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Using all-atom Molecular Dynamics simulations including explicit water, we consider hydrophobic
inclusions of conical shape that are inserted into phospholipid bilayer membranes with the goal to
determine the boundary conditions at the inclusion-membrane interface. We determine the mean
membrane shape around the inclusion and from that extract the membrane vertical-displacement,
thickness and bending-angle profiles as possible order parameters in a coarse-grained description
of the membrane shape. Via comparison with solutions of membrane-shape equations obtained
by Landau theory, we investigate the appropriate boundary condition at the inclusion-membrane
interface. We find that in the considered cone opening angle range, the boundary values of the
different order parameters that describe the membrane deformation are rather constant, which
reflects an inherently preferred shape of membranes at conical inclusions.

I. INTRODUCTION

Cell membranes are barriers that separate the cyto-
plasm inside the cell from the outside extracellular fluid
and at the same time allow the formation of intracellu-
lar compartments. They are thus an integral part of the
biological machinery enabling life [1].

On the microscopic scale, cell membranes typically
consist of a mixture of different lipids and membrane pro-
teins. As pure lipid bilayers resist spontaneous bending
due to their elastic properties [2, 3], molecular mecha-
nisms are needed to introduce curvature to the mem-
brane. Curvature generation by inclusions and scaffold
proteins have been reported in many experimental stud-
ies, see e.g. Refs. [4–8]. It is useful to differentiate in-
ternal membrane bending mechanisms, due to the asym-
metric insertion of amphipathic helices or the insertion of
wedge-shaped transmembrane proteins into the bilayer,
from external bending mechanisms, where curvature is
introduced by proteins that adsorb onto the bilayer, such
as binding of the intrinsically curved Bin-Amphiphysin-
Rvs (BAR) domain protein superfamily [3, 9]. In the
present work, we consider hydrophobic transmembrane
inclusions of conical shape, which may be considered as
a simple model of internal membrane bending. A recent
computational study of membrane sculpting by BAR do-
mains is found in Ref. [10]. Membrane curvature gen-
eration by asymmetric insertion of amphipathic helices
has been recently studied in Ref. [11], hydrophobic trans-
membrane insertions have been considered in Ref. [12].

On the macroscopic scale, continuum models based on
the pivotal Canham-Helfrich model of lipid membranes
[13, 14] have been used to study large-scale effects of
inclusions on membrane shape, see also Refs. [15, 16].
In the Canham-Helfrich model, the equilibrium mem-
brane shape follows from minimizing the associated en-
ergy functional, which is obtained by expansion of the
bending energy with respect to the principal curvatures
up to second order. Modifications of this model include
effects of different lipid components or protein assemblies

via areal concentrations [17, 18]. Since microscopic de-
scriptions, usually based on Molecular Dynamics (MD)
simulations, have certain limitations regarding the acces-
sible time and length scales, while continuum descrip-
tions do not incorporate the effects of discrete particles,
hybrid approaches attempt to bridge the gap between mi-
croscopic and macroscopic descriptions [19–21]. In prin-
ciple, the idea is to model the coupling between a pro-
tein and the membrane microscopically and infer suit-
able boundary conditions at the protein-membrane inter-
face, which can then be used in continuum descriptions.
A mathematically consistent formulation of a variety of
models with regard to hybrid approaches and numerical
accessibility can be found in Ref. [22].

In the present work, we perform atomistic simulations
of purely hydrophobic transmembrane inclusions of coni-
cal shape in double lipid membranes and utilize the phe-
nomenological framework of Landau theory [23] to study
the coupling of the inclusion to the membrane. Lan-
dau theory has been used successfully before to describe
various effects connected to the shape of lipid mem-
branes [24–28]. Conical inclusions are of particular inter-
est, because they represent typical wedge-shaped mem-
brane proteins and have been previously considered in
Refs. [20, 26, 29, 30].

The organization of this paper is as follows. In Sec. II,
we introduce our phenomenological theory and minimize
the Landau free energy in polar coordinates in the pres-
ence of boundary fields. We obtain a system of ordi-
nary differential equations that predict the behavior of
general scalar order parameters including the boundary
to the conical inclusion which describe the membrane
shape. In Sec. III, we describe our simulation protocol
and the extraction of order parameters from simulation
data. In Sec. IV, we compare our theory to explicit or-
der parameters from atomistic simulations and infer the
boundary conditions in the theoretical model using sim-
ulation data. Finally, in Sec. V, we close with some con-
cluding remarks.
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FIG. 1. Snapshot of our simulation setup showing the lipid
bilayer membrane with a conical insertion of half opening an-
gle γ = 15◦. The figure shows a cut through the center of
the cone. The membrane middle plane is indicated by an
orange line, and definitions of membrane thickness L, mid-
dle plane bending angle α and cone half opening angle γ are
shown. The water molecules surrounding cone and membrane
are not shown.

