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Our ability to grasp and understand complex phenomena is essentially based on recognizing

structures and relating these to each other. For example, any meteorological description of

a weather condition and explanation of its evolution recurs to meteorological structures,

such as convection and circulation structures, cloud fields and rain fronts. All of these

are spatiotemporal structures, defined by time-dependent patterns in the underlying fields.

Typically, such a structure is defined by a verbal description that corresponds to the more or

less uniform, often somewhat vague mental images of the experts.

However, a precise, formal definition of the structures or, more generally, concepts is often

desirable, e.g., to enable automated data analysis or the development of phenomenological

models. Here, we present a systematic approach and an interactive tool to obtain formal

definitions of spatiotemporal structures. The tool enables experts to evaluate and compare

different structure definitions on the basis of data sets with time-dependent fields that

contain the respective structure. Since structure definitions are typically parameterized, an

essential part is to identify parameter ranges that lead to desired structures in all time steps.

In addition, it is important to allow a quantitative assessment of the resulting structures

simultaneously. We demonstrate the use of the tool by applying it to two meteorological

examples: finding structure definitions for vortex cores and center lines of temporarily

evolving tropical cyclones.

Ideally, structure definitions should be objective and applicable to as many data sets as

possible. However, finding such definitions, e.g., for the common atmospheric structures

in meteorology, can only be a long-term goal. The proposed procedure, together with the

presented tool, is just a first systematic approach aiming at facilitating this long and arduous

way.

Keywords: Visual data analysis; Coherent and persistent structures; Atmospheric vortices;

Tropical storms;
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I. INTRODUCTION

In order to understand a phenomenon hidden in data, we need to recognize structures and

relationships between them. Structures are characterized by defining qualities and features. In this

work we deal with structures for which a mental image does exist but no concise mathematical

definition. For the sake of clarity, we distinguish between the semantics of a concept, i.e., anything

that defines and characterizes it, and the linguistic term used to denote it.

In all areas of daily life as well as in all sciences, concepts are needed for thinking and commu-

nicating. This can be explained very nicely using the example of meteorology: The description of a

weather situation and its development over time makes use of technical terms such as “pressure

systems” (high or low), “fronts” (warm, cold or rain), “clouds”, “precipitation”, “jet streams” and so

on. Of course, in technical language, much more differentiating terms are used. For example, there

is a hierarchical classification system for clouds that distinguishes more than 30 types of clouds

by classifying them according to altitude and vertical shape, instability or convection activity, and

specific structural details (WMO).

One could counter that in strictly rational science such mental constructs are dispensable; for

example, even a very complex meteorological state is completely described by a set of fields, which

is governed by a set of equations. One could claim that given these fields in appropriate resolution,

there is nothing more to say. What this counterargument overlooks is that humans need both

categorizing and characterizing concepts of structures, and associated linguistic terms, in order to

think and talk about the phenomena as well as to formulate hypotheses and theories about them.

Therefore, such mental constructs are fundamental building blocks of human knowledge and are

used practically everywhere.

It is an essential part of science to sharpen concepts, to differentiate them more precisely, and

to categorize them more meaningfully. Yet, for most concepts, only verbal descriptions exist

that are not very precise. Just consider questions like these: “Are we in the fourth wave of a

pandemic?”, or “Is there a vortex in a given flow and what is its spatial extent?”, or questions

about the presence of complex, multifaceted conditions, for example in medicine. With regards to

the first question, although everyone has a clear idea of a ‘wave’, different mathematical criteria

are conceivable that capture the mental construct. Also, everyone has a vivid idea of what a flow

vortex is; nevertheless, even decades of research have not led to a full agreement on what is the best

criterion for determining the presence and extent of a flow vortex.
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However, if data science (including data visualization) wants to answer such questions on base

of data, precise and formalized definitions of such concepts are required. Especially in light of

the fact that the increasing amount of data requires more and more automatic processing, which

also calls for machine-understandable definitions of concepts. Precise mathematical definitions

of concepts are also necessary for the creation of phenomenological models, i.e., mathematical

models that contain such concepts as building blocks.

