.1 we see that u solves (3.7).

4. Gradient Structures for Linear Reaction Systems

In this section, we discuss several gradient structures for linear reaction systems

satisfying the detailed balance condition. Moreover, following the theory of Markov

processes we define a natural way of tilting such systems in such a way that a

new global equilibrium state w arises. This will show that the entropic gradient

structure with cosh-type dual dissipation plays a distinguished role.
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4.1. A special representation for generators

We start from a general linear reaction system with the finite index space I :=

{1, . . . , I}. On the state space Q = Prob(I) we consider the general linear reaction

system

ċ = Ac where Ain ≥ 0 for i �= n and
I∑
i=1

Ain = 0 for all n ∈ I. (4.1)

Throughout we assume that there exists a positive equilibrium state w ∈ Q, i.e.

Aw = 0 and wi > 0 for all i ∈ I. At this stage we do not need the detailed-balance

condition.

As we later want to change the equilibrium state w (and hence also the generator

A) we write A in a specific form, namely

A = D
1/2
w KD

−1/2
w − Db with K = (κin) ∈ R

I×I and b ∈ R
I given by

κin = Ain

(
wn
wi

)1/2

> 0 for i �= n, κii = 0, and

bi = −Aii =
I∑

n=1

κni

(
wn
wi

)1/2

> 0.

(4.2)

This representation is useful, because we can keep K fixed, while varying w to

obtain Markov generators A = Aw,K such that Aw,Kw = 0.

Assuming the DBC again, Eq. (4.1) can be written in the symmetric form

ċn =
∑
i: i�=n

κni

((
wn
wi

)1/2

ci −
(
wi
wn

)1/2

cn

)
for n ∈ I. (4.3)

Moreover, we see that A and w satisfy the DBC Ainwn = Aniwi if and only if

K is symmetric. Thus, fixing a symmetric K and changing w does automatically

generate the DBC for AK,w and w.

4.2. A general class of gradient structures

We now assume the DBC ADw = (ADw)
∗ or equivalently K = K∗ in (4.2) and

discuss a general class of gradient structures for (4.1) following the general approach

in Sec. 2.5 in Ref. 23.

Let Φ : [0,∞[ → [0,∞[ and Ψin : R → [0,∞[ for 1 ≤ i < n ≤ I be lower semi-

continuous and strictly convex C2 functions such that Ψin(0) = 0 and Ψ′′
in(0) > 0.

We search for a gradient system (Q, E ,R∗) with an energy functional E and a dual

dissipation potential in the form

E(c) =
I∑
i=1

wi Φ

(
ci
wi

)
and R∗(c, ξ) =

I−1∑
i=1

I∑
n=i+1

ain(c)Ψin(ξi − ξn),
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where the coefficient functions ain must be chosen appropriately, but need to be

nonnegative to guarantee that R∗(c, ·) is a dissipation potential.

With ∂ξnR∗(c, ξ) =
∑I
k=n+1 ank(c)Ψ

′
nk(ξn− ξk)−

∑n−1
i=1 ain(c)Ψ

′
in(ξi− ξn) and

DE(c) = (Φ′( ckwk
))k we find the relation

∂ξnR∗(c,−DE(c)) =
I∑

i=n+1

ani(c)Ψ
′
ni

(
Φ′
(
ci
wi

)
− Φ′

(
cn
wn

))

−
n−1∑
i=1

ain(c)Ψ
′
in

(
Φ′
(
cn
wn

)
− Φ′

(
ci
wi

))
.

Thus, the equations ċn = ∂ξnR∗(c,−DE(c)) are the same as in (4.3), provided we

choose the coefficient functions ain as

ani(c) :=
κni

√
wnwi

(
ci
wi

− cn
wn

)
Ψ′
ni

(
Φ′
(
ci
wi

)
− Φ′

(
cn
wn

)) for
ci
wi

�= cn
wn

and

ani(c) :=
κni

√
wnwi

Ψ′′
ni(0)Φ

′′
(
ci
wi

) for
ci
wi

=
cn
wn

(4.4)

and exploit the DBC κin = κni. We also emphasize that Φ′ is strictly increasing

such that ci
wi

− cn
wn

and Φ′( ciwi
) − Φ′( cnwn

) always have the same sign. Since Ψ′(ζ)

and ζ also always have the same sign, we conclude that ain(c) ≥ 0 as desired for

dissipation potentials.

As the choice of entropy functional density Φ and of the dual dissipation poten-

tials Ψin is general quite arbitrary we see that we can generate a whole zoo of

different gradient structures for (4.1) or (4.3). The following choices relate to situa-

tion where all Ψin are given by one function Ψ, but more general cases are possible.

From the construction it is clear that R∗ is linear in the generator A, i.e. if

A = A1 +A2 and the equilibrium w is fixed, then R∗ = R∗
A1 +R∗

A2 where R∗
Am is

constructed as above.

4.3. Some specific gradient structures for linear reaction systems

We now realize special choices for the general gradient structures in the previous

subsection. These choices are singled out because they lead to natural entropy

functionals and relatively simple coefficient functions ain in (4.4).

4.3.1. Quadratic energy and dissipation

The quadratic gradient structure is given by quadratic energy and dissipation, i.e.

Φquad(�) =
1

2
�2 and Ψquad(ζ) =

1

2
ζ2.
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The coefficient functions are constant and read ain(c) = κin
√
wiwn. Thus, we find

Equad(c) =
1

2

I∑
i=1

c2i
wi

and

R∗
quad(c, ξ) =

1

2

I−1∑
i=1

I∑
n=i+1

κin
√
wiwn(ξi − ξn)

2 =
1

2
〈ξ,Kquadξ〉.

In this case the dual dissipation functional does not depend on the concentration

c ∈ Q, which means that the equation ċ = Ac = −KDE(c) can be treated as a self-

adjoint linear evolution problem in the Hilbert space with the norm induced by R.

This leads to the classical Hilbert space approach for reversible Markov operators.

4.3.2. Boltzmann entropy and quadratic dissipation

The quadratic-entropic gradient structure is defined by the choices

ΦBoltzmann(�) = λBz(�) := � log �− �+ 1 and Ψquad(ζ) =
1

2
ζ2.

This gradient structure was first introduced in Refs. 25, 22, 10, 5 and 26 as a possible

generalization of Otto’s gradient structure for the Fokker–Planck and more general

diffusion equations equation, cf. Refs. 18 and 33. However, similar structures also

appear earlier in the physics literature, see e.g. Eq. (113) in Ref. 32.

The associated entropy is Boltzmann’s relative entropy and, using the logarith-

mic mean Λ(a, b) =
∫ 1

0
asb1−sd s = a−b

log a−log b , the dual dissipation potential R∗

reads

EBz(c) =

I∑
i=1

wiλBz

(
ci
wi

)
and

R∗(c, ξ) =
1

2

I−1∑
i=1

I∑
n=i+1

κin
√
wiwn Λ

(
ci
wi
,
cn
wn

)
(ξi − ξn)

2.

Again R∗ is quadratic in ξ but now also depends nontrivially on c ∈ Q, viz.

R∗(c, ξ) = 1
2 〈ξ,KBz(c)ξ〉. This means that Q can be equipped with the Riemannian

metric induced by R, see Ref. 22.

Note that KBz(w) = Kquad and Equad(c) = 1
2D

2EBz(w)[c, c], which is the desired

compatibility under linearization at c = w.

