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Abstract We introduce two new concepts of convergence of gradient systems (Q, Eε,Rε) to a limiting gra-
dient system (Q, E0,R0). These new concepts are called ‘EDP convergence with tilting’ and ‘contact–EDP
convergence with tilting.’ Both are based on the energy-dissipation-principle (EDP) formulation of solutions of
gradient systems and can be seen as refinements of the Gamma-convergence for gradient flows first introduced
by Sandier and Serfaty. The two new concepts are constructed in order to avoid the ‘unnatural’ limiting gradient
structures that sometimes arise as limits in EDP convergence. EDP convergence with tilting is a strengthen-
ing of EDP convergence by requiring EDP convergence for a full family of ‘tilted’ copies of (Q, Eε,Rε). It
avoids unnatural limiting gradient structures, but many interesting systems are non-convergent according to
this concept. Contact–EDP convergence with tilting is a relaxation of EDP convergence with tilting and still
avoids unnatural limits but applies to a broader class of sequences (Q, Eε,Rε). In this paper, we define these
concepts, study their properties, and connect them with classical EDP convergence. We illustrate the different
concepts on a number of test problems.
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1 Introduction to gradient systems, gradient flows, and kinetic relations

1.1 Gradient systems

A gradient system is a triple (Q, E,R) of a state space Q, a functional E on Q, and a dissipation potential R.
This triple defines in a unique way a differential equation for the evolution t �→ q(t) of the states, the so-called
gradient-flow equation:

0 = Dq̇R(q(t), q̇(t)) + DE(q(t)), (1.1)

which can be seen as a balance of thermodynamical forces, namely the potential restoring force −DE(q) and
the viscous force ξ = Dq̇R(q, q̇) induced by the rate q̇. Indeed, any functional dependence ξ = K (q, q̇)
or q̇ = G(q, ξ) between the rate q̇ and the dual (viscous) friction force ξ is often called a kinetic relation.
Gradient-flow equations are distinguished by two facts:

(i) the kinetic relation K is given as a (sub)differential of a dissipation potential,
i.e., K (q, q̇) = Dq̇R(q, q̇), and

(ii) the viscous force ξ is counterbalanced by a potential restoring force, i.e., ξ = −DE(q).

These two conditions allow for a variational characterization for the gradient-flow equation (1.1), the so-called
energy-dissipation principle, which is the basis of this work; see Sect. 2 for this and a more detailed description
to gradient systems.

Using the Fenchel-Legendre transform, one can define a dual dissipation potential R∗(q, ξ) such that the
kinetic relation can be written through any of the three equivalent conditions

ξ = K (q, v) = DvR(q, v),

v = G(q, ξ) = DξR∗(q, ξ), or

R(q, v) + R∗(q, ξ) = 〈ξ, v〉.
(1.2)

While, for a given gradient system (Q, E,R), the gradient-flow equation (1.1) is uniquely given and may be
rewritten in the form

q̇ = V(q) := DξR∗(q,−DE(q)) = G(q,−DE(q)), (1.3)

the opposite direction, however, shows a strong non-uniqueness for a given vector fieldV and a given energy E ;
there may be many kinetic relations G and even many dual dissipation potentialsR∗, such that V is generated
as in (1.3).

We say that that the differential equation q̇ = V(q) has the gradient structure (Q, E,R) if V(q) =
DξR∗(q, −DE(q)). Adding such a gradient structure to a differential equation means to identify additional
thermodynamical information that is no longer visible in the induced gradient-flow equation q̇ = V(q).

1.2 First example: a simple spring–damper system

We first illustrate the concept of a gradient system with an example, in which a spring relaxes by moving a
damper (a shock absorber), see Fig. 1. The state of the system is the spring displacement q ∈ R, the energy
contained in the spring is E1(q) := kq2/2, and the spring exerts a force ξ equal to the negative derivative
−DE1(q) = −kq of the energy. The damper is defined by the property that its rate v of displacement is related
to the force ξ on the damper by μv = ξ , for some coefficient μ > 0. By combining these two relations, we
find the evolution equation for the state q ,

μq̇ = −kq. (1.4)

q

k
µ

Fig. 1 A spring–damper system. The spring has spring constant k, and the damper has the viscosity constant μ
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Exploring families of energy-dissipation landscapes via tilting 613

We identify Eq. (1.4) as the gradient flow-equation for (R, E1,R1), when we observe that the damper relation
μv = ξ can also be written in terms of a dissipation potential R1(v) := μv2/2 and its Legendre dual
R∗

1(ξ) := ξ2/(2μ). The dissipation potential R1 defines the kinetic relation μv = ξ .
In this example, one readily recognizes a ‘classical’ spring energy in E1(q) = kq2/2, and the quadratic

form ofR1(v) = μv2/2 is a natural choice for a damper (see, e.g. [33, Ch. 5]). However, other gradient-flow
formulations for the same evolution equation (1.4) exist, if R = R(q, v) may depend not only on the rate
v = q̇ but also on the state q:

E2 := E1, E3 := E1,
R2(q, v) := μ

1+αk2q2/μ2

(1
2
v2 + α

4
v4

)
, R3(q, v) := kq

1−e−kq/μ

(
ev−v−1

)
.

All the systems (R, Ei ,Ri ) generate the same equation (1.4) via DvRi (q, q̇) = −DEi (q).
In fact, even in this simple scalar example, one can generate a wide variety of gradient systems for

the same equation (1.4): take any smooth and convex ψ : R → R with minψ = ψ(0) = 0, define
ϕ(q) = −kq/ψ ′(−kq/μ) andRψ(q, v) := ϕ(q)ψ(v), and then, the gradient system (R, E1,Rψ) will gener-
ate Eq. (1.4). The two examples R2 and R3 above are both of this type.

These dissipation potentials might well be considered less ‘natural’ thanR1. To start with, it is not obvious
which modeling arguments would lead to the kinetic relations of R2 and R3, which are

μ
(
v+αv3

) =
(
1+α

k2q2

μ2

)
ξ (for R2), and ev − 1 = 1 − e−kq/μ

kq
ξ (for R3).

In addition, a definition like that of R3 is dimensionally inconsistent, since arguments of the exponential
function should be dimensionless. Both these problems are related to a deeper and more troubling problem:
the dissipation potentials depend not only on μ but also on k, implying that the kinetic relation generated
by R2 or R3, which is supposed to characterize the damper, depends on the strength k of the spring. This is
an unsatisfactory situation: we consider the spring and the damper to be two independent objects, and their
mathematical characterizations should therefore also be independent.

This example points toward the problem that we aim to solve in this paper. This problem arises especially
when taking limits of gradient systems in some parameter ε → 0; in such limits, it is unavoidable that the
limiting dissipation potential depends on the state q as well as the rate of change v. As a result, the limiting
evolution equation will have many gradient-flow structures, as in the example above. It turns out that one of
the most common concepts used to define limits of gradient systems, which we call ‘simple EDP convergence’
in this paper and which we explain below, often selects limit dissipation potentials that are ‘unhealthy’ in the
same way as R2 and R3 are ‘unhealthy’: they depend on aspects of the energy in an unsatisfactory way.

The aim of this paper is to construct alternative convergence concepts that lead to limiting gradient systems
that aremore ‘natural’ or ‘healthy.’What wemean by these termswill become clear below, but first we consider
an example to further illustrate the problem.

1.3 Second example: wiggly dissipation

In Sect. 3, we study the following example in detail. Consider a family of gradient systems (R, E,Rε), indexed
by ε > 0, where E is some smooth ε-independent function, and

Rε(q, v) := 1

2
μ

(
q,

q

ε

)
v2.

Here μ ∈ C0(R2) is positive and 1-periodic in the second variable. For this ‘wiggly dissipation’ system, the
gradient-flow equation takes the form

μ
(
q,

q

ε

)
q̇ = −DE(q). (1.5)

An example of a solution is given in Fig. 2.
We show in Sect. 3 that for ε → 0, the solutions qε of (1.5) converge to limit functions q0 that solve the

limiting equation

	μ(q) q̇ = −DE(q) with 	μ(q) =
∫ 1

0
μ(q, y)dy. (1.6)
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t

q

1.0

1.0 2.0

q0(t) qε(t)

Fig. 2 Asimulationof the solutionqε (blue) and the limit solutionq0(t) = e−t (violet) for the system (1+0.8 cos(2π q/ε)) q̇ = −q
with q(0) = 1 and ε = 0.2. The solution has regions of slow and of fast decay depending on the size of 1+0.8 cos(2π q/ε) ∈
[0.2, 1.8]

In fact, (R, E,Rε) converges in the simple EDP sense (defined in Sect. 2.3) to a limiting system (R, E, R̃0),
where

R̃0(q, v) := M0(q, v, −DE(q)) − M0(q, 0,−DE(q)), (1.7a)

and M0 is defined via

M0(q, v, ξ) = inf
{ ∫ 1

s=0

(μ(q, z(s))
(
vz′(s)

)2
2

+ ξ2

2μ(q, z(s))

)
ds

∣∣∣ z : [0, 1] → R, z(1) = z(0) + sign(v)
}
,

(1.7b)
We verify explicitly in Sect. 3 that the system (R, E, R̃0) indeed generates Eq. (1.6), i.e., that

	μ(q) q̇ = −DE(q) ⇐⇒ DvR̃0(q, q̇) = −DE(q).

However, this limiting dissipation potential R̃0 suffers from the same problem asR2 andR3 above: it depends
explicitly on the energy function E , as is clear from (1.7a). If one repeats the simple EDP convergence theorem
for a perturbed energy E + F with an arbitrary tilting function F , then F propagates into the formula (1.7a)
for R̃0; changing the energy thus leads to a different dissipation potential R̃0. As above, we consider this
unsatisfactory, since the energy driving the system is conceptually separate from the mechanism for dissipating
that energy.

In contrast, if we disregard the fact that Eq. (1.6) arises as a limit, and consider it as an isolated system,
then we might conjecture a gradient structure with the effective dissipation potentialReff(q, v) := 	μ(q) v2/2
instead. Indeed, combinedwith the energy E this potentialReff also generates equation (1.6); it is much simpler
to interpret than R̃0, and most importantly, it does not depend on E .

1.4 Toward a better convergence concept

These examples show that we have on one hand an unsatisfactory convergence result, in which (R, E, R̃0)
is proved to arise as the unique limit of the family (R, E,Rε) in the simple EDP sense, but this limit is
unsatisfactory as a description of a gradient system.

On the other hand, the alternative dissipation potentialReff generates the same limit equation and does not
suffer from the philosophical problems associated with R̃0. Its only drawback is that the system (R, E,Reff)
is not the limit of the family (R, E,Rε) in the simple EDP sense.

As mentioned above, these observations strongly suggest seeking alternative convergence concepts for
gradient systems, which should generate limiting potentials that do not depend on the limiting energy. Specif-
ically, we will seek convergence concepts—let us indicate them with ‘�’—that have the following property:
if

(Q, Eε,Rε)
�−→ (Q, E0,R0), (1.8)

then for all F ∈ C1(Q) we also have

(Q, Eε+F, Rε)
�−→ (Q, E0+F, R0), (1.9)
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where the dissipation potential R0 in (1.9) is the same as in (1.8) and therefore does not depend on the tilt
function F .