The question is: How can one build a bridge from the world of mental concepts, which are

at best described verbally, to the world of precise, formal definitions? To do this, one first needs

a deep and ideally also mathematically oriented insight into the problem domain. This often

enables experts to suggest a first guess for a formal definition. But, given a suggestion for such a

definition, how do you assess its quality and how do you improve it? Here, visualization helps: it

allows the comparison of structures that result from data and experimentally formulated formal

definitions with the mental image of that structure. This enables an iterative improvement of formal

structure definitions, considering also the mental images of different people or even an entire expert

community (Hege, Hotz, and Kasten, 2011).

The problem can also be considered from the point of view of uncertainty: The lack of a precise

definition results in a non-negligible “uncertainty in definition”. The uncertainty arises because it

is not clear a priori which structure indicators are the best, how the structure definition should be

defined mathematically, and which parameter values in definitions are preferable. The definitional

uncertainty can be visualized, e.g., by displaying ensembles of structures that result from different

variants of structure definitions and different data sets. And it can be reduced by an iterative,

visually supported process.

The long-term goal (which might take decades to achieve) is, of course, to find definitions that

are as “objective” as possible and that work for as many data sets as possible. We give advice

on which principles should be observed in this regard. An essential role plays the selection of

suitable indicator quantities that show the presence of a structure. Another problem is that only in

exceptional cases definitions can be found that are parameter-free. So, many definitions contain

threshold values. How should these be determined?

In this paper, we describe a first attempt to a systematic approach for finding such definitions in

a visually supported, interactive way. Here, we focus on spatiotemporal structures. The presented

tool makes it possible to compare various definitions, indicator quantities, and parameter ranges

and thus allows us to achieve suitable definitions in an iterative process. It can be used both for the
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quick, pragmatic finding of a suitable definition for given data sets, as well as for the long-term

goal of finding a definition that is as universal as possible. We demonstrate the use of the tool by

applying it to two meteorological examples: finding structure definitions for the vortex cores and

centerlines, respectively, of temporarily evolving tropical cyclones.

Overall the paper presents a systematic approach and workflow as well as an interactive tool that

enables expert users

• to find formal definitions of spatiotemporal structures, so that their properties correspond for

all time steps as closely as possible to those of the mental image;

• to evaluate the suitability of different variables that indicate the presence of a structure;

• to narrow down the intervals of the parameters in a structure definition such that the structure

properties match the mental image, and the variance of the resulting structures becomes as

small as possible.

The proposed tool utilizes parallel coordinates with time as one variable to simultaneously depict

parameter intervals and structure attributes for selected time intervals. In contrast to previous

approaches for interactive structure extraction (e.g. using brushing & linking), it directly supports

the evaluation of all influencing factors, namely structure definitions (including computational

methods for structure extraction), type of indicator quantities, and parameter intervals.

The paper is organized as follows: In Sect. II, we present related work. Sect. III focuses on

describing the overall systematic approach as well as the prototype tool we implemented. In

Sect. IV, we apply our approach and tool to two use cases from meteorology. Finally, Sect. V

concludes the paper with a discussion of our findings and potential future work.

II. RELATED WORK

Concepts are the building blocks of thoughts and are necessary for the representation of knowl-

edge as well as for mental processes like categorization, inference, decision making, learning and

communication. This view has become widely accepted in cognitive science and philosophy of

science, see e.g., (Gärdenfors, 2004; Zenker and Gärdenfors, 2015). Here we perceive concepts as

mental constructs (as opposed to abstract objects or skills) and we use a naive notion of concepts

based on concrete examples, thus avoiding complex philosophical questions (see, e.g., (Margolis

and Laurence, 2021) for an introduction on this).
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The extraction of structures from data has a long history in data visualization. The structures

are often mathematical features. Most prominent examples are mathematical features of spatial

or spatiotemporal fields, like extremal structures, level sets, critical points and skeletons of stable

manifolds. Therefore, the term “feature extraction” has become established in visualization. When

dealing with application-oriented structures that carry semantics, such as jet streams, precipitation

fields or tropical storms, it is better to speak of “structures” or “concepts”. These are characterized

by certain properties, which may include also mathematical features. This terminology corresponds

to that of many other sciences, but differs from that traditionally used in visualization, where

application-oriented structures are also often called “features”.