II. ORDER PARAMETER DESCRIPTION

The membrane shape perturbation due to the presence
of a conical hydrophobic inclusion is described within
a general scalar Landau theory in terms of a spatially-
dependent order parameter η(r), while the effects of the
inclusion enter via surface boundary conditions.

We expand the free energy of the lipid membrane in
terms of the scalar order parameter η(r) according to the
Landau theory [23] in polar coordinates. We assume that
the inclusion tip is located at r = 0, and position the
inclusion-membrane interface defined at the membrane
middle plane at r = R0, see Fig. 1. Considering only
the lowest-order terms and including interface effects via
boundary fields h± and g±, which couple linearly and
quadratically, respectively, to the order parameter values
at r = R0 and r = R∞, the edge of the simulation box,
the free energy can be written as

F [η(·)]
L

= 2π

∫ R∞

R0

[
aη2(r) + c

(
dη(r)

dr

)2
]
r dr

+ 2πR∞h+η(R∞) + 2πR0h−η(R0)

+ 2πR∞g+η
2(R∞) + 2πR0g−η

2(R0) . (1)

Here a and c are phenomenological parameters, measur-
ing the stiffness of the order parameter and the spatial
range of interactions, respectively, and L is the mean
thickness of the membrane.

Following the variational principle, the free energy
Eq. (1) is minimized by

δF [η(·)]
δη(r̃)

= 0 , (2)

leading to

r2η′′(r) + rη′(r)− a

c
r2η(r) = 0 (3)

h+ + 2g+η(R∞) + 2cη′(R∞) = 0 (4)

h− + 2g−η(R0) + 2cη′(R0) = 0 . (5)

The general solution of Eq. (3) is

η(r) = k1I0(r/λ) + k2K0(r/λ) , (6)

where we have defined the correlation length λ :=
(c/a)1/2 which describes the range over which order-
parameter perturbations relax within the membrane. We
denote the modified Bessel functions of the first and sec-
ond kind by Iν(r) and Kν(r), ν ∈ N, respectively, and k1,
k2 are scalar parameters to be determined, depending on
the boundary condition. In the following, we derive the
solutions using Neumann and Dirichlet boundary condi-
tions, respectively.

A. Neumann boundary conditions

If the order parameter is chosen such that it reaches
a minimum at R∞, it is appropriate to use Neumann
boundary conditions, i.e., η′(R∞) = 0, leading to

η(r) = η0
K1(R∞/λ)I0(r/λ) + I1(R∞/λ)K0(r/λ)

I0(R0/λ)K1(R∞/λ) + I1(R∞/λ)K0(R0/λ)
,

(7)
where we have defined the boundary value η0 := η(R0).

Inserting the expression for the order parameter η(r)
from Eq. (7) into Eq. (4) yields

η(R∞) =
−h+
2g+

, (8)

which fixes the ratio of the boundary fields h+ and g+.
These are of minor importance to our analysis, since
they describe the coupling of the membrane to the outer
boundary, the effect of which on the membrane shape
around the inclusion should vanish if the simulation box
is chosen large enough.

Inserting the expression for the order parameter η(r)
from Eq. (7) into Eq. (5), on the other hand, yields

η0(γ) = −h−/
(

2g− + 2cλ−1
I1(R0(γ)/λ)K1(R∞/λ)− I1(R∞/λ)K1(R0(γ)/λ)

I0(R0(γ)/λ)K1(R∞/λ) + I1(R∞/λ)K0(R0(γ)/λ)

)
. (9)

Since R0 is a function of the cone half opening angle γ, Eq. (9) predicts a γ-dependent boundary value η0(γ) for
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given boundary fields h−, g−. This describes the coupling
of the membrane to the conical inclusion, which is the
main subject of our investigation.

