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We introduce a hybrid projection scheme that combines linear Mori projection and conditional
Zwanzig projection techniques and use it to derive a Generalized Langevin Equation (GLE) for a
general interacting many-body system. The resulting GLE includes i) explicitly the potential of
mean force (PMF) that describes the equilibrium distribution of the system in the chosen space of
reaction coordinates, ii) a random force term that explicitly depends on the initial state of the system,
and iii) a memory friction contribution that splits into two parts: a part that is linear in the past
reaction-coordinate velocity and a part that is in general non-linear in the past reaction coordinates
but does not depend on velocities. Our hybrid scheme thus combines all desirable properties of the
Zwanzig and Mori projection schemes. The non-linear memory friction contribution is shown to be
related to correlations between the reaction-coordinate velocity and the random force. We present
a numerical method to compute all parameters of our GLE, in particular the non-linear memory
friction function and the random force distribution, from a trajectory in reaction coordinate space.
We apply our method on the dihedral-angle dynamics of a butane molecule in water obtained
from atomistic molecular dynamics simulations. For this example, we demonstrate that non-linear
memory friction is present and that the random force exhibits significant non-Gaussian corrections.
We also present the derivation of the GLE for multidimensional reaction coordinates that are general
functions of all positions in the phase space of the underlying many-body system; this corresponds
to a systematic coarse-graining procedure that preserves not only the correct equilibrium behavior
but also the correct dynamics of the coarse-grained system.

I. INTRODUCTION

Most interesting physical systems are interacting
many-body systems. When dealing with the kinetics of
such systems, one is typically interested in the dynam-
ics of a low-dimensional reaction coordinate, which is,
however, generally influenced by the entire system [1].
Examples include the motion of a particle in a liquid [2–
7], vibrational modes of a molecule in the gas phase or in
a liquid [8–11], chemical or associative reactions between
molecules [12–16] and protein folding [17–20]. To predict
the dynamics of the reaction coordinate, one in princi-
ple has to solve the equation of motion of the underlying
many-body system, which is typically analytically impos-
sible and is only numerically possible for small systems
and over short times. The very attractive idea of coarse-
grained modeling is to replace the description of the full
many-body system by a description in terms of the reac-
tion coordinates only. The challenge is to derive the ap-
propriate equation of motion that describes the dynamics
of the reaction coordinates accurately while maintaining
numerical efficiency. For some biologically relevant sce-
narios, such as the folding of a protein, sufficiently long
simulations of the full system dynamics can be performed
[21–23], but even for these cases, the interpretation of the
results typically requires mapping onto a low-dimensional
reaction coordinate.

Rigorous coarse-graining methods based on projection
operator techniques were introduced by Zwanzig and
Mori, which are directly applied to the Liouville equation
that describes the dynamics of a classical many-body sys-
tem governed by a time-independent Hamiltonian [24, 25]

(in fact, a similar approach applicable to quantum sys-
tems was developed by Nakajima even earlier [26]). The
result of the projection is a coarse-grained equation of
motion for the chosen set of reaction coordinates, the so-
called generalized Langevin equation (GLE). It contains
three distinct terms: a force term due to a potential that
depends on the reaction coordinates, a memory friction
contribution that involves the past time dynamics of the
reaction coordinates, and a force that explicitly depends
on the initial state of the entire many-body system and
which is typically interpreted as a random or stochas-
tic force. The GLE is therefore an integro-differential
stochastic equation. It should be noted that the Zwanzig
and Mori projection schemes give rise to fundamentally
different GLEs for non-linear systems, which are both rig-
orous and reproduce the system dynamics described by
the reaction coordinates exactly [24, 25]. However, ex-
cept a few notable exceptions [27–32], the exact Zwanzig
or Mori equation have rarely been used in practice for
non-trivial, i.e. non-linear, systems, for different reasons:
In the Mori framework, the force from the potential as
well as the memory friction are linear in the reaction co-
ordinate and their velocities, respectively, and therefore
all non-linearities are accounted for by the random force,
which thus becomes non-Gaussian and is difficult to pa-
rameterize; in the Zwanzig framework, the potential term
in the GLE is in general non-linear and corresponds to
the potential of mean force (PMF), which ensures the
correct equilibrium distribution of the reaction coordi-
nates [28], which is a desired property. On the other
hand, the memory friction is a general function of both
the reaction coordinates and their velocities, which poses
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severe problems when estimating such a function from
simulation or experimental data.

As a consequence, many previous works considered a
simplified form of the GLE, which in this paper we refer
to as the approximate GLE. It contains the non-linear
PMF and a memory friction that is linear in the veloc-
ity of the reaction coordinate [6, 33–40]. In principle,
this approximate GLE follows from the Zwanzig GLE,
assuming that the friction memory depends only linearly
on the past reaction coordinates and is independent of
the reaction-coordinate velocities. The validity of this
approximation can typically not be checked in a system-
atic manner. The applications of the approximate GLE
range from non-Markovian rate theory [41–43], over pro-
tein folding dynamics [17–20] to molecular diffusion and
conformational dynamics [6, 7, 37, 44]. Methods to de-
rive memory functions from trajectory data for non-linear
systems within the framework of the approximate GLE
have been introduced and it was demonstrated that the
resulting GLE correctly describes the multi-scale frac-
tal dynamics of protein folding [20] and the vibrational
spectra of molecules in non-linear bond-length and bond-
angle potentials [45]. Although widely used, the validity
of the approximate GLE in the presence of a non-linear
potential is subject to ongoing discussions [46, 47].

In this paper, we introduce a projection method that
is a hybrid of the Zwanzig and Mori projection schemes.
As an advantage over the Mori projection scheme, the re-
sulting GLE contains the force stemming from the gen-
erally non-linear PMF, which by itself guides the sys-
tem into the correct equilibrium distribution in the long-
time limit. As an advantage over the Zwanzig projection
scheme, the generally non-linear memory friction does
not depend on the velocity of the reaction coordinate
but only on the reaction coordinate itself, which signifi-
cantly simplifies the numerical estimation of the memory
function from trajectory data. We develop the neces-
sary framework to compute all parameters of the result-
ing GLE from trajectories of a reaction coordinate. Thus,
we present data-based methods i) to derive the non-linear
memory friction from simulation or experimental trajec-
tories, ii) to thereby examine the validity of the approxi-
mate GLE, and iii) to study the distribution and correla-
tion of the random force from trajectories. We also derive
a multidimensional GLE in terms of a general set of re-
action coordinates that are arbitrary functions of the po-
sitions of the underlying many-body system; this consti-
tutes a rigorous derivation of the equations of motion that
accurately describe the equilibrium and dynamic behav-
ior of coarse-grained systems. For the explicit example
of the dihedral-angle dynamics of a butane molecule in
water, obtained from atomistic molecular dynamics sim-
ulations, we demonstrate that non-linear memory friction
is present and that the random force exhibits significant
non-Gaussian corrections. Therefore, we find that even
for this simple molecular system, the approximate GLE,
which neglects non-linear memory friction and assumes
Gaussian random forces, does not correctly describe the

dynamics.
The paper is organized as follows: First, we introduce

the Hamiltonian of the many-body system, as well as our
notation, and we present important expressions for cor-
relation functions and conditional averages. We then re-
view the Mori and Zwanzig projection schemes and high-
light practical problems of the resulting GLEs. After this,
we introduce our hybrid projection scheme and derive
the GLE that features a non-linear PMF and non-linear
memory friction. In the subsequent section, we introduce
an algorithm to extract all parameters of our GLE from
trajectories. In the final section, we apply our formal-
ism on two exactly solvable model systems and on MD
trajectories for the dihedral angle dynamics of a butane
molecule in water.

II. HAMILTONIAN MODEL, NOTATION AND
USEFUL PROPERTIES

We denote the phase space of a system of N inter-
acting particles in three-dimensional space by Ω. One
specific microstate, i.e., a point in Ω, is denoted by
ω = (R,P) = (r1, r2, . . . , rN ,p1,p2, . . . ,pN ) which is a
6N vector of the Cartesian positions ri = (rxi ryi rzi ),
and the conjugate momenta pi = (pxi pyi pzi ) of all
i = 1, 2, . . . , N particles in the system. The Hamilto-
nian of the system is an invariant of motion and splits
into a kinetic and a potential part

H(ω) =

N∑

i=1

p2
i

2mi
+ V (R). (1)

The potential V (R) contains all interactions between the
particles and possible external potentials. The only as-
sumption on V is that it is a function of the positions R
only. The time evolution of a point ω in phase space is
determined by Hamilton’s equation of motion, which can
be written in the form

ω̇t = Lωt, (2)

where ωt is the location of the system in phase space at
time t and ω̇t denotes the corresponding velocity, given
the system was initially at ω0. For the sake of compact
notation, we denote time dependencies of phase space
coordinates by a subscript. In eq. (2), L is the Liouville
operator given by

L =

N∑

n=1

(
pn
mn
· ∇rn − (∇rnV (R)) · ∇pn

)
. (3)

All of the operators that we consider in this work, includ-
ing the Liouville operator L, act on the initial phase space
position ω0. From eq. (2), it follows that the system is
propagated in time by the operator etL, i.e., etLω0 = ωt.
We consider observables that are real-valued functions
of phase-space coordinates only and that depend on time
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implicitly via the time dependence of a trajectory moving
in phase space. For the sake of notational brevity, we also
denote the time dependency of observables by a subscript
too, i.e., At ≡ A(ωt) = A(ω0, t). Using the chain rule for
differentiation, it follows that the time evolution of an
observable At is also governed by the Liouville equation
[48]

Ȧt = LAt, (4)

where Ȧt denotes the time derivative of At. Thus, the
time propagation operator of an observable in the initial
state A(ω0) ≡ A0, is also given by etL. From this, it
follows that

A(ωt+t′) = e(t+t′)LA(ω0) = etLA(ωt′) = A(ωt′ , t). (5)

Eq. (5) describes how observables are propagated in time
by etL and will be used throughout our derivations. All
observables are elements of a Hilbert space, i.e., a vector
space equipped with an inner product. Let A and B
denote two system observables. For the inner product,
we choose

〈At, Bt′〉 ≡
∫

Ω

dω0 ρeq(ω0)A(ω0, t)B(ω0, t
′), (6)

where ρeq(ω0) = e−βH(ω0)/Z is the canonical Boltzmann
distribution with the inverse thermal energy β = 1/kBT
and the partition function Z =