For a survey on the substantial history of structure extraction and visualization, see reviews on

geometric-topological objects (McLoughlin et al., 2010; Pobitzer et al., 2011), on coherent set

detection (Hadjighasem et al., 2017), on feature tracking in meteorological contexts (Clark et al.,

2014; Cai and Dumais Jr, 2015), and on the related problem of image segmentation (El-Baz, Jiang,

and Suri, 2017). Most approaches in data visualization refer to structures defined by single scalar

or vector fields, e.g., level-sets or ridges of Lyaponov exponents or, more application-related, the

centerlines of vortices or jet streams (Kern et al., 2018).

Data visualization often focuses on isolating application-defined regions of interest in spatiotem-

poral data. In a multidimensional “attribute space”, defined by the value ranges of given and

derived data, one searches interactively for subregions containing the value combinations of interest.

Related procedures have been developed for image segmentation and volume rendering, where

transfer functions map data characteristics to optical qualities, like color and opacity, to highlight

regions of interest (Kniss, Kindlmann, and Hansen, 2001; Ljung et al., 2016).

An essential prerequisite for finding suitable structure definitions with visual control is interac-

tivity. Here we can build on the research thread that began with the work by Doleisch, Gasser, and

Hauser (2003). In this, the definition of subregions in multivariate range space is greatly facilitated

by multiple coordinated views (histograms, scatter plots, parallel coordinates, or function graphs),

representing different variables side by side. When data points are interactively selected (“brushed”)

in one view, the associated data items are immediately highlighted in all linked views. This “link-

ing” is particularly powerful when attribute views are combined with 3D views, highlighting the

corresponding preimages in the domain. This technique can also be extended to time-dependent

data (Doleisch et al., 2004, 2006) and has been applied to simulation data of Hurricane Isabel

(Doleisch, Muigg, and Hauser, 2004). While in this work all structures are defined by ranges of
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multivariate quantities, it is not concerned with finding more general and also parameter-dependent

definitions of structures.

A tool for interactive exploration of sets of parameter-dependent 3D geometries has been

presented in (Beham et al., 2014). However, this work also did not aim at obtaining structural

definitions. To the best of the authors’ knowledge, there is no tool to date that supports the explicit

goal of obtaining mathematical definitions of mentally and/or verbally given structures by using

visual data analysis techniques.

Visual comparison of similar, but different spatial data has been more deeply explored in the

context of ensemble visualization, see, e.g., (Kolesár et al., 2017) and references therein.

The difficulty of finding a generally accepted, precise definition of concepts that is as objective

as possible (i.e., independent of the person observing) is best illustrated by the example of flow

vortices. Data visualization, together with flow research, has contributed a great deal to this. There

is not enough space here, to sketch the nearly half-century-long research thread; instead we refer to

the current state of research (Theisel et al., 2021) and the papers cited therein. In recent work (von

Lindheim et al., 2021), a formal approach to the definition and persistence of meteorological

structures has been taken. This is exactly the kind of research we want to support and facilitate

with the proposed procedure and interactive tool.

III. IDENTIFYING STRUCTURE DEFINITIONS

In the following, we first describe the proposed general procedure to identify structure definitions

from mental images. Following this, we will present an interactive tool that we then apply to

concrete examples in Sect. IV.

A. General procedure

The general structure of the proposed systematic approach is shown in Fig. 1. It represents

an iterative workflow that allows us to identify suitable structure definitions that could be further

narrowed as more data comes in.

The workflow starts with a verbal characterization, or a mental image, of the structure that we

want to define more precisely in mathematical terms.