Indeed, the two new concepts that we introduce in Sect. 2.6 both have this property, and we show in Sect. 3
that, by applying one of these convergence concepts, we indeed find the more natural dissipation potentialReff
rather than R̃0.

1.5 The larger picture: effective kinetic relations

Our aim of deriving ‘healthy’ limiting gradient systems could also be formulated as the challenge of deriving
effective kinetic relations. We already introduced a kinetic relation as a relation between a force ξ and a
rate v = q̇. An important class of such kinetic relations arises naturally in gradient systems, since dissipation
potentials R define kinetic relations via the three equivalent relations (1.2).

In view of the Young-Fenchel inequalityR(q, v)+R∗(q, ξ) ≥ 〈ξ, v〉, which holds generally for Legendre
conjugate pairs (R,R∗), and the third formulation in (1.2), we define the contact set as the set of pairs (v, ξ):

C = CR⊕R∗(q) :=
{
(v, ξ) ∈ Q × Q∗

∣∣∣ R(q, v) + R∗(q, ξ) = 〈ξ, v〉
}

= graph
(
DvR(q, ·)).

This set C characterizes the pairs of rates v and forces ξ that are admissible to the system and thus determine
the kinetic relation. As was already mentioned, the equation generated by the gradient system can be viewed
as the result of applying the kinetic relation (v, ξ) ∈ CR⊕R∗(q) to a context where the force ξ is generated by
the potential E :

ξ = −DE(q) and (q̇, ξ) ∈ CR⊕R∗(q). (1.10)

Kinetic relations appear throughout physics andmechanics.Well-known examples are Stokes’ law ξ = 6πηR v
for the drag force ξ on a sphere dragged through a viscous fluid (where η is the dynamic viscosity and R the
radius of the sphere), power-law viscous relationships of the form ξ = c|v|p−1v, and Coulomb friction
ξ ∈ c Sign(v), where Sign is the subdifferential of the absolute-value function. These examples show that the
relationship may be linear or nonlinear, and single- or multi-valued. A priori, there is no reason why a kinetic
relation should be the graph of the derivative of a dissipation potential, but here we are interested in the ones
that do have that property. The reasoning for the restriction of kinetic relations in form of subdifferentials, i.e.,
ξ = DvR(q, v), is twofold. First, they define gradient systems and thus lead to variational characterizations for
the gradient flow (see Sect. 2.2). Secondly, dissipation potentials arise naturally from thermodynamic principles
derived from microscopic stochastic models via large deviation principles; see Sect. 6 and [2,28,29,35].
Moreover, Onsager’s fundamental symmetry relationG = G

∗ for the linear kinetic relation ξ = Gv (see [30])
is equivalent to the existence of a (quadratic) dissipation potential R(v) = 1

2 〈Gv, v〉.
We now turn to the challenge of deriving effective kinetic relations. We are given a family of kinetic

relations parametrized by ε. The interpretation of ε as a small parameter, or a small scale, often implies that
there are natural ‘macroscopic,’ ‘averaged,’ or ‘effective’ forces and rates, which reflect the behavior of the
true forces and rates in the system at scales that are large with respect to ε, while smoothing out the behavior
at smaller scales. To derive an effective kinetic relation means to find a new relation between the limits of such
macroscopic forces and rates as ε → 0, leading to a characterization of the kinetic relation for ‘the limiting
system.’

Again, these effective kinetic relations are very common; for instance, Stokes’ law, Fourier’s law, Fick’s
law, and many similar laws actually are effective kinetic relations, derived from more microscopic systems,
often consisting of particles. Throughout science, such effective kinetic relations are the starting point for the
modeling of dissipative systems at an effective scale [6,23,32,33]. A detailed understanding of the properties
and assumptions that lie at the basis of such effective kinetic relations is therefore essential.

We now return to the question of what we mean by a ‘healthy’ and an ‘unhealthy’ kinetic rela-
tion. The limiting dissipation potential R̃0 in the second example above depends on the energy E , i.e.,
R̃0(q, v) = R−DE(q)(q, v). It follows that the contact set C	R−DE⊕ 	R∗−DE

also depends on DE . The gradient

flow equation (1.10) then takes the self-referential form

(q̇, −DE(q)) ∈ C	R−DE⊕ 	R∗−DE
.
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The induced evolution equation is correct, since different occurrences ofDE(q) interact nicely. However, the set
CR−DE⊕R∗−DE does not make sense as an independent kinetic relation, because CR−DE⊕R∗−DE does not provide
us with valid information about admissible pairs (v, ξ) other than for the case ξ = −DE(q). In order to find
the rate q̇ for a force ξ̂ �= −DE(q), we would need to construct a different energy Ê(q) such that ξ̂ = −DÊ(q),
repeat the convergence process for this energy Ê , obtain a different limiting dissipation potential R̂−DÊ , and
read off the admissible rate q̇ from the resulting contact set CR̂−DÊ⊕R̂∗

−DÊ
. Since this latter set is generically

different from C	R−DE⊕ 	R∗−DE
, this shows how a single contact set C	R−DE⊕ 	R∗−DE

cannot be considered as a kinetic

relation.
Instead, we seek a limiting kinetic relation that is defined as one single set C of pairs (v, ξ) that provides

us with all admissible combinations. The convergence concepts that we construct below are constructed with
this aim in mind.

1.6 Third example: wiggly energy

In the example of Sect. 1.3, the ‘correct’ effective dissipation potential Reff(q, v) = 	μ(q)v2/2 is obtained

solely from information encoded in Rε. When considering a family of 	-converging energies Eε
	−→ E0,

however, the ‘correct’ limiting dissipation potential may also contain information from Eε. This may seem to
contradict our claim from above that the dependence of the effective dissipation on the energy is ‘unhealthy.’
As we shall see below, however, ‘correct’ or ‘healthy’ will mean that the effective dissipation potentialReff can
depend on ‘microscopic details’ of Eε but not on its ‘macroscopic limit’ E0. This expectation is stimulated by the
idea of deriving a proper decomposition of ‘energy storage’ and ‘dissipation mechanisms’ in the macroscopic
level.

To illustrate this, we revisit the classical example of a gradient flow in a ‘wiggly’ energy landscape [1,
10,21,34]. Again we take as state space Q = R, but now the energy Eε is ε-dependent while the dissipation
potential Rε = R does not depend on ε:

Eε(q) := E0(q) + εA(q) cos
( 1

ε
q
)
, R(v) := 
(q)

2
v2, (1.11)

where E0 : R → R is smooth and 
 : R → R and A : R → R are smooth and positive. The induced gradient
flow evolution equation is


(q) q̇ = −DE0(q) − εA′(q) cos
( 1

ε
q
) + A(q) sin

( 1
ε
q
)
.

In Sect. 4, we summarize the results of [10] and place them in the context of this paper. We find that
the system (R, Eε,R) converges in the simple EDP sense to a limiting system (R, E0, R̃0), where E0 is the
ε-independent part of Eε as in (1.11), and R̃0 is given by

R̃0(q, v) = M0(q, v,−DE0(q)) − M0(q, 0, −DE0(q)),

where this time the function M0 is given by

M0(q, v, ξ) = inf

{∫ 1

0

[
(q)

2
v2 ż2(s) + (ξ+A sin(z(s)))2

2
(q)

]
ds

∣∣∣ z : [0, 1] → R, z(1) = z(0) + sign(v)

}
.

(1.12)
As in the previous example, R̃0 again depends on DE0(q). In Sect. 4, we also show that in the sense of one
of the two new convergence concepts, namely contact EDP convergence with tilting, the family (R, Eε,R)
converges to a limiting system (R, E0,Reff). Now, the effective dissipation potentialReff can be characterized
explicitly via

Reff(q, v) =
∫ |v|

0

√
A(q)2+(
(q)w)2 dw.

We see that Reff is independent of E0, but it depends on A, which is microscopic information contained in
the family Eε. Moreover, the quadratic structure of v �→ R(q, v) = 
(q)v2/2 is lost, because Reff(q, v) =
|A(q)v| + O(|v|3) for v → 0.
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1.7 Tilt-EDP and contact-EDP convergence

The reasonwhy gradient-flow convergence does not necessarily lead to a ‘healthy’ kinetic relation is relaxation:
for a given macroscopic rate v and force ξ , the limiting dissipation potential is found by a minimization over
microscopic degrees of freedom constrained to the macroscopic imposed rate. This can be recognized in the
definitions ofM0 in (1.7b) and (1.12) and is very similar to the cell problems that arise in homogenization [8,
9,19]. In the cases of this paper, the solutions of these cell problems may not be of gradient-flow type, leading
to a situation where the limit problem does not describe a gradient-flow structure. We analyze this in more
detail in Sect. 5.

To correct this, we introduce two novel aspects. The first is to consider not a single family (Q, Eε,Rε)
of gradient systems, but a full class of perturbed versions of this family. We perturb the given energies Eε by
arbitrary functions F ∈ C1(Q):

EFε := Eε + F .

We call such a perturbation a ‘tilt’ and will then require convergence of all tilted systems simultaneously. The
freedom to choose arbitrary tilts F allows us to probe the whole space of rates v and forces ξ for each q .

This setup leads to a first new convergence concept, which we call EDP convergence with tilting, or shortly
tilt-EDP convergence. Unfortunately, it may suffer from the same problems of relaxation, and therefore, it is a
rather restrictive concept that is too strong to cover the simple cases of wiggly dissipation and wiggly energy
discussed above.

The second new aspect is to weaken the definition of tilt-EDP convergence to require only a reduced
connection between the relaxed problem and the limiting dissipation potential—a connection that only holds
‘at the contact set C.’ This leads to the concept of contact-EDP convergence with tilting, or shortly contact-EDP
convergence. We show in the examples later in this paper that the concept of contact-EDP convergence for
gradient systems yields kinetic relations that do not suffer from the force dependence that we observed above
for simple EDP convergence.

1.8 Setup of the paper

In Section 2, we define gradient systems and gradient flows, recall the existing concept of simple EDP conver-
gence, and introduce the two novel convergence concepts tilt-EDP convergence and contact-EDP convergence.
These notions were already introduced in [10], but called ‘strict EDP convergence’ and ‘relaxed EDP conver-
gence,’ respectively. In Sects. 3 and 4, we study in detail the examples of a wiggly dissipation potential and a
wiggly energy, respectively, that were briefly mentioned above. In Sect. 5, we discuss in depth the reasons why
the concept of contact-EDP convergence is an improvement over the classical concept of EDP convergence,
and why it corrects the ‘incorrect’ kinetic relationship that we mentioned above.

In Sect. 6, we connect the tilting of energies as described above with tilting of random variables in large
deviation principles and show how the independence of the dissipation potential from the force arises naturally
in that context.

In Sect. 7, we present a result on tilt-EDP convergence that was formally derived in [22] and is rigorously
treated in [17]. It concerns diffusion through a membrane in the limit of vanishing thickness and shows that
even in the case of tilt-EDP convergence we can start with quadratic dissipation potentialsRε(q, ·), i.e., linear
kinetic relations, and end up with a non-quadratic effective dissipation potential, i.e., a nonlinear effective
kinetic relation.