∫
Ω

dω0 e
−βH(ω0). The

inner product in eq. (6) thus corresponds to an equilib-
rium time correlation function which establishes the link
to statistical mechanics. The average of a single observ-
able Bt is given by 〈Bt〉 ≡ 〈Bt, 1〉 and does not depend on
time. Because of the form of the Hamiltonian in eq. (1),
the Boltzmann distribution factorizes into a position and
a momentum-dependent part

ρeq(ω0) =
1

Z
e−βH(ω0) = ρkin(P0) ρpot(R0), (7)

where ρkin(P0) ∝
∏N
i=1 exp

(
−β p2

i,0/2mi

)
is a Gaussian

with zero mean. With respect to the inner product in
eq. (6), the Liouville operator, as defined in eq. (3), is
anti-self-adjoint [48]

〈LAt, Bt′〉 = −〈At, LBt′〉. (8)

A. Conditional Averages

In addition to time-correlation functions calculated
over the entire phase space Ω, as in eq. (6), we will
also use conditional time-correlation functions that re-
sult from averages over a hyper surface in phase space on
which an observable of choice at the initial time t = 0,
A0 = A(ω̂0), takes a constant value A(ωs). A conditional
correlation of two observables Bt = B(ωt) = B(ω0, t) and
Ct′ = C(ωt′) = C(ω0, t

′) is defined by [27, 28]

〈Bt, Ct′〉As =
〈δ [A(ω̂0)−A(ωs)] , B(ω̂0, t)C(ω̂0, t

′)〉
〈δ[A(ω̂0)−A(ωs)]〉

.

(9)

In eq. (9), the phase space variable with a hat, ω̂0, is in-
tegrated over. The phase space variable ωs is not. There-
fore, 〈Bt, Ct′〉As is a function of ωs, and the times t and
t′. The conditional average of a single observable Bt is
given by 〈Bt〉As ≡ 〈Bt, 1〉As .

Finally, we give a few relations which will be frequently
used later on. We repeat that a conditional average is a
function of phase space via the conditional function As =
A(ωs) in eq. (9). The time propagation of a conditional
average is thus given by

etL〈Bt′〉A0
= 〈Bt′〉At . (10)

The normalized probability that an observable At has the
value a is given by P(a) ≡ 〈δ(At − a)〉, from which the
potential of mean force (PMF) for an observable follows
as [33]

UPMF(a) ≡ −kBT lnP(a). (11)

Acting with the Liouville operator on a delta function
gives [30]

Lδ(At − a) = −Ȧt
d

da
δ(At − a). (12)

Using the definition in eq. (9) together with the relations
in eq. (8), eq. (12) and the PMF defined in eq. (11), we
derive in appendix A the important relation [30]

〈LBt′〉At =
d

dAt
〈Ȧ0, Bt′〉At − β〈Ȧ0, Bt′〉At

d

dAt
UPMF(At).

(13)

III. PROJECTION OPERATOR METHOD

We now derive the equation of motion for an arbi-
trary scalar observable At, which can of course also be
the position of a single particle [48]. The derivation for
a general multi-dimensional observable is given in ap-
pendix B. A projection P is a linear, idempotent opera-
tor, i.e., for arbitrary scalars c1, c2, it fulfills the proper-
ties P (c1At + c2Bt) = c1PAt + c2PBt and P 2 = P . The
operator Q = 1 − P projects onto the complementary
subspace with 1 being the identity operator. For brief-
ness, we will refer to the subspace onto which P projects
as the relevant subspace. The operators P and Q can be
used to decompose the Liouville equation Ät = LȦt for
the observable Ȧt as

Ät = etL(P +Q)LȦ0 = etLPLȦ0 + etLQLȦ0. (14)

To obtain an equation of motion for At from eq. (14), we
introduce the operator

Φ(t) = etLQ. (15)

Φ(t) propagates the part of an observable that lies in the
complementary subspace in time. For Φ(t) we find

d

dt
etLQ = etLLQ = etLQLQ+ etLPLQ, (16a)

Φ̇(t) = Φ(t)LQ+ etLPLQ. (16b)



4

Eq. (16b) is an inhomogenous differential equation of first
order. Using Φ(0) = Q, as follows from eq. (15), the
solution reads

Φ(t) = QetLQ +

∫ t

0

du euLPLQe(t−u)LQ. (17)

By using QetLQ = etQLQ and the substitution s = t− u
in eq. (17), we find

Φ(t) = etLQ = etQLQ+

∫ t

0

ds e(t−s)LPLesQLQ. (18)

Since the operator etQLQ exhibits a Q operator on the
left side when the exponential is expanded, the first term
on the r.h.s. of eq. (18) stays in the complementary sub-
space for all times. The second term describes the effect
of the complementary subspace on the relevant subspace.
By factoring out the operator Q on the r.h.s. of eq. (18),
one obtains the Dyson decomposition [49–51] of the prop-
agator etL

etL = etQL +

∫ t

0

ds e(t−s)LPLesQL. (19)

Replacing etLQ in eq. (14) by eq. (18) leads to the GLE
for At in terms of a general projection P [24, 25, 48]

Ät = etLPLȦ0 +

∫ t

0

ds e(t−s)LPLFR(s) + FR(t),

(20a)

FR(t) ≡ etQLQLȦ0 = QetLQLȦ0. (20b)

The function FR(t) stays in the complementary subspace
for all times and is an explicit function of the initial state
of the entire system, i.e., FR(t) = FR(ω0, t). Hence,
for large systems, it can be interpreted as a random or
stochastic function. For the sake of brevity, we will write
out the ω0 dependence of FR(t) only when it improves
clarity. The first term on the r.h.s. of eq. (20a) represents

the time evolution of the part of Ä0 = LȦ0 which lies in
the relevant subspace and reflects a deterministic force.
The second term on the r.h.s. of eq. (20a) is due to
the relevant part of LFR(ω0, t) and describes dissipative
effects. Clearly, the explicit form of eq. (20a) depends on
the specific form of the projection operator P . Before we
introduce our hybrid projection scheme, we will present
the GLE’s generated by the Mori projection PM and by
the Zwanzig projection PZ .

A. Mori Projection

The Mori projection applied on an observable At is
given by [25]

PMAt =
〈At, B0〉
〈B2

0〉
B0 +

〈At, Ḃ0〉
〈Ḃ2

0〉
Ḃ0, (21)

and uses the inner product defined in eq. (6). The ob-

servables one projects onto, i.e., B0 and Ḃ0, are referred
to as the projection functions. The projection in eq. (21)
maps any observable At onto the subspace of all func-
tions linear in the observables B0 and Ḃ0. In addition
to being linear and idempotent, PM is self-adjoint w.r.t.
to the inner product in eq. (6), i.e., for two arbitrary
observables At, Ct′ , the relation

〈PMAt, Ct′〉 = 〈At, PMCt′〉 (22)

holds. Thus, it is an orthogonal projection, since all func-
tions PMAt and QMCt′ are orthogonal, i.e.,

〈PMAt, QMCt′〉 = 0, (23)

as follows directly from eq. (22) and from the idempo-
tence of P . For P = PM and choosing the projection
functions to be Bt = At and Ḃt = Ȧt, i.e., projecting
onto the observable of interest itself, eq. (20a) takes the
form [25, 48]

Ät = −KAt −
∫ t

0

dsΓM (s)Ȧt−s + FR(ω0, t), (24a)

K =
〈Ȧ2

0〉
〈A2

0〉
, ΓM (t) =

〈FR(ω0, t), F
R(ω0, 0)〉

〈Ȧ2
0〉

, (24b)

where ΓM (s) is the memory friction kernel obtained from
the Mori projection. Eq. (24) is an exact decomposition
of the Liouville equation into three terms: the first term
is a generalized force due to a potential of quadratic form;
the second term accounts for linear friction and includes
the memory kernel ΓM (s), which is related via eq. (24b)
to the second moment of the random force FR(ω0, t), de-
fined in eq. (20b). The exact form of the memory func-
tion can only be computed for very simple models, for
realistic systems and practical applications it is infeasi-
ble to compute since the fluctuating term FR(ω0, t) is an
explicit function of the initial state of the entire system.
Instead, one typically models the function FR(t) as a
stochastic process with zero mean and a second moment
given in eq. (24b). Although information on higher-order
moments of FR(t) can be obtained from the Mori formal-
ism, FR(t) is typically assumed to be Gaussian. In gen-
eral, however, this assumption can not hold, since FR(t)
contains all non-linearities that At may exhibit. Thus,
imposing FR(t) to be a Gaussian variable becomes a bad
approximation for non-linear systems, which reflects a
fundamental short-coming of the Mori projection scheme
for practical applications.

B. Zwanzig Projection

Contrary to the Mori projection, the Zwanzig projec-
tion PZ of an observable At is non-linear in the projection
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functions B0 and Ḃ0 [24]

PZAt =
〈δ (B(ω̂0)−B(ω0)) δ(Ḃ(ω̂0)− Ḃ(ω0)), A(ω̂0, t)〉
〈δ (B(ω̂0)−B(ω0))〉〈δ(Ḃ(ω̂0)− Ḃ(ω0))〉

= 〈At〉B0,Ḃ0
, (25)

where we repeat that phase-space variables with a hat
inside inner products, i.e., ω̂0, are integrated over. The
Zwanzig projection thus is a conditional average as de-
fined in eq. (9) and is linear, idempotent and self-adjoint,
similar to the Mori projection. The resulting GLE from
the Zwanzig projection is best illustrated by choosing the
observable of interest to be the momentum of a single
particle, Ȧ0 = p0, and the projection functions as the
position and the linear momentum of the same particle,
i.e., B0 → r0, Ḃ0 → p0. With this, eq. (20a) becomes
[52]

ṗt = −∇rtUPMF(rt) + FR(ω0, t)

+

∫ t

0

ds

[(
∇ps
β
− ps
m

)]T

· ΓZ(t− s, rs,ps) (26a)

with a memory friction kernel defined by

βΓZij(t− s, rs,ps) = 〈FRi (0), FRj (t− s)〉rs,ps . (27)

Here, UPMF(r) = −kBT ln〈δ(r0 − r)〉 denotes the po-
tential of mean force (PMF) defined in eq. (11), which
creates in the GLE a force on the particle that tends to
establish the equilibrium positional distribution. This is
the main advantage over the Mori projection, since this
ensures the correct equilibrium behavior once we switch
to a stochastic description and replace the fluctuating
force FR(t) by a Gaussian stochastic variable with zero
mean [28]. The memory friction kernel ΓZ is a 3 × 3
matrix that, as a result of the conditional average, is a
function of particle position rs and particle momentum
ps. This is the main drawback of the GLE in eq. (26a),
since the position and momentum dependence is difficult
to deal with in applications. As a way out, one typ-
ically invokes the ad-hoc assumption that the memory
function is independent of position and momentum, i.e.,
ΓZ(t − s, rs,ps) ≈ Γapp(t − s). This assumption leads
to an approximate GLE that is amply used in literature
[7, 17–20, 33, 34, 36–43, 45] and reads

ṗt = −∇rtUPMF(rt)−
∫ t

0

dsΓapp(t− s) · ps
m

+ FR(t).