4.3.3. Boltzmann entropy and cosh-type dissipation

The following, so-called entropic cosh-type gradient structure, was derived via a

large-deviation principle from an interacting particle system in Refs. 30 and 29. We

refer to Marcellin’s PhD thesis24 from 1915 for a historical, first physical derivation

of exponential kinetic relations in the context of Boltzmann statistics. Only little of
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this important result penetrated into the main stream thermomechanical modeling

of reaction systems, see Item iii on p. 77 and Eq. (69) in Ref. 16 for a discussion.

For this gradient structure the choices are

ΦBoltzmann(�) = λBz(�) := � log �− �+ 1 and

Ψcosh(ζ) = C∗(ζ) := 4 cosh

(
ζ

2

)
− 4,

giving Boltzmann’s relative entropy EBz and the cosh-type dual dissipation

potential:

EBz(c) :=

I∑
i=1

wiλBz

(
ci
wi

)
and

R∗
cosh(c, ξ) =

I−1∑
i=1

I∑
n=i+1

κin
√
cicn C∗(ξi − ξn). (4.5)

The especially simple form of the coefficient functions arises from the interaction

of the cosh function with the Boltzmann function λBz, namely

C∗′(λ′Bz(p)− λ′Bz(q)
)
= 2 sinh

(
log

√
p/q

)
=
√
p/q −

√
q/p =

p− q
√
pq
.

With this we easily find the simple formula ain(c) = κin
√
cicn.

Because of the close connection between the cosh-type function C∗ and the Boltz-

mann function λBz, it is obvious that using C
∗ means that we also use the Boltzmann

entropy. Hence, it will not lead to confusion if we simply call (Q, EBz,Rcosh) the cosh

gradient structure. Again, the quadratic gradient structure in Sec. 4.3.1 is obtained

by linearization:

Equad(c) =
1

2
D2EBz(w)[c, c] and Kquad = D2

ξR∗
cosh(w, 0).

4.4. Tilting of Markov processes

Tilting, also called exponential tilting, is a standard procedure in stochastics (in

particular in the theory of large deviations) to change the dynamics of a Markov

process in a controlled way. In particular, the equilibrium measure w is changed

into another one, let us say w̃. For more motivation and theory we refer to Ref. 28

and the references therein.

Defining two entropy functionals, namely the Boltzmann entropies for w and w̃,

EBz(c) =

I∑
i=1

wiλBz

(
ci
wi

)
and ẼBz(c) =

I∑
i=1

w̃iλBz

(
ci
w̃i

)
the special structure of λBz leads to the relation

ẼBz(c) = EBz(c)− 〈η, c〉 with η = (log(w̃i/wi))i∈I .
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Thus, we see that a change of the equilibrium measure leads to a tilt in the sense

of (3.5) for the entropy. Moreover, for every tilt η ∈ X∗ there is a unique new

equilibrium state wη, namely the minimizer of c �→ Eη(c) = EBz(c) − 〈η, c〉. We

easily find

wηi =
1

Z
e−ηiwi with Z =

I∑
n=1

e−ηnwn.

This explains the name “exponential tilting”.

For a time-dependent linear reaction systems the tilting is defined in a consistent

way, namely using the representation (4.2). Given ċ = Ac with positive equilibrium

w and a tilt η we first construct the equilibrium wη and then, using K = (κin) from

(4.2), we define the evolution

ċ = Aηc with Aη := D
1/2
wη KD

−1/2
wη − Dbη . (4.6)

One of the important observations in Ref. 28 is that the cosh gradient struc-

ture is invariant under tilting, i.e. the dissipation potential does not change if the

Boltzmann entropy is tilted. This can now be formulated as follows:

Aηc = DξR∗
cosh(c,−DEη(c)). (4.7)

This relation can easily checked by noting that (4.6) has the form (4.3), where now

w is replaced by wη. But Eη is exactly the relative entropy with respect to wη such

that the results in Sec. 4.3.3 yield identity (4.7).

Using the formula (4.4) for ain(c) we can find all possible gradient structures

in terms of Φ and Ψin such that the ain(c) is independent for w. The result shows

that, up to a trivial scaling, the only tilt-invariant gradient structures in the form

of Sec. 4.2 are given by the cosh gradient structure. Indeed, in Ref. 30 the case

γ = 1/2 is obtained from the theory of large deviations.

Proposition 4.1. (Characterization of tilt-invariant gradient structures) If Φ and

Ψin are such that ain in (4.4) is independent of w, then there exists ϕ0, ϕ1 ∈ R and

ψin, γ > 0 such that

Φ(c) = γλBz(c) + ϕ0 + ϕ1c and Ψin(ζ) = γψinC
∗
(
ζ

γ

)
.

In particular, we always obtain ain(c) =
κin

ψin

√
cicn. Since ψin can be integrated into

κin, all tilt-invariant gradient structures are given by scaled cosh gradient structures

E(c) = γEBz(c) + ϕ0I + ϕ1 and R∗(c, ξ) = γR∗
cosh

(
c,

1

γ
ξ

)
.

Proof. We rewrite ain in the form

ain(c) = κin
√
cicn

�i − �n√
�i�nΨ′

in(Φ
′(�i)− Φ′(�n))

, where �k =
ck
wk
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Because the expression has to be independent of wi and wn for all c, w ∈ Q, the

fraction involving �i and �n has to be a constant, which we set 1/ψin, i.e.

(i) Φ′(�i)− Φ′(�n) = G

(
�i
�n

)
, (ii) G(σ) = (Ψ′

in)
−1

(
ψin

(√
σ − 1√

σ

))
.

Setting rk = log �k, f(r) = Φ′(er), and g(s) = G(es) in (i), we arrive at the

relation

f(ri)− f(rn) = g(ri − rn) for all ri, rn ∈ R.

As f and g are continuous the only solutions of this functional relation are f(r) =

ϕ1+γr and g(s) = γs with ϕ1, γ ∈ R. This implies Φ′(�) = ϕ1+γ log � and, hence,

Φ(�) = ϕ0 + ϕ1�+ γλBz(�). Strict convexity of Φ leads to the restriction γ > 0.

Solving (ii) with G(σ) = γ log σ =: ζ yields

Ψ′
in(ζ) = ψin(e

ζ/(2γ) − e−ζ/(2γ)) = ψin2 sinh

(
ζ

2γ

)
= ψinC

∗′
(
ζ

γ

)
.

Because of Ψin(0) = 0 this determines Ψin uniquely, and the result is established.

We also refer to Ref. 17 for the connections of the cosh gradient structure to

the SQRA-discretization scheme for drift-diffusion systems.

5. EDP-Convergence and the Effective Gradient Structure

In this section, we fully concentrate on the cosh gradient structure, because only

this gradient structure allows to prove EDP convergence with tilting.

Our energy functionals Eε are the relative Boltzmann entropies, while the dual

dissipation potentials R∗
ε is the sum of a slow and a fast part:

Eε(c) =

I∑
i=1

wεi λBz

(
ci
wεi

)
and

R∗
ε(c, ξ) = R∗

S,ε(c, ξ) +
1

ε
R∗
F,ε(c, ξ), where

R∗
Z,ε(c, ξ) :=

I−1∑
i=1

I∑
n=i+1

κZ,εin
√
cicn C∗(ξi − ξn) with

κZ,εin = AZin

√
wεn/w

ε
i , Z ∈ {S, F}.

