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Abstract

We study the GENERIC structure of models for reactive two-phase flows and their connection to
a porous-media model for reactive fluid-rock interaction used in Geosciences. For this we discuss the
equilibration of fast dissipative processes in the GENERIC framework. Mathematical properties of
the porous-media model and first results on its mathematical analysis are provided. The mathematical
assumptions imposed for the analysis are critically validated with the thermodynamical rock data
sets.
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1 Introduction

During its journey towards the subduction zone, the oceanic lithosphere cools and becomes hydrated,
so that the fluid is chemically bound in solid phases. During subduction into the earth mantle, in turn,
the plates heat up and the hydrous minerals become unstable. The resulting dehydration reactions are
strongly temperature-dependent, and due to the solid solutions of the minerals involved, this dehydration
is a continuously evolving process driven by the steady, slow heat flow into the plate, Fig. 1 right. Evidence
from the global volatile budget indicates [vKHSA11] that there must be a fluid escape mechanism that can
keep pace with the slab descent velocity (cm/year) to avoid the fluid being lost to the earth interior. This
dynamic fluid escape mechanism leads fluid flow to organize itself into large-scale and high-flux transport
systems through which fluids can escape from the subducting plate, cf. e.g., [vKHSA11, PJP+17]. In
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Figure 1: Schematic view of a subducting slab that heats up from top and below and therefore dehydrates
on its way into the hot earth mantle. Colors within the slab indicate temperature. The left box shows a
typical profile through the uppermost part of the slab as it enters the subduction zone. Different lithologies
contain various amounts of H2O that is bound in hydrous minerals. On its decent into the mantle the
slab is heated up by heat conduction from the surrounding mantle. Increasing temperatures lead to
dehydration, i.e. the release of the rock-bound H2O in a free fluid phase (small dashed arrows). These
fluids cause partial melting of the mantle which gives rise to arc magmatism at the surface. Dimensions
are not to scale. Rock-bound H2O contents are taken from [RMHC04].

fact, it has been shown in various field-based studies that intra-slab fluid flow and fluid escape from the
slab are channelized and reactive, cf. e.g., [CHJ+19, JGP+12, APDH+14, HJBS12, TJB+18, PNTG+10].

Dehydration reactions often lead to a densification of the solid phases of the plate and thus to the
formation of a fluid-filled porosity. The initial porosity forms at the sub-mm scale and is heterogeneously
distributed across the rock as defined by the local bulk composition [PJP+17]. As dehydration progresses,
these initial vein-like porosity structures merge and form a vein network that allows fluid flow in the rock
[JKGGS08, TJB+18, PJP+17, BJK+18, CPNT19]. Hereby, reactive fluid flow is able to trigger further
rock dehydration and to transform an initially fine and small-scale high-porosity structure into wider and
larger vein systems that may also develop reaction halos [HVJ22] by chemical interaction with the wall
rock, cf. also [TJB+18, JGP+12]. The works [PJP+17, BJV+20, HVJ22] develop thermodynamically
consistent porous-media models which explain the generation of porosity and veining due to dehydration
reactions. They provide a first step towards a mechanistic understanding on how dehydration leads from
the first stage of chemistry-controlled local dehydration to the development of intra-slab flow structures
that are highly channelized. These channels may show only limited interaction with the wall rock, cf.
e.g., [BA02, SPR11, HJBS12], but they may also have well-developed reaction halos, cf. e.g., [TJB+18,
JGP+12, HVJ22].

In this work we discuss the porous-media models developed in [PJP+17, BJV+20, HVJ22] in more
detail from a mathematical point of view. In particular, the porous-media model deduced in [PJP+17]
takes the following form

∂t
(
ϱ̂s(1−Xh)(1− ϕ)

)
= 0 , (1.1a)

∂t
(
ϱ̂s(1− ϕ) + ϱ̂fϕ

)
= ∇ ·

(
ϱ̂fK(ϕ)∇π

)
. (1.1b)

Here, ϕ denotes the porosity, π the fluid pressure, and Xh the H2O-content of the solid phase. Moreover,
with index i ∈ {f, s} for fluid and solid ϱ̂i denotes the ”pure“ mass density of the respective phase and the
expression K(ϕ) is a Kozeny–Carman-type permeability of the form K(ϕ) = κ

µϕ
3 with positive constants

κ, µ > 0. In this way, (1.1a) expresses the conservation of mass for the immobile solid and (1.1b) provides
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the conservation of total mass. Given suitable initial data, one observes that (1.1a) may be explicitly
solved for the porosity

ϕ = 1− ϱ̂0
s (1−X0

h)(1−ϕ0)
ϱ̂s(1−Xh)

,

where quantities with superscript 0 denote given initial data. Additionally, the models studied in
[BJV+20, HVJ22] also take into account the influence of further chemical species transported with the
fluid on the dehydration process. This chemical species is CO2 in [BJV+20] and SiO2 in [HVJ22]. It is
assumed to undergo a diffusion process in the fluid phase, so that the model in [HVJ22] reads:

∂t
(
ϱ̂s(1− ϕ) + ϱ̂fϕ

)
= ∇ ·

(
ϱ̂fK(ϕ)∇π

)
, (1.2a)

∂t
(
ϱ̂scs(1− ϕ) + ϱ̂fcfϕ

)
= ∇ ·

(
ϱ̂fcfK(ϕ)∇π + ϱ̂fcfϕDc∇cf

)
, (1.2b)

ϕ = 1− ϱ̂0
s (1−c0s−X0

h)(1−ϕ0)
ϱ̂s(1−cs−Xh)

, (1.2c)

where ϕ, π, Xh, ϱ̂f , ϱ̂s, and K(ϕ) have the same meaning as in (1.1). In addition, with index i ∈ {f, s}
for fluid and solid ci is the SiO2-content of the respective phase and Dc in (1.2b) is a diffusion coefficient.
Again, quantities with superscript 0 denote given initial data. In [PJP+17], resp. [HVJ22], systems (1.1)
and (1.2) are numerically solved for the unknowns ϕ, π, and cs by a finite difference method, whereas
the the remaining quantities cf = c̃f(π, cs, θ), Xh = X̃h(π, cs, θ), ϱ̂i = ˜̂ϱi(π, cs, θ), i ∈ {s, f}, implicitly
depend on the unknowns and on the (given) temperature θ. Their values are obtained from equilibrium
thermodynamical closing relations.

In this present work we further discuss models (1.1) and (1.2) from a mathematical point of view.
First, based on our findings in [ZPT21], we investigate the thermodynamical structure of models (1.1) and
(1.2) in the framework GENERIC (the acronym for General Equations of Non-Equilibrium Reversible
Irreversible Coupling). For this, we briefly review the modeling concept of GENERIC in Section 2 and
use it to develop a model for reactive two-phase Darcy flows, cf. Sec. 2.3. Many porous-media models in
literature also consider chemical reactions in a thermodynamically consistent way, cf. e.g. [OSC15, Ehl09].
Yet, many treat reactions only within a phase or the exchange of mass between the different phases is
incorporated by rather heuristic exchange terms [Cou04, ADDN04, Kra14]. The reactive two-phase
Darcy-flow model, that we obtain with the aid of the GENERIC framework, allows for the exchange
of mass between the different phases by chemical reactions, where the corresponding reaction terms are
directly inferred from the thermodynamical functionals and dissipative operators related to the chemical
reactions. In this way the exchange process is incorporated in a thermodynamically consistent way and
the structure of the process including the reaction kinetics is highlighted very well.

As mentioned above, in the works [PJP+17, BJV+20, HVJ22] the determination of the quantities cf ,
Xh ϱ̂s, and ϱ̂f stems from equilibrium thermodynamical closing relations deduced by Gibbs minimization.
This approach rests on the assumption that chemical reactions take place on much faster time scales than
flow and transport so that they can be assumed to be in local equilibrium. In Section 3 we therefore discuss
the local equilibrium of fast dissipative processes in the GENERIC framework and deduce equations
for the effective system. For this, we follow the ideas of [MPS21]. We apply this approach to the
equilibration of temperature in the two-phase system and to the equilibration of chemical reactions.
These considerations put us in the position to show in Section 4 that the models (1.1) and (1.2) originate
from the reactive two-phase Darcy flow model deduced in Sec. 2.3 by equilibration of the fast reactions.
Finally, Section 5 provides first analytical results on the existence of weak solutions for the models. Here
we take into account the discretization scheme used in [HVJ22] for the numerical simulations and we
critically discuss the mathematical assumptions with respect to the evidence of the thermodynamical
properties given by the chemical composition of the rock samples considered in [PJP+17, HVJ22].

2 GENERIC structure of reactive two-phase systems

Short introduction to the GENERIC framework The thermodynamical modeling framework of
GENERIC (General Equations of Non-Equilibrium Reversible Irreversible Coupling) was introduced by
Öttinger and Grmela in [GÖ97, ÖG97]. It characterizes the evolution of a thermodynamical system in
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Symbol(s) Unit Definition Reference

Ω Spatial domain in Rd (2.4)

vi m s−1 Velocity of solid-s and fluid-f (2.5)

P i Momentum density of solid-s and fluid-f (2.9)

Ci Concentration density vector of solid-s and fluid-f (2.9),(2.10), Ex. 2.1

Ui J m−3 Internal energy density of solid-s and fluid-f (2.9)

Si J K−1 m−3 Entropy density of solid-s and fluid-f (2.1),(2.11),(2.22)

Ei J m−3 Total energy density of solid-s and fluid-f (2.1),(2.11)

M i kg mol−1 Vector of molar masses of solid-s and fluid-f (2.10),Ex. 2.1

ϱi kg m−3 Mass density of solid-s and fluid-f (2.10)

πi Pa Pressure of solid-s and fluid-f (2.12)

θi K Temperature of solid-s and fluid-f (2.12)

µi J mol−1 Chemical potential of solid-s and fluid-f (2.12)

ϕ vol. fr. Porosity (1.1), (1.2), Sec. 4.2

ϱ̂i kg m−3 “pure” mass density of solid-s and fluid-f (1.1), (1.2), (4.6)

cf , cs wt. fr. SiO2 content of solid-s and fluid-f Sec. 4.3

Xh wt. fr. H2O in solid (1.2), Sec. 4.2

q State vector Sec. 2, (2.9)

q̇ = ∂tq Partial time derivative of q (1.1),(1.2),(2.3)

Q,Q∗ State space and its dual Sec. 2

η, ξ Element of Q∗ (2.19a)

E J Total energy functional Sec. 2, (2.11)

S J K−1 Total entropy functional Sec. 2, (2.11), (2.22)

J Poisson operator Sec. 2, (2.14)

K Onsager operator Sec. 2, (2.15),(2.24)

DA Functional derivative Sec. 2, (2.13)

T Transformation between state spaces

L,L∗ Fréchet derivative of T, L := DT and its adjoint L∗

Table 1: List of most recurring symbols with references to definitions, sections and relevant examples.

terms of a state space Q with dual Q∗, thermodynamical potentials such as energy E and entropy S, and
geometric structures J and K, which encode the reversible (Hamiltonian) or irreversible (Onsager) nature
of the process. Characteristically for this, the Poisson structure J(q) : Q∗ → Q is antisymmetric J∗ = −J
and satisfies Jacobi’s identity, whereas the Onsager operator K(q) : Q∗ → Q is positively semidefinite
⟨ξ,K(q)ξ⟩ ≥ 0 for all ξ ∈ Q∗ and symmetric K∗ = K. The triple (Q,E, J) forms a Hamiltonian system
for reversible dynamics and the triple (Q, S,K) forms an Onsager, resp. gradient system for dissipative
dynamics. A GENERIC system (Q,E, S, J,K) couples the two via the non-interaction conditions (NIC)

J(q)DS(q) = 0 = K(q)DE(q) , (2.1)

and the mass conservation condition

J(q)DM(q) = 0 = K(q)DM(q) (2.2)

for the total mass M of the system. We call conditions (2.1) and (2.2) degeneracy conditions. Above,
D denotes the Fréchet derivative of the driving functional with respect to q. The properties of J and
K together with the NIC (2.1) ensure the compatibility of the system with the laws of thermodynamics
and (2.2) ensures the conservation of the total mass of the system. The evolution of a state vector
q : [0,T] → Q describing the mechanical and thermodynamical properties of the system is then given by

∂tq = J(q)DE(q) +K(q)DS(q) . (2.3)
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For more details on the GENERIC framework we refer to [GÖ97, ÖG97] and with regard to transformation
properties of GENERIC systems also to [ZPT21].