Based on the verbal characterization and our knowledge of mathematical structures, we can
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input fields (e.g. vorticity, pressure) or 
derived quantities (Q, Wk, etc.)


e.g., length, size, 
smoothness, shape


e.g., point, line, area, 
volume, tree, graph


Input dataVerbal

characterization

What is the type of the 
structure?


Geometrical and 
topological attributes

Mathematical

characterization

Analyze parameter dependence, 
narrow down parameter intervals

Specify computational procedure and 
select candidates for the indicator 

quantities


Structure definition

(2)

Parameter 
and attribute 

space 
exploration

Structures

visualization

(1)

(3)

Figure 1. Schematic representation of proposed procedure. The numbers at the arrows refer to the three

different types of iterative refinement that might be needed to arrive at a final structure definition; please see

the text for details.

describe the structure using mathematical terms, e.g., the structure is a point, a line, an area, etc.

The next step is then to identify attributes, in our case, geometric and topological attributes, that are

well suited to describe the structure in a more or less complete and accurate manner. In particular,

we are interested in attributes that allow us to distinguish structures matching our mental image

from structures that do not. This part of the workflow is shown on the left side of Fig. 1.

The second input to our workflow is some kind of data, e.g., fields, that contain or describe the

structure for which we want to find a definition. Sometimes, one does not work directly on the

original input data, e.g., the velocity field, but on derived data, like Q or Ω (Sect. IV). For the sake

of generality, let us call all data that indicate the presence of the structure in question, be it the
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original or derived data, indicator quantities. The set of such indicator quantities can be limited by

using application-based higher-level principles, e.g., invariances or non-dimensionality. In order to

extract the structure from one or more indicator quantities, computational procedures are needed.

Usually, such a procedure depends on parameters that will influence the appearance of the extracted

structure. An algorithmic structure definition thus consists of a computational procedure, one or

more indicator quantities, and suitable computational parameters (or parameter ranges).

In a final step, the algorithmic definition given by the computational procedure is translated back

into a precise mathematical definition. For example, applying the Marching Cube algorithm to an

indicator field is equivalent to applying a threshold operator to a scalar field defined by a formula.

After this back translation, a mathematical structure definition results, consisting of mathematical

expressions and, if these are parameterized, suitable parameter values or ranges.

Given potential computational procedures as well as indicator quantities for the extraction of

the structure of interest, the task of finding a structure definition reduces to sampling the whole

space of possibilities including computational procedures, indicator quantities, and computational

parameters, and comparing the outcomes with our mental image. Visually assessing all sampled

structures would be very time-consuming. Therefore, we want to reduce the overall number of

samples to the ones that are most likely to match our mental image. Here, the structure attributes

come into play. They are computed for each of the sampled structures and can subsequently be

used for filtering.

This is done in the next step of our workflow, which analyzes the parameter dependence of the

structure. The essential part here is the interactive selection of parameter ranges based on selection

in the structure attribute space. As result, potential computational procedures, indicator quantities,

and computational parameters are identified that lead to structures matching the selected structure

attributes. Finally, the thus extracted structures are then visualized and visually assessed. Hence,

our visual perception plays the final role of quality control. Since we have narrowed down the

parameter space by brushing in the attribute space, visual assessment is reduced to a small set of

structures. This visual assessment (also see Fig. 1), however, might reveal the necessity that (1) the

parameter selection needs to be refined, (2) other attributes that better describe our mental image

are needed, or that (3) other computational procedures and/or indicator quantities are required. If

only a refinement of the parameter selection is necessary, after some iterations we might arrive at

a structure definition. Otherwise, new attribute descriptors and/or computational procedures will

have to be implemented.
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(1) (2)
(4)

(3)

(5)

(6)

Color Transparency

Figure 2. Parallel coordinates window and its main areas: (1) time axis; (2) parameter space; (3) attribute

space; (4) color/transparency settings; (5) quantitative representation of selected parameter intervals; and

(6) buttons for interactive exploration of selected structures.