(28)

While for various applications the approximate GLE has
been demonstrated to reproduce the full system dynam-
ics very accurately [20, 45], it is difficult to check for
realistic systems whether the ad-hoc assumption ΓZ(t−
s, rs,ps) ≈ Γapp(t− s) is in fact valid. This is one moti-
vation for our hybrid projection scheme, since it allows to
derive all parameters of the exact GLE from trajectory
data and thereby to access the validity of the approxi-
mate GLE explicitly.

IV. HYBRID GLE

Our projection operator PH is a hybrid of the Mori
and Zwanzig projection operators and is written in the
form PH = Px + Pp. Here, we derive the GLE for a
scalar observable At = A(ωt), the derivation for a gen-
eral multi-dimensional observable is given in appendix B.
Using general projection functions B0 = B(R0), which is

a function of positions only, and Ḃ0 = Ḃ(R0,P0), which
in general is a function of positions and momenta, the
hybrid projection operator is given by

PHAt = PxAt + PpAt, (29a)

PxAt =
〈δ(B(R̂0)−B(R0)), A(ω̂0, t)〉
〈δ(B(R̂0)−B(R0))〉

= 〈At〉B0
,

(29b)

PpAt =
〈Ḃ0, At〉
〈Ḃ2

0〉
Ḃ0. (29c)

The projection Px is a conditional average, defined in
eq. (9), onto the observable B0 = B(R0), which is a
function of positions R only. As a result, the conditional
average is independent of momenta. In appendix C we
show that PxPp = PpPx = 0, from which follows that
P 2
H = PH , so that PH is idempotent in addition to being

linear and hence is a projection. In appendix D, we show
that PH is self-adjoint w.r.t the inner product defined in
eq. (6), i.e., it fulfills the property in eq. (22). There-
fore, PH is an orthogonal projection. Again, we denote
the projection onto the complementary subspace of PH
by QH = 1 − PH , where 1 is the identity operator. In
appendix E, we prove for the projections PH , QH of an
arbitrary observable At the important property

〈PHAt〉 = 〈At〉 ⇒ 〈QHAt〉 = 0. (30)

Hence, the equilibrium ensemble average of any observ-
able that lies completely in the complementary subspace
vanishes. As an important consequence, the random
force FR(t) defined in eq. (20a) lies completely in the
complementary subspace for all times and, therefore, has
a vanishing equilibrium average. This property is also ob-
tained for the Zwanzig projection, but not for the Mori
projection.

In the remainder, we choose the observable of interest
and the projection function to coincide, B(Rt) = A(Rt).
Therefore, the GLE we derive from our hybrid scheme de-
scribes observables that are functions of positions only,
such as the center of mass position, distances and an-
gles. As an important property, Our hybrid projection
PH projects the observable A0 and its velocity Ȧ0 onto
themselves, meaning that

PHA0 = A0, PHȦ0 = Ȧ0. (31)

With this choice for the projection function and the spe-
cific form of the projection PH in eq. (29), we find for the



6

first term on the r.h.s. of eq. (20a),

etLPHLȦ0 = etL
(
PxLȦ0 + PpLȦ0

)
, (32a)

PpLȦ0 ∝ 〈Ȧ0, LȦ0〉 = −〈LȦ0, Ȧ0〉 = 0, (32b)

PxLȦ0 = 〈LȦ0〉A0

=
d

dA0
〈Ȧ2

0〉A0
− β〈Ȧ2

0〉A0

d

dA0
UPMF(A0), (32c)

where we used the relation in eq. (13) to obtain eq. (32c).
Equation (32c) describes the force due to a potential. To
show this, we make use of the fact that the expectation
value 〈Ȧ2

0〉A0 is strictly positive. Thus, we can use it via

〈Ȧ2
0〉A0 ≡ kBT/M(A0), (33)

to define the generalized mass M(A0), which in general
is a function of A0. Using M(A0), eq. (32c) can be sim-
plified to

PxLȦ0 = − 1

M(A0)

dUeff(A0)

dA0
, (34)

where we defined the effective potential as

Ueff(A0) = UPMF(A0) + kBT lnM(A0). (35)

The effective potential combines the effects of the PMF
and the logarithmic effective mass.

The second term on the r.h.s. of eq. (20a) accounts for
memory friction, the integrand for our hybrid projection
reads e(t−s)L(Px + Pp)LF

R(s). The Pp projection leads
to a memory function of the same form as in the Mori
projection

PpLF
R(s) =

〈Ȧ0, LF
R(s)〉

〈Ȧ2
0〉

Ȧ0 = −〈F
R(0), FR(s)〉
〈Ȧ2

0〉
Ȧ0,

(36a)

e(t−s)LPpLF
R(s) = −Γp(s)Ȧt−s, (36b)

where we defined the memory kernel due to the Pp pro-
jection as

Γp(s) =
〈FR(0), FR(s)〉

〈Ȧ2
0〉

. (37)

The memory friction due to the Px projection can, using
eq. (10), be written as a conditional average

e(t−s)LPxLF
R(s) = 〈LFR(s)〉At−s ≡ Γx(At−s, s), (38)

which, using the relation in eq. (13), can be rewritten as

Γx(At, s) =
d

dAt
D(At, s)− βD(At, s)

d

dAt
UPMF(At).

(39)
Here, we introduced the conditional correlation function
between the time derivative of the observable at the ini-
tial time, Ȧ0, and the random force FR(s)

D(At, s) = 〈Ȧ0, F
R(s)〉At . (40)

With the definition of the hybrid projection operator
PH in eq. (29) and the results in eq. (34), eq. (36b) and
eq. (38), the general GLE in eq. (20a) takes the specific
form

Ät = − 1

M(At)

d

dAt
(UPMF(At) + kBT lnM(At))

−
∫ t

0

dsΓp(s)Ȧt−s +

∫ t

0

dsΓx(At−s, s) + FR(t), (41)

which is the exact GLE that follows from our hybrid pro-
jection scheme and constitutes a main result of our paper.
A few comments are in order: i) The PMF UPMF(At) ap-
pears explicitly in the equation of motion, similar to the
Zwanzig projection scheme. ii) An inhomogeneous effec-
tive mass M(At) gives rise to a drift term. If M(At) is

constant, i.e., if the variance of Ȧt is independent of At,
see eq. (33), this drift term vanishes. For an observable
At that is a linear combination of positions, it follows
directly that the effective mass is constant [47]. Even for
certain non-linear observables, such as distances in posi-
tion space, it can be shown that the generalized mass is
constant, as demonstrated in appendix F. On the other
hand, for angles, which are three-body terms, the effec-
tive mass will in general depend on At, as demonstrated
for the dihedral angle of butane in section VI C. iii) The
memory kernel Γp(s) is determined via the unconditional
average over the random-force correlations in eq. (37),
similarly to the Mori projection, and therefore only de-
pends on time. It thus describes the linear friction con-
tribution. iv) The memory friction function Γx(At−s, s)
is a general function of the observable At−s, it therefore
accounts for non-linear friction contributions. Accord-
ing to eq. (39), this contribution disappears if the con-
ditional correlation function between the random force
and the time derivative of the observable, D(At, s), as
defined in eq. (40), vanishes. This constitutes the exact
condition for which the approximate GLE in eq. (28)
is valid. v) The first moment of the random force van-
ishes, 〈FR(t)〉 = 0, as follows from the relation eq. (30).
The second moment is determined by the memory kernel
Γp(s) via eq. (37). Higher cumulants do not necessar-
ily vanish but are not expected to play a significant role
since non-linear effects are already accounted for by the
PMF UPMF(At). Indeed, in section VI C we demonstrate
for the explicit example of the butane dihedral angle that
the random-force distribution exhibits finite but moder-
ate non-Gaussian contributions.

The multi-dimensional generalization of eq. (41), i.e.,
the case in which the observable is a vector A(Rt) =
(A1(Rt), A2(Rt), . . . , An(Rt)), is derived in appendix B.

V. NUMERICAL SCHEME FOR EXTRACTING
RANDOM FORCES FROM TRAJECTORIES

In the absence of a potential and in the absence of
non-linear friction, Carof et al. presented iterative algo-
rithms to compute the random force trajectory and the



7

linear friction kernel from a trajectory of the reaction co-
ordinate [6, 35]. Their derivations explicitly use the Mori
projection, so the results are only valid for the Mori GLE
in eq. (24).