In [ZPT21] we discussed the GENERIC framework for reactive fluid flows. In this section we extend
these results to multiphase systems. For this, we will introduce a two-phase Darcy model in Sec. 2.1
and study a multiphase system with diffusion and chemical reactions between the two phases in Sec. 2.2.
Subsequently, we will combine these results in Sec. 2.3 to obtain the GENERIC structure of reactive
two-phase Darcy flows.

Kinematics of two-phase flows We follow here the approach to the theory of porous media as
outlined e.g. in [Ehl09] and describe the two-phase system, consisting of a fluid (f) and a solid (s) phase,
in the Eulerian frame, where Ω(t) ⊂ Rd denotes the domain in Eulerian coordinates at time t ∈ [0,T].
To each phase i ∈ {f, s} there is an associated reference domain Ω̄i ⊂ Rd and a sufficiently smooth flow
map χ̄i : [0,T]× Ω̄i → Rd, (t, x̄) ∈ [0,T]× Ω̄i 7→ x = χ̄i(t, x̄) ∈ Ω(t), so that

Ω(t) := {x ∈ Rd, x = χ̄i(t, x̄i) for some x̄i ∈ Ω̄i} for i ∈ {s, f} . (2.4)

When there is no chance for misunderstanding we omit indicating the time dependence of the current
configuration, i.e., we write Ω for Ω(t). The motion of phase i is characterized by the following ODE
Cauchy problem

∂tχ̄i(t, x̄) = vi(t, χ̄i(t, x̄)) for all x̄ ∈ Ω̄i, t ∈ [0,T] , (2.5a)

χ̄i(0, x̄) = x̄ for all x̄ ∈ Ω̄i , (2.5b)

where vi : [0,T]× Ω(t) → Rd denotes the Eulerian velocity field of phase i and we ask that

vs(t, ·) = vf(t, ·) on ∂Ω(t) . (2.6)

In order to ensure that the flow map is orientation-preserving we claim that its Jacobi determinant is
positive, i.e.,

V̄i := det ∇̄χ̄i > 0 , (2.7)

and we denote the Jacobi matrix by

Fi := ∇̄χ̄i , where (Fi)kl = (∇̄χ̄i)kl = (∂x̄l
(χ̄i)k) (2.8)

where x̄ = (x̄1, . . . , x̄d)
⊤ are the coordinates of the Lagrangian domain Ω̄i of phase i.

2.1 Two-phase Darcy flow

We now deduce the GENERIC structure for a two-phase Darcy model without reactions but with an
interphase friction term. For this we extend our findings from [ZPT21, Sec. 6] to the two-phase setting. To
keep the presentation concise, we directly start the considerations in Eulerian coordinates. As described
above, the state q ∈ Q of the multiphase flow is defined by a vector of fluid (f) and solid (s) quantities

q =

(
qs

qf

)
=


P s : Ω → Rd

Cs : Ω → RNs

Us : Ω → R
P f : Ω → Rd

Cf : Ω → RNf

Uf : Ω → R

 . (2.9)

In each phase i ∈ {s, f} there are Ni components with a vector of concentrations Ci = (Ci,k)
Ni

k=1 ∈ RNi

and a corresponding vector of molar masses M i = (Mi,k)
Ni

k=1 ∈ RNi , such that each phase has the mass
density ϱi and the total mass density is ϱtot defined by

ϱi =

Ni∑
k=1

Mi,kCi,k = M i ·Ci and ϱtot = ϱs + ϱf . (2.10)
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Additionally, each phase has a separate momentum P i and internal energy Ui. At this point we ob-
serve that the quantities here defined account already for the volume fraction of the respective phase.
Definitions of “pure” and “partial” quantities and their relation to volume fractions are treated in Sec. 4.2.

Above notation allows us to define the functionals for total energy E and entropy S as

E(q) :=

∫
Ω

Es(qs) + Ef(qf) dx with Ei(qi) =
|P i|2

2ϱi
+ Ui , (2.11a)

S(q) :=

∫
Ω

Ss(Cs, Us) + Sf(Cf , Uf) dx , (2.11b)

where the total energy and entropy densities are E = Es +Ef and S = Ss +Sf . The entropies satisfy the
Gibbs relations

πi

θi
:= Si −Ci∂Ci

Si − Ui∂Ui
Si,

1

θi
:= ∂Ui

Si,
µi

θi
:= ∂Ci

Si (2.12)

separately for each phase i ∈ {s, f} with pressure πi, temperature θi, and chemical potential µi. This
gives the driving forces for the GENERIC evolution as

DE(q) = η =


P s/ϱs

0
1

P f/ϱf
0
1

 , DS(q) = ξ =


0

µs/θs
1/θs
0

µf/θf
1/θf

 , (2.13)

where we will denote with the subscript DaA, ξa and ηa the a-component of the vectors DA, ξ,η. The
reversible dynamics of the system follows the evolution given by the Poisson structure

J(q)=


JP sP s

JP sCs
JP sUs

0 0 0
JCsP s

0 0 0 0 0
JUsP s 0 0 0 0 0
0 0 0 JP fP f

JP fCf
JP fUf

0 0 0 JCfP f
0 0

0 0 0 JUfP f
0 0

 with

JP iP i□ := −(∇□)⊤P i −∇ · (P i ⊗□) ,

JP iCi
□ := −(∇□)⊤Ci ,

JCiP i
□ := −∇·(Ci ⊗□) ,

JP iUi
□ := −Ui∇□+∇(□πi) ,

JUiP i□ := −∇· (Ui□) + πi∇·□ .

(2.14)

The irreversible processes are encoded in an Onsager operator

K(q) =

(
Kss(q) Ksf(q)
Kfs(q) Kff(q)

)
=

(
Ks

visc +Ks
ht 0

0 Kf
visc +Kf

ht

)
+

(
Kss

he +Kss
fric Ksf

he +Ksf
fric

Kfs
he +Kfs

fric Kff
he +Kff

fric

)
, (2.15)

where each of the blocks Kji for i, j ∈ {s, f} is a 3 × 3 block acting on the derivatives of S with respect
to qi = (P i,Ci, Ui)

⊤. Single-phase effects are solely encoded in the diagonal operators Kss,Kff and
interaction terms are encoded in all the components of K. We consider irreversible processes due to
single-phase Stokesian viscous dissipation Ki

visc and heat transport Ki
ht. Phase interaction is due to

interfacial friction Kij
fric and due to heat exchange Kij

he. First we consider the single-phase effect of viscous
dissipation

Ki
visc =

Kvisc,i
PP 0 Kvisc,i

PU

0 0 0

Kvisc,i
UP 0 Kvisc,i

UU

 with

Kvisc,i
PP □ := −∇ ·

(
2θiλi∇s□+ θiζitr(∇s□)Id

)
,

Kvisc,i
UU □ :=

(
2θiλi|∇svi|2 + θiζi tr(∇svi)

2
)
□ ,

Kvisc,i
UP □ := −

(
2θiλi∇s□+ θiζitr(∇s□)Id

)
:∇vi ,

Kvisc,i
PU □ := ∇ ·

(
(2θiλi∇svi + θiζitr(∇svi)Id)□

)
,

(2.16)

where λi, ζi are the viscous parameter of the solid and fluid Stokes dissipation and vi = P i/ϱi the single-
phase velocity. Furthermore we have the symmetric gradient ∇s□ = 1

2 (∇□+∇□⊤). The heat conduction
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is given by the operator

Ki
ht =

0 0 0
0 0 0

0 0 Kht,i
UU

 with Kht,i
UU□ := −∇ · (θ2i ki∇□) , (2.17)

where ki is the heat conduction of each phase. The heat exchange is of the 6× 6 block form

(
Kss

he Ksf
he

Kfs
he Kff

he

)
= khe(q)


0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 −1 0 0 +1

 (2.18)

for some some given heat exchange coefficient function khe(q) ≥ 0. The isotropic Darcy interaction
between the two phases is generated by the dual dissipation potential

Ψ∗
fric(q, ξ) =

∫
Ω

KD

2

θsθf
θs + θf

|w|2 dx , (2.19a)

where w = ξP s
−ξP f

−(αξUs
+(1−α)ξUf

)γ. Here γ = (vs−vf) and α(q) ∈ (0, 1) is arbitrary and controls
how much of the generated entropy is converted into heat of the solid and fluid phase, respectively. The
Onsager operator corresponding to this dual dissipation is

Kfric = KD(q)
θsθf

θs + θf


+1 0 −γα −1 0 −γ(1− α)
0 0 0 0 0 0

−γα 0 γ2α2 γα 0 |γ|2α(1− α)
−1 0 γα +1 0 γ(1− α)
0 0 0 0 0 0

−γ(1− α) 0 |γ|2α(1− α) γ(1− α) 0 |γ|2(1− α)2

 . (2.19b)

Based on these definitions, the GENERIC evolution of the compressible two-phase flow reads

Ṗ s +∇ · (P s ⊗ vs) = −∇πs −KDγ +∇ · σs , (2.20a)

Ṗ f +∇ · (P f ⊗ vf) = −∇πf +KDγ +∇ · σf , (2.20b)

Ċs +∇ · (Cs ⊗ vs) = 0 , (2.20c)

Ċf +∇ · (Cf ⊗ vf) = 0 , (2.20d)

U̇s +∇ · (Usvs) = −πs∇ · vs + αKD|γ|2 + khe(θ
−1
s − θ−1

f ) +∇ · (ks∇θs) , (2.20e)

U̇f +∇ · (Ufvf) = −πf∇ · vf + (1− α)KD|γ|2 − khe(θ
−1
s − θ−1

f ) +∇ · (kf∇θf) , (2.20f)

with the Cauchy stress tensor σi = 2λi(∇svi)+ ζi(∇·vi)Id for each phase. Using the fundamental Gibbs
relation (2.12) one can verify that J(q)DS(q) = 0 and K(q)DE(q) = 0 hold even true on the level of each
individual dissipative process, i.e., heat transport, heat exchange, Stokes dissipation, Darcy dissipation.
The Darcy friction is objective and conserves the total momentum. The total mass density of the system
evolves according to

∂tϱtot +∇ · ϱtotv = 0 , where ϱtotv = ϱsvs + ϱfvf . (2.21)

2.2 Two-phase reaction-diffusion system

We now discuss the gradient/Onsager structure of a two-phase system that allows for the diffusion of
species and intra-phase as well as inter-phase chemical reactions among the species. For this, we suitably
adapt the results of [ZPT21, Sec. 5 & 6.1] to the two-phase setting. For this two-phase system of solid
(s) and fluid (f) phase in Eulerian coordinates we consider the state vector q = (qf , qs) from (2.9). In
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particular, we assume that the two-phase system is composed of N = Ns+Nf chemical species Z1, . . . , ZN .
Hereby, the first Ns species Z1, . . . , ZNs

belong to the solid phase and the Nf species ZNs+1
, . . . , ZN

belong to the fluid phase and we denote by Ck the particle density of species Zk, k ∈ {1, . . . , N}.
Accordingly, we set Cs := (C1, . . . , CNs)

⊤ = (Cs
1, . . . , C

s
Ns

)⊤, Cf := (CNs+1 , . . . , CN )⊤ = (Cf
1, . . . , C

f
Nf
)⊤,

and C = (C1, . . . , CN )⊤. The total energy and entropy of the system are of the form (2.11), with the
chemical part of the entropy of logarithmic type, i.e., Si in (2.11b) is of the form

Si(Ci, Ui) := Sth
i (Ui) +

Ni∑
k=1

Ci
k(lnC

i
k − 1) (2.22)

with Sth
i (Ui) a thermal contribution. This leads to the driving force

DCi
Si(Ci, Ui) = (lnCi

k)
Ni

k=1 . (2.23)

We further assume that the conservative contribution to dynamics is represented by the operator J from
(2.14). In analogy to (2.15) we introduce the general structure of the Onsager operator for the two-phase
reaction-diffusion system as follows

Krd :=

(
Kss

rd Ksf
rd

Kfs
rd Kff

rd

)
with Kij

rd :=

0 0 0
0 KCiCj 0
0 0 0

 and KCiCj
:= Kreac

CiCj
+Kdiff

CiCj
(2.24)

for i, j ∈ {s, f}. In this way the operators Kij
rd only account for dissipative interactions of the vectors

of concentrations in terms of chemical reactions Kreac
CiCj

and diffusion Kdiff
CiCj

, whereas dissipation due to

changes in momentum P i and internal energy Ui is not considered for i ∈ {s, f}. We note that Kreac
CiCj

describes intra-phase chemical reactions for i = j and inter-phase chemical reactions for i ̸= j. Following
[ZPT21, Eq. (6.9)] we now introduce the Onsager operators Kreac

CiCj
and Kdiff

CiCj
.