Here, the ε-dependencies of the coefficients κS,εin and κF,εin is trivial in the sense that

the limits for ε→ 0 exist. The real important term is the factor 1/ε in front ofR∗
F,ε.

The structure of this section is as follows. In Sec. 5.1, we present the main results

concerning the Γ-convergence of Eε and Dε which then imply the EDP-convergence

with tilting of (Q, Eε,Rε) to the limit system (Q, E ,Reff). In Sec. 5.2, we show
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that this provides a gradient structure for the limit equation (2.7), and moreover

that we obtain the natural cosh gradient structure (Q̂, Ê , R̂) for the coarse-grained

equation (2.8).

The remaining part of this section then provides the proof of the convergence

Dε
M−→ D0, namely the a priori estimates in Sec. 5.3, the liminf estimate in Sec. 5.4,

and the construction of recovery sequences in Sec. 5.5.

5.1. Main theorem on EDP-convergence

We now study the limit for ε→ 0 of the family of gradient systems ((Q, Eε,R∗
ε))ε>0

by showing EDP-convergence with tilting for a suitable limit.

As a first, and trivial result we state the Mosco convergence of the energies,

which follows immediately from our assumption (2.2b), i.e. wε → w0.

Proposition 5.1. On Q = Prob(I), we have the uniform convergence Eε → E0,
where E0(c) =

∑I
i=1 w

0
i λBz(ci/w

0
i ). In particular, we have Eε M−→ E0 on X.

To have a proper functional analytic setting we let

L2([0, T ];Q) =
{
c ∈ L2([0, T ];RI)

∣∣ c(t) ∈ Q a.e. in [0, T ]
}

and use the weak and strong topology induced by L2([0, T ];RI). The dissipation

functional Dε is now defined via

Dε(c) :=

⎧⎨⎩
∫ T
0 (Rε(c, ċ) +R∗

ε(c,−DEε(c)))dt for c ∈ W1,1([0, T ];Q),

∞ otherwise on L2([0, T ];Q),

where Rε(c, ·) is defined implicitly as Legendre transform of R∗
ε(c, ·). To see that

Dε is well defined, we derive suitable properties for Rε.

Proposition 5.2. (Properties of Rε) Let Rε : Q×X → [0,∞] be defined by

Rε(c, ·) = (R∗
ε(c, ·))∗. Then, Rε : Q×X → [0,∞] is lower semicontinuous and

jointly convex.

Proof. Since (ci, cn) �→
√
cicn is concave and ξ �→ C(ξi−ξn) is convex, the mapping

R∗ : Q×X∗ → [0,∞] is concave–convex and thus its partial conjugate is convex

in (c, v).

For the lower semicontinuity consider (ck, vk) → (c, v). Then, for all δ > 0 there

exist ξδ with Rε(c, v) ≤ 〈ξδ, v〉 − R∗
ε(ck, ξδ) + δ. The definition of the Legendre

transform yields

Rε(ck, vk) ≥ 〈ξδ, vk〉 − R∗
ε(ck, ξδ)

k→∞→ 〈ξδ, v〉 − R∗
ε(c, ξδ) ≥ Rε(c, v)− δ,

where we used the continuity of c �→ R∗
ε(c, ξ). Since δ > 0 was arbitrary, we find

lim infk→∞ Rε(ck, vk) ≥ Rε(c, v) as desired.
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To formulate the main Γ-convergence result for Dε we define the effective dissi-

pation R∗
eff beforehand. It can be understood as the formal limit of R∗

ε when taking

ε→ 0. The slow part R∗
S,ε simply converges to its limit

R∗
S(c, ξ) :=

I−1∑
i=1

I∑
n=i+1

κS,0in
√
cicn C∗(ξi − ξj) with

κS,0in = ASin

√
w0
n/w

0
i = lim

ε→0
κS,εin .

For the fast part 1
εR∗

F,ε we obtain blow up, except for those ξ that lie in the subspace

that is not affected by fast reactions. For this we set

Ξ =M∗Y ∗ = range(M∗) = ker(M)⊥ :=
{
ξ ∈ X∗ ∣∣∀ v ∈ ker(M) : 〈ξ, v〉 = 0

}
.

and observe that by construction for all ε > 0 we have

R∗
F,ε(c, ξ) = 0 for all ξ ∈ Ξ. (5.1)

Indeed, R∗
F,ε(c, ξ) contains C∗(ξi − ξn) with a positive prefactor only if i ∼F n,

while ξ ∈ Ξ implies ξi = ξn in that case. Together we set

R∗
eff(c, ξ) := R∗

S(c, ξ) + χΞ(ξ), where χA(a) =

{
0 for a ∈ A,

∞ for a �∈ A.
(5.2)

The dual dissipation potentialR∗
eff consists of two terms: The first termR∗

S contains

the information of the slow reactions in the limit ε → 0. The second term χΞ

restricts the vector of chemical potentials ξ = DE0(c) exactly in such a way that

the microscopic equilibria of the fast reactions hold, i.e. AF c = 0 or equivalently

Pc = c, see below.

Because of this constraint, it is actually irrelevant how R∗
eff(c, ·) : Ξ → [0,∞] is

defined for c �∈ Qeq = Q ∩ PX .

We note that R∗
ε(c, ·) has a Mosco limit R∗

0(c, ·) that is not necessarily equal

to R∗
eff(c, ·). For c on the boundary of Q, where some of the ci are 0, we may have

R∗
F,ε(c, ξ) = 0 for all ξ, which implies R∗

0(c, ξ) = R∗
S(c, ξ) for these c and all ξ ∈ RI .

However, the Γ-limit of Dε yields R∗
eff ≥ R∗

0.

Theorem 5.3. (Mosco convergence of Dε) On L2([0, T ];Q) we have Dε
M−→ D0

with

D0(c) :=

⎧⎪⎨⎪⎩
∫ T

0

(
Reff(c, ċ) +R∗

eff(c,−DE0(c))
)
dt for c ∈ W1,1([0, T ];Q),

∞ otherwise in L2([0, T ];Q),

(5.3)

where R∗
eff is given in (5.2) and leads to the primal dissipation potential

Reff(c, v) = inf
{
RS(c, z)

∣∣ z ∈ R
I with Mz =Mv

}
for all c ∈ Qeq = PQ.
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The proof of this theorem is the main part of this section and will be given

in Secs. 5.3–5.5. Now, we want to use the above result to conclude the EDP-

convergence with tilting. For this result, it is essential to study the dependence

of the limit D0 on the limit equilibrium measure w0. One the one hand, E0(c) is

the relative Boltzmann entropy of c with respect to w0, which provides a simple

and well-behaved dependence on w0. On the other hand, R∗
eff is given through R∗

S

and χΞ. The former only depends on (κS,0in )i,n∈I and the latter depends only on

M ∈ {0, 1}J×I . Thus, there is no dependence on w0 at all. The proof relies on the

fact that the two processes of (i) tilting with driving forces η and of (ii) taking the

limit ε→ 0 commute.

Theorem 5.4. (EDP-convergence with tilting) The gradient systems (Q, Eε,Rε)

EDP-converge with tilting to the limit gradient structure (Q, E0,Reff). The closure

of the domain of the limit gradient system in the sense of (3.2) is Qeq.