2 Gradient systems and convergence

While the introduction was written in a informal style, from now on we aim for rigor.

2.1 Basic definitions

The context for this paper is a smooth finite-dimensional Riemannian manifold Q, which may be compact or
not. A common choice is Q = R

n . We write |·| for the local norms on the tangent and cotangent spaces TQ
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and T∗Q, and TQ ⊕ T∗Q for their direct (Whitney) sum

TQ ⊕ T∗Q := {
(q, v, ξ)

∣∣ q ∈ Q, v ∈ TqQ, ξ ∈ T∗
qQ

}
.

Definition 2.1 (Gradient systems and dissipation potentials) In this paper, a gradient system is a triple
(Q, E,R):

• Q is a smooth finite-dimensional Riemannian manifold.
• E : Q → R is a continuously differentiable functional, often called the ‘energy.’
• R : TQ → [0, ∞] is a dissipation potential, which means that for each q ∈ Q,

– R(q, ·) : TqQ → [0, ∞] is convex and lower semicontinuous,
– R(q, 0) = minv∈TqQR(q, v) = 0.

The dissipation potential has a natural Legendre–Fenchel dual R∗ : T∗Q → [0, ∞],
R∗(q, ξ) := sup

v∈TqQ
〈ξ, v〉 − R(q, v). (2.1)

By our assumptions on R, the dual potential R∗ is also convex, lower semicontinuous, non-negative, and
satisfies R∗(q, 0) = 0. We denote the (convex) subdifferentials of R and R∗ with respect to their second
arguments as ∂vR and ∂ξR∗.

The following lemma gives a well-known connection between growth and subdifferentials:

Lemma 2.2 Let R : TQ → [0,∞] be a dissipation potential with dual dissipation potential R∗. For each
q ∈ Q, the following are equivalent:

1. The map v �→ R(q, v) is superlinear, i.e., lim|v|→∞|v|−1R(q, v) = +∞;
2. For each ξ ∈ T∗

qQ, the subdifferential ∂ξR∗(q, ξ) is non-empty.

Proof To show the forward implication, note that the superlinearity implies that for every ξ the supremum
in (2.1) is achieved, and therefore, the subdifferential is not empty. For the opposite implication, note that for
all ξ ,R∗(q, ξ) is finite, and therefore, the right-hand side in the inequalityR(q, v) ≥ 〈ξ, v〉−R∗(q, ξ) grows
linearly at infinity with rate ξ . By arguing by contradiction, one finds that R(q, ·) is superlinear. ��
Remark 2.3 The finite dimensionality and smoothness assumptions that we make are of course stronger than
necessary for the definition of gradient systems [4]. We make these assumptions nonetheless to prevent tech-
nical issues from distracting from the structure of the development. We expect, however, that many of these
assumptions can be relaxed while preserving the philosophy of the paper. ��

2.2 The gradient-flow equation defined by a gradient system

The gradient-flow equation induced by the gradient system is, in three equivalent forms,

q̇ ∈ ∂ξR∗(q,−DE(q)), (2.2a)

0 ∈ ∂vR(q, q̇) + DE(q), (2.2b)

R(q, q̇) + R∗(q, −DE(q)) = 〈−DE(q), q̇〉. (2.2c)

The final line can be used to generate an additional formulation. For absolutely continuous curves q : [0, T ] →
Q, in short q ∈ AC([0, T ],Q), define the dissipation functional as

DT (q) :=
∫ T

0

(R(q, q̇) + R∗(q,−DE(q)
)
dt. (2.3)

By integrating the Young–Fenchel inequality

R(q, q̇) + R∗(q, ξ) ≥ 〈ξ, q̇〉 (2.4)

with ξ = −DE(q) and using the chain rule, we find

Lemma 2.4 (Upper energy estimate) Under the assumptions of this section,

E(q(T )) + DT (q) ≥ E(q(0)) for any q ∈ AC([0, T ],Q). (2.5)
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On the other hand, by integrating (2.2c) in time we find that solutions q of (2.2) achieve equality in (2.5).
This leads to a further characterization of solutions; see [4] or [27, Thm.3.1]:

Theorem 2.5 (Energy-Dissipation Principle) Let q ∈ AC([0, T ];Q). The following are equivalent:

1. For almost all t ∈ [0, T ], calQ satisfies any of the three characterizations (2.2);
2. The curve q satisfies

E(q(T )) + DT(q) ≤ E(q(0)). (2.6)

Remark 2.6 The assumption that v �→ R(q, v) is minimized at v = 0 and equals 0 there defines the intrinsic
properties of ‘dissipation.’ To understand this, note that, by formulation (2.2b), the dissipation of energy at
rate q̇ is given by 〈∂vR(q, q̇), q̇〉.

Clearly, ‘not moving implies that there is no dissipation of energy,’ but even further there is no dissipative
force, i.e., q̇ = 0 �⇒ 0 = ∂vR(q, 0) in the differentiable case (or 0 ∈ ∂vR(q, 0) in the general case). When,
additionally, v = 0 is the unique minimizer, we also have that ‘moving requires dissipation,’ i.e., q̇ �= 0 implies
〈∂vR(q, q̇), q̇〉 ≥ R(q, q̇) > 0, where we used convexity of R(q, ·) for the last ‘≥’.

Asmentioned in the Introduction, a gradient system (Q, E,R) can be considered to define a kinetic relation,
at each q ∈ Q, through the contact set

CR⊕R∗(q) :=
{
(v, ξ) ∈ TqQ × TqQ∗

∣∣∣R(q, v) + R∗(q, ξ) = 〈ξ, v〉
}
.

The same ‘nature’ of a gradient flow can be recognized as the property that the kinetic relation is dissipative,
i.e., that 〈ξ, v〉 ≥ 0 for all (v, ξ) ∈ CR⊕R∗(q). This follows immediately from the property that both R and
R∗ are non-negative, which itself is a consequence of the minimality of v = 0. ��

2.3 Simple EDP convergence

The energy-dissipation principle formulation (2.6) of a gradient flow leads to a natural concept of gradient sys-
tem convergence. A first version of this concept was formulated by Sandier and Serfaty [36] and generalizations
have been used in a large number of proofs (see, e.g., [5,22,24–26,29,39]).

Definition 2.7 (Simple EDP convergence) A family of gradient systems (Q, Eε,Rε) converges in the simple

EDP sense to a gradient system (Q, E0, R̃0), shortly (Q, Eε,Rε)
EDP−→ (Q, E0, R̃0), if the following two

conditions hold:

1. Eε
	−→ E0 in Q;

2. For each T > 0 the functionalDT
ε 	-converges in C([0, T ];Q) to the limit functional

DT
0 : q �→

∫ T

0

[R̃0(q, q̇) + R̃∗
0(q, −DE0(q))

]
dt. (2.7)

The two parts of Definition 2.7 naturally combine to enable passing to the limit in the integrated formula-
tion (2.6), as illustrated by the proof of the following lemma.

Lemma 2.8 (Simple EDP convergence implies convergence of solutions) Assume that (Q, Eε,Rε)
EDP−→

(Q, E0, R̃0). Let qε ∈ AC([0, T ],Q) be solutions of (Q, Eε,Rε), and assume the convergences

qε → q0 in C([0, T ],Q) and Eε(qε(0)) → E0(q0(0)).
Then, q0 is a solution of (Q, E0, R̃0).

Proof From parts 1 and 2 of Definition 2.7, we find that

E0(q0(T )) + DT
0(q0) − E0(q0(0)) ≤ lim inf

ε→0
Eε(qε(T )) + DT

ε(qε) − Eε(qε(0)) = 0.

By Theorem 2.5, it follows that the limit q0 is a solution of (Q, E0, R̃0). ��
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In the definition of simple EDP convergence, as well as in the two versions of EDP convergence with

tilting, we ask for the full 	-convergences Eε
	−→ E0 and DT

ε

	−→ DT
0 . This is needed to define the limits E0

and R̃0 in a unique way. For studying the limiting solutions q0 as in Lemma 2.8, the two liminf estimates are
enough; however, our aim is to recover effective kinetic relations or effective dissipation potentials, which is
additional information not contained in the limit equation.

Also in the fundamental work [36,39] on evolutionary 	-convergence for gradient flows only the liminf
estimates are imposed, because there the main focus is on the characterization of the limit solutions.

2.4 Tilting the gradient systems

As we explained in Introduction, simple EDP convergence may lead to ‘unhealthy’ limiting dissipation
potentials, which violate the requirement (1.8)–(1.9). As a central step toward improving the situation, we
embed the single sequence (Q, Eε,Rε) in a family of sequences (Q, Eε+F,Rε), parameterized by function-
alsF ∈ C1(Q;R), thereby ‘tilting’ the functionals Eε. Tilting Eε does not change the	-convergence properties:
we have

Eε
	−→ E0 ⇐⇒ Eε + F 	−→ E0 + F for all F ∈ C1(Q;R).

However, for the dissipation functional DT
ε we obtain new and nontrivial information by considering the

dissipation functional for the tilted energy:

DT
ε(q,F) :=

∫ T

0
Mε(q, q̇, −DEε(q)−DF(q))dt with Mε(q, v, ξ) := Rε(q, v) + R∗

ε(q, ξ).

We now assume that the 	-limits ofDε(·,F) exist, i.e.

DT
ε(·,F)

	−→DT
0(·,F) : q �→

∫ T

0
N0(q, q̇, −DF(q))dt for all F ∈ C1(Q;R). (2.8)

To recover the original structure of integralsDT
ε in terms of Mε, we define

M0(q, v, ξ) := N0
(
q, v, ξ+DE0(q)

)
,

such that DT
0 has the desired form

DT
0(q,F) =

∫ T

0
M0

(
q, q̇, −DE0(q)−DF(q)

)
dt.

We capture this discussion in a definition that provides the basis for the later convergence concepts.

Assumption 2.9 (Basic assumptions) Assume that the family (Q, Eε,Rε) satisfies

1. Eε
	−→ E0 in Q;

2. For all T > 0, there exists a functional DT
0 : AC([0, T ];Q) × C1(Q;R) → [0,∞] such that, for each

F ∈ C1(Q;R), the sequence DT
ε(·,F) 	-converges toDT

0(·,F) in the topology of C([0, T ];Q).
3. There exists a function N0 : TQ ⊕ T∗Q → [0,∞], independent of T , such that

∀F ∈ C1(Q;R) : DT
0(q,F) =

∫ T

0
N0(q(t), q̇(t), −DF(q)) dt.

For all (q, η) ∈ T∗Q, the map v �→ N0(q, v, η) is convex and lower semicontinuous.

Define M0 : TQ ⊕ T∗Q → R by

M0(q, v, ξ) := N0(q, v, ξ+DE0(q)). (2.9)

4. M0(q, v, ξ) ≥ 〈ξ, v〉 for all (q, v, ξ) ∈ TQ ⊕ T∗Q.
5. M0(q, v, ξ) ≥ M0(q, 0, ξ) for all (q, v, ξ) ∈ TQ ⊕ T∗Q.
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We briefly comment on these. Assumptions 1–3make the prior discussion precise. Note thatN0 is assumed
to be independent of the time horizon T . This is a common feature of convergence results of this type; see,
e.g. [8, Ch. 3], or the examples later in this paper, and note that this independence is also implicitly present in
condition (2.7) for simple EDP convergence.