Onsager operator for diffusion. Following [ZPT21, Sec. 5 & 6.1] we introduce the Eulerian dual
dissipation potential for diffusion

Ψ∗
diff(q;η) :=

∫
Ω

1
2MCC∇η:∇η dx (2.25)

for any η = (ηs,ηf) = (ηCs
,ηCf

). Differentiation with respect to η and integration by parts under the
assumption of homogeneous boundary conditions gives the Onsager operator

Kdiffη = −∇ ·
(
MCC∇η

)
with MCC =

(
MCsCs MCsCf

MCfCs MCfCf

)
∈ RN×N (2.26)

a positively semidefinite matrix of diffusion coefficients, which may depend on the state vector q. Com-
paring (2.26) with (2.24) shows that

Kdiff
CiCj

□ = ∇ ·
(
MCiCj

∇□
)

with MCiCj
∈ RNi×Nj (2.27)

and □ indicates where the argument has to be placed.

Onsager operator for chemical reactions. Assume that above N chemical species react with each
other in R chemical reactions according to

αr
1Z1+. . .+αr

NsZNs+αr
Ns+1ZNs+1+. . .+αr

NZN

kr
+−−⇀↽−−

kr
−

βr
1Z1+. . .+βr

NsZN+βr
Ns+1Z1+. . .+βr

NZN , (2.28)

for r = 1, . . . , R. For each reaction r there are the vectors of stoichiometric coefficients αr = (αr
s ,α

r
f ) =

(αr
1, . . . , α

r
N ) and βr = (βr

s ,β
r
f ) = (βr

1 , . . . , β
r
N ) ∈ NN

0 , as well as the forward and backward reaction rates
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kr+, k
r
− > 0, which may depend on the state q. The equations governing the reaction kinetics are given

by an ODE system of the form

ditCi =

R∑
r=1

(
kr−(q)C

βr

− kr+(q)C
αr
)
(αr

i − βr
i ) for i ∈ {s, f} , (2.29)

where we use the notation Cα := Cα1
1 · · ·CαN

N and where dit denotes the material time derivative with
respect to the velocity of phase i. The material time derivative is generated by J, see (2.20c) & (2.20d).
Furthermore, we assume a detailed balance condition, i.e., there exists a steady state Cref , such that

kr(q) = kr+(q)C
αr

ref = kr−(q)C
βr

ref for all r = 1, . . . , R . (2.30)

Under this condition the system (2.29) can be written as an Onsager system, cf. e.g. [Mie11]. Based on
[ZPT21, Sec. 5] we introduce the dual dissipation potential for chemical reactions

Ψ∗
reac(q;η) :=

∫
Ω

1
2

(
ηs

ηf

)
·HCC(q)

(
ηs

ηf

)
dx , (2.31a)

with the Onsager operator HCC . Due to (2.23) it follows that the Onsager operator has the following
expression

HCC(q) :=

R∑
r=1

kr(q)

kB
ℓ

((
C

Cref

)αr

,

(
C

Cref

)βr)
S̄r , (2.31b)

S̄r := (αr − βr)⊗ (αr − βr) , (2.31c)

ℓ(u, v) :=

{
u−v

log u−log v for u ̸= v ,

v for u = v .
(2.31d)

Comparing (2.31b) with (2.24) we gather that

HCC(q) =

(
Kreac

CsCs
Kreac

CsCf

Kreac
CfCs

Kreac
CfCf

)
and (2.32a)

Kreac
CiCj

:=

R∑
r=1

kr(q)

kB
ℓ

((
C

Cref

)αr

,

(
C

Cref

)βr)
(αr

i − βr
i )⊗ (αr

j − βr
j) for i, j ∈ {s, f} . (2.32b)

Example 2.1 (Rock dehydration). Consider the process of dehydration of serpentinite

(Mg,Fe)3Si2O5(OH)4 + (Mg,Fe)(OH)2 ⇌ 2(Mg,Fe)2SiO4 + 3H2O

as an example for a single reaction in a two phase system with four species corresponding to antig-
orite Z1 = (Mg,Fe)3Si2O5(OH)4, brucite Z2 = (Mg,Fe)(OH)2, olivine Z3 = (Mg,Fe)2SiO4 and water
Z4 = H2O. Therefore we have the liquid phase composed only by water and the remaining miner-
als forming the solid part. If we consider purely Mg-minerals then the vector of molecular masses is
M = (277.11, 58.32, 140.69, 18.01) expressed in g/mol with stoichiometric coefficients

αs = (1, 1, 0) , αf = (0) ,

βs = (0, 0, 2) , βf = (3) .

Note that conservation of mass is ensured by M s · (αs − βs) +M f · (αf − βf) = 0. Finally, the system
of ODEs reads

∂t


C1

C2

C3

C4

 = k(q)

(
(C3)

2
(C4)

3

(C3,ref)
2
(C4,ref)

3 − C1C2

C1,refC2,ref

)
1
1

−2
−3


⋆
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2.3 Two-phase reactive Darcy flow

Here we combine our findings from Sections 2.1 and 2.2 to obtain the GENERIC structure for a two-phase
Darcy flow with reactions and diffusion of chemical species. We thus again consider the state vector q
from (2.9), the driving functionals E and S from (2.11) with the properties of the chemical part of the
entropy as in (2.22) and the properties of the chemical species as discussed in Sec. 2.2. The Poisson
operator J for reversible dynamics is again given by (2.14), while the Onsager operator for the coupled
dissipative processes results by the sum of KSDH from (2.15) and Krd from (2.24), i.e.,

KrdSDH = Krd +KSDH . (2.33)

Following the lines of [ZPT21, Sec. 6.1] it can be checked that this choice of driving functionals and
operators complies with the degeneracy conditions (2.1) and (2.2). Moreover, the evolution equations of
the GENERIC system for the reactive two-phase Darcy flow read

Ṗ s +∇ · (P s ⊗ vs) = −∇πs −KDγ +∇ · σs , (2.34a)

Ṗ f +∇ · (P f ⊗ vf) = −∇πf +KDγ +∇ · σf , (2.34b)

Ċs +∇ · (Cs ⊗ vs) =

R∑
r=1

kr(q)
(
Cβr

−Cαr
)
(αr

s − βr
s ) , (2.34c)

Ċf +∇ · (Cf ⊗ vf) =
R∑

r=1

kr(q)
(
Cβr

−Cαr
)
(αr

f − βr
f ) , (2.34d)

U̇s +∇ · (Usvs) = −πs∇ · vs + αKD|γ|2 + khe(θ
−1
s − θ−1

f ) +∇ · (ks∇θs) , (2.34e)

U̇f +∇ · (Ufvf) = −πf∇ · vf + (1− α)KD|γ|2 − khe(θ
−1
s − θ−1

f ) +∇ · (kf∇θf) . (2.34f)

Our deduction shows that the two-phase system (2.34) has a GENERIC structure. This in particular
brings about that each phase has its own individual internal energy, entropy, and temperature. It is our
goal to show that the porous-media models (1.1) and (1.2) result from system (2.34) and its GENERIC
structure. For this we shall investigate the limit to a joint system’s temperature by assuming that heat
can be equilibrated infinitely fast throughout the phases. In addition we will assume that the chemical
reactions take place on much faster time scales than diffusion and Darcy flow. To this end we subsequently
study on a formal level the equilibration of fast dissipative processes within the GENERIC framework.

3 Equilibration of fast dissipative processes

We consider GENERIC systems of the form

q̇ = J(q)DE(q) +K(q)DS(q) (3.1a)

where the irreversible processes encoded in K are of the form

K(q) = Kslow(q) + ε−1Kfast(q), (3.1b)

and where J,K satisfy the usual conditions of a GENERIC system. The NIC for K is satisfied for slow
and fast processes separately, i.e., Kslow(q)DE(q) = 0 and Kfast(q)DE(q) = 0. We are interested in
deriving the effective dynamics for solutions q : [0,T] → Q of (3.1) as ε → 0. Based on the considerations
in previous sections, we are interested in two particular cases, i.e., the limit of fast exchange of thermal
energy and the limit of fast reactions. In the following we present two possible approaches based on
considerations in [MPS21, ZPT21] that are closely linked to the Gibbs-minimization formalism described
in [BPL82].
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3.1 Fast exchange of thermal energy

We consider a GENERIC system where energy and entropy are of the form

E(q) =

∫
Ω

|P s|2

2ϱs
+

|P f |2

2ϱf
+ Us + Uf dx (3.2a)

S(q) =

∫
Ω

Ss(q̂, Us) + Sf(q̂, Uf) dx (3.2b)

and we write q = (P s,P f , . . . , Us, Uf) ≡ (q̂, Us, Uf). To simplify the notation for the next consideration
we introduced q̂, which contains all state variables except for the internal energies.

Remark 3.1. Note that Si for i ∈ {s, f} does not depend on the momentum and that the entropy
of one phase does not depend on any variables of the other phase. While this structural assumption
might be quite restrictive and prevent entropies that feature interaction between phases such as in the
Flory-Huggins theory [Flo42, Hug41], this is necessary in order to guarantee the non-interaction condition
J(q)DS(q) = 0 for J in the current form. In general, Flory-Huggins theory features phase-separation via
a non-concave entropy, which we also exclude here.

Corresponding to this 3-component representation of the state variable q = (q̂, Us, Uf), we consider fast
processes of the form

Kfast =

0 0 0
0 +1 −1
0 −1 +1

 , (3.3)

without any dependence on q. Due to DE(q) = (Dq̂E(q), 1, 1)
⊤ we satisfy the NIC for the fast processes,

i.e., KfastDE(q) = 0. Then fast exchange of thermal energy is equivalent to the requirement

ξUs = DUsS(q)
!
= DUf

S(q) = ξUf
, (3.4)

which correspondingly gives us the linear system with Lagrange multipliers

q̇ =

 ˙̂q

U̇s

U̇f

 = J(q)DE(q) +Kslow(q)DS(q) +

 0̂
+λ
−λ


︸ ︷︷ ︸

=:Λ

, (3.5a)

0 = DUs
S(q)−DUf

S(q) ≡ θ−1
s − θ−1

f . (3.5b)

The advantage of the formulation with Lagrange multipliers is that it is directly accessible from the full
model, but it has the disadvantage of increasing the number of unknowns.

Remark 3.2 (NIC for effective dynamics). Using the chain rule we have

d

dt
E(q(t)) = ⟨DE(q),Λ⟩ ≡ 0,

d

dt
S(q(t)) = ⟨DS(q),Kslow(q)DS(q)⟩︸ ︷︷ ︸

≥0

+ ⟨DS(q),Λ⟩︸ ︷︷ ︸
=0

≥ 0 .

This shows that the effective dynamics complies with thermodynamic consistency.

The system (3.5) with Lagrange multipliers presents one possibility to write the fast thermal equili-
bration limit of the general evolution. Alternatively, we can define the simple transformation

TU (q) ≡ (q̂, U = Us + Uf) = q̃, (3.6)

which, using (3.4), is invertible on the set that also satisfies (3.4). If we define

S̃(q̃) := S(T−1
U (q̃)), Ẽ(q̃) := E(T−1

U (q̃)),
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and using LU = DTU (q) gives the transformed evolution

J̃(q̃) = LU J(T−1
U (q̃))L∗

U ,

K̃slow(q̃) = LU Kslow(T
−1
U (q̃))L∗

U ,

governing the reduced dynamics for θs = θf = θ via

˙̃q = J̃(q̃)DẼ(q̃) + K̃slow(q̃)DS̃(q̃). (3.7)

We give a simple ODE example, which shows how this reduction can be performed in more detail.