B. Dirichlet boundary conditions

If, on the other hand, the order parameter takes the
value zero at R∞, which would be expected for an or-
der parameter profile that is an odd function between
two inclusions, such as the membrane bending angle, it
is appropriate to use the Dirichlet boundary condition

η(R∞) = 0, leading to

η(r) = η0
I0(R∞/λ)K0(r/λ)−K0(R∞/λ)I0(r/λ)

I0(R∞/λ)K0(R0/λ)−K0(R∞/λ)I0(R0/λ)
.

(10)
Inserting the expression for the order parameter η(r)
from Eq. (10) into Eq. (4) yields

η0(γ) =
h+
2c

(I0(R∞/λ)K0(R0(γ)/λ)

− I0(R0(γ)/λ)K0(R∞/λ)) . (11)

Again, since R0 is a function of γ, Eq. (11) predicts
a γ-dependent boundary value η0(γ) with fixed bound-
ary fields h+, g+, which are of minor importance since
they describe the coupling of the membrane to the outer
boundary and the effect should vanish for large systems.

Inserting the expression for the order parameter η(r)
from Eq. (7) into Eq. (5), on the other hand, yields

η0(γ) = −h−/
(

2g− + 2cλ−1
I0(R∞/λ)K1(R0(γ)/λ) + I1(R0(γ)/λ)K0(R∞/λ)

I0(R∞/λ)K0(R0(γ)/λ)− I0(R0(γ)/λ)K0(R∞/λ)

)
. (12)

As for the Neumann boundary conditions, since R0 is a
function of γ, Eq. (12) predicts a γ-dependent boundary
value η0(γ) for given boundary fields h−, g−.

III. MOLECULAR DYNAMICS SIMULATIONS

We perform all-atom molecular dynamics (MD) simu-
lations of a DMPC bilayer membrane solvated in water
using the CHARMM force-field [31]. Periodic bound-
aries are employed in all directions, and a time step of
∆t = 2 fs is used. The system contains 648 DMPC lipids
as well as 32,400 water molecules and is initially equi-
librated for 10 ns in the NpT ensemble. The velocity
rescale thermostat [32], including a stochastic factor, is
employed with a time constant of 0.5 ps. For the pres-
sure coupling we employ a semi-isotropic Berendsen baro-
stat [33] with a time constant of 1 ps coupled indepen-
dently in the z and the xy direction. The purely hy-
drophobic conical inclusions are made of frozen carbon
atoms and are cut from an fcc lattice with a lattice con-
stant of 0.3567 nm. The inclusions with half opening an-
gles γ ∈ {10◦, 12.5◦, 15◦, 17.5◦, 20◦} are inserted into the
equilibrated pure bilayer system in the middle of the xy-
plane, by gradually switching on the interaction potential
between the inclusion atoms and all other atoms over a
time of 2 ns. The system is subsequently equilibrated in
the NpT ensemble for at least 100 ns. To furthermore
avoid motion of the membrane, we apply a harmonic
force on the center of mass of the lipids in the z direction
with a force constant of 1000 kJ/mol/nm2. We generate
production trajectories of at least 100 ns in the NV T en-

semble, i.e., the lateral area is fixed to 14 nm× 14 nm in
the simulations. The positions of all particles are saved
every 20 ps.

The polar coordinate system is constructed such that
the tip of the conical inclusion is located at r = 0. To
extract radial membrane shape profiles, we compute the
radial average of the membrane head and tail group po-
sitions, respectively, for both the upper and lower leaflet.
The radial displacement profile of the membrane mid-
dle plane u(r) is then determined as the mean of the
two tail group position profiles, and the lipid-cone inter-
face at r = R0 is determined by the maximal value of
the middle plane position profile, as shown in Fig. 2 (c),
(d) for angles γ = 10◦, 20◦. The remaining profiles are
shown in Fig. 5 in the Appendix. We fit the upper and
lower leaflet position profiles, respectively, with a ninth
degree polynomial, the middle plane position profile is
described by a forth degree polynomial fit. The polyno-
mial fit to the middle plane position profile is only used
to ensure that the thickness determined via orthogonal
projection is smooth. We furthermore extract the middle
plane bending angle α(r) via its radial derivative as well
as the membrane thickness L(r) defined as the distance
between upper leaflet and lower leaflet profiles orthogo-
nal to the middle plane position, see Fig. 2 and Fig. 5.
The extracted cone-lipid interface positions R0 are shown
in Fig. 2 (e) as a function of the cone half opening an-
gle γ. We approximate the dependence of R0 on γ by
a linear fit through the origin of the form R0(γ) = aγ,
shown as a red line in Fig. 2 (e). The fitting parameter
is a = (0.133± 0.002) nm/ ◦.
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FIG. 2. (a), (b) Simulation snapshots for a conical inclusion of half opening angle γ = 10◦ (a) and γ = 20◦ (b) at the end of
the respective trajectories. (c), (d) Radial membrane profiles for γ = 10◦ (c) and γ = 20◦ (d). Extracted radial average of the
upper and lower leaflet head group positions as well as the middle plane position are shown as solid lines in color: upper leaflet
head group positions in blue, lower leaflet head group positions in green, and middle plane position in red. A tangent to the
middle plane position profile at the cone-membrane interface R0 is shown as a red dashed line. The corresponding polynomial
fits are shown as black dashed lines. The conical inclusion is represented by a solid purple line drawn through the outermost
atoms’ centers of the cone. The purple dashed line is orthogonal to the cone edge profile as a guide to the eye. The lipid cone
interface at R0 is indicated by a black dotted vertical line. The orthogonal projection to the middle plane is shown as a black
dotted line, where black filled circles indicate the extracted membrane thickness. (e) Extracted cone-lipid interface positions
R0 as a function of cone half opening angle γ. A linear fit through the origin is shown as a red straight line.