Assumption 4 is the expected consequence of the Fenchel-Young inequality (2.4) giving Mε(q, v, ξ) ≥
〈ξ, v〉 for all ε > 0. This assumption is needed to obtain the upper energy estimate (2.5) for the limit functionals
E0 and DT

0 as well, namely

E0(q(T )) + DT
0 (q) ≥ E0(q(0)) for all q ∈ AC([0, T ],Q).

Assumption 5 is satisfied at positive ε, since by the conditions on dissipation potentials we have Rε(q, v) ≥
Rε(q, 0) = 0 for all q and v, so that

Mε(q, v, ξ) = Rε(q, v) + R∗
ε(q, ξ) ≥ Rε(q, 0) + R∗

ε(q, ξ) = Mε(q, 0, ξ).

Since the property Rε(q, v) ≥ Rε(q, 0) = 0 is an intrinsic property of gradient systems (see Remark 2.6),
Assumption 5 formulates that the limiting structure M0 preserves this aspect of the gradient-flow nature. If
we impose a continuity requirement onN0, then Assumption 5 can also be derived through the 	-convergence
limit—we show this in the next lemma. In the next section, both Assumptions 4 and 5 will be essential in
recovering a dissipation potential formulation of M0.

Lemma 2.10 Assume all of Assumption 2.9 except part 5; instead, assume that N0 is continuous. Then, for
all (q, v, ξ) ∈ TQ ⊕ T∗Q we have

N0(q, v, ξ) ≥ N0(q, 0, ξ) and M0(q, v, ξ) ≥ M0(q, 0, ξ). (2.10)

Proof Fix q0 ∈ Q. By working in local coordinates and taking sufficiently small T , we can choose a curve
q0 : [0, T ] → Q to satisfy q0(t) = q0 + tv, for any v ∈ Tq0Q. Similarly, for sufficiently small T we can
choose F such that −DF is a constant ξ ∈ T∗

q0
Q on the affine curve q0.

By the continuity of N0, we obtain that DT
0(q0,F) is finite; therefore, we can find a recovery sequence

qε → q0 for DT
ε(·,F). We define the time-rescaled curves rε(s) := qε(s/λ) for s ∈ [0, λT ], which converge

in AC([0, λT ],Q) to the limit r0(s) = q0(s/λ). For every (q, v) ∈ TQ and λ ≥ 1, we have

Rε(q, λv) ≥ λRε(q, v) ≥ Rε(q, v).

The first inequality follows fromRε(q, 0) = 0 and the convexity ofRε(q, ·), whenceRε(q, tv) ≤ tRε(q, v)
for t ∈ [0, 1]. Then, we replace T by 1/λ and perform the substitution x/λ �→ x . Defining Nε(q, v, η) :=
Mε(q, v, η−DEε(q)) we obtain Nε(q, λv, η) ≥ Nε(q, v, η), and then calculate

∫ T

0
N0

(
q0(t), q̇0(t), −DF(q0(t))

)
dt = lim

ε→0

∫ T

0
Nε

(
qε(t), q̇ε(t), −DF(qε(t))

)
dt

= lim
ε→0

1

λ

∫ λT

0
Nε

(
rε(s), λṙε(s), −DF(rε(s))

)
ds

≥ lim inf
ε→0

1

λ

∫ λT

0
Nε

(
rε(s), ṙε(s), −DF(rε(s))

)
ds

≥ 1

λ

∫ λT

0
N0

(
r0(s), ṙ0(s), −DF(r0(s))

)
ds

=
∫ T

0
N0

(
q0(t), q̇0(t)/λ,−DF(q0(t))

)
dt.

Letting λ → ∞ and using the continuity of N0, we find

1

T

∫ T

0
N0

(
q0+tv, v, ξ

)
dt ≥ 1

T

∫ T

0
N0

(
q0+tv, 0, ξ

)
dt.

Finally, the limit T → 0 yields the first inequality in (2.10). Since this inequality is valid for every (x, v, ξ) ∈
TQ ⊕ T∗Q, the second one follows by the definition of M0 in (2.9). ��
Remark 2.11 For the results of this paper, it would also be sufficient to require the 	-convergence of DT

ε
only on sequences of curves with uniformly bounded energy Eε. Such a restriction is particularly useful when
dealing with partial differential equations; see [16,17]. ��
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2.5 Primal–dual maps

For fixed q ∈ Q, the map (v, ξ) �→ M0(q, v, ξ) constructed in the previous section may have various different
properties, and we study them next.

Let X be a real reflexiveBanach space;wewill apply the results below to the case X = TqQ and X∗ = T∗
qQ,

for a fixed q ∈ Q, but the development below holds more generally. Recall that any functionalR : X → [0,∞]
is a dissipation potential if it is convex, lower semicontinuous, non-negative, and satisfies R(0) = 0.

Definition 2.12 Let M : X × X∗ → R ∪ {∞} satisfy M(v, ξ) ≥ 〈ξ, v〉.
(a) We say that M is a dual dissipation sum if there exists a dissipation potential R̂ such that

M(v, ξ) = R̂(v) + R̂∗(ξ).

We then shortly write M = R̂⊕R̂∗.
(b) We say that M has a contact-equivalent dissipation potential if there exists a dissipation potentialR such

that the contact set CM satisfies

CM := {(v, ξ) : M(v, ξ) = 〈ξ, v〉} = graph(∂R). (2.11)

(c) We say that M has a force-dependent dissipation potential if, for every ξ ∈ X∗, there exists a dissipation
potential 	Rξ such that

M(v, ξ) = 	Rξ (v) + (	Rξ )
∗(ξ).

Lemma 2.13 Let M : X × X∗ → R ∪ {∞} satisfy M(v, ξ) ≥ 〈ξ, v〉.
1. In each of the three cases above, the dissipation potentials are uniquely characterized by M.
2. If M is a dual dissipation sum R̂⊕R̂∗, then R̂ also is a contact-equivalent dissipation potential for M (i.e.,

(a) �⇒ (b)). The potential R̂ also satisfies the conditions of being a force-dependent dissipation potential
((a) �⇒ (c)), even though R̂ does not actually depend on ξ .

3. Assume that M satisfies

∀ξ ∈ X∗ : M(·, ξ) is lower semi-continuous and convex, (2.12a)

M(v, ξ) ≥ M(0, ξ) for all v ∈ X, (2.12b)

and has a contact-equivalent dissipation potentialR. IfR is superlinear, then M also has a force-dependent
dissipation potential 	Rξ (i.e., (b) �⇒ (c)).
It is possible that 	Rξ (q, v) �= R(q, v).

Proof To prove the uniqueness of the potentials, first consider case (a). If R̂1 and R̂2 are two dissipation
potentials, then

R̂1(v) − R̂2(v) = R̂∗
2(ξ) − R̂∗

1(ξ) for all (v, ξ) ∈ X × X∗.

It follows that both sides are constant, and by the normalization condition R̂i (0) = 0 the potentials coincide.
The proof of case (c) is identical. Finally, in case (b), if two dissipation potentials represent M , then they have
the same subdifferential; again they are equal up to a constant, and this constant vanishes for the same reason.

Part 2 of the lemma follows from the definition. To prove part 3, first note that by the superlinearity
and Lemma 2.2, for each ξ ∈ X∗ there exists vξ ∈ ∂R(ξ); since CM = graph(∂R), this implies that
M(vξ , ξ) = 〈ξ, vξ 〉. Define for each ξ ∈ X∗ the function 	Rξ : X → [0,∞] by

	Rξ (v) := M(v, ξ) − M(0, ξ).

Using (2.12b), we have M(0, ξ) ≤ M(vξ , ξ) = 〈ξ, vξ 〉 < ∞; hence, the difference above is well defined.
By (2.12a) and (2.12b), the function 	Rξ is convex and lower semicontinuous and satisfies 	Rξ (0) = 0 =
minv

	Rξ (v). To calculate the dual 	R∗
ξ (ξ), note that vξ minimizes the convex function v �→ M(v, ξ) − 〈ξ, v〉,

with value 0, so that

	R∗
ξ (ξ) = sup

v∈X
〈ξ, v〉 − 	Rξ (v) = sup

v∈X
[〈ξ, v〉 − M(v, ξ)] + M(0, ξ) = M(0, ξ).

It follows that M(v, ξ) = 	Rξ (v) + 	R∗
ξ (ξ). The fact that R and 	Rξ may be different is illustrated by the

examples in Sects. 3 and 4. ��

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Exploring families of energy-dissipation landscapes via tilting 623

2.6 Tilt- and contact-EDP convergence

We now define two new convergence concepts, EDP convergence with tilting and contact EDP convergence
with tilting.

Definition 2.14 Let the family (Q, Eε,Rε) of gradient systems satisfy Assumption 2.9, and recall that the
limiting function M0 is given by (2.9). The family (Q, Eε,Rε) converges

1. in the sense of EDP convergence with tilting, or shortly tilt-EDP convergence, to a limit (Q, E0, R̂0) if, for
all q ∈ Q, the integrand M0(q, ·, ·) is a dual dissipation sum with potential R̂0(q, ·).

2. in the sense of contact EDP convergence with tilting, or shortly contact-EDP convergence, to a limit
(Q, E0,Reff) if, for all q ∈ Q, the integrand M0(q, ·, ·) has a contact-equivalent dissipation potential
Reff(q, ·).

The two convergences are also written as

(Q, Eε,Rε)
tiEDP−−−→ (Q, E0, R̂0) and (Q, Eε,Rε)

coEDP−−−→ (Q, E0,Reff).

We add a statement on simple EDP convergence for completeness and comparison:

Lemma 2.15 Let the family (Q, Eε,Rε) of gradient systems satisfy Assumption 2.9. If, for all q ∈ Q, the
functionM0(q, ·, ·) has a force-dependent dissipation potential, then the family (Q, Eε,Rε) converges in the
simple EDP sense of Definition 2.7.

Remark 2.16 The opposite implication does not hold: if the family converges in the simple EDP sense,
then it follows that there exists a dissipation potential R̃0 such that M0(q, v, −DE0(q)) = R̃0(q, v) +
R̃∗

0(q, −DE0(q)). In order to have a force-dependent dissipation potential, however, we need information
about M0(q, v, ξ) for all values of ξ , not just ξ = −DE0(q). ��
Proof of Lemma 2.15 Assume that (Q, Eε,Rε) satisfies Assumption 2.9, and that the limit function M0 has
a force-dependent dissipation potential 	Rξ . Under Assumption 2.9, part 1 of Definition 2.7 is automatically
satisfied. By taking F = 0 in the 	-convergence statement of DT

ε in Assumption 2.9, we recover the 	-
convergence in part 2 of Definition 2.7. The fact that 	Rξ is a force-dependent dissipation potential implies
that

N0(q, v, 0) = M0(q, v, −DE0(q)) = 	R−DE0(q)(q, v) + 	R∗
−DE0(q)(q, −DE0(q)).