We now introduce a method to compute the ran-
dom force trajectory FR(ω0, t) and from that the mem-
ory kernel Γp(t) and the non-linear memory function
Γx(As, t − s) as defined by our GLE, eq. (41), from a
given trajectory of an arbitrary observable. For this, let
us consider the projected propagator etQHL based on our
hybrid projection scheme eq. (29). From the Dyson de-
composition in eq. (19), we obtain by rearranging

etQHL = etL −
∫ t

0

ds e(t−s)LPHLe
sQHL. (42)

Applying eq. (42) on the initial random force FR(ω0, 0)
and using eq. (20b) and the memory functions Γp(t) and
Γx(A, t) defined in eq. (36b) and eq. (38), respectively,
we find

FR(ω0, t) = etLFR(ω0, 0) +

∫ t

0

dsΓp(s)e(t−s)LȦ0

−
∫ t

0

ds e(t−s)LΓx(A0, s). (43)

Now, we consider eq. (42) at time t+ ∆t

e(t+∆t)QHL = etLe∆tL

−
∫ t+∆t

0

ds e(t−s)Le∆tLPHLe
sQHL. (44)

Buy splitting up the integral on the r.h.s. into two parts,

we obtain

e(t+∆t)QHL = etLe∆tL −
∫ t

0

ds e(t−s)Le∆tLPHLe
sQHL

−
∫ ∆t

0

ds e(∆t−s)LPHLe
(t+s)QHL, (45)

where we used the substitution s → s − t in the second
integral. Acting with the operator in eq. (45) on the
initial random force FR(ω0, 0) and using eq. (5) gives

FR(ω0, t+ ∆t) = etLFR(ω∆t, 0)

+

∫ t

0

dsΓp(s)e(t−s)LȦ∆t −
∫ t

0

ds e(t−s)LΓx(A∆t, s)

−
∫ ∆t

0

ds e(∆t−s)LPHLF
R(ω0, t+ s). (46)

Comparing eq. (46) with eq. (43), we see that the first
three terms on the r.h.s. of eq. (46) are equal to
FR(ω∆t, t). Hence, we find

FR(ω0, t+ ∆t) = FR(ω∆t, t) +

∫ ∆t

0

dsΓp(t+ s)Ȧ∆t−s

−
∫ ∆t

0

dsΓx(A∆t−s, t+ s). (47)

For given trajectories At, Ȧt and given random force
FR(ω∆t, t) as a function of the phase space configuration
ω∆t, eq. (47) gives the random force FR(ω0, t+ ∆t) one
time step ∆t later as a function of the phase space con-
figuration ω0 one time step ∆t before. To obtain an iter-
ative scheme for the random force, eq. (47) is discretized
in time and A-space. For this, we use the left rectangu-
lar rule to discretize the time integrals. The random fore
is discretized as FR(ωt′ , t) = FR(ωi∆t, j∆t) ≡ FR(i, j).
The A-space is divided into NA bins with width ∆A, the
bin intervals are labeled by Iα = [α∆A, (α+ 1)∆A] with
α = 1, 2, . . . , NA. The discretized versions of eqs. (37),
(39), (40) and (47) read

FR(i, j + 1) = FR(i+ 1, j) + ∆tΓp(j)Ȧi+1 −∆tΓx(Ai+1, j) +O(∆t2), (48a)

Γp(j) =

∑Ntraj−j−1
i=0 FR(i, 0)FR(i, j)

∑Ntraj−j−1
i=0 Ȧ2

i

, (48b)

Γx(Ai+1, j) =

[
D(α+ 1, j)−D(α− 1, j)

2∆A
− β D(α, j)

UPMF(α+ 1)− UPMF(α− 1)

2∆A

]

Ai+1∈Iα
, (48c)

D(α, j) =

∑
i≤Ntraj−j−1

Ai∈Iα
ȦiF

R(i, j)

∑
i≤Ntraj−j−1

Ai∈Iα
1

. (48d)

If the observable At has at time t = i∆t a value in the interval Iα, we write Ai ∈ Iα;
∑
Ai∈Iα denotes the
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sum over all times i for which Ai is in the interval Iα,
which is used to compute conditional averages in eq. (48).
Ntraj denotes the total length of the At trajectory used.
The sums run from i = 0 to Ntraj − j − 1, because
for given j, the iterative scheme has only determined
the random force at times up to Ntraj − j − 1, as fol-
lows from eq. (48a). The sums in the denominator ex-
tend over the same interval as in the numerator in order
to increase the numerical stability [6, 35]. The deriva-
tives in A-space in eq. (48c) are computed using cen-
tral differences. The iterative scheme in eq. (48) works
as follows: First, note from eq. (41) that FR(i, 0) =

Äi + (1/M(Ai))d/dAi [UPMF(Ai) + kBT lnM(Ai)], i.e.,
the random force at time t = 0 equals the acceleration
plus the force from the effective potential for all possi-
ble initial times i∆t for i = 0, 1, 2, . . . , Ntraj − 1. This,

together with Ȧi, can be obtained directly from a given
trajectory of the observable A. Then, FR(i, 0), Ai, and

Ȧi are inserted into eq. (48) to compute FR(i, 1) for
i = 0, 1, 2, . . . , Ntraj−2. FR(i, 1) is then used to compute
FR(i, 2) for i = 0, 1, 2, . . . , Ntraj − 3 and so forth. While
computing FR(i, j), the memory friction functions Γp(i)
and Γx(Ai, i − j) are computed simultaneously. If our
only goal is to compute the memory friction functions,
we can stop the computation of FR(i, j) as soon as the
memory functions have dropped to zero. As an exam-
ple, if the memory functions decay to zero after Nmem

time steps, we can abort the computation of the ran-
dom force at FR(i,Nmem). At that point, we generated
Ntraj − Nmem − 1 distinct random-force trajectories of
length Nmem each. Since the memory functions are com-
puted simultaneously, the generated random-force tra-
jectories only need to be stored if one is interested in
the random-force statistics, in which case one could ex-
tend the length of the random-force trajectories. In ap-
pendix G, we present an alternative discretization in time
for eq. (47) using the trapezoidal rule.

VI. APPLICATIONS

We test our numerical algorithm in eq. (48) on three
different systems: an exactly solvable harmonic Hamil-
tonian model which leads to a GLE without spatial de-
pendencies in the memory friction term, the non-linear
Hamiltonian version of the Zwanzig model [53], where
spatial dependencies in the memory friction term are
present, and finally, we discuss results obtained for the
dihedral angle dynamics of a butane molecule in water
from MD simulations.

A. Harmonic Hamiltonian Model

The exactly solvable harmonic model is defined by the
Hamiltonian

H(x, p, {qn, vn}) =
p2

2m
+

N∑

n=1

v2
n

2mn
+ U(x)

+

N∑

n=1

kn
2

(x− qn)2. (49)

The relevant coordinates are the one-dimensional po-
sition x and momentum p which are coupled to the
auxiliary particle positions qn and momenta vn. If we
choose the potential U(x) to be a harmonic potential,
i.e., U(x) = kx2/2, we can use our hybrid projection
formalism to exactly derive the GLE. For this we com-
pute the random force FR(t) defined in eq. (20b) by an
operator expansion to all orders

FR(t) = etQHLQHLp0 =

∞∑

n

tn

n!
(QHL)nQHLp0, (50)

as shown in appendix H. Once FR(t) is computed, the
memory functions Γp(t) and Γx(x, t) are obtained from
eq. (37) and eq. (39), respectively. In appendix I we show
how to alternatively obtain a GLE without projection,
namely by solving the equations of motion for the qn
variables and inserting the result back into the equation
of motion for x, which works for general potential U(x).
The GLE’s obtained from the projection formalism and
the exact solution agree with one another and take the
form of the approximate GLE in eq. (28),

ṗt = −U ′PMF(xt)−
∫ t

0

dsΓp(t− s)ps + FR(t). (51)

The memory friction kernel is given by

Γp(t) =
1

m

N∑

n=1

kn cos(µnt) (52)

with µn =
√
kn/mn. We note that the spatially depen-

dent memory friction term Γx(x, t) vanishes, as shown in
appendix H and I.

In order to test our numerical scheme in eq. (48), we
need to generate trajectories of xt. To do this in a numer-
ically efficient fashion, we identify eq. (52) as the Fourier
series of an even function with Fourier coefficients kn.
In the limit of N → ∞ and for a continuous frequency
dependency, i.e., kn → k(µ)dµ/2π, we can choose the
exponential-oscillating memory kernel

Γp(t) =
K

m
e
− |t|2τΓ

(
cos

(
ν

2τΓ
t

)
+

1

ν
sin

(
ν

2τΓ
|t|
))

.

(53)
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FIG. 1. Test of the numerical extraction scheme in eq. (48) using the harmonic Hamiltonian model defined in eq. (49). In A,
we compare the input potential U(x) = kx2/2 (broken line) with the numerically obtained effective potential Ueff(x) defined in
eq. (35) (solid blue line). In B, we confirm that the numerical extraction of the random force leads to the expected Gaussian

distribution with zero mean and standard deviation
√
〈p2

0〉Γp(0). The shaded area in blue highlights the numerical error. In
C, we check that the analytical memory function Γp(t) given in eq. (53) and its running integral are accurately reproduced by
the numerical results from the extraction scheme.
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FIG. 2. Conditional velocity-random force correlation func-
tion D(x, t) defined in eq. (40) for the harmonic model defined
in eq. (49).

This maps the Hamiltonian system in eq. (49) onto the
stochastic system of two linearly coupled Langevin equa-
tions

mẍt = −kxt −K(xt − yt), (54a)

my ÿt = −K(yt − xt)− γẏt +
√

2kBTγη(t), (54b)

〈η(t)〉 = 0, 〈η(t), η(0)〉 = δ(t), (54c)

where η(t) in eq. (54) is a white noise variable, as derived
in appendix J. The parameters in eq. (53) and eq. (54)
are related by τΓ = my/γ and ν2 = 4myK/γ

2 − 1. The
scalar y variable in eq. (54) is the stochastic represen-
tation of the Hamiltonian environment produced by the
qn variables in eq. (49). Using eq. (54), we numerically
generate trajectories xt for a system with thermal en-
ergy kBT = 2.5 kJ/mol, which corresponds to T = 300 K
[54]. The other parameters are chosen to be m = 50 u,
my = 2 u, K = 30 kJ/mol/nm, k = 7.5 kJ/mol/nm,

γ = 10 u/ps and a time step of dt = 0.001 ps. The simu-
lation time is 100 ns. The results shown in fig. 1B, fig. 1C
and fig. 2 are obtained by averaging over the results of
100 independent trajectories.

In fig. 1 we compare analytical results with results de-
rived from the numerically generated trajectories using
the scheme in eq. (48), where the x-space is discretized
using NA = 200 bins of equal length. In fig. 1A we
compare the input potential U(x) = kx2/2 (broken line)
with the numerically obtained effective potential Ueff(x)
defined in eq. (35) (solid blue line), both potentials are
shifted so that they are zero at x = 0. The agreement is
perfect, which in particular means that the effective mass
M(x) defined in eq. 33 is a constant, as expected. In
fig. 1B we compare the analytical and the numerically de-
termined random force distribution, which demonstrates
that indeed non-Gaussian contributions are absent. In
fig. 1C we compare the analytic memory kernel Γp(t)
in eq. (53) with the one extracted from the simula-
tion trajectory and again obtain perfect agreement. This
all shows that the numerical extraction scheme works
perfectly on fluctuating trajectories. In fig. 2 we show
the numerical result for the function D(x, t) defined by
eq. (38) for different times. As predicted in appendix H,
D(x, t) vanishes for all times.