Example 3.3 (Fast thermal equilibration ODE). Consider q = (x1, x2, p1, p2, u1, u2) ∈ R6 as state vari-
able, where xi denotes position, pi the momentum, and ui the internal energy of the components/phases
i ∈ {1, 2}. The total energy E and entropy S of the system are

E(q) =
∑
i

p2i
2mi

+ ui, S(q) =
∑
i

Si(xi, ui),

using the entropy Si(xi, ui) for each separate phase and with the Gibbs relations ∂ui
Si = 1/θi and

∂xi
Si = πi/θi defining temperature θi and pressure πi. Consider the GENERIC system

q̇ = J(q)DE(q) +K(q)DS(q), (3.8a)

where the GENERIC structure is defined and NIC J(q)DS(q) = 0 satisfied by using

J(q) =

 0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 π1 0
0 −1 0 0 0 π2
0 0 −π1 0 0 0
0 0 0 −π2 0 0

 , DE(q) =


0
0
p1

m1
p2

m2
1
1

 , DS(q) =


π1/θ1
π2/θ2

0
0

1/θ1
1/θ2

 . (3.8b)

For the dissipation K(q) = Kslow(q) + ε−1Kfast(q) and with mivi = pi we use

Kslow(q) = θ1k1

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 −v1 0
0 0 0 0 0 0
0 0 −v1 0 +v2

1 0
0 0 0 0 0 0

+ θ2k2

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 −v2
0 0 0 0 0 0
0 0 0 −v2 0 +v2

2

 , Kfast =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 +1 −1
0 0 0 0 −1 +1

 , (3.8c)

and observe that it satisfies the other NIC K(q)DE(q) = 0. We obtain the following evolution equations

ẋi = vi =
pi
mi

, ṗi = πi − kivi, (3.9a)

u̇1 = −π1v1 + k1v
2
1 + ε−1(θ−1

1 − θ−1
2 ), (3.9b)

u̇2 = −π2v2 + k2v
2
2 + ε−1(θ−1

2 − θ−1
1 ) , (3.9c)

for i ∈ {1, 2}. We introduce an oscillator with ωi ∈ R+ and heat capacities ci ∈ R+ such that

Si(xi, ui) = ci log(
ui−Vi(xi)

ci
) = ci log θi, Vi(xi) =

1
2ωix

2
i ,

so that ciθi = ui − Vi(x) and πi = −∂xVi. Using θ1 = θ2 ≡ θ, for the total internal energy we get
u = u1 + u2 = (c1 + c2)θ+ V1(x1) + V2(x2). Correspondingly, the energy Ẽ and entropy S̃ = S1 +S2 can
be expressed in q̃ = (x1, x2, p1, p2, u) ∈ R5 with

Ẽ(q̃) =
p2
1

2m1
+

p2
2

2m2
+ u, S̃(x1, x2, u) = (c1 + c2) log

(
u−V1(x1)−V2(x2)

(c1+c2)

)
. (3.10a)

Note that S̃ is not a sum of contributions from both components. Using the operators

J̃ =

( 0 0 1 0 0
0 0 0 1 0
−1 0 0 0 π1
0 −1 0 0 π2
0 0 −π1 −π2 0

)
, K̃slow = θk1

( 0 0 0 0 0
0 0 0 0 0
0 0 1 0 −v1
0 0 0 0 0
0 0 −v1 0 +v2

1

)
+ θk2

( 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 −v2
0 0 0 −v2 +v2

2

)
, (3.10b)

the effective dynamics is ˙̃q = J̃(q̃)DẼ(q̃)+K̃slow(q̃)DS̃(q̃). An exemplary solution is shown in Fig. 2, where
the left panel shows the energetics of the full solution q(t), and the right panel shows the convergence of
the temperatures θi to the temperature θ of the effective solution q̃(t).

⋆
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Figure 2: Solution of GENERIC system (3.9) with ε = 10−2 and k1 = k2 = 1/5, m1 = 1, m2 = 1/2,
c1 = 1, c2 = 2, ω1 = 1, ω2 = 4 with q(t = 0) = (0, 0, 1,−2, 1, 1)⊤ and q̃(t = 0) = (0, 0, 1,−2, 2)⊤.
Numerical solution showing (left) kinetic energy Ekin,i = p2i /2mi, thermal energy Etherm,i = ciθi = ui−Vi,
potential energy Vi and total energy E and (right) temperatures of full model θi and effective model θ.

3.2 Fast reactions equilibrium

Similar to what is presented in [MPS21], we apply now the aforementioned method to systems where
fast chemical reactions happen on a very short time scale compared to the other involved slow processes.
In this case, however, it is not necessary to distinguish between a solid and a liquid phase, but rather
between the species involved.

Consider a system where R possible reactions with stoichiometric coefficients αr,βr ∈ NN
0 between N

species occur. The particle density is denoted by the N -tuple C = (Ci)
N
i=1. We assume that the total

energy and total entropy of the system can be expressed in the following way

E(q) =

∫
Ω

|P |2

2ϱ
+ U dx (3.11a)

S(q) =

∫
Ω

S(q̂,C) dx , (3.11b)

where q = (P , U,C) ≡ (q̂,C) with U being the internal energy of the system and P the momentum
density. We consider fast processes of the form

Kfast =

(
0 0
0 H

)
, (3.12)

where H =
∑

r(α
r − βr) ⊗ (αr − βr) is the reactive operator. In order to have mass conservation and

to satisfy the NIC, we require that the vector of particle masses M lies in the kernel of the matrix H,
i.e., M · (αr − βr) = 0 for all reactions r = 1, . . . , R. Then a fast reactions limit is equivalent to the
equilibrium condition

(αr − βr) ·DCS(q)
!
= 0 , for all r ∈ {1, . . . , R} , (3.13)

Introducing the constrained dynamics by using Lagrange multipliers λr, the effective dynamics can be
written as

q̇ =

(
˙̂q

Ċ

)
= J(q)DE(q) +Kslow(q)DS(q) +

(
0∑

r(α
r − βr)λr

)
︸ ︷︷ ︸

:=Λ

, (3.14a)

0 = (αr − βr)DCS(q) for all r ∈ {1, . . . , R} . (3.14b)

Remark 3.4 (NIC for effective dynamics). Similarly as in Remark 3.2, one confirms that the total energy
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is conserved and entropy is non-decreasing:

d

dt
E(q(t)) = ⟨DE(q),Λ⟩ ≡ 0 , (3.15)

d

dt
S(q(t)) = ⟨DS(q),Kslow(q)DS(q)⟩︸ ︷︷ ︸

≥0

+ ⟨DS(q),Λ⟩︸ ︷︷ ︸
=0

≥ 0 , (3.16)

where we have used M · (αr − βr) = 0.

The constrained system (3.14a) presents one way to write the fast reactions limit. Another possibility
is to define a transformation TC that reduces the number of variables based on the condition (3.13).
In order to build this transformation we use the method presented in [MPS21], similar to the reduction
presented [ZPT21]. We start by considering the space

Γ := span {αr − βr|r = 1, . . . , R} ⊂ RN , (3.17)

and its orthogonal complement Γ⊥. After finding a basis {v1, . . . , vm} of Γ⊥, we construct the adjoint of
the transformation Q as Q⊤ = (v1, . . . , vm) ∈ RN×m. Finally the transformation can be defined as

TC(q) ≡ (q̂,C⊥ = QC) = q̃, (3.18)

which is invertible on the set defined by (3.13). We define

Ẽ(q̃) := E(T−1
C (q̃)) , S̃(q̃) := S(T−1

C (q̃)) , (3.19)

and set LC = DTC(q). This gives the transformed operators

J̃(q̃) = LC J(T−1
C (q̃))L∗

C , (3.20a)

K̃slow(q̃) = LC Kslow(T
−1
C (q̃))L∗

C , (3.20b)

governing the reduced dynamics for (αr − βr) · µ = 0 for every r ∈ {1, . . . , R} via

˙̃q = J̃(q̃)DẼ(q̃) + K̃slow(q̃)DS̃(q̃).

Note that the determination of effective equations of state Ẽ(q̃), S̃(q̃) and derived quantities is similar
to that in the Gibbs minimization process, e.g. cf. [BPL82], which in general is performed for non-convex
potentials with the goal to determine the possible phases a mixture attains under the constraint of a
prescribed composition of materials.

We now give an explicit example on how the reduction approach can be applied to rock dehydration
processes.

Example 3.5 (Fast reactions equilibration for rock dehydration processes.). Consider the following
process where water chemically bound to a rock is released

hydrous solid ⇌ non-hydrous solid + H2O ,

and the state q = (U,C)⊤ = (U,Cs,h, Cs,nh, Cf,H2O)
⊤ ≡ (u,C1, C2, Cf)

⊤ with Cs,h and Cs,nh being
the concentrations of the hydrous and non-hydrous solid respectively, and u the internal energy. The
stoichiometric coefficients for forward and backward reactions are α = (1, 0, 0)⊤ and β = (0, 1, 1)⊤ and
the vector of particle masses M = (M1,M2,Mf)

⊤, with M2 = M1 −Mf . One can see immediately that
(α− β) ·M = 0 and thus the condition for conservation of mass is satisfied. For this example we focus
only on dissipative processes but the transformation we are going to show applies in the same way to the
reversible contributions. Consider then the following Onsager system

∂tq =
(
Kslow(q) +

1
εKfast(q)

)
DS(q) ,
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where

Kslow =


Kuu Ku1 Ku2 Kuf

K1u K11 K12 K1f

K2u K21 K22 K2f

Kfu Kf1 Kf2 Kff

 , Kfast =

(
0 01×3

03×1 H

)
.

The total entropy is of Boltzmann type and has the typical ”log” structure

S(q) =

∫
Ω

∑
i

C∗
i (u

s)λB

(
Ci

C∗
i

)
dx where λB(y) := y log y − y + 1 ,

and whereC∗(u) = (C∗
1 (u), C

∗
2 (u), C

∗
f (u))

⊤ is the vector of positive concentrations related to the detailed-
balance condition. We can directly compute the driving force

DuS =
1

θ
, (DCS)i =

(µ
θ

)
i
= logCi/C

∗
i .

The reduction Q is build from a basis of the orthogonal space of span {α− β}

Q =

(
M1 M2 Mf

M2 M2 0

)
.

Combining Q with the identity for u we define the nonlinear mapping

q̃ := TC(q) = (u,QC) = (u, ϱtot, ϱnv)
⊤ ,

where ϱnv is the mass density of the non-volatile solid, meaning the mass density of the solid that has no
chemically bound water. In order to find out the transformed Onsager operator we need to linearize TC

and compute its adjoint:

LC := DTC =

1 0 0 0
0 M1 M2 Mf

0 M2 M2 0

 , L∗
C =


1 0 0
0 M1 M2

0 M2 M2

0 Mf 0

 .

The transformed Onsager operator is then given by (3.20b)

LK(q)L∗ =

 Kuu

∑
i∈{1,2,f} KuiMi Ku1M1 +Ku2M2∑

i∈{1,2,f} MiKiu

∑
i,j∈{1,2,f} MiKijMj

∑
i∈{1,2,f} Mi(Ki1 +Ki2)M2

M2K1u +M2K2u

∑
i∈{1,2,f} M2(K1i +K2i)Mi

∑
i,j∈{1,2} M2KijM2

 .

This transformed operator and the entropy functional have to satisfy the conditions (3.20) and (3.19),
respectively. One can see that it is verified by using T−1

C . On the set where the equilibrium condition,
i.e., µ1 = µ2 + µf , is satisfied the transformation TC is invertible and we can reconstruct the vector of
concentrations via C = T−1

C (q̃)

C1 =
1

2

[
K∗ +

ϱnv
Mnv

+
ϱtot − ϱnv
MH2O

−
√

f(u, ϱtot, ϱnv)

]
, with K∗ :=

C∗
nhC

∗
H2O

C∗
h

,

C2 =
ϱnv
Mnh

− 1

2

[
K∗ +

ϱnv
Mnv

+
ϱtot − ϱnv
MH2O

−
√
f(u, ϱtot, ϱnv)

]
,

Cf =
ϱtot − ϱnv
MH2O

− 1

2

[
K∗ +

ϱnv
Mnv

+
ϱtot − ϱnv
MH2O

−
√
f(u, ϱtot, ϱnv)

]
,

with f(u, ϱtot, ϱnv) =

(
ϱnv
Mnv

− ϱtot − ϱnv
MH2O

)2

+

(
K∗2

+
2K∗ϱnv
Mnh

+
2K∗ (ϱtot − ϱnv)

MH2O

)
.