Proof. Proposition 5.1 and Theorem 5.3 already provide the simple EDP conver-

gence (Q, Eε,R∗
ε)

EDP−−−→ (Q, E0,R∗
eff). The domain is restricted by the conditions

(i) that DE0(c) exists, which means that ci > 0 for all i, and (ii) that DE0(c) lies

in the domain of ∂ξR∗
eff(c, ·). The latter condition is equivalent to DE0(c) ∈ Ξ or

equivalently c ∈ Xeq.

For the tilted energies Eηε = Eε−〈η, ·〉 we obviously have Eηε
M−→ Eη0 . We can now

apply Theorem 5.3 once again for Dη
ε . Using the fact that Eη is again a relative

Boltzmann entropy with respect to the exponentially tilted equilibrium state wη,ε

that satisfies wη,ε → wη,0. Thus, the Mosco limit Dη
0 of Dη

ε again exists and has

the same form as D0 in (5.3), but with DE0(c) replaced by DE(c)−η. In particular,

Reff remains unchanged and EDP-convergence with tilting is established.

5.2. The limit and the coarse-grained gradient structure

Before going into the proof of Theorem 5.3 we connect the limit gradient systems

with the limit equation (2.7). The gradient-flow equation for the limit gradient

systems reads

ċ ∈ ∂ξR∗
eff(c,−DE0(c)) a.e. on [0, T ]. (5.4)

Since R∗
eff is no longer smooth, we use the set-valued convex subdifferential ∂ξ that

satisfies, because of the continuity of R∗
S , the sum rule

∂ξR∗
eff(c, ξ) = DξR∗

S(c, ξ) + ∂χΞ(ξ) with ∂χΞ(ξ) =

{
ker(M) for ξ ∈ Ξ,

∅ for ξ �∈ Ξ,

where we used the relation Ξ = range(M∗) = ker(M)⊥.

On the one hand, (5.4) implies that DE0(c) ∈ Ξ for a.a. t ∈ [0, T ]. Recalling

that the rows of M ∈ {0, 1}J×I consists of vectors having the entry 1 in exactly

one equivalent class α(j) ⊂ I for ∼F and 0 else, we have

Ξ = range(M∗) =
{
ξ ∈ R

I
∣∣∀ j ∈ J ∀ i1, i2 ∈ α(j) : ξi1 = ξi2

}
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we conclude

DE0(c) ∈ Ξ ⇐⇒ ∀ j ∈ J ∀ i1, i2 ∈ α(j) :
ci1
w0
i1

=
ci2
w0
i2

⇐⇒ c ∈ Xeq ⇐⇒ AF c = 0.

One the other hand, by construction of the gradient structure the term

DξR∗
S(c,−DE0(c)) generates exactly the term ASc. Thus, (5.4) is equivalent to

ċ(t) ∈ ASc(t) + ker(M), AF c(t) = 0 a.e. on [0, T ]. (5.5)

Applying M to the first equation gives the limit equation (2.7) and the following

result.

Proposition 5.5. (Gradient structure for limit equation) The limit equation (2.7)

is the gradient-flow equation generated by the limit gradient system (Q, E0,R∗
eff).

As a last step, we show that the gradient structure for the limit equation also

provides a gradient structure for the coarse gradient equation (2.8) ˙̂c = MASNĉ

for the coarse-grained states ĉ = Mc ∈ Q̂. For this we exploit the special relations

derived for coarse graining via M : X → Y and reconstruction via N : Y → X .

Theorem 5.6. (Gradient structure for coarse-grained equation) The coarse-

grained equation (2.8) (viz. ˙̂c = MASNĉ) is the gradient-flow equation generated

by the coarse-grained gradient system (Q̂, Ê , R̂) given by

Ê(ĉ) = E0(Nĉ) = HJ (ĉ | ŵ) and R̂(ĉ, v̂) = Reff(Nĉ,Nv̂).

Moreover, we have R̂∗(ĉ, ξ̂) = R∗
eff(Nĉ,M

∗ξ̂) = R∗
S(Nĉ,M

∗ξ̂).

This result can be seen as an exact coarse graining in the sense of the formal

approach developed in Sec. 6.1 in Ref. 23.

Before giving the proof of this result we want to highlight its relevance. First, we

emphasize that the coarse-grained equation is again a linear reaction system, now

in R
J , i.e. the master equation for a Markov process on J = {1, . . . , J}. Second,

the coarse-grained energy functional is again the relative Boltzmann entropy, now

with respect to the coarse-grained equilibrium ŵ =Mw0. Third, the coarse-grained

dual dissipation potential is again given in terms of the function C∗, i.e. the coarse-

grained gradient system is again of cosh-type. In summary, the coarse-grained gra-

dient structure (Q̂, Ê , R̂) is again a cosh gradient structure, see Proposition 5.7

below.

We refer to Sec. 3.3 in Ref. 20 for an example that shows that other gradient

structures may not be stable under EDP-convergence. All these results rely on the

special properties of M and N developed in Sec. 2.3. In particular, we use that the

projection P = NM : X → X is a Markov operator, i.e. it maps Q onto itself.
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Proof of Theorem 5.6.

Step 1: Ê is a relative entropy. We use the special form N = Dw0M∗
Dŵ, which

gives (Nĉ)i = w0
i ĉj/ŵj , where i ∈ α(j). With this and ŵj =

∑
i∈α(j) w

0
i we obtain

Ê(ĉ) = E0(Nĉ) = HI(Nc |w0) =
∑
i

w0
i λBz

(
(Nĉ)i
w0
i

)

=
J∑
j=1

∑
i∈α(j)

w0
i λBz

(
ĉj
ŵj

)
=

J∑
j=1

ŵjλBz

(
ĉj
ŵj

)
= HJ(ĉ | ŵ).

Step 2: Legendre-conjugate pair R̂ and R̂∗. We start from the formula for R̂∗

and calculate R̂ as follows. Using MN = idY and Ξ =M∗Y ∗, we obtain

R̂(ĉ, v̂) = sup
{
〈ξ̂,MNv̂〉J − R̂∗(ĉ, ξ̂)

∣∣ ξ̂ ∈ Y ∗}
= sup

{
〈M∗ξ̂, Nv̂〉I − R̂∗(ĉ, ξ̂)

∣∣ ξ̂ ∈ Y ∗}
= sup

{
〈ξ,Nv̂〉I −R∗

S(Nĉ, ξ)
∣∣ ξ ∈M∗Y ∗}

= sup
{
〈ξ,Nv̂〉I −R∗

S(Nĉ, ξ)− χΞ(ξ)
∣∣ ξ ∈ X∗} = Reff(Nĉ,Nv̂),

where we use the definition of R∗
eff in (5.2).

Step 3: The gradient-flow equation for (Q̂, Ê , R̂). We first observe

M∗N∗DE0(Nĉ) = DE0(Nĉ). (5.6)

Indeed, let us define the component-wise log-function on R
I , log : x �→

(log(xi))i=1,...,I . We have DE0(c) = log(D−1
w0 c). Hence, for c = Nĉ = Dw0M∗

D
−1
ŵ ĉ,

we conclude

DE0(Nĉ) = log(D−1
w0Nĉ) = log(M∗

D
−1
ŵ ĉ)

= M∗ log(D−1
ŵ ĉ) =M∗DÊ(ĉ) =M∗N∗DE0(Nĉ),

where we used that DÊ(ĉ) = N∗DE0(Nĉ).
With DÊ(ĉ) = N∗DE0(Nĉ) and (5.6) the gradient flow for (Q̂, Ê , R̂) reads

˙̂c = ∂ξ̂R̂
∗(ĉ,−DÊ0(ĉ)) =M∂ξR∗

S(Nĉ,−M∗DÊ(ĉ))

= M∂ξR∗
S

(
Nĉ,−M∗N∗DE0(Nĉ)

)
=M∂ξR∗

S(Nĉ,−DE0(Nĉ)) =MASNĉ,

where we used the identity DξR∗
S(c,−DE0(c)) = ASc, which holds for all c by the

construction of our gradient structure.