Therefore, the limit DT
0 is given as a sum 	R−DE0 ⊕ 	R∗

−DE0 , thus fulfilling (2.7). ��
In each of the three cases, the convergence uniquely fixes a limiting dissipation potential R̂0(q, ·),Reff(q, ·),

or R̃0(q, ·) for tilt-EDP, contact-EDP, or simple EDP convergence.

2.7 Properties of tilt- EDP and contact-EDP convergence

In Section 1.4, we described how we want the new convergence concepts to be such that tilting the energies
does not change the effective dissipation potentials. The definitions above have been constructed with this aim
in mind, and we now check that indeed the two tilted convergence concepts have this property.

Lemma 2.17 (Independence of tilt in tilt-EDP and contact-EDP convergence) Let � signify either tilt-EDP
or contact-EDP convergence. If

(Q, Eε,Rε)
�−→ (Q, E0,R0),

then for all F̃ ∈ C1(Q) we have

(Q, Eε+F̃, Rε)
�−→ (Q, E0+F̃, R0).

Note that the limiting dissipation potentialR0 is the same for all F̃ .
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Proof Because of the convergence (Q, Eε,Rε)
�−→ (Q, E0,R0), Assumption 2.9 is satisfied for the fam-

ily (Q, Eε,Rε). For both tilt-EDP and contact-EDP convergence, we first check that the perturbed family
(Q, Eε+F̃,Rε) also satisfies Assumption 2.9.

The 	-convergence requirement Eε+F̃ 	−→ E0+F̃ , part 1 of Assumption 2.9, follows directly from the
properties of 	-convergence and the continuity of F̃ .

For parts 2 and 3, we have to tilt the energy E0+F̃ by an arbitrary tilt F ∈ C1(Q) and observe that

D̃T
ε(q,F) :=

∫ T

0

[
Rε(q, q̇) + R∗

ε

(
q, −D(Eε+F̃)(q)−DF(q)

)]
dt = DT

ε(q,F+F̃).

Therefore, D̃T
ε(·,F) 	-converges toDT

0(·,F+F̃), and we have

DT
0 (q,F+F̃) = D̃T

0 (q,F) :=
∫ T

0
Ñ0(q, q̇, −DF(q))dt

with Ñ0(q, v, η) := N0(q, v, η − DF̃(q)). Therefore, D̃T
ε , D̃

T
0 , and Ñ0 satisfy parts 2 and 3.

Defining M̃0(q, v, ξ) := Ñ0
(
q, v, ξ+DE0(q)+DF̃(q)

)
, we find

M̃0(q, v, ξ) = N0(q, v, ξ+DE0(q)) = M0(q, v, ξ). (2.13)

This identity establishes parts 4 and 5, and therefore, the family (Q, Eε+F,Rε) satisfies Assumption 2.9.
The identityM̃0 = M0 in (2.13) also implies that the family (Q, Eε+F,Rε) satisfies the same convergence

as the untilted family (Q, Eε,Rε). ��
Next, we consider relations between the three convergence concepts. Up to a technical requirement, the

three concepts are ordered:

Lemma 2.18 We have

tilt-EDP convergence with R̂0 �⇒ contact-EDP convergence with Reff = R̂0

and

contact-EDP convergence
Reff(q, ·) superlinear for all q

}
�⇒ simple EDP convergence.

In addition, if tilt-EDP convergence holds, then all three convergences hold and the dissipation potentials
coincide: R̂0 = Reff = R̃0.

Proof Both arrows follow directly from Lemma 2.13. Part 2 of Lemma 2.13 implies that in the case of tilt-EDP
convergence all three convergences hold, and the potentials coincide. ��
Lemma 2.19 (Alternative characterization of tilt-EDP convergence)Consider a family (Q, Eε,Rε) of gradient
systems, and a fixed gradient system (Q, E0,R0). Then, the following statements are equivalent:

1. (Q, Eε,Rε)
tiEDP−−−→ (Q, E0,R0);

2. For each F ∈ C1(Q) we have (Q, Eε+F,Rε)
EDP−→ (Q, E0+F,R0).

The proof directly follows by reshuffling the definitions.
The important thing to note here is that the problems with simple EDP convergence, in having force-

dependent dissipation potentials, cannot be solved simply by requiring simple EDP convergence for all tilted
versions of the systems with a single dissipation potential. By Lemma 2.19, this requirement is equivalent to
tilt-EDP convergence and therefore is too strong: in the two examples of Sects. 3 and 4, tilt-EDP convergence
does not hold.

The benefit of the intermediate concept of contact-EDP convergence lies in the combination of tilting,
which allows the convergence to roam over all of (v, ξ)-space, with restriction to the contact set, which allows
the connection between M0 and R0 to focus on the case of contact, i.e., the kinetic relation. We comment
more on this in Sect. 5.
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Remark 2.20 (Comparison to [36,39]) These fundamental works on the evolutionary 	-convergence can be
understood in our setting as a special case of tilt-EDP convergence. Writing the dissipation functional DT

ε as
a sum of the velocity and a slope part, viz.

DT
ε = Dvel

ε + D
slp
ε with Dvel

ε (q) =
∫ T

0
Rε(q, q̇)dt and D

slp
ε (q) =

∫ T

0
R∗

ε(q,−DEε(q))dt,

the conditions in [36,39] are the well preparedness of initial conditions Eε(qε(0)) → E0(q0(0)) and the liminf
relations

q̃ε → q̃0 in Q �⇒ lim inf
ε→0

Eε(q̃ε) ≥ E0(q̃0),

lim inf
ε→0

Dvel
ε (qε(·)) ≥ Dvel

0 (q0(·)) =
∫ T

0
Reff(q0, q̇0)dt,

lim inf
ε→0

D
slp
ε (qε(·)) ≥ D

slp
0 (q0(·)) =

∫ T

0
R∗

eff

(
q0, −DE0(q̇0)

)
dt.

In [36,39], the last two relations are imposed only for solutions qε of the gradient-flow equation satisfying
qε(·) → q0(·). The separate limits of the two terms impose the structure of DT

0 = Dvel
0 + D

slp
0 in terms of an

integral over a dual sum Reff⊕R∗
eff , thus leading to tilt-EDP convergence.

Our notion of tilt-EDP convergence is more general, since we only ask convergence of the sum. As can be
easily seen in the examples in Sects. 4 and 7, there is a nontrivial interaction of the two terms, as a result of
which the individual liminf estimates do not hold. ��
Remark 2.21 (Comparison to [11,20,38]) A related line of evolutionary convergence in variational systems
centers around convergence of the functional q �→ Jε(q) := Eε(q(T )) − Eε(q(0)) + Dε(q). In [11,20], the
authors use a duality formulation for Jε to combine a coarse-graining map and the limit ε → 0 into a single
method.

In the context of this paper, 	-convergence of Dε and 	-convergence of Jε are very similar properties:
when Eε converges in the 	-sense and convergence of initial energies is assumed, then 	-convergence of Dε

implies 	-convergence of Jε. Under additional conditions on the system, one can also prove the converse.
In other cases, however, the energies Eε do not 	-converge. In [38, Ch. 7], a reversible chemical reaction,

modeled by a gradient structure, is scaled such that the limit ε = 0 is a one-way reaction. In this situation,
neither Eε nor Dε converges, and none of the results of this paper apply. The extended functional Jε does
converge, however, illustrating how a method based on Jε allows us to deal with the loss of the gradient
structure while preserving the structure of a variational evolution. ��

3 Contact-EDP convergence for a model with a wiggly dissipation

3.1 Model and convergence results

We study a family (R, E,Rε), ε > 0, of gradient systems, where the energy is independent of ε while the
dissipation strongly oscillates in the state variable q , namely

Rε(q, v) = μ(q, q/ε)

2
v2,

where μ ∈ C0(R2) is 1-periodic in the second variable, i.e., μ(q, y+1) = μ(q, y), and has positive lower and
upper bound 0 < m ≤ μ(q, y) ≤ 	m < ∞. We set

Reff(q, v) = 	μ(q)

2
v2 with 	μ(q) :=

∫ 1

0
μ(q, y)dy.

Combining Theorem 3.1 and Lemma 2.8, we obtain the following convergence result for the gradient-flow
equations. The solutions qε of

0 = μ(qε, qε/ε) q̇ε + DE(qε)

converge to the solution q of the gradient flow

0 = 	μ(q) q̇ + DE(q). (3.1)
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Theorem 3.1 (Contact-EDP convergence) We have (R, E,Rε)
coEDP−−−→ (R, E,Reff), where Reff(q, ·) is

quadratic and is independent of E .
If μ(q, ·) is not constant, we have simple EDP convergence for a non-quadratic R̃0(q, ·) that depends on

E , and there is no tilt-EDP convergence.

We emphasize that the gradient-flow equation obtained from simple EDP convergence is indeed the same
as the equation obtained from contact-EDP convergence:

0 = ∂vR̃0(q, q̇) + DE(q) = ∂vM0(q, q̇, −DE(q)) + DE(q). (3.2)

This form can bemore explicit by using the fact thatM0(q, ·, ·) only depends on v2 and ξ2 and is homogeneous
of degree one in these variables, viz.

M0(q, v, ξ) = (
ξ2+	μ(q)2v2) 


(
q,

ξ2

ξ2+	μ(q)2v2

)
.

This follows from the explicit representation of M0 given in (3.3c). The function 
 : R × [0, 1] → R is
continuous and satisfies


(q, 0) = μ1/2(q)

2	μ(q)2
, 
(q, 1/2) = 1

2	μ(q)
, 
(q, 1) = 1

2μmax(q)
, 
(q, s) ≥

√
s(1−s)

	μ(q)
,

where the last relation follows from M0(q, v, ξ) ≥ ξv. With this, we find the force-dependent dissipation
potential

	Rξ (q, v) = (
ξ2+	μ(q)2v2) 


(
q,

ξ2

ξ2+	μ(q)2v2

)
− ξ2
(q, 1),

and with R̃0(q, v) = 	R−DE(q)(q, v) the gradient-flow equation (3.2) takes the form

0 = 2	μ(q)2q̇ �
(
q,

DE(q)2

DE(q)2+	μ(q)2q̇2

)
+ DE(q), where �(q, s) = 
(q, s) − s∂s
(q, s).

Using ∂s
(q, 1/2) = 0, we have �(q, 1/2) = 
(q, 1/2) = 1/(2	μ(q)) and conclude that (3.2) is indeed
equivalent to (3.1).

Certainly, this form of the equation involving the nonlinear kinetic relation

v �→ ξ = ∂vM0(q, v, −DE(q)) = 2	μ(q)2v �
( DE(q)2

DE(q)2+	μ(q)2v2

)

is ‘unhealthy’ in the sense discussed above; in particular, it is ‘less natural’ than the effective equation (3.1)
featuring the simple linear kinetic relation v �→ ξ = 	μ(q)v.

3.2 Proof of simple and contact-EDP convergence

Here we prove the EDP convergences stated above.

Proof of Theorem 3.1 The tilted dissipation functional has the form

DT
ε (q,F) =

∫ T

0
Nε(q, q̇, −DF(q))dt with Nε(q, v, η) = Rε(q, v) + R∗

ε(q, η−DE(q)).