⋆

15



Remark 3.6 (Equations of state for concentrations and thermodynamic quantities). In Example 3.5 we
examplarily showed the reduction of the GENERIC structure under fast processes, which is based on
the assumption that TC is invertible. Therefore, we can write the original concentrations Ci using an
equation of state in terms of the new variable. Similarly, we can express all other derived thermodynamic
quantities in terms of the new variables, e.g., chemical potential, temperature and pressure by

θ̃(q̃) = θ(T−1
C (q̃)), µ̃(q̃) = µ(T−1

C (q̃)), π̃i(q̃) = πi(T
−1
C (q̃)), C̃i(q̃) = (T−1

C (q̃))Ci
. (3.21)

Remark 3.7 (The Gibbs energy minimization method). The Gibbs energy minimization method is used
for a wide variety of applications to multiphase/multicomponent systems [KP06], especially in geosciences
where the size and heterogeneity of the system makes it disadvantageous to apply the direct approach
described in Sec. 2.2. The main idea behind this method is to find the system composition for which its
Gibbs energy is minimized, eventually subject to mass constraints. It can be shown by standard laws
of thermodynamics [Con17] that a stable configuration corresponds to a minimum of the Gibbs energy.
Although this idea could be applied to other free energies, the energy dependence on pressure π and
temperature θ makes it particularly suited for geological applications. We focus here on the application
of Gibbs energy minimization to chemical reactions and show that the equilibrium conditions met by
this approach are (3.13). We consider the Gibbs energy related to a reactive system where reactions are
described through a stoichiometric expression like (2.28) with N different components:

Gsys := Gsys(π, θ,C) , with C = (Ci)
N
i=1 . (3.22)

We recall also that the Gibbs energy of a system can be obtained by means of a Legendre transform
applied to the internal energy or Helmholtz free energy. Let us assume for the moment that only one
reaction occurs. We define a new variable called extent of reaction ξ : Ω → [0, 1] and write

C = C0 + (β −α)ξ ,

where C0 = C(t = 0). We can rewrite (3.22) as a function of ξ:

Gsys := Gsys(π, θ, ξ) , (3.23)

then, by keeping pressure and temperature fixed and recalling that ∂CG = µ, the necessary condition
for a minimum implies

DξG
sys(ξ) = (β −α) · µ = 0 , (3.24)

which is again (3.13) for a single reaction.

4 Damped-Hamiltonian structure of models (1.1) and (1.2)

4.1 Limit of fast irreversible processes

In this section we reproduce the results from [PJP+17] in GENERIC form. The two-phase system
introduced therein aims to model rock dehydration processes at their primal stage, that is when bounded
water is released via chemical reactions and starts flowing through the newborn pore system. Although
for the moment we will consider only one single reaction, other reactions are possibly involved in rock
dehydration processes. Our example is the following dehydration reaction

(Mg,Fe)48Si34O85(OH)62 + 20(Mg,Fe)(OH)2 ⇌ 34(Mg,Fe)2SiO4 + 51H2O ,

where antigorite [(Mg,Fe)48Si34O85(OH)62] together with brucite [(Mg,Fe)(OH2)] are transformed into
olivine [(Mg,Fe)2SiO4] and a fluid phase [H2O]. Antigorite is an abundant mineral in rocks that undergo
subduction and is relevant in subduction zone dynamics because of its high water content. The reaction

16



of antigorite and brucite to olivine and fluid is further discussed in Example 2.1 in a simplified version.
We start from the full two-phase GENERIC system of the form

Ṗ s +∇ · (P s ⊗ vs) = −∇πs −KDγ +∇ · σs , (4.1a)

Ṗ f +∇ · (P f ⊗ vf) = −∇πf +KDγ +∇ · σf , (4.1b)

Ċs +∇ · (Cs ⊗ vs) =
∑
r

kr(q)
(
Cβr

−Cαr
)
(αr

s − βr
s ) , (4.1c)

Ċf +∇ · (Cf ⊗ vf) =
∑
r

kr(q)
(
Cβr

−Cαr
)
(αr

f − βr
f ) , (4.1d)

U̇s +∇ · (Usvs) = −πs∇ · vs + αKD|γ|2 + khe(θ
−1
s − θ−1

f ) +∇ · (ks∇θs) , (4.1e)

U̇f +∇ · (Ufvf) = −πf∇ · vf + (1− α)KD|γ|2 − khe(θ
−1
s − θ−1

f ) +∇ · (kf∇θf) , (4.1f)

and assume that both heat-exchange and reactions are fast, i.e., khe, k
r → ∞.

Fast thermal exchange Using fast heat-exchange we find new state variables with a combined internal
energy U = Us + Uf , following the evolution equation

U̇ +∇ · (Usvs + Ufvf) = −πs∇ · vs − πf∇ · vf +KD|γ|2 +∇ · (k∇θ) (4.2)

where k = ks + kf . We can express Ui = Ui(Cs,Cf , U) and all resulting thermodynamic quantities using
the new state variable q̃ = (P s,Cs,P f ,Cf , U) under the assumption of θs = θf . As outlined in the
previous section, this also produces an energy and entropy

Ẽ(q̃) =

∫
Ω

P 2
s

2ϱs
+

P 2
f

2ϱf
+ U dx, (4.3)

S̃(q̃) =

∫
Ω

S̃(Cs,Cf , U) dx, (4.4)

such that Ẽ(q̃) = E(q) and S̃(q̃) = S(q). This results in the new evolution ˙̃q = J̃(q̃)DẼ(q̃) + K̃(q̃)DS̃(q̃).
The previous Example 3.3 provides a practical recipe how the effective GENERIC dynamics is con-
structed.

Fast reactions In a similar spirit, we assume fast reactions and transform the fast reactions via
(Cs,Cf)

⊤ → Q(Cs,Cf)
⊤, where the column vectors of Q⊤ span the space Γ⊥ orthogonal to the stoichio-

metric space Γ defined in (3.17). Since M ∈ Λ⊥ we will always use the conservation of total mass (2.21)
as one evolution equation. As suggested in [PJP+17], we also assume that the dehydration processes
can be formulated in terms of the mass density of non-volatile solids ϱnv = ϱs(1 − Xh), which can be
obtained through the transformation Q. Here, 0 ≤ Xh ≤ 1 is the relative hydrous content of the solid
(rock) phase, that can potentially converted into the fluid phase. The precise definition of Xh depends on
the interpretation of the components in M = (M s,M f)

⊤. Having the invertibility of the corresponding
equilibrium constraints from the Gibbs minimization we can write Ci = Ci(q̃) and all remaining ther-
modynamic quantities with the help of the reduced concentration-like variables C⊥ = (ϱ, ϱnv, ...) = QC
assuming that the reactions are in equilibrium. As before, we can define the driving energy Ẽ(q̃) and
entropy S̃(q̃) for this evolution in terms of the new state variable q̃ = (P s,P f , U,C

⊥). While details of
this construction depend on the stoichiometry and the original entropy density, the final result maintains
the GENERIC structure with modified operators and driving functionals. A concrete example relating
to fast dehydration reactions as in (4.1) was provided in Example 3.5.

4.2 Discussion of model (1.1)

We assume that by the limit of fast irreversible processes for heat exchange and reactions we have
obtained a GENERIC formulation for q = (P s,P f , U,C

⊥)⊤ with driving energy Ẽ(q̃) and entropy S̃(q̃)
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as they were constructed before. In geoscientific applications, however, evolution equations are usually
formulated in certain compositional variables [PJP+17, BJV+20, HVJ22], which we address below.

For simplicity, we assume that the reduced concentrations are C⊥ = (ϱtot, ϱnv), i.e., the total mass
density and the mass density of non-volatile solids. For more complex systems and other slow processes
one might have to include further state variables into C⊥.

For each phase i ∈ {s, f} we assume the existence of volume fractions ϕi : Ω → [0, 1], such that

0 ≤ ϕi(x) ≤ 1 for all x ∈ Ω and (4.5a)

ϕs(x) + ϕf(x) = 1 for all x ∈ Ω . (4.5b)

Based on these variables it is now possible to define “pure” mass densities, i.e., the value of ϱi if only
phase i would be present in the system,

ϱ̂i :=
ϱi
ϕi

, for i ∈ {s, f} . (4.6)

Similarly, it is possible to generalize the previous relation for any extensive variable Ai and distinguish
it between “pure” and “partial” where the former will be denoted by Âi and related via

Ai(x) = Âi(x)ϕi(x) , for i ∈ {s, f} .

Remark 1 (Weight fractions). Another commonly used variable is the weight fraction Xh of a given
chemical compound h, where h could be a species Ci itself or just part of it. Here we are interested in
the weight fraction of bound water within the solid phase. We will denote it by XbH2O and introduce

ϱs(1−XbH2O) = ϱnv ⇔ ϱ̂s(1−XbH2O) = ϱ̂nv (4.7)

for the system described above.

In total this gives the following evolution equations for the two-phase system

∂tP s = −∇ · (P s ⊗ vs)−∇πs +KD (vf − vs) , (4.8a)

∂tP f = −∇ · (P f ⊗ vf)−∇πf −KD (vf − vs) , (4.8b)

U̇ +∇ · (Usvs + Ufvf) = −πs∇ · vs − πf∇ · vf +KD |vf − vs|2 +∇ · (k∇θ) , (4.8c)

∂tϱtot ≡ ∂t
(
(1− ϕf)ϱ̂s + ϕf ϱ̂f

)
= −∇ · ((1− ϕf)ϱ̂svs + ϕf ϱ̂fvf) , (4.8d)

∂tϱnv ≡ ∂t((1− ϕf)ϱ̂nv) = −∇ ·
(
(1− ϕs)ϱ̂nvvs +Qnv,k jk

)
, (4.8e)

where at this point the evolution for the volume fraction ϕ is not yet determined. For a discussion of
this evolution we refer to [MR13, Ehl09]. However, we will assume that the solid is immobile, i.e., vs = 0
such that

ϕf(t) = 1− (1− ϕf(t = 0))ϱ̂nv(t = 0)

ϱ̂nv(t)
, (4.9)

e.g. see [PJP+17, Eq. 11]. In this equation, as discussed in Example 3.5, ϱ̂s, ϱ̂f are given by an equation
of state as in (3.21) and the weight fraction for water is given by (4.7).

Neglecting the diffusion flux in the non-volatile solid and making the identification of the Darcy
flux vf = −K−1

D ∇πf , setting the temperature to a given constant, the evolution equations for the mass
densities become

∂t (ϱ̂s(1−XbH2O)(1− ϕf)) = 0 , (4.10a)

∂t (ϱ̂s(1− ϕf) + ϱ̂lϕf) = ∇ ·
(
ϕf ϱ̂f
KD

∇πf

)
. (4.10b)

This is, in fact, an evolution system for the unknowns ϱnv and ϱtot. However, the construction
in [PJP+17] suggests that a change of variables in the sense of [ZPT21] should be applied, where the
equations of state are determined as functions of temperature θ and fluid pressure πf . This is the model
(1.1) from [PJP+17].
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4.3 Discussion of model (1.2)

Analogously to what is described in Sec. 4.2 we can obtain system (1.2) as a GENERIC system in the
limit of fast irreversible processes for temperature and reactions equilibration. In this case we will also
account for reactions in which other species are released along with the fluid and are subject to diffusion.
An example for this type of reaction is:

(Mg,Fe)48Si34O85(OH)62 ⇌ 34(Mg,Fe)2SiO4 + 31H2O+ 10SiO2
aq ,

where SiO2
aq on the product-side (right) diffuses within the fluid. Therefore we extend the GENERIC

system (4.1) by adding the diffusive Onsager operator (2.26). Herein, since no solid-state diffusion is
assumed here, we set all diffusion coefficients except for that of Cf,SiO2 to zero. System (1.2) is then
recovered taking the limits of fast heat exchange and of fast reactions, for which we assume the reduced
concentration vector to be C⊥ = (ϱtot, ϱnv, ϱSiO2

). By assuming zero solid velocity, i.e., vs = 0 and
conservation of the non-volatile mass density ϱnv, the evolution equations of C⊥ give exactly (1.2a)-
(1.2c). Furthermore, it should be noted that in applications a variable is often used to denoted the total
amount of a particular chemical element or constituent in a compound/phase. In this way, the content
of k-th component in the i-th phase can be defined as follows

cki :=
Mi,kCi,k

ϱi
.

In equations (1.2) we omit the superscript SiO2 since no misunderstanding is possible. In fact, (1.2b)
is the evolution equation for ϱSiO2

= ϱscs(1− ϕ) + ϱfcfϕ.