In analogy to formula (2.9) providing the coefficients Âj1j2 of the coarse-grained

generator Â =MASN we can also give a formula for the tilting-invariant reaction

intensities κS,0i1i2 to obtain the corresponding intensities κ̂j1,j2 for the coarse-grained
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equation (2.8) by a suitable averaging. In particular, the gradient systems (Q̂, Ê , R̂)

provides again a cosh gradient structure in the sense of Sec. 4.3.3.

Proposition 5.7. (Cosh structure of R̂∗) The coarse-grained dual dissipation

potential R̂∗ reads

R̂∗(ĉ, ξ̂) =
∑

1≤j1<j2≤J
κ̂j1,j2

√
ĉj1 ĉj2C

∗(ξ̂j1 − ξ̂j2) with

κ̂j1,j2 =
∑

i1∈α(j1)

∑
i2∈α(j2)

κS,0i1i2

(
w0
i1
w0
i2

ŵj1 ŵj2

)1/2

.

Proof. Theorem 5.6 provides an explicit formula for R̂∗. Inserting the definitions

of M and N and grouping according to equivalence classes will provide the result.

Recalling the function φ : I → J giving for each i the associated equivalence class

α(φ(i)) ⊂ I we have (Nĉ)i = w0
i ĉφ(i)/ŵφ(i) and (M∗ξ̂)i = ξ̂φ(i) and find

R̂∗(ĉ, ξ̂) = R∗
S(Nĉ,M

∗ξ̂)

=
1

2

∑
i1∈I

∑
i2∈I

κS,0i1i2

(
w0
i1cφ(i1)

ŵφ(i1)

w0
i2cφ(i2)

ŵφ(i2)

)1/2

C∗(ξ̂φ(i1) − ξ̂φ(i2))

=
1

2

∑
j1∈J

∑
j2∈J

∑
i1∈α(i1)

∑
i2∈α(j2)

κS,0i1i2

(
w0
i1cj1
ŵj1

w0
i2cj2
ŵj2

)1/2

C∗(ξ̂j1 − ξ̂j2).

This shows the desired result.

5.3. A priori bounds and compactness

We start the proof of the Γ-convergence for the dissipation functional Dε on

L2([0, T ],Q) by deriving the necessary a priori bounds for proving the compactness

for a family (cε)ε>0 of functions satisfying Dε(c
ε) ≤ C <∞.

Clearly since for all t ∈ [0, T ] we have cε(t) ∈ Q we get immediately uniform

L∞-bounds on cε. Hence, we have (after extracting a suitable subsequence, which is

not relabeled) a weak limit c0 ∈ L2([0, T ],Q). We want to improve the convergence

to strong convergence. Already in the proof of the convergence of the solutions cε

in Sec. 2.5 it became clear that there are two different controls, namely (i) the

tendency to go to microscopic equilibrium and (ii) the dissipation through the slow

reactions. From (i) we will obtain control of the distance of cε from Xeq = PX

by estimating (I − P )cε, but we are not able to control (I − P )ċε. From (ii) we

obtain an a priori bound for P ċε, and the major task is to show that these two

complementary pieces of information are enough to obtain compactness.

Subsequently, we will drop ε in the notations for wε, κα,εin , and RS,ε, and so on.

Of course, we will keep the important factor 1/ε in R∗
ε = R∗

S + 1
εR∗

F .
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The following result shows the convergence of sequences to the subspace Xeq =

PX of microscopic equilibria. Recall the decomposition X = Xeq⊕Xfast from (2.6)

and the projection P = NM such that Xeq = PX and Xfast = (I − P )X . In

particular, the semi-norm c �→ |(I − P )c| is equivalent to c �→ dist(c,Xeq).

Lemma 5.8. (Convergence in the direction of fast reactions) Consider a sequence

(cε) in L2([0, T ],Q) with Dε(c
ε) ≤ CD < ∞ and cε ⇀ c0 in L2([0, T ],RI). Then,

there is a constant C > 0 such that∫ T

0

|(I − P )cε(t)|2 dt ≤ Cε.

In particular, we have c0(t) ∈ Qeq = PQ for a.a. t ∈ [0, T ].

Proof. The bound on the dissipation functional Dε, Rε ≥ 0, R∗
S ≥ 0 and the

relation C∗(log p− log q) = 2(
√
p/q +

√
q/p− 2) imply

CD ≥ Dε(c
ε) ≥ 1

ε

∫ T

0

∑
(i,n)∈F

4κFin√
wiwn

(√
cεi
wi

−
√
cεn
wn

)2

dt,

where the set F is given in term of the equivalence relation ∼F , viz.

F :=
{
(i, n) ∈ I×I

∣∣ i ∼F n and i < n
}
.

Using the decomposition X = Xeq ⊕Xfast from (2.6), we see that the semi-norm

‖c‖F :=

⎛⎝ ∑
(i,n)∈F

( ci
wi

− cn
wn

)2

⎞⎠1/2

defines a norm on Xfast and there exists C2 > 0 such that |(I − P )c| ≤ C2‖c‖F
on Q.

Denoting by w > 0 and κ > 0 lower bounds for all wεi and all κFin with i ∼F n,

respectively, we obtain the estimate∫ T

0

|(I − P )cε(t)|2 dt ≤ C2
2

∫ T

0

‖cε(t)‖2Fdt

≤ C2
2

∫ T

0

∑
(i,n)∈F

(√
cεi
wi

−
√
cεn
wn

)2(√
cεi
wi

+

√
cεn
wn

)2

dt

≤ C2
2

w2κ

∫ T

0

∑
(i,n)∈F

4κFin√
wiwn

(√
cεi
wi

−
√
cεn
wn

)2

dt ≤ C2
2

w2κ
CDε.

By weak lower semicontinuity of semi-norms we find
∫ T
0 |(I − P )c0(t)|2 dt = 0

and conclude c0(t) = Pc0(t) a.e. on [0, T ]. This proves the result.

The next result shows that we are able to control the time derivative of Pcε.

Using range(P ) = range(N) and NM = idY it suffices to control Mċε. For this,
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we show that Rε(c, ·) restricted to PX has a uniform lower superlinear bound in

terms of the superlinear function C, see (A.2).

Proposition 5.9. (Convergence in the direction of slow reactions) Consider a

sequence (cε) in L2([0, T ],Q) with Dε(c
ε) ≤ CD <∞ and cε ⇀ c0 in L2([0, T ];X).

Then, there is a constant CW > 0 such that∫ T

0

C

(
1

CW
|P ċε(t)|

)
dt ≤ CW. (5.7)

Moreover, P cε ⇀ Pc0 ∈ W1,1([0, T ];Q) and Pcε → Pc0 in C0([0, T ];PQ).

With Lemma 5.8 we have cε → c0 strongly in L2([0, T ],Q) and c0 = Pc0 ∈
W1,1([0, T ];Q).