B. The Non-Linear Zwanzig Model

As the second exactly solvable model we consider the
Hamiltonian version of the non-linear Zwanzig model
[53], for which non-linear friction effects are present and
therefore the approximate GLE in eq. (28) is not valid
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FIG. 3. Test of the numerical algorithm in eq. (48) for the non-linear Zwanzig model defined in eq. (55) using a double-well
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blue highlights the numerical error. In C, we show the numerically extracted memory function Γp(t) and its running integral.
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anymore. This model is defined by the Hamiltonian

H(x, p, {qn, vn}) =
p2

2m
+

N∑

n=1

v2
n

2mn
+ U(x)

+

N∑

n=1

kn
2

(α(x)− qn)2. (55)

In eq. (55), a generally non-linear function α(x) deter-
mines the coupling between the relevant variable x and
the auxiliary variables qn. Note that for α(x) = x, we
obtain back the harmonic model defined in eq. (49). The
GLE that follows from the Hamiltonian system in eq. (55)
can not be calculated in closed form using our hybrid
projection scheme for general α(x), we therefore cannot
derive the exact form of Γp(t). On the other hand, by
solving the equations of motion for the qn variables and

inserting the result into the equation for x, one finds a
GLE of the form

mẍt = −U ′(xt)−
∫ t

0

dsΓ [t− s, xt, xs] ẋs + FRZ (t, xt),

(56a)

with a (for α(x) 6= x) non-linear memory friction function

Γ(t− s, xt, xs) = α′(xt)α
′(xs)

N∑

n=1

kn cos(µn(t− s)).

(56b)

Actually, the form of the memory kernel Γ(t−s, xt, xs) in
eq. (56b), and in particular its dependence on the trajec-
tory xt, is not compatible with the form of the memory
function Γx(xt−s, s) or, equivalently, Γx(xs, t− s), in eq.
(41). In fact, in appendix K we demonstrate that the
GLEs given in eq. (56b) and in eq. (41) are equiva-
lent in the sense that they produce, for identical initial
conditions, identical trajectories xt. This of course is ex-
pected, since they follow via exact derivations from the
same Hamiltonian. This finding is similar to the fact that
the Mori and Zwanzig GLEs are, in the absence of ap-
proximations, also equivalent and shows that even GLEs
with identical PMFs and different friction memory and
random force terms can be equivalent. For α(x) 6= x, it
is therefore interesting to extract the non-linear friction
term Γx(xt−s, s), as defined by our GLE in eq. (56b),
from simulation trajectories of xt.

Similar to our approach to obtain eq. (54) for N →∞,
we exploit the structure of eq. (56b), which is equiva-
lent to a Fourier decomposition in the time domain, to
map the Hamiltonian system in eq. (55) onto a system
of non-linearly coupled Langevin equations given by (see
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(blue line) shows pronounced deviations from a Gaussian with vanishing mean and standard deviation of
√
〈Ȧ2

0〉Γp(0) (broken

line). The shaded area in blue highlights the numerical error and is of the order of the line width.

appendix J)

mẍt = −U ′(xt)−Kα′(xt)(α(xt)− yt), (57a)

my ÿt = −K(yt − α(xt))− γẏt +
√

2kBTγη(t), (57b)

〈η(t)〉 = 0, 〈η(t), η(0)〉 = δ(t). (57c)

For U(x) = kx2/2 and α(x) = x we recover eq. (54).
Using eq. (57), we perform simulations for the param-
eter set kBT = 2.5kJ/mol, m = 50 u, my = 2 u, K =
30 kJ/mol/nm, γ = 10 u/ps to generate 100 trajectories
xt of 100 ns length each. For the potential we choose
a non-linear double-well potential U(x) = U0(x2 − 1)2

with U0 = 3kBT , as shown in fig. 3A, and for the non-
linear coupling potential we choose a quadratic function
α(x) = α0x

2/2 with α0 = 4 nm−1. The resulting trajec-
tories are then used to compute via eq. (48) all parame-
ters of the hybrid GLE in eq. (41), which are presented
in fig. 3. In this calculation, the x-space is discretized
using NA = 200 bins of equal length.

The effective mass M(At) for an observable At that is
a linear function of atomic positions is constant [47], as
follows directly from the fact that the velocity distribu-

tion function factorizes for Hamiltonians of the form in
eq. (1). Indeed, in fig. 3A the numerically obtained effec-
tive potential Ueff(x) defined in eq. (35) (solid blue line)
is shown to agree perfectly with the input potential U(x)
(broken line) when both potentials are shifted so that
they are zero at x = 0. In fig. 3B we compare the ran-
dom force distribution obtained numerically via eq. (48)
from the simulated trajectory (blue line) with a Gaus-

sian with vanishing mean and a variance of
√
〈ẋ2

0〉Γp(0),
as predicted by eq. (37), and obtain very good agree-
ment; for the comparison, the value Γp(0) is numerically
extracted from the simulated trajectory. Note that eq.
(37) does not imply that the distribution of the random
force is a pure Gaussian, but the data in fig. 3B demon-
strate that non-Gaussian contributions are either absent
or very small.

In fig. 3C we show the memory kernel Γp(t) extracted
from the simulation trajectory, the result looks qual-
itatively similar to the result in fig. 1C for the har-
monic model. In fig. 4, we show the correlation func-
tion D(x, t) defined in eq. (40) for a few different fixed
times. Note that D(x, 0) vanishes at time 0, which is
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FIG. 6. Non-linear friction function Γx(A, t) as a function of
time for different values of the reaction coordinate. A Results
for the non-linear Zwanzig model in eq. (55), here the reaction
coordinate is given by the position of the relevant particle
coordinate x. B Results for the rescaled dihedral angle of
butane from MD simulations, here the reaction coordinate is
given by the rescaled dihedral angle A. The dihedral angle
data is more noisy compared to the non-linear Zwanzig model
system because of the reduced simulation time. The vertical
gray lines indicate the time after which the corresponding
linear friction kernel Γp stays below 1% of its initial value.
The dashed lines are obtained from a smoothing procedure,
see appendix L.

true for general A0 = A(R0), since the product Ȧ0F
R(0)

is odd in the momenta and thus the conditional average
〈Ȧ0, F

R(0)〉A = D(A, 0) vanishes. For finite time, D(x, t)
in fig. 4 rises before dropping back to zero in the long-
time limit. The time after which D(x, t) decays to zero
is about 1 ps and thus comparable to the memory time
of Γp(t) in fig. 3C. Note that a finite correlation function
D(x, t) will via eq. (39) give rise to a non-linear fric-
tion memory function Γx(x, t). The non-linear Zwanzig
model defined by the Hamiltonian eq. (55) is thus rep-
resented by a constant effective mass term M(A) but a
non-vanishing non-linear friction memory.

C. Dihedral Angle Dynamics of Butane from MD
Simulations

To test our algorithm for an observable that is a non-
linear function of atomic positions, we consider the di-
hedral angle dynamics of a butane molecule in water
as obtained from MD simulations. The dihedral angle
φ of butane is a conceptually simple yet relevant ob-
servable and provides a simple scenario to study con-

formational transitions in polymers and proteins that is
both theoretically [55] and experimentally [56] accessi-
ble. In fig. 5, we present results for the rescaled angle
A = φ/(φmax − φmin), where the maximal and minimal
observed angles in the studied trajectory are φmax = 155◦

and φmin = −157◦. In fig. 5A, the effective potential
Ueff(A) defined in eq. (35) (blue solid line) shows small
but significant deviations from the PMF UPMF(A) (bro-
ken line), which is explained by the dependence of the
effective mass M(A) on the dihedral angle, as shown in
fig. 5D. In fig. 5C, the deviations between Γp(t), as de-
fined within the exact GLE eq. (41) and determined
numerically from the MD trajectory via eq. (48), and
Γapp(t), defined within the approximate GLE in eq. (28)
and obtained via a Volterra scheme [20, 37], are pro-
nounced and already suggest that non-linear friction ef-
fects, not captured by Γapp(t), are present. A closer look
at the results in fig. 5C reveals that Γp(t) and Γapp(t)
have similar decay times, but Γapp(t) oscillates in time
while Γp(t) does not. These deviations between Γp(t)
and Γapp(t) must be due to non-linear memory effects,
as confirmed in fig. 5E, where the correlation function
D(A, t) defined in eq. (40) is shown for a few different
fixed times. Thus, a non-linear memory friction contri-
bution Γx(A, t), defined in eq. (39) and shown in fig. 5B,
is present in the GLE. As mentioned before, from the
definition of D(A, t) in eq. (40) it follows that D(A, t)
vanishes at time t = 0, i.e., D(A, 0) = 0, from which it
is easy to see via eq. (39) that Γx(A, 0) vanishes, too,
as indeed confirmed by the data in fig. 5B and E. For
finite time, both D(A, t) and Γx(A, t) rise in amplitude
before decaying to zero after a time corresponding to the
memory time of Γp(t) in fig. 5C, which is about 1 ps.

The rise and decay of non-linear friction effects is pre-
sented in fig. 6, where we show Γx(A, t) as a function
of time for different fixed values of A for the non-linear
Zwanzig model in fig. 6A and for the butane dihedral an-
gle dynamics in fig. 6B. The vertical gray lines indicate
the time after which the linear friction kernel Γp(t) for
each system stays below 1% of its initial value Γp(0). In
addition to the raw numerical data (solid lines), we show
smoothed curves which are obtained by fits to Legendre
polynomials (broken lines), as described in appendix L.

VII. SUMMARY AND DISCUSSION

By using a hybrid projection scheme that combines lin-
ear Mori projection on the reaction coordinate velocities
and non-linear conditional Zwanzig projection on the re-
action coordinates themselves, we derive a GLE that con-
tains the non-linear potential of mean force and a non-
linear memory friction contribution that is a function of
the reaction coordinate At but not of its velocity Ȧt.
The complete memory friction then splits into two parts.
One part is linear in the reaction coordinate velocity and
reflects linear friction proportional to a memory kernel
Γp(t). The memory kernel Γp(t) is related to the fluctuat-
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ing force FR(t), defined in eq. (20b), by a relation that re-
sembles a fluctuation-dissipation theorem, eq. (37). The
non-linear memory friction function Γx(At−s, s) accounts
for non-linear dependencies of friction on At−s and is con-
nected to the fluctuating force FR(t) by a conditional
correlation function, given in eq. (40). Thus, when mod-
eling FR(t) as a stochastic variable, it has to fulfill both
relations, eq. (37) and eq. (40). The approximate GLE
in eq. (28) is obtained from our GLE in eq. (41) only
when the memory friction function Γx(At−s, s) vanishes,
which thus establishes a firm criterion for the validity of
the approximate GLE.