Hence, we obtain the special form

Nε(q, v, η) = N̂ (q, q/ε, v, η−DE(q)) with N̂ (q, y, v, ξ) = μ(q, y)

2
v2 + ξ2

2μ(q, y)
.
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The 	-limitDT
0 (·,F) ofDT

ε (·,F) was calculated in [10, Thm.2.4] by slightly generalizing the results in [8].
Indeed, our integrand N̂ satisfies exactly the same assumptions as N in [10, Eqn. (3,3)]; thus, the approach
there (see Prop. 3.6 and 3.7) can be used on our situation again. We arrive at

DT
0 (q,F) =

∫ T

0
N0(q, q̇, η)dt with N0(q, v, η) = M0(q, q̇, η−DE(q)),

where the effective dissipation structure M0 is given by homogenization, namely

M0(q, v, ξ) = inf
{ ∫ 1

s=0
N̂ (q, z(s), vz′(s), ξ)ds

∣∣∣ z ∈ H1
v

}
(3.3a)

= inf
{ ∫ 1

s=0

(μ(q, z(s)
(
vz′(s)

)2
2

+ ξ2

2μ(q, z(s))

)
ds

∣∣∣ z ∈ H1
v

}
(3.3b)

= inf
{ ∫ 1

y=0

(μ(q, y)v2

2b(y)
+ b(y)ξ2

2μ(q, y)

)
dy

∣∣∣ b(y) > 0,
∫ 1

0
b(y)dy = 1

}
, (3.3c)

where H1
v := { z ∈ H1(]0, 1[) | z(1) = z(0) + sign(v) }. As in [10], this result strongly depends on the

1-periodicity of μ(q, ·) and on the fact that y = q/ε is a scalar variable.
The first observation is that M0 is not given by a dual pair Reff⊕R∗

eff . For this, we use that M0(q, ·, ·)
can be evaluated explicitly on the two axes, namely

M0(q, 0, ξ) = 1

μmax(q)
ξ2 with μmax(q) := max{μ(q, y) | y ∈ [0, 1]}, (3.4a)

M0(q, v, 0) = μ1/2(q)

2
v2 with μ1/2(q) :=

( ∫ 1

0

√
μ(q, y)dy

)2
. (3.4b)

The first result is seen via (3.3c) by concentrating b near maximizers of μ(q, ·). The second follows from
(3.3b) by minimizing

∫ 1
0 μ(z)z′2 dy subject to z(1) = z(0)+1, which leads to μ1/2(q) as given above.

If μ(q, ·) is not constant, we have μ1/2(q) < μmax(q), so that there is no tilt-EDP convergence.
Clearly, we have the lower bound M0(q, v, ξ) ≥ ξv, which follows from the lower bound

μ(q, z(s))
(
vz′(s)

)2
2

+ ξ2

2μ(q, z(s))
≥ |v|z′(s)ξ (3.5)

for the integrand in (3.3b) (where equality holds if and only if μ(q, z(s))|v|z′(s) = ξ ) and integration over
s ∈ [0, 1] using the boundary condition for z.

The contact set CM0(q), defined similarly to (2.11),

CM0(q) := {
(v, ξ)

∣∣∣M0(q, v, ξ) = 〈ξ, v〉},
can be constructed as follows. For v = 0 we have to solve M0(q, 0, ξ) = ξ 0 = 0, which gives ξ = 0. For
v �= 0, we can use (3.3b), where now by coercivity a minimizer Z ∈ H1

v exists. On account of the contact
condition

M0(q, v, ξ) =
∫ 1

0

(μ(q, Z(s))
(
vZ ′(s)

)2
2

+ ξ2

2μ(q, Z(s))

)
ds = ξv =

∫ 1

0
|v|Z ′(s)ξ ds,

and by the lower estimate (3.5), we conclude that Z must satisfy μ(q, Z(s))|v|Z ′(s) = ξ for a.a. s ∈ [0, 1].
Integrating over s, we find v 	μ(q) = ξ , and the contact set reads

CM0(q) = {(v, ξ) ∈ R
2 | M0(q, v, ξ) = ξv} = {(v,	μ(q)v) | v ∈ R},

This gives the desired linear kinetic relation and the quadratic effective dissipation potential Reff(q, v) =
	μ(q)
2 v2.
By the abstract result in Lemma 2.18, we have also simple EDP convergence with the dissipation potential

R̃0(q, v) := M0(q, v, −DE(q)) − M0(q, 0,−DE(q)). Because we have shown that M0 is not of the form


(q, v) + �(q, ξ), we conclude that R̃0(q, ·) depends on E . Moreover, v �→ R̃0(q, v) is not quadratic. ��
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3.3 Comments

We discuss a few specific points for this model that complement the results in [10] for the wiggly energy model
to be discussed in the following section.

Remark 3.2 (Validity of the conjecture M0 ≤ Reff⊕R∗
eff , see [10, Sec. 5.4]) In our present example, we can

easily show that the sum of the dual pairReff⊕R∗
eff is always bigger thanM0. To see this, we insert a special

competitor into the characterization (3.3c). The choice b̂ : y �→ μ(q, y)/	μ(q) is admissible, and we find

M0(q, v, ξ) ≤
∫ 1

0

(μ(q, y)v2

2b̂(y)
+ b̂(y)ξ2

2μ(q, y)

)
dy = 	μ(q)v2

2
+ ξ2

2	μ(q)
= Reff(q, v) + R∗

eff(q, ξ).

The missing energyReff(q, v) +R∗
eff(q, ξ) −M0(q, v, ξ) ≥ 0 can be understood thermodynamically by the

relaxation discussed in Sect. 5. ��
Remark 3.3 (Bipotential and non-convexity) Clearly, M0(q, ·, ξ) is convex. Following the ideas in [10], it is
possible to show thatM0(q, v, ·) is convex as well. Indeed, neglecting the dependence on q , assuming v > 0,
we define W(ξ, h) = ∫ 1

0

√
ξ2+2hμ(y)dy and find

M0(v, ξ) = vW(ξ, H(v, ξ)) − H(v, ξ), where 1 = vDhW(ξ, H(v, ξ)),

i.e., h = H(v, ξ) is implicitly defined by the last relation. Using the implicit function theorem, one finds
D2

ξM0(v, ξ) = v
(
D2

ξW−(DξDhW)2/D2
hW

)|h=H(v,ξ) (cf. [10, Lem.4.13(D)], which is non-negative because
W is convex in ξ and concave in h.

However, in general M0 is not jointly convex in v and ξ . This can be seen by evaluating M0 at three
points:

M0(v0, 0) = μ1/2 v20

2
, M0(0, μ̄v0) = (μ̄v0)

2

2μmax
, M0

( 1
2v0,

1
2 μ̄v0

) = μ̄v20

4
,

where the last relation uses that the point lies on the contact set. As this point also lies in the middle of the first
two, convexity can only hold if we have

	μ v20

4
≤ 1

2

(μ1/2 v20

2
+ (	μ v0)

2

2μmax

)
⇐⇒ 	μ ≤ μ1/2 + (	μ)2/μmax.

Choosingμ(y) = α+|2y−1|γ for y ∈ [0, 1], where α is sufficiently small and γ sufficiently big (e.g., γ ≥ 3),
we find a contradiction to convexity. ��
Remark 3.4 (Convergence of Riemannian distance) It is interesting to note that we may look at the gradient
system (R, E,Rε) also as a metric gradient system (R, E,Dε), where the associated distances Dε : R×R →
[0, ∞[ are defined via

Dε(q0, q1)
2 := inf

{ ∫ 1

0
2Rε(q, q̇)ds

∣∣∣ q(0) = q0, q(1) = q1, q ∈ H1(]0, 1[)
}

=
∣∣∣
∫ q1

q0

√
μ(q, q/ε) dq

∣∣∣
2
.

Obviously, the distances Dε converge to the limit distance D0 given by

D0(q0, q1)
2 =

∣∣∣
∫ q1

q0

∫ 1

0

√
μ(q, y) dy dq

∣∣∣
2 =

∣∣∣
∫ q1

q0

√
μ1/2(q) dq

∣∣∣
2

with μ1/2(q) from (3.4b). ((R,Dε) converges to (R,D0) in the Gromov–Hausdorff sense.)
For non-constant μ(q, ·), we have μ1/2(q) < 	μ(q) and conclude that the limit D0 of the distances Dε is

different from the effective distance Deff obtained from Reff , namely

Deff(q0, q1)
2 =

∣∣∣
∫ q1

q0

√	μ(q)dq
∣∣∣
2 =

∣∣∣
∫ q1

q0

( ∫ 1

0
μ(q, y)dy

)1/2
dq

∣∣∣
2
.

Hence, predictions using D0 instead of Deff would give too little dissipation. In particular, the general theory
from [37] does not apply, because E is not uniformly geodesically λ-convex for all Dε. ��
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4 The wiggly energy example from [10]

In [10], a wiggly energy model was considered, where the energy of the gradient system (R, Eε,R) has the
form

Eε(t, q) = U(q) + εW(q, q/ε) − �(t)q. (4.1)

Itwas shown that the systemsconverge, in the senseof contact-EDPconvergence, to a limit system (R, E0,Reff),
where E0(t, q) = U(q) − �(t)q and the effective dissipation potential strongly depends on the wiggly partW .

The following theorem summarizes the results in [10] that show that (R, Eε,R) converges in the sense of
contact-EDP convergence, but not in the stronger sense of tilt-EDP convergence. Here the loading � acts in a
natural way as a time-dependent tilt. Indeed, the notion of tilt-EDP convergence was developed in [10] while
studying this model.

To obtain an explicit result, we restrict ourselves to a special case of the much more general result in [10]
and assume the following explicit expressions:

W(q, y) = A(q) cos y and R(q, v) = 
(q)

2
v2 with A(q), 
(q) > 0, (4.2)

where A, 
 ∈ C0(R) have a positive lower and upper bound.

Theorem 4.1 Consider the family (R, Eε,R) of gradient systems given through (4.1) and (4.2). Then, the
following statements hold:

(A) The dissipation functionals DT
ε defined via (2.3) weakly 	-converge in H1([0, T ]) to DT

0 : q �→∫ T
0 M0(q, q̇, , �(t)−DU(q))dt with

M0(q, v, ξ) = inf
{ ∫ 1

0

(
(q)

2

(
vz′(s)

)2 +
(
ξ+A(q) sin z(s)

)2
2
(q)

)
ds

∣∣∣ z ∈ H1
v

}
, (4.3)

where H1
v = {z ∈ H1([0, 1]) | z(1) = z(0) + sign(v)}.

(B) M0 satisfies M0(q, v, ξ) ≥ vξ for all q, v, ξ ∈ R, and

M0(q, v, ξ) = vξ ⇐⇒ 
(q)v = sign(ξ)

√
max{ξ2−A(q)2, 0}.

(C) We have the contact-EDP convergence (R, Eε,R)
coEDP−−−→ (R, E0,Reff) with

E0(t, q) = U(q) − �(t)q and Reff(v) =
∫ |v|

0

√
A(q)2+(
(q)w)2 dw.

(D) Tilt-EDP convergence does not hold.