4.4 Geological interpretation of the models

The model defined by the set of equations (4.10), resp. (1.1), describes the general case of fluid flow
through a porous rock where mass is exchanged between the fluid and the solid phase by mineral dissolu-
tion and precipitation. The assumption of an immobile solid, i.e., of zero solid velocity, is valid for small
length scales (sub-µm to mm) where gravitational effects can be neglected because the density contrast
is small compared to the variations in fluid pressure controlled by the local thermodynamic equilibrium.

On such small length scales the large-scale temperature gradients, see Fig. 1, can be neglected and
thus, for a given pressure and temperature, the local bulk composition controls when the dehydration
reaction occurs. Therefore, chemical heterogeneities, i.e., local bulk composition variations in the domain,
and chemical processes such as reactive fluid flow dominate rock dehydration on small length scales. Such
variations in the composition are taken into account in model (1.2) in terms of the silicon dioxide SiO2

content cs and its diffusion and transport.
The focus of this study on the dehydration reaction of antigorite and brucite sets certain limits to

the range of variables of models (1.1) and (1.2), especially the values for temperature, pressure and cs.
Pressure and temperature are confined to values that occur during ongoing subduction and cs is limited
to values where the minerals of interest are stable.

As antigorite and brucite form solid solutions between magnesium (Mg)- and iron (Fe)-endmembers,
the reaction occurs not at a single point in π-θ space but rather in a divariant π-θ field. The onset of
the reaction typically occurs at around 350 ◦C with the reaction of Fe-rich antigorite and brucite and
is limited to higher temperatures by the stability limit of Mg-rich brucite at around 550 ◦C. Pressures
depend on the depth at which the slab reaches those temperatures and on the fluid pressure that is
controlled by the local thermodynamic equilibrium of the reaction. Typical lithostatic pressures, i.e.
the pressure exerted on the solid by the overlying rock column, are in the range of 1-2.5 GPa (for a
compilation of π-θ paths during subduction see e.g. [SvKA10]).

The third variable controlling the stable mineral assemblage is the rock composition. A serpentinite
that consists entirely of antigorite has a bulk Si content of cs ≈ 0.205. However, Si is distributed
heterogeneously in the rock and cs can therefore vary on smaller local domains within the rock. At
low temperatures, cs values below 0.205 lead to an increase of brucite abundance. A domain with a Si
content of cs ≈ 0.17 contains significant amounts of brucite and antigorite at lower temperatures. At
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Figure 3: Abundances (volume fraction) of antigorite (hydrated mineral) and olivine (dehydrated mineral)
as a function of silica content in the solid (cs) and pressure (π) for a fixed temperature θ = 480 ◦C. An
almost olivine-pure mineral assemblage forms at cs ≈ 0.19 for pressures below 1 GPa while for higher
values antigorite becomes the dominant phase. Again, we underline that these plots are for a given
composition at a given temperature, however the qualitative behaviour does not change for composition
and temperature within the range of values discussed in Section 4.4.

higher temperatures, this domain will form an almost pure olivine mineral assemblage. We therefore limit
the range of cs values to 0.17 − 0.205 because in this range the mineral assemblage consists of various
proportions of antigorite, olivine and brucite. For values cs > 0.205 talc, another hydrous mineral that
dehydrates to the dry mineral orthopyroxene, becomes stable. This dehydration reaction however is not
within the scope of this study.

5 Towards the analysis of models (1.1) and (1.2)

In this section we discuss first steps and results on the mathematical analysis of models (1.1) and (1.2).
Our approach combines a Galerkin approximation in space with an implicit Euler scheme in time as to
provide a convergence result for a discretization scheme close to that already used in [PJP+17, HVJ22]
for their numerical implementation. As a first step, we revisit the two models and reformulate them as a
system of parabolic equations by means of a suitable transformation of variables. Based on this we state
first existence results, which are deduced in detail in [ZT23]. Our mathematical results require certain
smoothness assumptions for the transformation maps and the resulting coefficient functions. We validate
them in detail for specific thermodynamical rock data in Sections 5.1.3 and 5.2.3. This perusal will show
that the mathematical assumptions are met in a certain ”good” range of the thermodynamical data set
but violated in another regime of the data set. We prove that a well-prepared initial datum keeps a
solution within the good range for all times.

In this section we will denote the “pure” mass densities by ϱs and ϱf in contrast to ϱ̂s and ϱ̂f in model
(1.1) and (1.2).
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Figure 4: Pressure-temperature dependence of solid density, fluid density, solid-bound H2O content and
fluid composition wrt. SiO2 for a typical serpentinite bulk rock composition as also used in the model of
[HVJ22]. Their model uses these pre-computed values as lookup tables to close the system of equations.
One can see the qualitative changes of these functions for different values of (π, θ). More specifically, the
rapid change in color for the solid mass density in the top left corner at fixed θ with varying π corresponds
to a kink w.r.t. π of the type shown in Fig. 5.

5.1 Results and challenges of model (1.1)

5.1.1 Parabolic form of system (1.1)

Model (1.1) consists of the conservation of the mass of non-volatile species (1.1a) and of the conservation
of total mass (1.1b). As a direct consequence of relation (1.1a) the porosity ϕ can be explicitly determined
as follows

ϕ = 1− ϱ0
s (1−X0

h)(1−ϕ0)
ϱs(1−Xh)

. (5.1)

It is further assumed in [PJP+17] for the mass densities ϱs and ϱf of the solid and the fluid, and for the
fraction Xh of fluid stored in the solid that

ϱs = ϱ̃s(π, θ), ϱf = ϱ̃f(π, θ), and Xh = X̃h(π, θ)

are functions of pressure π and temperature θ.
(5.2)

Although the closed mathematical expression for these functions is not known, the values of ϱs, ϱf , Xh

in dependence of π and θ can be recovered from thermodynamical data tables. An example of data so
produced is shown in Fig. 4. Due to this, also the porosity can be seen as a function of π and θ, while
also dependent on the initial data ϱ0s , X

0
h as well , i.e. (5.1) gives

ϕ = 1− ϱ0
s (1−X0

h)(1−ϕ0)

ϱ̃s(π,θ)(1−X̃h(π,θ))
=: ϕ̃(π, θ) . (5.3)

Similarly, the terms appearing in (1.1b) can be rewritten as functions of π and θ, i.e., we introduce

ϱ̃(π, θ) := (ϱ̃f(π, θ)ϕ̃(π, θ) + ϱ̃s(π, θ)(1− ϕ̃(π, θ))) and (5.4)

K̃(π, θ) := ϱ̃f(π, θ)Kϕ(ϕ̃(π, θ)) = ϱ̃f(π, θ)
κ

µ
ϕ̃(π, θ)3 with constants κ, µ > 0 (5.5)
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for the total mass and for the permeability. Then (1.1b) takes the form

∂tϱ̃(π, θ) = ∇ · K̃(π, θ)∇π . (5.6)

Now we set

ϱ := ϱ̃(π, θ) (5.7)

and we assume that

for all θ > 0 fixed the function ϱ̃(·, θ) is invertible in π, (5.8a)

the inverse function ϱ̃−1(·, θ) is continuously differentiable, and (5.8b)

there are constants 0 < c∗ < c∗ such that 1
c∗ < ∂ϱϱ̃

−1(ϱ, θ) =
1

∂πϱ̃(ϱ̃−1(ϱ̃(π, θ), θ), θ)
< 1

c∗
. (5.8c)

Thus, for any θ > 0 fixed we find

π = π̃(ϱ, θ) := ϱ̃−1(ϱ, θ) . (5.9)

Due to the fast equilibration of temperature discussed for the model (1.1) in Sec. 4, we can assume that
θ is constant in space. Thus, in view of (5.8) together with the chain rule and the rule for differentiating
the inverse we calculate

∇π = ∇π̃(ϱ, θ) = ∂ϱπ̃(ϱ, θ)∇ϱ =
1

∂πϱ̃(π̃(ϱ, θ), θ)
∇ϱ (5.10)

This gives the relation

K̃(π, θ)∇π = K̂(ϱ, θ)∇ϱ with K̂(ϱ, θ) =
K̃(π̃(ϱ, θ), θ)

∂πϱ̃(π̃(ϱ, θ), θ)
. (5.11)

Hence, (5.6) can be rewritten as a parabolic equation for the total mass density ϱ

∂tϱ = ∇ · K̂(ϱ, θ)∇ϱ . (5.12)

Furthermore, for K̂ we make the assumptions

for all θ > 0 fixed the function K̂(ϱ, θ) is continuous and (5.13a)

there are constants 0 < k̂∗ < k̂∗ such that k̂∗ ≤ K̂(ϱ, θ) ≤ k̂∗ for all ϱ ∈ R. (5.13b)

We point out that above assumptions (5.13) are satisfied if K̃ is continuous and uniformly bounded, and
if properties (5.8) hold true. This, in turn, is closely linked to the properties of the given functions ϕ̃(·, θ),
ϱ̃s(·, θ), ϱ̃f(·, θ), and X̃h.

5.1.2 Existence of a weak solution

Thanks to the above assumptions (5.13) one can deduce the existence of a weak solution ϱ : [0, T ]×Ω →
(0,∞) for the transformed system (5.12). Since the assumptions (5.8) guarantee the bijectivity of the
transformation map one can also infer the existence of a weak solution π : [0, T ] × Ω → (0,∞) for the
original system (1.1). Our existence result reads as follows:

Theorem 5.1 (Existence of a weak solution for system (5.12)). Let T > 0 and let Ω ⊂ Rd be a bounded
Lipschitz domain. Let QT := (0,T)× Ω denote the space-time cylinder and set

V := H1(Ω) . (5.14)

Then the following statements hold true:
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1. Let ϱ0 ∈ V be a given initial datum and assume that K̂(·, θ) satisfies (5.13). Then there exists a
function

ϱ ∈ H1(0,T;V ∗) ∩ L2(0,T;V ) ∩ L∞(0,T;L2(Ω)) ∩ C0([0,T];L2(Ω)) , (5.15a)

which satisfies ∫
QT

(
∂tϱv + K̂(ϱ, θ)∇ϱ · ∇v

)
dxdt = 0 for all v ∈ L2(0,T;V ) (5.15b)

and ϱ(0) = ϱ0.
2. Further assume that there are constants 0 < r∗ < r∗ such that r∗ ≤ ϱ0(x) ≤ r∗ holds true for a.e.

x ∈ Ω for the initial datum ϱ0. Then for all t ∈ [0,T] also a solution ϱ satisfies r∗ ≤ ϱ(t, x) ≤ r∗

for a.e. x ∈ Ω.

Comments on the proof: We refer to [ZT23, Sec. 3, 4] for the details of the proof. Here we give a
short outline of the main steps.