We also introduce a numerical scheme to compute all
parameters of our GLE from a given trajectory At and
apply it on numerically determined trajectories for a
harmonic and a non-linear exactly solvable many-body
particle system, here we show that the numerical re-
sults agree with the analytical predictions. We also ap-
ply our numerical scheme on a dihedral angle trajec-
tory of butane in water, obtained from atomistic MD
simulations. We find that the effective mass of the di-
hedral angle depends on the value of the dihedral an-
gle and that the non-linear memory friction contribu-
tion is finite and non-negligible. In order to estimate
the importance of the non-linear memory friction, we
have to compare the linear memory kernel Γp(t) and
the non-linear memory function Γx(A, t). For this we
multiply the linear-friction memory kernel at time zero,
Γp(0), by the root mean square velocity and obtain

Γp(0)
√
〈Ȧ2〉 = 171 ps−3, which can be directly com-

pared with the maximal value of the non-linear mem-
ory friction function Γx(Amax, tmax) = 97 ps−3, which is
obtained for Amax = 0.26 and tmax = 0.043 ps. The
value of Γx(Amax, tmax) thus turns out to be roughly half

the value of Γp(0)
√
〈Ȧ2〉, which means that non-linear

memory friction effects are not negligible. Interestingly,
our results demonstrate that non-linear friction memory
leads to oscillations in the memory function Γapp(t) of
the approximate GLE, which are not present in Γp(t), as
shown in fig. 5C. Finally, we show that the random force
in the GLE from our hybrid projection scheme exhibits
small but detectable deviations from a Gaussian distribu-
tion. All these results lead us to conclude that the GLE
derived from our hybrid projection scheme is practically
useful and allows to detect and model non-linear friction
effects that have been neglected in previous applications
of the approximate GLE with linear memory friction.

VIII. METHODS AND MATERIALS

MD simulations are performed using the Gromacs MD
package (version 2020-Modified) [54]. For the MD simu-
lation of the butane molecule, we use the GROMOS53A6
force field [57] with the TIP4P/2005 rigid water model
[58]. The simulation box has side lengths of 3.35 nm
and contains 1250 water molecules. We constrain the

butane bond lengths and angles using the SHAKE al-
gorithm [59]. For long-range electrostatic interactions,
we use the particle-mesh Ewald [60], with a cut-off of 1
nm. The simulation time step is 1 fs, and the total sim-
ulation time is 100 ns. All simulations are performed in
the NVT ensemble with a temperature of 300 K, con-
trolled with a velocity rescaling thermostat [61]. Input
files of the MD simulations are available upon request.
The Langevin simulations are performed using the Leap
Frog algorithm for numerical integration. Our Python
codes for extracting the GLE parameters and running
Langevin simulations are also available upon request.
When computing non-linear memory contributions, the
time resolution of the trajectory and the number of bins
in reaction-coordinate space have to be chosen with care.
In our analysis of Langevin and MD simulations, we use
200 bins to discretize the reaction-coordinate space. For
the butane dihedral angle system in fig. 5, we exclude
boundary regions in the trajectory for |A| > 0.4 in the
computation of conditional correlations, that means we
exclude observable values with a small fraction of real-
izations along the trajectory, since these would lead to
significant noise in the extracted memory functions and
thus destabilize the numerical extraction. Such noise ef-
fects are clearly visible in the effective mass profile in
fig. 5F.
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Appendix A: Derivation of Eq. (13)

In the following, we derive eq. (13) by using the defi-
nition of conditional correlation functions in eq. (9), the
relations in eq. (8), eq. (12) and the definition of the PMF
in eq. (11). We start with

〈LBt′〉At =
〈δ(A(ω̂0)−A(ωt)), LB(ω̂0, t

′)〉
〈δ(A(ω̂0)−A(ωt))〉

, (A1a)

=

∫ ∞

−∞
da δ(A(ωt)− a)

〈δ(A0 − a), LBt′〉
〈δ(A0 − a)〉

, (A1b)

where the average is over variables with a hat and con-
sequently, the Liouville operator L only acts on variables
with a hat. We consider the rightmost term in eq. (A1b)

〈δ(A0 − a), LBt′〉
〈δ(A0 − a)〉

= −〈Lδ(A0 − a), Bt′〉
〈δ(A0 − a)〉

(A1c)

=
〈Ȧ0

d
da [δ(A0 − a)] , Bt′〉
〈δ(A0 − a)〉

, (A1d)
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where we used eq. (8) and eq. (12). We next pull out the
derivative w.r.t. a in eq. (A1d) from the inner product
and use the product rule of differentiation, which gives

〈δ(A0 − a), LBt′〉
〈δ(A0 − a)〉

=
d

da

〈δ(A0 − a)Ȧ0, Bt′〉
〈δ(A0 − a)〉

+
〈δ(A0 − a)Ȧ0, Bt′〉
〈δ(A0 − a)〉

d

da
ln〈δ(A0 − a)〉. (A1e)

Finally, we use the definition of the PMF in eq. (11) and
insert eq. (A1e) into eq. (A1b) to obtain eq. (13).

Appendix B: Multi-Dimensional Hybrid GLE

Here, we derive eq. (41) for a multidimensional ob-
servable that is a function of particle positions only. We
denote the set of observables using the vector A(Rt) =
(A1(Rt), A2(Rt), . . . , An(Rt)). As before, all observables
implicitly depend on time via the positions Rt. We de-
note components as Ak(Rt) ≡ Ak,t and Ak(R0) ≡ Ak,0.
In the multi-dimensional case, the projection operator
reads for general vectorial projection function B0

PHAm,t = (Pp + Px)Am,t,

=

n∑

k=1

〈Am,t, Ḃk,0〉
〈Ḃ2

k,0〉
Ḃk,0 + 〈Am,t〉B0 . (B1)

Choosing B0 = A0, as in the main text, the projection
in eq. (B1) leads to the following potential term

etLPxLȦ0 = kBT
(
∇TA ·M−T (At)

)T

−M−1(At) · ∇AUPMF(At). (B2)

where we introduced the inverse generalized mass matrix

M−1
kl (A) = β〈Ȧk,0, Ȧl,0〉A. (B3)

The computation of the memory function proceeds simi-
larly as in the main text and the multi-dimensional GLE
reads

Ät = kBT
(
∇TA ·M−T (At)

)T −M−1(At) · ∇AUPMF(At)

−
∫ t

0

dsΓp(t− s) · Ȧs +

∫ t

0

dsΓx(At−s, s) + FR(t),

(B4)

where the following relations hold

〈FRk (t)〉 = 0, 〈FRk (t), FRl (0)〉 = 〈Ȧ2
0〉Γ

p
kl(t),

〈FRk (t), Al,0〉 = 0, 〈FRk (t), Ȧl,0〉 = 0, (B5)

for all k, l = 1, 2, . . . , n. The k-th component of the
vectorial non linear memory memory friction function
Γx(A, s) is given by

Γxk(A, s) = PxLF
R
k (s)

= [∇A ·Dk(A, s)− βDk(A, s) · ∇AUPMF(A)] , (B6a)

Dk(A, s) = 〈Ȧ0, F
R
k (s)〉A. (B6b)

Appendix C: Idempotency of the Hybrid Projection
Operator

The linear operator PH in eq. (29) is a projection, if it
is idempotent, i.e., P 2

H = (Pp + Px)2 = PH . Clearly, we
have P 2

p = Pp and P 2
x = Px. Therefore, one has to check

that PpPxAt = PxPpAt = 0 for an arbitrary observable
At = A(ωt). This is true because of the following: we
project onto observables of positions only, i.e., onto B0 =
B(R0). Thus, the velocity Ḃ0 is linearly proportional to
the particle momenta

Ḃ0 = LB0 =

N∑

n=1

pn
mn
· ∇rnB0. (C1)

The operator Pp maps any function onto the subspace

of functions that are linear in the observable velocity Ḃ0,
which is linear in the particle momenta pn. From this we
see that

PxPpAt ∝ PxḂ0 = 0, (C2)

since the operator Px involves an integral over the parti-
cle momenta but adds no momentum dependence.

Px maps any observable onto a function which depends
on particle positions only. Since Ḃ0 is linearly propor-
tional to the particle momenta, Pp applied on a function
that depends on particle positions only gives zero. There-
fore, it follows that

PpPxAt = 0. (C3)

Appendix D: Self-Adjointedness and Orthogonality
of Hybrid Projection

Here, we prove that the projection PH in eq. (29) is
self-addjoint w.r.t. the inner product in eq. (6), i.e., for
any observables At = A(ωt) and Ct′ = C(ωt′), we have
〈At, PHCt′〉 = 〈PHAt, Ct′〉. For this, we consider the
projection operators Pp and Px separately.

Using the definition in eq. (29c), we find

〈At, PpCt′〉 =

〈
At,
〈Ḃ0, Ct′〉
〈Ḃ2

0〉
Ḃ0

〉
(D1a)

= 〈At, Ḃ0〉
〈Ḃ0, Ct′〉
〈Ḃ2

0〉
(D1b)

=

〈
〈At, Ḃ0〉
〈Ḃ2

0〉
Ḃ0, Ct′

〉
(D1c)

= 〈PpAt, Ct′〉. (D1d)
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Using the definition in eq. (29b) and eq. (9), we find

〈At, PxCt′〉 (D2a)

=

〈
A(ω′t),

∫
da δ(B(R′0)− a)

〈δ(B(R̂0)− a), C(ω̂t′)〉
P(a)

〉

=

∫
da 〈A(ω′t), δ(B(R′0)− a)〉 〈δ(B(R̂0)− a), C(ω̂t′)〉

P(a)

=

〈∫
da
〈A(ω′t), δ(B(R′0)− a)〉

P(a)
δ(B(R̂0)− a), C(ω̂t′)

〉

= 〈PxAt, Ct′〉. (D2b)

This means that the hybrid projection PH in eq. (29) is
self-adjoint and thus is an orthogonal projection, i.e.,

〈PHAt, QHCt′〉 = 0, (D3)

for arbitrary observables At and Ct′ .