IV. ORDER PARAMETERS IN ATOMISTIC
SIMULATIONS

The phenomenological Landau theory described in
Sec. II accounts for the energy of the profile of a general
order parameter η(r). There are many membrane order
parameters that may be relevant for the interaction of the
membrane with the conical hydrophobic inclusion. Here,
we examine three different order parameter profiles from
our explicit simulations described in Sec. III. The order
parameters we consider are

1. the radial displacement profile of the membrane
middle plane position, η(1)(r) = u(r) − u(R∞)
for r ∈ [R0, R∞], with the Neumann boundary
condition u′(R∞) = 0,

2. the radial dependence of the membrane thickness,
η(2)(r) = L(r) for r ∈ [R0, R∞], with the Neumann
boundary condition L′(R∞) = 0,

3. the radial dependence of the middle plane bending
angle, η(3)(r) = α(r) for r ∈ [R0, R∞], with the
Dirichlet boundary condition α(R∞) = 0.

We show the profiles of the considered order parame-
ters η(1) and η(2) together with fits to Eq. (7) in Fig. 3
(a), (b). The profiles of the order parameter η(3) to-
gether with fits to Eq. (10) are shown in Fig. 4 (a)–
(e). The displacement order parameter η(1), shown for
γ ∈ {10◦, 12.5◦, 15◦, 17.5◦, 20◦} in Fig. 3 (a), is reason-
ably well described by the theoretical model Eq. (7).
Deviations are seen predominantly at the outer bound-
ary R∞ which is far away from the inclusion, where
the theory fails to reproduce that the displacement as-
sumes zero, i.e., the unperturbed state, at R∞. The fit-

ting parameters are λ(1) = (2.64 ± 0.07) nm and η
(1)
0 =

(1.26 ± 0.02) nm for γ = 10◦, λ(1) = (2.53 ± 0.07) nm

and η
(1)
0 = (1.26 ± 0.03) nm for γ = 12.5◦, λ(1) =

(2.41± 0.07) nm and η
(1)
0 = (1.32± 0.03) nm for γ = 15◦,

λ(1) = (2.17 ± 0.06) nm and η
(1)
0 = (1.24 ± 0.02) nm

for γ = 17.5◦, and λ(1) = (2.01 ± 0.05) nm and η
(1)
0 =

(1.10 ± 0.02) nm for γ = 20◦. Note that the correlation
lengths λ(1) are all of the same order of magnitude, which
is expected since λ(1) reflects a bulk membrane property
which should not be modified by the cone opening angle.

The surface values η
(1)
0 are shown in Fig. 3 (c), and, ex-

cept for the slight drop at γ = 20◦, do not change much
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FIG. 3. Membrane order parameter profiles from atomistic simulations (data points) and from Landau theory (lines). (a)

Displacement profile of the membrane middle plane position η(1) and (b) membrane thickness profile η(2). The parameters of
the theoretical model Eq. (7) are fitted to the MD data. Panel (c), (d) show the interface values η0 of the corresponding order
parameters obtained in the simulations (data points) together with theoretical predictions according to Eq. (9) (lines).

with the cone half opening angle γ. The fit of η
(1)
0 to

Eq. (9) is shown as a solid red line. For the fit, we use
λ(1)(20◦) and determine c as a fitting parameter. We ob-

tain h
(1)
− = −4.4, g

(1)
− = 2.5 and c(1) = 1.0. We omit the

errors of the fit since they are several orders of magni-
tude higher than the obtained optimal parameters. We
see that a boundary model assuming constant surface
fields h− and g− yields results that are almost identical

to assuming a constant boundary value η
(1)
0 .