The above theorem can be derived as for the wiggly dissipation model (R, E (3),R(3)
ε ) discussed before,

where ‘(3)’ indicates the previous section. However, there is a major difference in the two results.

In both cases, we start with a quadratic dissipation potential R(3)
ε (q, v) = μ(q, q/ε)v2/2 and R(v) =


(q)v2/2. In the previous section, the effective dissipation potentialR(3)
eff reads v �→ 	μ(q)v2/2 and, hence, is

still quadratic and solely depends on the familyR(3)
ε . In contrast, in the present caseReff is no longer quadratic

and explicitly depends on the amplitude A(Q), which is a microscopic information stemming from the family
(Eε)ε>0. Thus, we see that EDP convergence really involves the pair (Eε,Rε) and cannot be characterized by
the convergence of the family (Rε)ε>0 alone.
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5 Understanding the two new convergence concepts

The new convergence concepts of tilt- and contact-EDP convergence are based upon simultaneous convergence
of all tilted versions of the gradient system. In this section, we explain why this choice is successful in deriving
effective kinetic relations, without falling prey to the same problem as simple EDP convergence. This will also
allow us to explain in a different manner why tilt-convergence is not sufficient, and why the contact version
can be considered ‘more natural.’ The discussion in this section is necessarily formal.

Two observations are central:
Observation 1: Gradient-flow solutions solve a Hamiltonian system. Solutions of the gradient-flow system

(Q, E,R) can be obtained as solutions of the global minimization problem

inf
{E(q(T )) − E(q(0) + D(q)

∣∣ q(0) = q0
}
, q(0) = q0 given,

and the minimal value is 0.
At the same time, stationary points of the functional above are solutions of a Hamiltonian system. In the

simple case Q = R
m and R(q, v) = 1

2 〈Gv, v〉, for instance, the stationary points satisfy the Euler–Lagrange
equation

Gq̈ = D2E(q)G−1DE(q). (5.1)

Itmay seemparadoxical that gradient-flowsolutions are also solutions of aHamiltonian system. In this example,
it is easy to recognize that solutions of the gradient flow Gq̇ = −DE(q) also solve (5.1), by calculating

Gq̈ = − d

dt
DE(q) = −D2E(q)q̇ = D2E(q)G−1DE(q).

In general, the gradient-flow solutions form a strict subset of all solutions of the Hamiltonian system; this
subset is automatically reached when the functional is minimized without constraint on the end point q(T ).
For minimization with different conditions on the end point, however, minimizers will still be solutions of the
Hamiltonian system, but no longer gradient-flow solutions.

Observation 2: The limit M0 is obtained by relaxation. In the limit ε → 0 in the example in the previous
section, the limiting functional M0(q, v, ξ) is obtained through relaxation. This is best recognized in the
formulas (3.3), specifically (3.3b):M0 is defined through a minimization of rescaled versions ofRε andR∗

ε ,
for a given value of ξ , and under a constraint on the curves z. Because of this constraint, the final value z(1) is
not free, and consequently, the minimization need not result in a gradient-flow solution z. The non-gradient-
flow nature of z therefore is a consequence of the multi-scale construction ofM0, in which we impose a fixed
macroscopic rate v and minimize over microscopic degrees of freedom under that constraint.

However, when v and ξ are such that M0(q, v, ξ) = 〈ξ, v〉, solutions of the minimization problem are
gradient-flow solutions (see discussion following (3.5)). We therefore have the following situation:

1. For general v and ξ , the value of M0 and the corresponding optimizer z may not be relevant as represen-
tations of the limit ε → 0 of gradient-flow solutions qε.

2. For those v and ξ satisfying contact, i.e. M0(q, v, ξ) = 〈ξ, v〉, optimizers z are of gradient-flow type and
may represent the behavior of solutions qε.

This explains why contact-EDP convergence is a natural choice: it connects the relaxation M0 with a
dissipation potential Reff exactly at those values of v and ξ where the microscopic optimizers defining M0
are of the gradient-flow type. In fact, Lemma 2.18 implies that if simple EDP convergence yields a limiting
dissipation potential that does depend on the force—this is exactly the case of a problematic kinetic relation—
then tilt-EDP convergence cannot hold.

6 Tilting in Markov processes

Many gradient flows arise from the large deviations ofMarkov processes, and the tilting of the previous sections
has a natural counterpart in this context. In this section, we explore this connection.
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6.1 Gradient flows and large deviations of Markov processes

In [29], we showed the following general result: Suppose that Qn is a sequence of continuous-time Markov
processes in Q that are reversible with respect to their stationary measures μn ∈ P(Q). Assume that the
following two large deviation principles hold:

1. The invariant measures μn satisfy a large deviation principle with rate function S : Q → [0,∞], i.e.
μn ∼ exp

(−nS
)
, as n → ∞;

2. The time courses of Qn satisfy a large deviation principle in C([0, T ];Q) with rate function
I : C([0, T ];Q) → [0,∞], i.e.

Prob
(
Qn ≈ q

∣∣ Qn
0 ≈ q(0)

) ∼ exp
(−nI (q)

)
, as n → ∞. (6.1)

Then, I can be written as

I (q) = 1
2 S(q(T )) − 1

2 S(q(0)) +
∫ T

0

[R(q, q̇) + R∗(q, − 1
2DS(q)

)]
dt, (6.2)

for some symmetric dissipation potential R. This result can be interpreted as follows.

• The functional I is non-negative, and with probability one a sequence of realizations Qn of the stochastic
process converges (along subsequences) to a curve q satisfying I (q) = 0. The property I (q) = 0 therefore
identifies the limiting behavior of the stochastic process Qn .

• As discussed in Sect. 5, curves q satisfying I (q) = 0 are solutions of the gradient-flow equation q̇ =
DξR∗(q, − 1

2DS(q)); therefore, there is a one-to-one mapping between the functional I and the gradient
system (Q, 1

2 S,R).

Over the last few years, a number of well-known gradient systems have been recognized as arising in this
way. For instance, the ‘diffusion’ or ‘heat’ equation ∂tρ = �ρ arises as the limit of independent (‘diffusing’)
Brownian particles [2,3], with the well-known entropic Otto–Wasserstein gradient structure (cf. [31] and our
Sect. 7); as the limit of the simple symmetric exclusion process describing particles hopping on a lattice [3],
with a gradient structure of a mixing entropy and amodifiedWasserstein distance; and as the limit of oscillators
that exchange energy (‘heat’) [35], with a gradient structure consisting of an alternative logarithmic entropy
and again a modified Wasserstein distance. Rate-independent systems arise from taking further limits [7], and
extensions to GENERIC have also been recognized [12].

In the next two sections, we study how tilting enters this structure.

6.2 The static case

We first consider a non-dynamic case: Xn is a random variable in Q, with law μn ∈ P(Q). One example of
this arises in the stochastic process example above: if the initial state Qn

0 is drawn from the invariant measure
μn of the process, then Qn

t also has lawμn for all time t ≥ 0, and Xn := Qn
t for fixed t therefore is an example

of the situation we are considering.
In previous sections, we have implicitly used a property that is well known in the context of energetic

modeling:Energies are additive.Moreprecisely,when combining energies that arise fromdifferent phenomena,
the energy of the total system is simply the sum of the individual energies. In this way, given an energy E , the
perturbed energy E + F arises naturally as the sum of the original energy E and the external potential F .

We now connect this additivity property with tilting of random variables. In the stochastic context, tilting
a sequence of random variables Xn means considering a new sequence XF ,n with law

μF ,n(A) := 1

Zn

∫

A
e−nF(q) μn(dq) with Zn :=

∫

Q
e−nF(q) μn(dq). (6.3)

This has the effect of giving higher probability to q ∈ Q for which F(q) is smaller: it ‘tilts’ the distribution in
the direction of lower values of F .
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Ifμn satisfies a large deviation principle with rate function S, as in the case of the stochastic process above,
and satisfies a tail condition, then Varadhan’s and Bryc’s Lemmas (see, e.g., [13, Th. II.7.2]) imply that μF ,n

also satisfies a large deviation principle, with ‘tilted’ rate function SF :

μF ,n ∼ exp
(−nSF

)
, SF (q) := S(q) + F(q) + constant,

where the constant is chosen such that inf SF = 0. This result can be understood by remarking that from
μn ∼ e−nS we find

e−nFμn ∼ e−nF−nS,

which leads to the first two terms in SF ; the constant in SF arises from the normalization constant in (6.3).
The additivity property for energies thus has a counterpart for random variables in the form of the tilting

of (6.3); the two concepts, addition of energies and tilting of random variables, coincide in the large deviation
limit n → ∞.

6.3 The dynamic case

In the setup in the previous sections, not only are energies assumed to be additive, but also the dissipation
function R is assumed to be independent of the tilting: the addition of F changes the energy but not the
dissipation. This assumption has its origin in the modeling background of mechanical gradient flows, in
which the dissipation functional R defines the force-to-rate relationship DξR∗(q, ·), which is assumed to be
independent of the driving energy.

We now show that the same independence occurs naturally for gradient systems that arise in the context of
Markov processes. As in Sect. 6.1, we consider a Markov process Qn in Q with generator Ln . (For instance,
if Qn solves the stochastic differential equation in Rd ,

dQn
t = bn(Qn

t ) dt + σ n(Qn
t ) dWt ,

then

(Ln f )(q) = bn(q)∇ f (q) + 1

2
σ n(q)σ n(q)T� f (q).)

In the dynamic context, tilting can be written in terms of the generator through the Fleming–Sheu logarithmic
transform [15,40],

(LF ,n f )(q) := enF(q)Ln(e−nF f )(q) − enF(q) f (q)(Lne−nF )(q).

Let QF ,n be generated by LF ,n; if Qn has invariant measure μn , then QF ,n has the invariant measure
1
Zn

e−nFμn with Zn := ∫
Q e−nF dμn .

In the derivation of the characterization (6.2),R∗ is found by taking the limit in a scaled version of Ln , as
follows. Define the nonlinear generator

(Hn f )(q) := 1

n
e−n f (q)(Lnen f )(q),

and its limit, in a sense to be defined precisely (see [14, Ch. 6, 7]),

(H f )(q) := lim
n→∞ Hn f (q).

In a successful large deviation result, the operator H operates on f only through its derivative D f , which
allows us to identify

H f (q) = H(q,D f (q)).

The dual dissipation function R∗ is then defined by

R∗(q, ξ) := H(
q, ξ + 1

2DS(q)
) − H(

q, 1
2DS(q)

)
.
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Given this structure, we can now show how tilting does not affect R∗. If we replace Ln by LF ,n in this
procedure, then

(HF ,n f )(q) := 1

n
e−n f (q)(LF ,nen f )(q)

= 1

n
e−n f (q)enF(q)Ln(e−nFen f )(q) − 1

n
e−n f (q)enF(q)en f (q)Lne−nF (q)

= Hn( f −F)(q) − Hn(−F)(q)

→ H( f −F)(q) − H(−F)(q) as n → ∞
= H(q,D f (q)−DF(q)) − H(q,−DF(q)).