Proof. To show a lower bound for Rε(c, Pv) we first derive an upper bound for

R∗
ε(c, ξ̃) for ξ̃ ∈ P ∗X∗. Use R∗

F,ε(c, ξ̃) = 0 and set κ := sup
{
κS,εin

∣∣ 1 ≤ i < n ≤
I, ε ∈ ]0, 1[

}
to obtain

R∗
ε(c, ξ̃) =

∑
i<j

κS,εin
√
cicjC

∗(ξ̃i − ξ̃j) ≤
∑
i<j

κ
1

2
C∗(

√
2|ξ̃|) ≤ aC∗(

√
2|ξ̃|)

with a = I2κ/4. Next, Legendre transform, R∗
F,ε(c, ξ̃) = 0 by (5.1) and the bound

|P ∗ξ| ≤ CP |ξ|/
√
2 yield the lower bound

Rε(c, v) ≥ sup{〈ξ̃, v〉 − R∗
ε(c, ξ̃)

∣∣ ξ̃ ∈ P ∗X∗}

= sup{〈P ∗ξ, v〉 − R∗
S,ε(c, P

∗ξ)
∣∣ξ ∈ X∗}

≥ sup
{
〈ξ, Pv〉 − aC∗(

√
2|P ∗ξ|)

∣∣ ξ ∈ X∗}
≥ sup

{
〈ξ, Pv〉 − aC∗(CP |ξ|)

∣∣ ξ ∈ X∗}
= aC(|Pv|/(aCP )).

Applying this to v = ċε we find∫ T

0

aC

(
|P ċε(t)|
aCP

)
dt ≤

∫ T

0

Rε(c
ε(t), ċε(t))dt ≤ Dε(c

ε) ≤ CD,

which gives (5.7) with CW = max{aCP , CD/a}.
With the superlinearity of C, we obtain Pcε ⇀ Pc0 in W1,1([0, T ];PX). More-

over, the sequence Pcε is also equicontinuous, which is seen as follows. By (5.7)

and (A.2) we have
∫ T
0 |P ċε(t)| log(2 + |P ċε(t)|)d t ≤ C1. For R > 0 we set

Σ(R, ε) =
{
t ∈ [0, T ]

∣∣ |P ċε(t)| ≥ R
}
. Thus, for t1 < t2 we obtain the estimate

|Pcε(t2)− Pcε(t1)|

≤
∫ t2

t1

|P ċε(t)|dt



September 11, 2020 14:55 WSPC/103-M3AS 2050036

EDP-convergence for linear reaction systems 1799

≤
∫
[t1,t2]\Σ(R,ε)

|P ċε(t)|dt+
∫
Σ(R,ε)

|P ċε(t)| log(2 + |P ċε(t)|)
log(2 +R)

dt

≤ (t2 − t1)R+
C1

log(2 +R)
.

The last sum can be made smaller than any ε > 0 by choosing first R = R(ε) :=

exp(2C1/ε) and then assuming t2 − t1 < δ(ε) := ε/(2R(ε)). This shows |Pcε(t2)−
Pcε(t1)| < ε whenever |t2 − t1| < δ(ε), which is the desired equicontinuity. By the

Arzelà–Ascoli theorem we obtain uniform convergence.

The final convergence follows from cε = Pcε + (I − P )cε via Lemma 5.8, and

the last statement from Pc0(t) = c0(t) a.e. in [0, T ].

5.4. The liminf estimate

For the limit passage ε → 0 we use a technique, which was introduced formally in

Ref. 20 and exploited in Ref. 23 for the study of the large-volume limit in chemical

master equations. It relies on the idea that the velocity part Dvel
ε =

∫
Rεdt of

the dissipation functional Dε can be characterized by Legendre transform using a

classical result of Rockafellar:

Theorem 5.10. (Theorem 2 in Ref. 36) Let f : [0, T ]×Rn → R∞ be a normal,

convex integrand and with conjugate f∗. Assume there exist u◦ ∈ L1([0, T ];Rn) and

ξ◦ ∈ L∞([0, T ];Rn) such that t �→ f(t, u◦(t)) and t �→ f∗(t, η◦(t)) are integrable,

then the functionals

If :

{
L1([0, T ];Rn)→ R∞,

u �→
∫ T
0
f(t, u(t))dt

and

If∗ :

{
L∞([0, T ];Rn)→ R∞,

η �→
∫ T
0
f∗(t, η(t))dt

are proper convex functionals that are conjugate to each other with respect to the

dual pairing (u, η) �→
∫ T
0
〈ξ(t), u(t)〉dt, viz. for all u ∈ L1([0, T ];Rn) we have

∫ T

0

f(t, u(t))dt

= sup

{∫ T

0

(〈η(t), u(t)〉 − f∗(t, η(t)))dt
∣∣∣ η ∈ L∞([0, T ];Rn)

}
. (5.8)

We apply this result with f(t, u) = Rε(c(t), u) and obtain, for ε ∈ [0, 1],
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Dε(c) = sup
{
Bε(c, ċ, ξ)

∣∣ ξ ∈ L∞([0, T ];X∗)
}
, where

Bε(c, u, ξ) := Bvel
ε (c, u, ξ) +Dslope

ε (c) with

Bvel
ε (c, u, ξ) :=

∫ T

0

(
〈ξ(t), u(t)〉 − R∗

ε(c(t), ξ(t))
)
dt and

Dslope
ε (c) =

∫ T

0

R∗
ε(c,−DEε(c(t)))dt.

(5.9)

The assumptions are easily satisfied as we may choose u◦ ≡ 0 and η◦ ≡ 0.

With these preparations we obtain the liminf estimate in a straightforwardly.

Theorem 5.11. (Liminf estimate) The weak convergence cε ⇀ c0 in L2([0, T ];Q)

implies lim infε→0 Dε(c
ε) ≥ D0(c

0), where D0 is defined via E0 and Reff in (5.3).

Proof. We may assume that α∗ := lim infε→0 Dε(c
ε) < ∞, since otherwise the

desired estimate is trivially satisfied.

Step 1. Strong convergence and limit characterization: Using Proposi-

tion 5.9 gives

cε → c0 strongly in L2([0, T ];Q) and c0 = Pc0 ∈ W1,1([0, T ];RI).

Step 2. Slope part: Because of Pc0(t) = c0(t) we know ξ0(t) = DE0(c0(t)) ∈
M∗X∗ which implies χΞ(−DE0(c0(t))) = 0 on [0, T ]. Hence, dropping the nonneg-

ative term R∗
F,ε(c

ε,−DEε(cε(t))) and setting Sε(c) := R∗
S,ε(c,−DEε(c)) we obtain

lim inf
ε→0

Dslope
ε (cε) ≥ lim inf

ε→0

∫ T

0

Sε(cε(t))dt ∗
=

∫ T

0

S0(c
0(t))dt = Dslope

0 (c0).