To 1. In order to prove the existence of a weak solution satisfying (5.15) we introduce a discretization
in time Tτ := {t0τ = 0, tkτ = kτ for τ = T/N, k = 1, . . . , N ∈ N} and a Galerkin approximation in space
by finite-dimensional subspaces V n = span{e1, . . . , en} ⊂ V, n ∈ N such that

⋃
n∈N V n ⊂ V densely,

with ei, i = 1, . . . , n denoting a basis of V n . By invoking [Zei86, Prop. 2.8, p. 53] we obtain for every
time-step k ≤ N, all N ∈ N, and all n ∈ N the existence of a vector of coefficients ϱ⃗τkn = (ϱτkn1, . . . , ϱ

τk
nn)

providing an element ϱτkn =
∑n

i=1 ϱ
τk
ni ei ∈ V n that solves the system of n nonlinear equations

n∑
i=1

∫
Ω

(ϱτkni − ϱτk−1
ni

τ
eiej + K̂(ϱτkn , θ)ϱτkni∇ei · ∇ej

)
dx = 0 for all j = 1, . . . , n. (5.16)

By testing (5.16) with ϱτkn ∈ V n and summing up over k ≤ l ∈ {1, . . . , N} one obtains the following a
priori estimates uniformly for all n ∈ N and τ = T/N, N ∈ N:

1
2∥ϱ

τl
n ∥2L2(Ω) +

l∑
k=1

τ k̂∗∥∇ϱτkn ∥2L2(Ω,Rd) ≤
1
2∥ϱ

τ0
n ∥2L2(Ω) = ∥Pnϱ0∥2L2(Ω) , hence:

1
2∥ϱ

τl
n ∥2L2(Ω) +

l∑
k=1

τ k̂∗∥ϱτkn ∥2V ≤ ( 12 + Tk̂∗)∥Pnϱ0∥2L2(Ω) , (5.17)

where Pnϱ0 is the projection of the initial datum ϱ0 ∈ V into V n and where we have also used (5.13).
For each k ∈ {1, . . . , N}, with N ∈ N fixed, as n → ∞, this provides the existence of a (not relabelled)
subsequence (ϱτkn )n∈N and of an element ϱτk ∈ V such that

ϱτkn ⇀ ϱτk in V as n → ∞ . (5.18)

By the compact embedding V ⋐ L2(Ω) and the boundedness of K̂ we conclude by the dominated conver-

gence theorem that K̂(ϱτkn )∇Pnv → K̂(ϱτkn )∇v for every test function v ∈ V and for all k ∈ {1, . . . , N},
and τ = T/N, N ∈ N. Therefore we deduce by weak-strong convergence arguments that

0 =

N∑
k=1

τ

∫
Ω

(ϱτkn − ϱτk−1
n

τ
Pnv

τk + K̂(ϱτkn , θ)∇ϱτkn · ∇Pnv
τk
)
dx (5.19a)

↓ n → ∞

0 =

N∑
k=1

τ

∫
Ω

(ϱτk − ϱτk−1

τ
vτk + K̂(ϱτk, θ)∇ϱτk · ∇vτk

)
dx for all vτk ∈ V. (5.19b)

We introduce the piecewise constant ϱτ , ϱτ , and affine ϱτ interpolants in time, i.e., for any t ∈ (tk−1
τ , tkτ ],

k = 1, . . . , N we set

ϱτ (t) := ϱτk, ϱ
τ
(t) := ϱτk−1, ϱτ (t) :=

t− tk−1
τ

τ
ϱτk +

tkτ − t

τ
ϱτk−1 as well as tτ (t) := tkτ , (5.20)
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and we write ϱ̇τ (t) = (ϱτk − ϱτk−1)/τ, k ∈ {1, . . . , N}, for the time-derivative of the affine interpolant
ϱτ . We approximate any test function v ∈ L2(0,T;V ) by

vτk :=
1

τ

∫ tkτ

tk−1
τ

v(s) ds

and use these values to introduce the interpolants vτ , vτ , and vτ as in (5.20). This ensures strong
convergence of the interpolants, i.e., vτ , vτ , vτ → v strongly in L2(0,T;V ). Moreover, for the interpolants
(ϱτ , ϱτ , ϱτ ) the estimate (5.17) together with (5.19) provides the following bounds uniformly in τ = T/N,
N ∈ N :

∥ϱτ∥B(0,T;L2(Ω)) + ∥ϱ
τ
∥B(0,T;L2(Ω)) + ∥ϱτ∥B(0,T;L2(Ω)) ≤ C , (5.21a)

∥ϱτ∥L2(0,T;V ) ≤ C , (5.21b)

∥ϱ̇τ∥L2(0,T;V ∗) ≤ C , (5.21c)

with a constant C > 0 independent of τ = T/N and N ∈ N. Accordingly, one concludes the existence of
a (not relabelled) subsequence and of a limit ϱ of regularity (5.15a) such that the following convergence
properties hold true:

ϱτ , ϱτ , ϱτ
∗
⇀ ϱ weakly-∗ in L∞(0,T;L2(Ω)) , (5.22a)

ϱτ , ϱτ ⇀ ϱ weakly in L2(0,T;V ) , (5.22b)

ϱ̇τ ⇀ ϱ̇ weakly in L2(0,T;V ∗) , (5.22c)

ϱτ , ϱτ → ϱ strongly in L2(0,T;L2(Ω)) , (5.22d)

ϱτ (t), ϱτ (t), ϱτ (t)
∗
⇀ ϱ(t) weakly-∗ in V ∗ for all t ∈ [0,T] . (5.22e)

Here, convergences (5.22a)-(5.22c) follow from standard compactness arguments. Moreover, convergence
(5.22d) is deduced from estimates (5.21b) and (5.21c) by means of a time-discrete version of the Aubin-
Lions lemma, cf. [DJ12, Thm. 1]. We further observe that estimates (5.21a) and (5.21c) result in a
uniform bound for the interpolants in BV (0,T;V ∗). From this, the pointwise convergence in time (5.22e)
ensues by means of Helly’s selection principle [MR15, Thm. B.5.10, p. 610]. Convergence results (5.22)
then enable us to pass to the limit in τ = T/N → 0 as N → ∞ in (5.19b) and to conclude the validity
of the weak formulation (5.15b). In addition, convergence result (5.22e) allows it to deduce that the
initial datum is attained, i.e. that ϱ(0) = ϱ0 in V . Let us also note that the regularity ϱ ∈ H1(0,T;V ∗)∩
L2(0,T;V )∩L∞(0,T;L2(Ω)) in (5.15a) ensues from convergence results (5.22), while ϱ ∈ C0([0,T];L2(Ω))
is a consequence of the regularity in Bochner spaces for the Gelfand triple V ⋐ L2(Ω) ⊂ V ∗.

To 2. Assume that the initial datum satisfies r∗ ≤ ϱ0 ≤ r∗ a.e. in Ω. We observe that the functions
max{ϱ− r∗, 0}|[0,t] and min{ϱ− r∗, 0}|[0,t] for all t ∈ [0,T] are admissible test functions for (5.15b) since
they are compositions of Lipschitz-continuous functions with Sobolev functions, cf. [MM79]. Subsequent
integration by parts in time results in the relations

0 = ∥max{ϱ(t)− r∗, 0}∥2L2(Ω) − ∥max{ϱ0 − r∗, 0}∥2L2(Ω) +

∫
Qt∩[ϱ≥r∗]

K̂(ϱ, θ)∇ϱ · ∇ϱdx ds ,

0 = ∥min{ϱ(t)− r∗, 0}∥2L2(Ω) − ∥min{ϱ0 − r∗, 0}∥2L2(Ω) +

∫
Qt∩[ϱ≤r∗]

K̂(ϱ, θ)∇ϱ · ∇ϱdxds

for any t ∈ (0,T]. In both expressions, the second term is zero due to the boundedness of the initial
datum. Moreover, in both expressions the third term is non-negative thanks to (5.13). Thus, necessarily
max{ϱ(t)− r∗, 0} = min{ϱ(t)− r∗, 0} = 0 a.e. in Ω, which concludes the proof of statement 2. □

Remark 5.2 (Boundary conditions). For simplicity we have formulated Thm. 5.1 with homogeneous

Neumann boundary conditions K̂(ϱ(t), θ)∇ϱ(t) · n = 0 on ∂Ω for all t ∈ [0,T] with n the outer unit
normal vector to ∂Ω. This can be extended to inhomogeneous Neumann boundary conditions for a

prescribed datum h ∈ H−1/2(∂Ω,Rd), so that (5.15b) additionally features the term
∫ T

0

∫
∂Ω

hv dS dt.
Introducing ∅ ≠ ∂DΩ ⊂ ∂Ω as the Dirichlet boundary and ∂NΩ = ∂Ω\∂DΩ, Thm. 5.1 can also be adapted
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to inhomogeneous Dirichlet boundary conditions on ∂DΩ. For this, consider g ∈ H1(Ω) an extension of
the given Dirichlet datum into the domain Ω and replace ϱ in (5.15b) by the shifted function ϱ+g, where
both ϱ and the test functions v are now chosen in V0 := {u ∈ H1(Ω) |u = 0 on ∂DΩ} in space. This
setting even provides a unique weak solution. We note that also statement 2. can be adapted to the case
of inhomogeneous Dirichlet conditions: Given gD ∈ H1/2(∂DΩ) such that gD ∈ [r∗, r

∗] a.e. on ∂DΩ and
g ∈ H1(Ω) an extension of gD into Ω one observes that max{ϱ+g−r∗, 0} ∈ V0 and min{ϱ+g−r∗, 0} ∈ V0

are admissible test functions, so that the proof of 2. can be reproduced.

5.1.3 Perusal of assumptions (5.8) & (5.13) for thermodynamical rock data
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Figure 5: on the left: Example of ϱ̃ = ϱ̃(π, θ) for a given composition and at fixed temperature of 480◦C.
One can see the continuity and strict monotonicity of ϱ̃ which in return guarantee the existence of a
continuous inverse ϱ̃−1. On the right: plot of the derivative ∂ϱ̃/∂π for two possible discretizations. It
can bee seen that it is discontinuous at π = 1.2GPa and that is bounded from below and above satisfying
assumption (5.8c).

In the following we validate the mathematical assumptions (5.8) and (5.13) with the thermodynamical
rock data used in [PJP+17]. Figure 5 shows the total mass density ϱ = ϱ̃(π) as a function of pressure π
in its geologically relevant range of 0.8-2 GPa, see also Sec. 4.4. Fig. 5 confirms that ϱ̃ is a continuous
and strictly monotone function of pressure π, hence bijective. Yet, it also turns out that the map suffers
from a kink at π = 1.2 GPa, which hampers the assumption of continuous differentiability of ϱ̃ and its
inverse ϱ̃−1, cf. (5.8b). Indeed, this kink coincides with a phase transformation between antigorite and
olivine as shown is Fig. 3 and in Fig. 4. It therefore also appears in the porosity ϕ = ϕ̃(π, θ) and in the

coefficient function K̃(π, θ) at π = 1.2 GPa, see Fig. 6. As expected this translates into a discontinuity of

the coefficient function K̂(·, θ) at ϱ ≈ 2600 kg/m3. We further point out that the porosity shown in Fig.6
is strictly positive and bounded from below by the value ϕ̃(2GPa, 480◦C) = 0.035 > 0. In turn, we find

the coefficient function K̂(·, θ) to be uniformly bounded from above and from below by a value strictly
larger than zero, so that assumption (5.13b) is satisfied.

As the violation of the continuity assumptions (5.13a) for K̂(·, θ) and (5.8b) are concerned, we point
out that the analytical results given in Thm. 5.1, 2. predict that the weak solution ϱ(t, ·) for all t ∈ [0,T]
stays confined between values 0 < r∗ < r∗ a.e. in Ω, if the initial datum ϱ0 is chosen with this property.
In other words, if the initial datum is chosen with values strictly below or strictly above the critical value
of ϱ = 2600 kg/m3 (corresponding to the critical pressure of 1.2 GPa), then also the solution will not
exceed this value apart from a set of zero measure at any later time t ∈ (0,T]. Thus, under this additional
assumption on the initial datum, all the assumptions (5.8) and (5.13) are met and therefore existence of
a unique weak solution is guaranteed by Thm. 5.1, 1. However, this also means that in this setting the
phase transition, with ϱ exceeding the critical value on sets of positive measure, cannot be described by
Thm. 5.1 using the original thermodynamical data set. Instead, in order to cover also this case, one would
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have to mollify ϱ̃(·, θ) and K̂(·, θ) in a small neighbourhood of the non-smoothness. From a geological
perspective, even though the interesting pressure range is between 0.8-2 GPa, it is very difficult for a
geological system to experience this complete range. Usually, pressure variations are very small and π
is confined to a neighborhood of a certain value. Therefore it is usually sufficient to study one of either
areas below or above 1.2 GPa. Additionally let us point out that the phase stability, hence the position
of the kink, varies with temperature and rock composition: If the system has a high iron content, one
would find this kink in the mass density for higher values of pressure, cf. [HVJ22]. As explained in Fig.
3 for the composition and temperature of this specific example, antigorite, the hydrated rock, is stable
for pressure values above 1.2 GPa and olivine, the dehydrated rock, is stable at pressure values below 1.2
GPa. In conclusion, since the interest lies in the investigation of the dehydration process, we can confine
the analysis to the regime below 1.2 GPa.
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Figure 6: Example of ϕ = ϕ(π, θ), K̂(π, θ) and K̃(π, θ) for a given composition and at fixed temperature
of 480◦C. For these simulations we have set ratio between permeability of the medium and viscosity of
the fluid K̂/µ = 1. Thus, positivity and continuity of K̂ relies on ϕ, which never reaches zero.

5.2 Results and challenges of model (1.2)

Although the application of a similar approach as the one used in Section 5.1.2 might seem straightforward,
the thermodynamical data behind the model (1.2) hide a series of challenges that require a special
treatment. We dedicate this section to their description.