The dissipation potential RF ,∗ associated with the large deviations of the tilted process QF ,n , with tilted
invariant-measure rate functional SF = S + F + constant, then satisfies

RF ,∗(q, ξ) =
[
H(

q, ξ+ 1
2DSF (q)−DF(q)

) − H(q, −DF(q))
]

−
[
H(

q, + 1
2DSF (q)−DF(q)

) − H(q,−DF(q))
]

= H(
q, ξ+ 1

2DS(q)
) − H(

q,+ 1
2DS(q)

)

= R∗(q, ξ).

In other words, tilting replaces the invariant-measure large deviation functional S by SF = S +F + constant
and leaves R untouched.

Summarizing, there is a strong analogy between the modification of energies by addition and the modifi-
cation of stochastic processes by tilting. In both cases, the dissipation function is expected to be unaffected;
in the mechanical context this is a modeling postulate, and in the stochastic context it is a consequence of the
structure of the tilting.

Regardless of whether the gradient-flow structure arises directly from a modeling argument or indirectly
through a large deviation principle, the behavior under modification of the energy is therefore the same.

7 Membrane as limit of thin layers

In this section,wewant to show that the concept can also be successfully applied in partial differential equations.
We present a result that was formally derived in [22, Sec. 4] and rigorously proven in [17]. We also refer to
[16] for a related result on a diffusion equation in a thin structure.

The underlying gradient-flow equation is the one-dimensional diffusion equation

u̇ = ∂x

(
aε(x)

(
∂xu + u ∂x V (x)

))
in � := ]−1, 1[,

∂xu(t, x) + u(t, x) ∂x V (x) = 0 at x = −1, 1.
(7.1)

Defining the equilibrium density

wε(x) = 1

Zε

e−Vε(x) with Zε =
∫

�

e−Vε(x) dx, (7.2)

we see that the diffusion equation is generated by the gradient system (P(�), E,R∗
ε) given by (with λB(z) =

z log z − z + 1)

Eε(u) =
∫

�

λB
(
u(x)/wε(x)

)
wε(x)dx and R∗

ε(u, ξ) = 1

2

∫

�

aε(x)u(x)(∂xξ(x))2 dx,

which is the entropic Otto–Wasserstein gradient structure from [31], but now with a spatially heterogeneous
mobility coefficient aε(x).

The interesting phenomenon happens in the thin layer given by the small interval [0, ε]. In particular,
we allow aε to depend non-trivially on x but keep the tilting potential Vε independent of ε, i.e., Vε = V ∈
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C1([−1, 1]), which leads to wε = w0 and Zε = Z0. The energy functional E = Eε is defined as the relative
Boltzmann entropy:

E(u) =
∫

�

λB(u/w0)w0 dx =
∫

�

(
λB(u) + u(V+ log Z0) − 1

)
dx . (7.3)

For the diffusion coefficient aε, we assume that there are functions a∗, a+ ∈ C1([0, 1]) and a− ∈ C1([−1, 0])
such that a∗(x), a+(x), a−(−x) ≥ a > 0 for all x ∈ [0, 1], and

aε(x) =

⎧⎪⎨
⎪⎩

a−(x) for x < 0,
ε a∗(x/ε) for x ∈ [0, ε],
a+(x) for x > ε,

(7.4)

i.e., the diffusion coefficient in the layer of width ε is also of order ε. Note that aε has jumps at x = 0 and
x = ε, while the potential V is continuous on 	� = [−1, 1].

Themajor effort goes into the derivation of the effective dissipation potential R̂0.We refer to [22, Thm.4.1]
for a relatively short, but formal derivation and to [17] for the rigorous proof of the following result.

Theorem 7.1 We have (P(�), E,Rε)
tiEDP−−−→ (P(�), E, R̂0), where R̂0 is given by its Legendre dual as

follows:

R̂∗
0(u, ξ) =

∫ 0

−1

a−
2

(∂xξ)2u dx +
∫ 1

0

a+
2

(∂xξ)2u dx + aeff
√
u(0−)u(0+) C∗(ξ(0+)−ξ(0−)

)

where C∗(ζ ) = 4 cosh(ζ/2) − 4 and
1

aeff
=

∫ 1

0

1

a∗(y)
dy. (7.5)

While for x ∈ ] − 1, 0[ and x ∈ ]0, 1[, we still have the entropic Otto–Wasserstein diffusion as before, a
new feature develops at the membrane at x = 0. There, the chemical potential ξ as well as the density u may
have jumps which lead to transmission conditions, as we show below.

We see that R̂∗
0 only depends on the function a and not on the tilt potential V . Nevertheless, this is again

a case where the effective dissipation potential R̂0 depends on the energy E , but in a non-obvious way. As is
discussed in [17], the exponential form arising in the function C is generated through the Boltzmann entropy
since λ′

B(z) = log z. If λB is replaced by a function such that λ′′(z) = zq−2 with q > 1, thenCwill be replaced
by a function having growth like ζ 1/(q−1).

As shown in [17,22], one may consider the case where the tilting potentials depend on ε such that Vε(x) =
V∗(x/ε) for x ∈ [0, ε] with a nontrivial microscopic profile V∗ ∈ C1([0, 1]) such that Vε ∈ C0([−1, 1]). In
that case, simple EDP convergence still holds with an R̃∗

0 of the same form as R̂∗
0 in (7.5), but now aeff depends

on V∗, namely

1

aeff
= e−(V∗(0)+V∗(1))/2

∫ 1

0

eV∗(y)

a∗(y)
dy;

see [22, Thm.4.1].
Before closing this section, we want to highlight that the limiting gradient-flow equation obtained from

the linear diffusion equation (7.1) is again a linear equation, but with transmission conditions at x = 0. These
transmission conditions do not give any hint concerning the relevant kinetic relation for such transmission con-
ditions. Thus, R̂∗

0 really contains thermodynamic information not present in the following limiting equations:

u̇ = ∂x

(
a−(x)

(
∂xu + u ∂x V0(x)

))
in � := ]−1, 0[, (7.6a)

u̇ = ∂x

(
a+(x)

(
∂xu + u ∂x V0(x)

))
in � := ]0, 1[, (7.6b)

0 = a−(0)
(
∂xu(0−) + u(0−) ∂x V (0)

) − aeff
(
u(0+) − u(0−)

)
, (7.6c)

0 = a+(0)
(
∂xu(0+) + u(0+) ∂x V (0)

) − aeff
(
u(0+) − u(0−)

)
, (7.6d)

0 = ∂xu(t, x) + u(t, x) ∂x V0(x) at x = −1, 1. (7.6e)
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Indeed, the transmission conditions (7.6c) and (7.6d) can be derived by generalizing [18] to the present non-
quadratic relation. Using the kinetic relation in the weak form

∫ 1

−1
∂t u ψ dx = Dξ R̂∗

0(u, ξ)[ψ]

=
∫ 0

−1
a−∂xξ ∂xψ u dx +

∫ 1

0
a+∂xξ ∂xψ u dx +

+ aeff
√
u(0−)u(0+) (C∗)′

(
ξ(0+)−ξ(0−)

)(
ψ(0+)−ψ(0−)

)

= −
∫ 0

−1
∂x

(
a−u ∂xξ

)
ψ dx −

∫ 1

0
∂x

(
a+u ∂xξ

)
dx

+
[
aeff

√
u(0−)u(0+) (C∗)′

(
ξ(0+)−ξ(0−)

) − a+(0)u(0+)∂xξ(0+)
]
ψ(0+)

+
[
−aeff

√
u(0−)u(0+) (C∗)′

(
ξ(0+)−ξ(0−)

) + a−(0)u(0−)∂xξ(0−)
]
ψ(0−)

− a−(−1)u(−1)∂xξ(−1)ψ(−1) + a+(1)u(1)∂xξ(1)ψ(1)

and inserting ξ = −DE(u) = − log(u/w0) = − log u − V , we indeed obtain (7.6). In particular, using the
identities

√
ab (C∗)′ (log a − log b) = √

ab 2 sinh(log(a/b)) = √
ab

(
elog(a/b)/2−e− log(a/b)/2

)
= a−b,

we recover the linear transmission conditions (7.6c) and (7.6d).

Remark 7.2 The combination of the cosh-type function C∗ in (7.5) with the entropy functional E in (7.3)
is witnessed in many systems [22,28,29]. When arising in a deterministic limit of a sequence of stochastic
processes, as described in Sect. 6, this structure can be related to the averaging of many independent jump
processes.

In [27], the authors study a class of gradient systems for linear equations inRn . Remarkably, they show that,
within a broad class of energy dissipation combinations, only this entropy–cosh combination has the property
that the dissipation potential is tilt invariant. This implies that, within this class, only cosh-type dissipation
functionals such as C∗ may appear as limits of families converging in the tilt-EDP sense. ��

8 Conclusions

This paper has focused on the derivation of effective kinetic relations, which describe how a state of a system
changes when the system is subject to a given force ξ . A thermodynamically motivated way to implement a
kinetic relation is through a dissipation potential, so that the kinetic relation is then expressed in the derivative
form ξ = ∂q̇R(q, q̇) for q ∈ Q. Gradient systems are defined as triples of a state spaceQ, an energy functional
E , and a dissipation potential R, and the induced gradient-flow equation is found by the kinetic relation and
the force given in the potential form ξ = −DE .

We have illuminated how different notions of convergence for families (Q, Eε,Rε) of gradient systems
yield gradient structures (Q, E0,R0) withR0 ∈ {R̃0, R̂0,Reff} for the same limiting gradient-flow equation.
In particular, we discussed why not all options are equally useful.

In particular, the notion of simple EDP convergence for gradient systems is quite general but presents a
serious drawback: the limit dissipation potential often depends on the limit energy E0. This is an instance of a
force-dependent dissipation potential; such a potential has limited use, since it cannot be applied to different
forcings than the one for which it was derived. Furthermore, simple EDP convergence leads to ‘unnatural’
kinetic relations: even in cases where we expect simple linear functional forms, the result may be a complicated
nonlinear expression. We illustrated this phenomenon in Sects. 3 and 4.

To remedy these problems, in Sect. 2.6 we introduced two new convergence notions for gradient systems,
EDP convergence with tilting (tilt-EDP) and the weaker contact EDP convergence with tilting (contact EDP).
By these concepts, tilting the sequence of microscopic energies with a macroscopic contribution F allows us
to explore the whole force space T∗

qQ at any given state q ∈ Q. However, it turns out that tilt-EDP convergence
is rather restrictive: when simple EDP convergence gives a dissipation potential that depends on the force,
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then tilt-EDP convergence does not hold (cf. Lemma 2.18). In such cases, contact-EDP is the correct choice,
in that it gives a fully consistent kinetic relation for the limit system. We have interpreted these phenomena in
general terms in Sect. 5.

One can interpret the introduction of the tilt function F into a given gradient system (Q, Eε,Rε) as the
addition of a component to the system that generates an additional energywithout changing the kinetic relation.
This is a first step toward a further goal: generalize the convergence concepts of this paper to the case in which
two independent gradient systems (Q1,2, E1,2

ε ,R1,2
ε ) are connected by adding a shared energy component

Fε : Q1 ×Q2 → R∪ {∞}. The aim is to define a convergence concept for the individual systems that implies
convergence of the joint system under reasonable conditions on the joint energy Fε. We leave this for future
work.
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