In the passage
∗
= we use the strong convergence cε → c0 and the continuity of

[0, 1]×Q � (ε, c) �→ Sε(c) = R∗
S,ε(c,−DEε(c))

=
∑
i<n

4κS,εin
wεiw

ε
n

(√
ci
wεi

−
√
cn
wεn

)2

. (5.10)

Step 3. Velocity part: We exploit the Rockafellar representation (5.9) together

with the fact that ċ0(t) = P ċ0(t) a.e. in [0, T ]. The latter condition allows us to

test only by functions ξ = P ∗ξ ∈ L∞([0, T ];X∗), which leads to the estimate

lim inf
ε→0

Dvel
ε (cε)

≥ lim inf
ε→0

Bvel
ε (cε, ċε, P ∗ξ)

a
= lim inf

ε→0

∫ T

0

(
〈ξ, P ċε〉 − R∗

S,ε(c
ε, ξ)

)
dt

b
=

∫ T

0

(
〈ξ, P ċ0〉 − R∗

S(c
0, ξ)

)
dt = Bvel

0 (c0, ċ0, ξ),
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where in
a
= we used R∗

ε(c, ξ) = R∗
S,ε(c, ξ) whenever ξ = P ∗ξ, see (5.1). In

b
= we

exploited the weak convergence P ċε ⇀ Pc0 established in Proposition 5.9 as well as

the strong convergence cε → c0 together with the continuity of (ε, c) �→ R∗
S,ε(c, ξ).

Now we exploit Rockafellar’s characterization (5.9) to return to Dvel
0 (c0), namely

Dvel
0 (c0) = sup

{
Bvel

0 (c0, ċ0, ξ)
∣∣ ξ ∈ L∞([0, T ];X∗)

}
= sup

{∫ T

0

(
〈ξ, ċ0〉 − R∗

S(c
0, ξ)− χΞ(ξ)

)
dt
∣∣ ξ ∈ L∞([0, T ];X∗)

}

= sup
{
Bvel

0 (c0, ċ0, ξ)
∣∣ ξ = P ∗ξ ∈ L∞([0, T ];X∗)

}
.

With the above estimate we conclude lim infε→0 D
vel
ε (cε) ≥ Dvel

0 (c0).

Adding this to the estimate in Step 2 we obtain the full liminf estimate.

5.5. Construction of the recovery sequence

Now we construct the recovery sequence for the Mosco-convergence of the dissipa-

tion functionalsDε. This provides the required limsup estimate lim supε→0 Dε(c
ε) ≤

D0(c
0) along at least one sequence with the strong convergence cε → c0 in

L2([0, T ];Q). For this we use in Step 2(b) an approximation result by piecewise

affine functions ĉN introduced in Theorem 2.6, Step 3 of Ref. 21 and adapted to

state-dependent dissipation potentials in Corollary 3.3 in Ref. 2.

Theorem 5.12. (Recovery sequences) For every c0 ∈ L2([0, T ];Q) there exists a

sequence (cε)ε∈]0,1[ with c
ε → c0 in L2([0, T ];Q) such that limε→0 Dε(c

ε) = D0(c
0).

Proof. Step 1. The case D0(c
0) = ∞. We choose the constant sequence cε = c0

and claim Dε(c
ε) = Dε(c

0) → ∞. Because of D0(c
0) = ∞ one of the following

conditions is false:

(i) c0(t) ∈ Qeq a.e. in [0, T ] or (ii) C(|P ċ0(·)|) ∈ L1([0, T ]).

If (i) is false, then c0(t) �∈ Qeq for t ∈ T ⊂ [0, T ], where |T | =
∫
T 1dt > 0.

Setting Fε(c) := R∗
F,ε(c,−DEε(c)) we have

Dslope
ε (c0) =

∫ T

0

(
R∗
S,ε

(
c0,−DEε(c0)

)
+

1

ε
R∗
F,ε

(
c0,−DEε(c0)

))
dt

≥ 1

ε

∫ T

0

Fε(c0(t))dt.

However, for t ∈ T we have Fε(c0(t)) → F0(c
0(t)) > 0. Thus, Dslope

ε (c0) → ∞
follows which implies Dε(c

0) → ∞.

If (ii) is false, then Dvel
ε (c0) = ∞ for all ε > 0 and we are done.

Step 2. Preliminary recovery sequences for the case D0(c
0) < ∞. In the

sub-steps (a)–(c) we discuss three approximations for general c0.
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Step 2(a). Positivity for the case ε = 0. We set c̃δ(t) := δw0+(1−δ)c0(t) and claim

that D0(c̃δ) → D0(c
0) < ∞ for δ ↘ 0. As D0 is convex and lower semicontinuous

(cf. see Proposition 5.2), we have lim infδ↘0 D0(c̃δ) ≥ D0(c
0).

Obviously, c̃δ ≥ (1 − δ)c0 holds componentwise, and hence the explicit form of

R∗
0 gives

R∗
eff(c̃δ, ξ) ≥ (1− δ)R∗

eff(c
0, ξ), and thus Reff(c̃δ, v) ≤ (1 − δ)Reff

(
c0,

1

1− δ
v

)
.

Inserting v = ˙̃cδ = (1− δ)ċ0 into the latter estimate gives

Dvel
0 (c̃δ) =

∫ T

0

Reff(c̃δ, ˙̃cδ)dt ≤
∫ T

0

(1− δ)Reff(c
0, ċ0)dt = (1 − δ)Dvel

0 (c0),

which proves the desired claim of Step 2(a), because Dslope
0 (c̃δ) → Dslope

0 (c0) is

trivial.

Step 2(b). We stay with ε = 0 and, by Step 2(a), may assume for some c∗ > 0

that

c0(t) ∈ Qc∗ :=
{
c ∈ Q

∣∣∀ i ∈ I: ci ≥ c∗
}
for all t ∈ [0, T ].

We now approximate c0 by a function ĉN ∈ W1,∞([0, T ];PX) still satisfying

ĉN (t) ∈ Qc∗ .

For N ∈ N we define ĉN : [0, T ] → PX as the piecewise affine interpolant

of the nodal points ĉN (kT/N) = c0(kT/N) for k = 0, 1, . . . , N . We also define

the piecewise constant interpolant cN : [0, T ] → Qc∗ via cN (t) = c0(kT/N) for

t ∈ ](k − 1)T/N, kT/N ]. Then, using c0 ∈ W1,1([0, T ];PX) ⊂ C0([0, T ];PX) we

have

ĉN → c0 in W1,1([0, T ];PX) and in C0([0, T ];PX) and

cN → c0 in L∞([0, T ];PX).

We now set

αN := ‖c0 − ĉN‖L∞ + ‖c0 − cN‖L∞

and obtain αN → 0.

These uniform estimates can be used in conjunction with the uniform continuity

of c �→ R∗
eff(c, ξ) when restricted to Qc∗ . Clearly Qc∗ � c �→ √

cicn is Lipschitz

continuous, and we call the Lipschitz constant λ∗. The special form of R∗
eff then

implies

∀ c, c̃ ∈ Qc∗ ∀ ξ ∈ X∗ : |R∗
eff(c, ξ)−R∗

eff(c̃, ξ)|

≤ Λ∗|c− c̃|R∗
eff(c, ξ) with Λ∗ = λ∗κ.

Assuming |c− c̃| ≤ α and Λ∗α < 1 and applying the Legendre transform we find

(1− Λ∗α)Reff

(
c,

1

1− Λ∗α
v

)
≥ Reff(c̃, v) ≥ (1 + Λ∗α)Reff

(
c,

1

1 + Λ∗α
v

)
.
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Exploiting the scaling property (A.4) we arrive at the estimates

1

1− Λ∗α
Reff(c, v) ≥ Reff(c̃, v) ≥

1

1 + Λ∗α
Reff(c, v).