5.2.1 Parabolic form of system (1.2)

Also in model (1.2) it is assumed that the quantities

ϱs = ϱ̃s(π, cs, θ), ϱf = ϱ̃f(π, cs, θ), cf = c̃f(π, cs, θ) are given functions

of pressure π, concentration cs, and temperature θ .
(5.23)

Again, their analytical form is unknown, but their values can be determined from thermodynamical data
tables. Combining (5.23) and (1.2c) also the porosity ϕ can be understood as a function of the variables
(π, cs, θ) as follows

ϕ = 1− ϱ0
s (1−c0s−X0

h)(1−ϕ0)

ϱ̃s(π,cs,θ)(1−c̃s−X̃h(π,cs,θ))
=: ϕ̃(π, cs, θ) . (5.24)

Based on this we introduce the notation

ϱ̃1(π, cs, θ) := ϱ̃f(π, cs, θ)ϕ̃(π, cs, θ) + ϱ̃s(π, cs, θ)
(
1− ϕ̃(π, cs, θ)

)
, (5.25a)

ϱ̃2(π, cs, θ) := ϱ̃f(π, cs, θ)ϕ̃(π, cs, θ)c̃f(π, cs, θ) + ϱ̃s(π, cs, θ)
(
1− ϕ̃(π, cs, θ)

)
cs , (5.25b)

K̃1(π, cs, θ) := ϱ̃f(π, cs, θ)Kϕ(ϕ̃(π, cs, θ)) , (5.25c)

K̃2(π, cs, θ) := ϱ̃f(π, cs, θ)c̃f(π, cs, θ)Kϕ(ϕ̃(π, cs, θ)) , (5.25d)

Kϕ(ϕ̃(π, cs, θ)) :=
κ

µ
ϕ̃(π, cs, θ)

3 , (5.25e)

D̃(π, cs, θ) := ϱ̃f(π, cs, θ)ϕ̃(π, cs, θ)Dc , (5.25f)
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with constants κ, µ,Dc > 0. Thus, equations (1.2a) and (1.2b) can be rewritten as follows

∂tϱ̃1(π, cs, θ) = ∇ ·
(
K̃1(π, cs, θ)∇π

)
, (5.26a)

∂tϱ̃2(π, cs, θ) = ∇ ·
(
K̃2(π, cs, θ)∇π + D̃(π, cs, θ)∇c̃f(π, cs, θ)

)
. (5.26b)

This is a PDE system of the form

∂tϱ̃(q, θ)−∇ ·
(
K̃D(q, θ)∇q

)
= 0 with (5.27a)

q :=

(
π
cs

)
, ϱ̃ :=

(
ϱ̃1
ϱ̃2

)
, K̃D :=

(
K̃1 0

K̃2 + ∂π c̃fD̃ ∂cs c̃fD̃

)
, (5.27b)

where we have used the chain rule ∇c̃f = ∂π c̃f∇π + ∂cs c̃f∇cs. Now we set

ϱ := ϱ̃(q, θ) (5.28)

and make the following assumptions on the map ϱ̃ and its inverse

for every θ > 0 fixed the function ϱ̃(·, θ) is continuously differentiable in q

and invertible in q and the inverse (5.29a)

ϱ̃−1(·, θ) is continuously differentiable.

We note that assumptions (5.29) amount to the following conditions

For all θ > 0 the Jacobian Dqϱ̃(·, θ) =
(
∂πϱ̃1(·, θ) ∂cs ϱ̃1(·, θ)
∂πϱ̃2(·, θ) ∂cs ϱ̃2(·, θ)

)
is continuous with (5.30a)

detDqϱ̃(q, θ) > 0 for all admissible q ∈ R2 , and also (5.30b)

Dϱϱ̃
−1(·, θ) = Dqϱ̃(ϱ̃

−1(·, θ), θ)−1 is a continuous function in ϱ . (5.30c)

Then we have
q = ϱ̃−1(ϱ, θ) =: q̃(ϱ, θ) (5.31)

and system (5.27) can be rewritten as a parabolic PDE system of the form

∂tϱ−∇ ·
(
K̂D(ϱ, θ)∇ϱ

)
= 0 , (5.32a)

where we used the relations

∇q = ∂ϱq̃(ϱ, θ)∇ϱ and K̂D(ϱ, θ) := K̃D(q̃(ϱ, θ), θ)∂ϱq̃(ϱ, θ) . (5.32b)

We now state the following assumptions on K̂D:

For all θ > 0 the matrix K̂D(·, θ) has the following properties:

• K̂D(·, θ) : R2 → R2×2 is continuous, (5.33a)

• K̂D(q, θ) : R2×2 → R2×2 is bounded and positively definite uniformly wrt. (q, θ), (5.33b)

i.e., there are constants 0 < K∗ < K∗ s.th. for all (q, θ) and all v ∈ R2 there holds :

K∗|v|2 ≤ v · K̂D(q, θ)v ≤ K∗|v|2 .

5.2.2 Existence of weak solutions

We observe that assumptions (5.30) and (5.33) are the immediate translation of the assumptions from
the scalar-valued to the vector-valued setting. Accordingly, we here state the following existence result.
Its proof closely follows the outline given in Section 5.1.2 and we refer the reader to [ZT23, Sec. 3, 4] for
further details.
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Figure 7: Plots of the total mass density ϱ̃1 = ϱ̃1(π, cs, θ). On the left a 2D plot showing the discretization
grid resulting from an interpolation of the thermodynamic dataset. The non-differentiability points are
marked with a red line in the right plot. This shows the division into three main areas ((0.8, 1)GPa ×
(0.17, 0.196), (0.8, 1)GPa× (0.196, 0.2) and the remaining part of the domain) delimited by two straight
lines and one curve with a contact point around (1GPa, 0.195). These three subdivisions and the values
for which ϱ̃1 is continuous but not differentiable are more clearly seen in the 3D plot on the right.

Theorem 5.3 (Existence of a weak solution for system (5.32)). Let the prerequisites of Theorem 5.1 be
satisfied and denote V := V × V . Then the following statements hold true:

1. Let ϱ0 ∈ V be a given initial datum and assume that K̂D(·, θ) satisfies (5.33). Then there exists a
function

ϱ ∈ H1(0,T;V ∗) ∩ L2(0,T;V ) ∩ L∞(0,T;L2(Ω,R2)) ∩ C0([0,T];L2(Ω;R2)) , (5.34a)

which satisfies ∫
QT

(
∂tϱ · v + K̂D(ϱ, θ)∇ϱ : ∇v

)
dxdt = 0 for all v ∈ L2(0,T;V ). (5.34b)

and ϱ(0) = ϱ0.
2. Further assume that there are constants 0 < r1∗ < r∗1 and 0 < r2∗ < r∗2 such that r1∗ ≤ ϱ10(x) ≤ r∗1

as well as r2∗ ≤ ϱ20(x) ≤ r∗2 holds true for a.e. x ∈ Ω for the initial datum ϱ0 = (ϱ10, ϱ20)
⊤.

Then for all t ∈ [0,T] also a solution ϱ = (ϱ1, ϱ2)
⊤ satisfies r1∗ ≤ ϱ1(t, x) ≤ r∗1 as well as

r2∗ ≤ ϱ2(t, x) ≤ r∗2 for a.e. x ∈ Ω.

5.2.3 Perusal of assumptions (5.30) & (5.33) for thermodynamical rock data

Firstly we recall that system (1.2) is written in terms of q = (π, cs)
⊤, i.e., in terms of the pressure π and

the concentration of silica in the solid cs. A close inspection of the thermodynamical rock data sets reveals
that the introduction of this additional complexity causes the resulting mass densities to have regions of
non-invertibility and non-differentiability, as it can be seen in Figures 7 and 8 for the mass densities ϱ̃1
and ϱ̃2. This is in analogy to the kink in the thermodynamical data of model (1.1) shown in Fig. 6. More
precisely, we see in Fig. 7 that the total mass density ϱ̃1 is strictly monotonously increasing with respect
to pressure and silica-content, but that kinks arise in the region of the antigorite-olivine phase transition
discussed in Fig. 3. Similarly, also Fig. 8 shows a monotone behavior of the total silica-mass density ϱ̃2 in
pressure and silica-content, also with kinks arising at the antigorite-olivine phase transition. Obviously,
within this region assumptions (5.29) and (5.30) are not satisfied.

Additionally we point out that in (1.2) the gradient of the silica concentration in the fluid c̃f drives
the diffusion process. Hence, it would be natural to chose c̃f as a variable. However, as Fig. 9 reveals,
in wide areas of the data range c̃f is constant with respect to cs, so that the function is not invertible in
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Figure 8: Plots of the total mass density of silica ϱ̃2 = ϱ̃2(π, cs, θ). On the left a 2D plot showing the
discretization grid resulting from an interpolation of the thermodynamic dataset. The non-differentiability
points are marked with a red line in the right plot. This shows the division into three main areas (the
same of ϱ̃1 shown in Figure 7). These three subdivisions and the values for which ϱ̃2 is continuous but
not differentiable are more clearly seen in the 3D plot on the right.
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Figure 9: The figure shows isolevels for the function c̃f(π, c̃s) at θ = 480◦C. One can see that in most
parts of the considered domain we have ∂cf/∂cs = 0 which translates to no diffusion occurring in the
system. However it is worth noticing that there is a small area in the bottom right corner where this
condition is not met. In addition, a discontinuity point where the lines are more dense can be seen around
cs ≈ 0.195. This discontinuity would, i.e., invalidates assumption (5.33a)

these areas. This is the reason why system (5.26) is written in terms of the variables π and cs. Indeed,
such plateau regions followed by kinks as in Fig. 9 are common in thermodynamical rock data sets. They
are also predicted in [Guy93] in the case of non-convex thermodynamical functions, which is again closely
related to phase stability.

As can be seen from (5.27), in regions where ∂c̃f/∂cs = 0, diffusion of silica is absent and the math-
ematical classification of the PDE system becomes unclear. Similar to Section 5.1.3 one may also try
here to confine the initial data to a data range that ensures the validity of assumptions (5.30) and (5.33).
Then the results of Theorem 5.3 would also guarantee that solutions are confined to that data range
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for all times t ∈ (0, T ]. However, as can be seen from (5.27) the positive definiteness of K̂D, and hence
the classification of the PDE system, is not solely linked to the positive definiteness of the Jacobian
Dqϱ̃ but also to the values of the material constants κ, µ, and Dc contributing to the non-symmetric

coefficient matrix K̃ in (5.27). These material constants are, in fact, the main contributors, together
with ∂c̃f/∂cs and ∂c̃f/∂π, to the parabolicity of the system. In the literature, see e.g. [WW97], it is
discussed that potential values for Dc and µ range from 10−8-10−10m2/s and 10−4Pa·s while for the
permeability κ one finds 10−17-10−14m2, see e.g. [MI99]. An unprecise tuning of the system might lead to
fail the assumption (5.33b). This is exemplary seen in Figure 10, where we have plotted the eigenvalues
of symK̂ = 1/2(K̂ + K̂⊤). In the considered range of pressure and concentration it turns out that its
smallest eigenvalue is negative whereas the largest eigenvalue is positive. In fact, the uniform positive
definiteness of K̂, i.e., a lower bound as in (5.33b), is equivalent to symK̂ being positive definite.

As a further difficulty it turns out that the computation of the thermodynamical data set is highly
sensitive to the total composition and therefore to the function c̃f . This creates approximation errors in
the plateau region where ∂c̃f/∂cs = 0 that may cause backward diffusion in the system.

Different strategies can be deployed to circumvent this problem: the interpolation of the approximated
c̃f function could be constructed to ensure that ∂c̃f/∂cs = 0 > δ > 0. Alternatively, more sophisticated
and invasive solutions rely on extensions of the system that account for further geophysical phenomena
that could help mitigate this behavior. One possibility is to include more species and phases, which would
lead to a change in the landscape of c̃f , possibly avoiding a plateau of the previous type. In general, non-
convex regions in the energy landscape can produce ∂c̃f/∂cs = 0 of different signs, indicating that phase
separation is taking place. In such a case, higher-order derivatives as in the Cahn-Hilliard model might
help to ensure the mathematical well-posedness of the problem.
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Figure 10: The figure shows the eigenvalue for the symmetrized operator symK̂ = 1/2(K̂ + K̂⊤) for
θ = 480◦C. For the considered range of pressure and concentration the smallest eigenvalue is well kept
below 0 while the largest is clearly positive.
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