Similarly, the membrane thickness order parameter
η(2) is shown in Fig. 3 (b). For the cone angles γ =
17.5◦ and γ = 20◦, the theoretical fits describe the MD
data very well. For the lower values of γ, the model
fails to predict the significant increase in thickness at
the inclusion-membrane interface R0, which might re-
flect missing higher-order terms in the Landau theory.
The fitting parameters are λ(2) = (2.4 ± 0.1) nm and

η
(2)
0 = (5.3±0.2) nm for γ = 10◦, λ(2) = (2.59±0.04) nm

and η
(2)
0 = (4.58 ± 0.04) nm for γ = 12.5◦, λ(2) =

(2.59± 0.05) nm and η
(2)
0 = (4.92± 0.06) nm for γ = 15◦,

λ(2) = (2.38 ± 0.01) nm and η
(2)
0 = (4.41 ± 0.01) nm

for γ = 17.5◦, and λ(2) = (2.11 ± 0.01) nm and η
(2)
0 =

(4.71 ± 0.01) nm for γ = 20◦. Again, the correlation
lengths λ(2) are all of the same order of magnitude, as

expected. The surface values η
(2)
0 are shown in Fig. 3

(d). In contrast to η
(1)
0 , a slight γ-dependence can be

observed. Again, the fit of η
(2)
0 to Eq. (9) is shown as a

solid line. Using the same fitting procedure as in the case

of η
(1)
0 , we obtain h

(2)
− = −15.4, g

(2)
− = 2.1 and c(2) = 0.8.

We again omit the errors of the fit since they are several
orders of magnitude higher than the obtained optimal
parameters.

Finally, we show the middle plane bending angle order
parameter η(3) in Fig. 4 (a)–(e). The bending angle val-
ues are calculated using the numerical derivative of the
extracted middle plane position profiles and thus exhibit
significant scattering due to the high resolution of our
data. However, the qualitative radial behavior is reason-
ably well reproduced by the fits. The fitting parameters

are λ(3) = 11.6µm and η
(3)
0 = 23.8◦ ± 0.9◦ for γ = 10◦,

λ(3) = 20.6µm and η
(3)
0 = 24.0◦ ± 0.6◦ for γ = 12.5◦,

λ(3) = 25.9µm and η
(3)
0 = 23.6◦ ± 0.9◦ for γ = 15◦,

λ(3) = 8.3µm and η
(3)
0 = 25.14◦ ± 0.5◦ for γ = 17.5◦,

and λ(3) = 28.95µm and η
(3)
0 = 23.1◦ ± 0.4◦ for γ = 20◦.

In this case, note that the correlation lengths λ(2) are
in the micrometer range and thus much larger than the
simulation system size. We omit the errors of the λ(3)

fit parameters since they are several orders of magnitude
higher than the obtained optimal parameters. The sur-

face values η
(3)
0 are shown in Fig. 4 (f). Similar to η

(1)
0 ,

the boundary parameters η
(3)
0 do not depend on the cone

half opening angle γ. We additionally show the axes-
bisector as a black dotted line, indicating that the lipid
angles at the interface do not simply align to the opening
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FIG. 4. (a)–(e) Membrane middle plane bending angle profiles η(3). The parameters of the theoretical model Eq. (10), the

results of which are shown as lines, are fitted to the MD data, shown as data points. Panel (f) shows the interface values η
(3)
0 of

the corresponding order parameter obtained in the simulations (data points) together with the theoretical prediction according
to Eq. (12) for fixed boundary fields (solid red line) and for a fixed order parameter value (broken green line).

angle of the conical inclusion. As before, the fit of η
(3)
0

to Eq. (12) is shown as a solid line. Similar to the fits
shown in Fig. 3 (c), the simulation data indicate that the
boundary parameter η0 is fixed. Using the same fitting

procedure as before, we obtain h
(3)
− = −528.5, g

(3)
− = 11.0

and c(3) = 0.1. Once again, we omit the errors of the fit
since they are several orders of magnitude higher than
the obtained optimal parameters.