To estimate the velocity part of the dissipation functional as in Refs. 21 and 2

we introduce

J(c, v) :=

∫ T

0

Reff(c(t), v(t))dt,

which allows us to use different approximations for c0 and for ċ0. We obtain

Dvel
0 (ĉN ) = J(ĉN , ˙̂cN ) ≤ (1 + Λ∗αN )J(cN , ˙̂cN )

∗
≤ (1 + Λ∗αN )J(cN , ċ

0) ≤ (1 + Λ∗αN )2J(c0, ċ0)

= (1 + Λ∗αN )2Dvel
0 (c0).

For the estimate
∗
≤ we split [0, T ] into the subintervals SNk := ](k − 1)T/N, kT/N [,

where cN and ˙̂cN are equal to the constants c0(kT/N) and T
N

∫
SN

ċ0(t)dt, respec-

tively. Then, Jensen’s inequality for the convex function Reff(cN , ·) gives the desired
estimate.

Since Dslope
0 (ĉN ) → Dslope

0 (c0) by the continuity of the integrand S0 (cf. (5.10)),

the lower semicontinuity of D0 yields D0(ĉN ) → D0(c
0).

Step 2(c). Using the Steps 2(a) and 2(b), we now may assume c0 ∈ W1,∞([0, T ], X)

with c0(t) ∈ Qc∗ on [0, T ] and define cε via the formula

cε(t) = DwεD
−1
w0 c

0(t) for t ∈ [0, T ].

This definition gives DEε(cε(t)) ∈ Ξ and hence SFε (cε(t)) = 0. Hence, the definition

of Sε in terms of the ratios ci/w
ε
i (cf. (5.10)) implies Dslope

ε (cε) → Dslope
0 (c0).

For the velocity part we again use the Rockafellar characterization, namely

Dvel
ε (cε) = sup

{
Bvel
ε (cε, ċε, ξ)

∣∣ ξ ∈ L∞([0, T ];X∗)
}
.

Because of the uniform bound for ċε in L∞([0, T ];X) we are able to show that

the supremum over Bvel
ε (cε, ċε, ·) is attained by maximizers ξε that are uniformly

bounded in L∞([0, T ];X∗). To see this, we firstly observe that for all (c, ċ) ∈ Q×X
the functional Bε(c, ċ, ·) is invariant under translation ξ �→ ξ + c11, since 〈11, ċ〉 = 0

and the dissipation potential R∗
ε(c, ξ) only depends on differences ξi − ξn. Hence,

to generate compactness for maximizers ξε we fix the first component by setting

ξε1 = 0. Then, by c0(t) ∈ Qc∗ and the exponential growth of R∗
ε we obtain

R∗
ε(c

ε(t), ξ) ≥ c◦
∑

i<n:Aε
in>0

|ξi − ξn|2,

with a positive constant c◦ > 0. By assumption (2.2a) on the connectivity of the

reaction network, all vertices can be reached by a reaction path from vertex 1.

Hence, there is another constant c̃◦, such that the estimate

R∗
ε(c

ε(t), ξ) ≥ c◦
∑

i<n:Aε
in>0

|ξi − ξn|2 ≥ c̃◦
∑
i>1

|ξ1 − ξi|2
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holds. Hence, the maximizers ξε for Dvel
ε (cε) with ξε1 = 0 satisfy

〈ξε, ċε(t)〉 − R∗
ε(c

ε(t), ξ) ≤ |ξε|C‖ċ0‖L∞([0,T ],X) − c̃◦|ξε|2,

which implies the uniform bound ‖ξε‖L∞([0,T ],X∗) ≤ C‖ċ0‖L∞([0,T ],X)/c̃◦.

We now first choose a subsequence (εk)k∈N such that εk ↘ 0 and Dvel
εk

(cεk) →
β = lim supε→0 D

vel
ε (cε). Thus, after selecting a further subsequence (not relabeled)

we may assume ξεk ⇀ ξ0 in L2([0, T ];X∗). With the strong convergence of ċε → ċ0

we conclude

lim sup
ε→0

Dvel
ε (cε) = lim

k→∞
Bvel
εk (c

εk , ċεk , ξεk)
∗
≤ Bvel

0 (c0, ċ0, ξ0) ≤ Dvel
0 (c0),

where in
∗
≤ we used the convergence of the duality pairing

∫ T
0 〈ξε, ċε〉dt and a Ioffe-

type argument based on the convexity of R∗
ε(c

ε, ·) and the lower semicontinuity of

[0, 1]×X∗ � (ε, ξ) �→ R∗
ε(c

ε(t), ξ) ∈ [0,∞], cf. Theorem 7.5 in Ref. 13. Adding the

convergence of the slope part, and taking into account the liminf estimate from

Theorem 5.11 we obtain the convergence limε→0 Dε(c
ε) = D0(c

0).

Step 3. Construction of recovery sequences for the case D0(c
0). We now

apply the approximation steps discussed in Step 2 and show that it is possible to

choose an suitable diagonal sequence for getting the desired recovery sequence.

For a general c0 we apply the approximation as indicated in the sub-steps 2(a)–

2(c) and set

cδ,N,ε = D
−1
wεDw0

(
δw0 + (1− δ)ĉ 0

N

)
.

We easily obtain ‖c0 − cδ,N,ε‖L2([0,T ];X) ≤ C(δ + αN + ε) → 0 if δ → 0, N →
∞, and ε → 0. Moreover, the difference in the dissipation functionals Dε can be

estimated via∣∣Dε(c
δ,N,ε)−D0(c

0)
∣∣ ≤ A(δ) +Bδ(N) + Cδ,N (ε), where

A(δ) =
∣∣D0(c̃

δ)−D0(c
0)
∣∣ with c̃ δ(t) = δw0 + (1 − δ)c0(t),

Bδ(N) =
∣∣D0(c

δ,N)−D0(c̃
δ)
∣∣ with cδ,N (t) = δw0 + (1 − δ)ĉ 0

N (t),

Cδ,N(ε) =
∣∣Dε(c

δ,N,ε)−D0(c
δ,N )

∣∣.
A recovery sequence cε → c0 with Dε(c

ε) → D0(c
0) is now obtained by a standard

diagonal argument.

Appendix A. Special Properties of Cosh Gradient Structures

Here we discuss a few special properties that are characterizing for the function C

and C∗ and this lead to corresponding properties of R∗
cosh.

We consider the special non-quadratic dissipation functional C and its Legendre

dual C∗ given by

C(v) := 2v arsinh(v/2)− 2
√
4 + v2 + 4 and C∗(ξ) := 4 cosh(ξ/2)− 4.
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Then, we have C(v) = 1
2v

2 +O(v4) and C∗(ξ) = 1
2ξ

2 +O(ξ4). The function C∗ has

the following properties:

C∗(log p− log q) = 2

(√
p

q
+

√
q

p
− 2

)
, C∗′(log p− log q) =

p− q
√
pq
. (A.1)

In addition, we have superlinear growth of C:

1

2
|s| log(1 + |s|) ≤ C(s) ≤ |s| log(1 + |s|) for all s ∈ R. (A.2)

The first of the following scaling properties follows easily by considering the

power series expansion of C∗, the second by Legendre transform:

∀λ ≥ 1 ∀ s, ζ ∈ R : C∗(λζ) ≥ λ2C∗(ζ) and C(λs) ≤ λ2C(s). (A.3)

This implies the corresponding scaling property for Rcosh, namely

∀λ ≥ 1 ∀ c ∈ Q ∀ v, ξ ∈ R
I :

R∗
cosh(c, λξ) ≥ λ2R∗

cosh(c, ξ) and Rcosh(c, λv) ≤ λ2Rcosh(c, v).
(A.4)
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