Appendix E: Average of Complementary
Observables Vanishes

In the following, we prove eq. (30), i.e., we show that
the equilibrium average of any observable that lies in the
complementary subspace at all times vanishes. For this,
we must show for an arbitrary observable A(ωt) = At
that 〈PHAt〉 = 〈At〉 holds. First, from the definition of
Pp in eq. (29), it follows that

〈PpAt〉 ∝ 〈Ḃ0〉 = 0, (E1)

since our projection function B0 = B(R0) is a function of

positions only and therefore, its velocity Ḃ0 = LB0 is lin-
ear in the momenta (see eq. (C1)). For the Px projection
operator we find

〈PxAt〉 = 〈〈At〉B0〉 = 〈A(t)〉. (E2a)

From this, it immediately follows that 〈PHAt〉 = 〈A(t)〉
and thus all equilibrium averages in the complementary
subspace vanish, i.e., 〈QHAt〉 = 〈(1 − PH)At〉 = 0. In
particular, the equilibrium average of the random force
vanishes at all times, i.e., 〈F (t)〉 = 〈QHF (t)〉 = 0.

Appendix F: Generalized Mass of Distance
Observables

We demonstrate that the generalized mass M(A) de-
fined in eq. (33) is constant for an observable that corre-
sponds to the scalar distance between particle positions,
which is a non-linear function of particle positions. In
this case, the force term dUeff/dA in eq. (41) reduces to
dUPMF/dA. As an example, we consider the hydrogen-
bond distance between a nitrogen atom (donor) with ini-
tial position rN0 and an oxygen atom (acceptor) with ini-
tial position rO0 that are located four residues apart on

the backbone of a polypeptide. The observable is thus
given by

A0 = A(R0) =
√

(rN0 − rO0 )2. (F1)

Applying the Liouville operator on eq. (F1) gives the ve-
locity of the observable

LA0 = Ȧ0 =

(
pN0
mN
− pO0
mO

)
· (rN0 − rO0 )

A0
. (F2)

As can be seen in eq. (F2), the velocity Ȧ0 is linear in
the momenta pN0 and pO0 . Computing the effective mass
according to the definition in eq. (33), i.e.,

〈Ȧ2
0〉A0 =

kBT

M(A0)
=
〈δ[A(R̂0)−A0], Ȧ(R̂0)2〉
〈δ[A(R̂0)−A0]〉

, (F3)

requires the computation of the numerator on the r.h.s.
of eq. (F3). Given an Hamiltonian of the form in eq. (1),
factorization of the phase-space integral leads to

〈δ[A(R̂0)−A0], Ȧ(R̂0)2〉

= kBT

(
1

mN
+

1

mO

)
〈δ[A(R̂0)−A0]〉. (F4)

Inserting eq. (F4) for the numerator on the r.h.s. of
eq. (F3), we find

M(A0) = M =
mN mO

mN +mO
, (F5)

which is the reduced mass of the nitrogen-oxygen dis-
tance coordinate.

A similar derivation can also be done for a linear
combination of distances. For example, consider the
mean hydrogen-bond distance between NR donor ni-
trogen atoms and NR acceptor oxygen atoms that are
located four residues apart along the backbone of a
polypeptide. We define the observable as

A0 =
1

NR

NR∑

n=1

An,0, (F6)

with An,0 being the initial value of the n-th distance.
Eq. (F3) becomes

〈Ȧ2
0〉A0 =

〈(
1

NR

NR∑

n=1

Ȧn,0

)2〉

A0

=
1

N2
R

NR∑

n=1

〈Ȧ2
n,0〉A0 .

(F7)

As before, terms consisting of mixed momentum factors
average to zero, only diagonal terms contribute. In anal-
ogy to eq. (F5), the effective mass is constant also for
this case.
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Appendix G: Alternative Discretization of Eq. (47)

Here, we present an alternative discretization of
eq. (47). Similar to eq. (48), the equation derived here
still has an overall error of the order O(∆t2). The advan-
tage over eq. (48) is that we use the trapezoidal rule for
the integration involving the memory kernel Γp(t); note
that we keep the rectangular rule for the integration of
the memory function Γx(A, t). We discretize eq. (47) in
the following way

FR(i, j + 1) = FR(i+ 1, j)

+
∆t

2
Γp(j)Ȧi+1 +

∆t

2
Γp(j + 1)Ȧi

−∆tΓx(Ai+1, j) +O(∆t2). (G1)

Note that now, the r.h.s. of eq. (G1) depends on Γp(j+1).
To compute Γp(j+1), we need the yet unknown FR(i, j+
1). In the absence of the memory function Γx(A, t), it
has been demonstrated how one can work around this
problem [6, 36, 46]. The trick is to multiply eq. (G1) by
FR(i, 0) and average according to eq. (6). This gives

〈FR(i, j + 1), FR(i, 0)〉 = 〈FR(i+ 1, j), FR(i, 0)〉

+
∆t

2
Γp(j)〈Ȧi+1, F

R(i, 0)〉+
∆t

2
Γp(j + 1)〈Ȧi, FR(i, 0)〉

−∆t 〈Γx(Ai+1, j), F
R(i, 0)〉. (G2)

By identifying the l.h.s. of eq. (G2) with 〈Ȧ2
0〉Γp(j + 1)

and solving for Γp(j + 1), we find

Γp(j + 1) =
ξ(j) + ∆t

2 Γp(j) ζ −∆t η(j)

1− ∆t
2 χ

, (G3a)

ξ(j) =
〈FR(i+ 1, j), FR(i, 0)〉

〈Ȧ2
0〉

, (G3b)

ζ =
〈Ȧi+1, F

R(i, 0)〉
〈Ȧ2

0〉
, (G3c)

η(j) =
〈Γx(Ai+1, j), F

R(i, 0)〉
〈Ȧ2

0〉
, (G3d)

χ =
〈Ȧi, FR(i, 0)〉
〈Ȧ2

0〉
. (G3e)

The function η(j) in eq. (G3d) appears due to the pres-
ence of the non-linear friction Γx(A, t) and is computed
using

η(j) =

∫ ∞

−∞
da
〈δ (Ai+1 − a) , FR(i, 0)〉

〈Ȧ2
0〉

Γx(a, j), (G4a)

〈δ (Ai+1 − a) , FR(i, 0)〉 =

∑

0≤i≤Ntraj−1
Ai+1∈Ia

FR(i, 0)

∑

0≤i≤Ntraj−1
Ai+1∈Ia

1
. (G4b)

The alternative discretization is then found by replacing
Γp(j + 1) on the r.h.s. of eq. (G1) by eq. (G2).

Appendix H: Solving the Harmonic Hamiltonian
Model Using Hybrid Projection

We derive the GLE for the harmonic Hamiltonian
model eq. (49) using our hybrid projection in eq. (29).
The Liouville operator defined in eq. (3) reads

L = Lx + Lq, (H1a)

Lx =
p

m

∂

∂x
−

(
kx+

N∑

n=1

kn(x− qn)

)
∂

∂p
, (H1b)

Lq =

N∑

n=1

(
vn
mn

∂

∂qn
− kn(qn − x)

∂

∂vn

)
(H1c)

and acts on the initial values x0, p0, qn,0, vn,0. The hybrid
projection is given by

PH = Px + Pp, (H2a)

PpAt =
〈p0, At〉
〈p2

0〉
p0, PxAt = 〈At〉x0

, (H2b)

with the conditional average in eq. (H2b) being defined
in eq. (9). Using eq. (H1) and eq. (H2), it follows that

−U ′PMF(xt) = etLPHLp0 = −kxt, (H3)

as confirmed in fig. 1A. To compute the random force
FR(t), we use the operator expansion

FR(t) = etQHLQHLp0 =

∞∑

j=0

tj

j!
(QHL)jQHLp0, (H4)

and repeatedly apply the operator QHL on QHLp0 =∑N
n=1 kn(qn,0 − x0). We find

FR(t) =

N∑

n=1

[(
µnt−

(µnt)
3

3!
+

(µnt)
5

5!
+ . . .

)
µnvn,0

+ kn

(
1− (µnt)

2

2!
+

(µnt)
4

4!
+ . . .

)
(qn,0 − x0)

]
, (H5)

with µn =
√
kn/mn. Identifying the sums in the paren-

thesis as the series expansions of sine and cosine, respec-
tively, FR(t) follows as

FR(t) =

N∑

n=1

(µn sin(µnt)vn,0 + kn cos(µnt)(qn,0 − x0)) .

(H6)

The result in eq. (H6) equals the result given in eq. (I4b)
for the same model, obtained by setting α(x) = x, which
follows by explicit solution of the equations of motion.
Using FR(t) in eq. (H6) to compute D(x, t), one obtains

D(x, t) =
〈p0

m
,FR(t)

〉
x

= 0. (H7)
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Hence, the memory function Γx(x, t) in eq. (38) vanishes.
The memory function Γp(t) follows as

Γp(t) =
〈FR(t), FR(0)〉

〈p2
0〉

=
1

m

N∑

n=1

kn cos(µnt). (H8)

The friction integral in the GLE reads

∫ t

0

dsΓp(s)pt−s =

∫ t

0

dsΓ(s)ẋt−s, (H9)

with Γ(s) =
∑N
n=1 kn cos(µns) being the result in

eq. (I4c) obtained by explicit solution of the equations
of motion for the special case α(x) = x.

Appendix I: Derivation of a GLE for the Non-Linear
Zwanzig Model

We demonstrate how to derive a GLE from the Hamil-
tonian version of the non-linear Zwanzig model defined
in eq. (55) [53]. In the main text, we perform numerical
simulations of the resulting GLE to produce trajecto-
ries on which we can test our numerical extraction tech-
niques. The coordinates of the relevant particle are given
by (x, p), a non-linear function α(x) enters the coupling
to the auxiliary variables {qn, vn}. This represents a sym-
metry breaking in the interactions, since the interactions
do not depend on the distance |qn − x|, but rather on
the explicit value of x. The harmonic model defined by
eq. (49) follows from the non-linear model eq. (55) in
the special case α(x) = x, so the solution of the model
in eq. (49) is obtained by setting α(x) = x in the final
results obtained in this section. As we will show here,
a non-linear α(x) induces non-linear memory friction in
the corresponding GLE.