V. CONCLUSIONS

In the present work we study the boundary conditions
at the surface of hydrophobic cone-shaped inclusions that
are inserted into bilayer membranes by a combined an-
alytic / simulation approach. For this, we describe the
shape of a lipid double membrane perturbed by a con-
ical inclusion in terms of a scalar order parameter ac-
cording to Landau theory. From the minimization of the
membrane elastic energy that is described by the Landau
theory, we obtain theoretical predictions for the order
parameter profile in the bulk and the order parameter
value at the cone-membrane interface. We also perform
all-atom MD simulations of a DMPC lipid bilayer that is
perturbed by a hydrophobic conical inclusion of varying
half opening angle and extract the displacement of the
membrane middle plane, the membrane thickness, and
the middle plane bending angle as scalar order param-

eters from our simulations. By comparison of the MD
data with the predictions of the Landau theory, we fit all
parameters in the phenomenological Landau theory for
the boundary values of the order parameters.

For all our choices of order parameters, we clearly ob-
serve a perturbation of the membrane shape caused by
the inclusion. However, the conical inclusions of different
opening angles, and thus different sizes, do not produce
significantly different perturbations in the surface values
of the order parameters we studied. It is clearly seen that
the membrane displacement and bending angle are best
described by fixed values η0. The membrane thickness
shows a slight boundary value variation as a function of
the cone opening angle. Though a theory considering
fixed boundary fields h− and g− yields the numerically
best fitting prediction, a fixed boundary parameter η0 is
the simpler and still rather accurate boundary condition.

This is a rather surprising results that shows that the
opening angle of cone-like inclusion is not simply adopted
by the surrounding membrane and shows that the bound-
ary condition at the interface between an inclusion and a
lipid bilayer is far from trivial. For the membrane thick-
ness order parameter, the nearly constant thickness at
the interface most likely reflects the molecular architec-
ture of a lipid bilayer, which determines a preferred thick-
ness independent of the inclusion geometry. Regarding
the membrane bending angle, the nearly constant angle
at the interface might be caused by repulsive forces be-
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tween polar membrane head groups and the hydrophobic
inclusion, which could be studied in more detailed sim-
ulation models in the future. In particular, the addition
of polar groups to the upper and lower end of the inclu-
sion, which match the polarity of the head groups of the
membrane lipids, might improve the analysis of the order
parameters considered in this work. For the bending an-
gle profile a more general Landau free energy including a
second-derivative curvature term might be more suitable,
which would result in a more realistic description of the
bending energy of a bilayer. To examine the dependence
of the membrane boundary condition on the inclusion
size in a more realistic model, it might be useful to con-
sider in future simulations inclusions that correspond to
truncated cones and vary the lateral size as well as the
opening angle of the inclusion. Finally, feature extrac-

tion would certainly improve for larger simulation system
sizes, which would allow the membrane to reach a truly
relaxed state far away from the inclusion.
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[18] F. Jülicher and R. Lipowsky, Shape transformations of
vesicles with intramembrane domains, Physical Review
E 53, 2670 (1996).

[19] R. R. Netz, Inclusions in Fluctuating Membranes: Exact
Results, Journal de Physique I 7, 833 (1997).

[20] T. R. Weikl, M. M. Kozlov, and W. Helfrich, Interaction
of conical membrane inclusions: Effect of lateral tension,
Physical Review E 57, 6988 (1998).
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FIG. 5. Radial membrane profiles for γ = 12.5◦ (a), γ = 15◦ (b) and γ = 17.5◦ (c) from MD simulations. Extracted radial
averages of the upper and lower leaflet head group positions as well as the middle plane positions are shown as solid lines in
color: upper leaflet head group position in blue, lower leaflet head group position in green, and middle plane position in red.
A tangent to the middle plane profile at the cone-membrane interface R0 is shown by a red dashed line. The corresponding
polynomial fits are shown as black dashed lines. The conical inclusion is represented by a solid purple line through the outermost
atoms’ centers of the cone. The purple dashed line is orthogonal to the cone edge profile as a guide to the eye. The lipid cone
interface at R0 is indicated by a black dotted vertical line. The orthogonal projection to the middle plane profile is shown by
a black dotted line, where black filled circles indicate the extracted membrane thickness.
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