The equations of motion for the Hamiltonian in eq. (55)
read

mẍt = −U ′(xt)−
∑

n

knα
′(xt) (α(xt)− qn,t) , (I1a)

mnq̈n,t = −kn (qn,t − α(xt)) , (I1b)

where the prime superscript denotes a derivative w.r.t.
the argument, i.e., U ′(x) = dU/dx. Eq. (I1b) can be
solved to give

qn,t = qn,0 cos(µnt) +
vn,0
mnµn

sin(µnt)

+ µn

∫ t

0

ds sin(µn(t− s))α[xs], (I2)

where µ2
n = kn/mn. By partial integration, the solution

in eq. (I2) can be written in the form

qn,t = (qn,0 − α(x0)) cos(µnt) +
vn,0
mnµn

sin(µnt)

−
∫ t

0

ds cos(µn(t− s))α′(xs)ẋs + α(xt). (I3)

Inserting eq. (I3) into eq. (I1a) leads to a GLE for x, i.e.,

mẍt = −U ′(xt) + FRZ (t, xt)

−
∫ t

0

dsΓ [t− s, xt, xs] ẋs, (I4a)

FRZ (t, xt) =
∑

n

α′(xt)

(
µnvn,0 sin(µnt)

+ kn (qn,0 − α(x0)) cos(µnt)

)
, (I4b)

with the memory function

Γ(t− s, xt, xs) =
∑

n

knα
′(xt)α

′(xs) cos(µn(t− s)).

(I4c)

Appendix J: Markovian Embedding of the
Non-Linear Zwanzig Hamiltonian Model

Here, we show how to map the non-linear Zwanzig
Hamiltonian system defined in eq. (55) onto a Markovian
stochastic system of equations, for which numerical simu-
lations can be efficiently performed. The results obtained
here include the harmonic model in eq. (49) by setting
α(x) = x. Consider the memory function in eq. (I4c). It

contains a sum over cosines, i.e.,
∑N
n=1 kn cos(µnt). For

N →∞, this represents a Fourier series of an even, peri-
odic function in time with Fourier coefficients kn. In the
continuous limit, i.e., kn → k(µ)dµ/2π, this defines an
arbitrary even function f(t)

∞∑

n=1

kn cos(µnt)→
∫ ∞

−∞

dµ

2π
k(µ) cos(µt) = f(t) (J1)

= K e−|t|/τ
(

cos

(
2π

T
t

)
+ c sin

(
2π

T
|t|
))

(J2)

with an exponential decay time τ and parameters T , K, c
to be determined below. The function k(µ) follows from
the Fourier transform as

k(µ) =

∫ ∞

−∞
dt cos (µt) f(t). (J3)

The memory function in eq. (I4c) becomes

Γ(t− s, xt, xs) = α′(xt)α
′(xs)K e−|t−s|/τ

×
(

cos

(
2π

T
(t− s)

)
+ c sin

(
2π

T
|t− s|

))
.

(J4)

Now, consider the random force in eq. (I4b). ForN →∞,
it can be rewritten as

FRZ (t, xt) = α′(xt)F̃
R
Z ({qn,0, vn,0}, t). (J5)

In the stochastic interpretation of the GLE, it is suffi-
cient to know the distribution of the initial conditions
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of the complementary variables. For the Hamiltonian in
eq. (55), the distribution is given by the Boltzmann dis-
tribution. Thus, the initial values qn,0, vn,0 are Gaussian
distributed random variables with

〈(qn,0 − α(x0))〉 = 0, 〈vn,0〉 = 0, (J6a)

〈α(x0), vn,0〉 = 0, 〈qn,0, vn,0〉 = 0, (J6b)

〈vn,0, vm,0〉 = δn,m
kBT

mn
, (J6c)

〈(qn,0 − α(x0)), (qm,0 − α(x0))〉 = δn,m
kBT

kn
. (J6d)

From this, it follows that F̃RZ is a stationary Gaussian
process fulfilling

〈F̃RZ (t)〉 = 0, (J7a)

〈F̃RZ (t), F̃RZ (0)〉 = kBT
∑

n

kn cos(µnt)→ kBTf(t),

(J7b)

The equal sign in eq. (J7b) follows from the explicit form
given in eq. (I4b) and from the relation in eq. (J6d),
where the average is a Boltzmann average over the initial
conditions {qn,0, vn,0}. A Markovian stochastic system
which leads to a memory function of the form given in
eq. (J4) reads

mẍt = −U ′(xt)− kα′(xt) (α(xt)− yt) , (J8a)

my ÿt = −k (yt − α(xt))− γẏt +
√

2kBTγη(t). (J8b)

with 〈η(t)〉 = 0, 〈η(t), η(s)〉 = δ(t− s) being white noise.
The relations between the parameters in eq. (J8) and the
parameters in eq. (J1) are given by

ν2 = 4τ2
Γµ

2 − 1, (J9a)

T =
4π

ν
τΓ, τ = 2τΓ, K = k, (J9b)

τΓ =
my

γ
, µ2 =

k

my
c =

1

ν
. (J9c)

By solving eq. (J8b) and inserting the result into
eq. (J8a), we find the random force

F̃R(t) = ke−|t|/2τ
(

cos

(
2π

T
t

)
+

1

ν
sin

(
2π

T
t

))

× (y0 − α(x0)) +
2

γν
e−|t|/2τ sin

(
2π

T
t

)

× py,0 +
√

2kBTγ

∫ t

0

ds 2e−(t−s)/2τ τ

ν

× sin

(
2π

T
(t− s)

)
η(s), (J10)

where the variable y0 has the same distribution as qn,0,
and py,0 = my ẏ0 has the same distribution as vn,0. The

equivalence of F̃R in eq. (J5) and F̃RZ in eq. (J10) follows
from the fact that their first and second moments are
the same. Using this, we have mapped the non-linear
Hamiltonian Zwanzig model defined by eq. (55) onto the
set of coupled Markovian stochastic equations in eq. (J8),
which can be used to perform numerical simulations.

Appendix K: Transformation Between Different
GLEs

When applied to the non-linear Hamiltonian Zwanzig
model defined by eq. (55), our hybrid projection operator
PH = Px + Pp, given in eq. (H2), leads to a GLE of the
form

ṗt = −U ′(xt) + FR(t)

−
∫ t

0

dsΓp(t− s)ps

+

∫ t

0

dsΓx(t− s, xs), (K1a)

Γp(t) =
〈FR(t), FR(0)〉

〈p2
0〉

, (K1b)

D(s, xt−s) =
〈p0

m
,FR(s)

〉
xt−s

, (K1c)

where Γx(xt−s, s) follows from eq. (39). The two GLE’s
in eq. (I4a) and eq. (K1a) obviously have a different
mathematical structure, but they describe the exact
same dynamics. To see this, consider the random force
FRZ (t, xt) in eq. (I4b)

FRZ (t, xt) = α′(xt)F̃
R
Z (t), (K2a)

F̃RZ (t) =
∑

n

(
kn (qn,0 − α(x0)) cos(µnt)

+ µnvn,0 sin(µnt)

)
. (K2b)

The time derivative of FRZ (t, xt) is given by

ḞRZ (t, xt) = F̃RZ (t)
d

dt
α′(xt) + α′(xt)

d

dt
F̃RZ (t). (K3)

Since the function α′(xt) depends on time only via xt, its
time derivative can be written using the Liouville opera-
tor, i.e., d

dtα
′(xt) = Lα′(xt). The same is not true for the

function F̃RZ (t). By applying the Liouville operator, we

find LF̃RZ (t) = ˙̃FRZ (t)− p0

mα
′(x0)

∑
n kn cos(µnt). Hence,

we can write

ḞRZ (t, xt) = L
[
α′(xt)F̃

R
Z (t)

]

+
∑

n

knα
′(xt)α

′(x0)
p0

m
cos(µnt) (K4a)

= LFRZ (t, xt)

+
∑

n

knα
′(xt)α

′(x0)ẋ0 cos(µnt). (K4b)
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Eq. (K4b) is a linear, inhomogeneous first-order differen-
tial equation for FRZ (t, xt). The general solution reads

FRZ (t, xt) = etLFRZ (0, x0)

+

∫ t

0

ds e(t−s)L
∑

n

knα
′(xs)α

′(x0)

× ẋ0 cos(µn(s)) (K5a)

= etLFRZ (0, x0)

+

∫ t

0

dsΓ [t− s, xt, xs, ] ẋs, (K5b)

where we used Γ from eq. (I4c). By using the Dyson
identity from eq. (19) for etL, we can write eq. (K5b) in
terms of the general projection operators P and Q as

FRZ (t, xt) = etQLFRZ (0, x0) +

∫ t

0

dsΓ [t− s, xt, xs] ẋs

+

∫ t

0

ds e(t−s)LPLesQLFRZ (0, x0). (K6)

From eq. (K2), it follows that

FRZ (0, x0) = α′(x0)
∑

n

kn (qn,0 − α(x0)) (K7a)

= QHLp0 = FR(0), (K7b)

where we used the definition of the random force FR(t)
in eq. (20b) and the equation of motion for the com-
plementary variables. This means that FRZ (0, x0) coin-
cides with the random force FR(t) = etQLQLp0 at time
t = 0. Therefore, by inserting the result in eq. (K6) into
eq. (I4a), we obtain eq. (K1). Thus we have proven that
the GLE obtained by explicitly solving the non-harmonic
Hamiltonian Zwanzig model, eq. (I4a), is equivalent to
the GLE obtained from our hybrid projection scheme,
eq. (K1).

Appendix L: Global Data Smoothing

In the main text, we use Legendre polynomial expan-
sions to smooth the data for the dihedral angle dynamics.
For D(A, t), the Legendre expansion reads

D(A, t) =
∑

n

cn(t)hn(A), (L1)

where hn denotes the Legendre polynomial of order n.
The coefficients cn(t) follow from

cn(t) =
2n+ 1

2

∫ 1

−1

dAD(A, t)hn(A). (L2)

In this way, the data is globally smoothed while spatial
symmetries can be conserved. For example, if a function
is even in A, only even orders of Legendre polynomials
are used in the smoothing procedure.
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