In the next section, we will describe the interactive tool we use in our application to explore the

attribute and parameter spaces.

B. Interactive tool

We utilize the parallel coordinates (PC) visualization for parameter and attribute space ex-

ploration. This technique allows interactive investigation of multidimensional data. It has been

successfully used in many application. Most closely related is probably the work by Beham et al.

(2014) for exploring the parameter space of a geometry generator.

The PC plot is shown in Fig. 2. A single line in the plot corresponds to one structure sampled

from the parameter space of one time step, accompanied with a set of computed attributes. Hence,

in our application, the high-dimensional space that is visualized using parallel coordinates consists

of the time dimension, the dimensions of the parameter space, and the dimensions of the attribute

space. The plot’s first axis represents time (Fig. 2 (1)). Brushing on the time axis could be done to

restrict the considered time range to a subrange. However, since in our applications we are interested

in parameters that are suitable for the whole time range, we do not use this functionality. The second

axis represents the parameter space (Fig. 2 (2)). Note that we could potentially have more than one

parameter axis depending on the dimensionality of the parameter space. The parameter axes display

only the result of interactive brushing in the attribute space (Fig. 2 (3)). Brushing is done on each

attribute axis separately. The selections from the individual brushing on all the attribute axes are

concatenated to obtain one final selection. Note that for the concatenation of the selection, currently

only the logical AND operation is supported. As result of the brushing, the lines corresponding to
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Tropical depression	 ≤62 km/h


Tropical storm		 63-118 km/h

Category 1	 119-153 km/h


Category 2	 154-177 km/h

Category 3	 178-208 km/h


Category 4	 209-251 km/h

(300°, 10°)

(335°, 35°)

02 Sep 
00:00 

04 Sep 
00:00 

07 Sep 
00:00 

07 Sep 
23:00 

Figure 3. Track map of Hurricane Florence 2018 (basemap and track taken from (WikiProject Tropical

cyclones/Tracks, 2018)). The points show the location of the storm at 6-hour intervals. The color represents

the storm’s maximum sustained wind speeds according to the Saffir–Simpson scale (see legend). The orange

box defines the area of interest.

the selected attribute values are colored, by default in a light blue. Transparency and color of the

lines can be adapted (Fig. 2 (4)). The selected lines are analyzed w.r.t. their parameter values and

parameter intervals are identified that are valid over the whole selected time range. These ranges

are shown on the right sidebar (Fig. 2 (5)) and the corresponding lines are highlighted in dark blue

to distinguish them from the rest of the selected lines. Lines that are not selected are shown in gray.

The PC plot is connected with a direct visualization that allows simultaneous investigation of the

selected structures (Fig. 2 (6)).

IV. APPLICATIONS

In this section, we give a clear and concise example of our approach by demonstrating the

procedure for specific structures, namely spatio-temporal geometric structures of tropical cyclones

(TC), i.e., their vortex cores and centerlines. The example is motivated by a new theory of TC
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intensification, according to which the inclination of the centerline, in interaction with atmospheric

heat patterns that adopt some spatial orientation to the inclined centerlines, is a key parameter for

TC intensification (Päschke et al., 2012; Dörffel et al., 2020, 2021).

The analysis is made on basis of ERA5 reanalysis data of the Hurricane Florence 2018. The data

is given on a regular horizontal grid with resolution of 0.25°×0.25°, i.e., about 30 km (Hersbach

et al., 2018a,b). In all our visualizations, the data are vertically scaled with a factor of 100 to

improve the perception of the structures. The time frame for the analysis is chosen to cover three

different phases of the TC evolution: (1) stages of intensification; (2) full maturity; (3) weakening.

The track of Hurricane Florence and the region of interest are shown in Fig. 3.

A. TC vortex core regions

The word “vortex” is associated with a whirling or circular motion. But it is still the case that “no

single definition of a vortex is currently universally accepted, despite the fact that fluid dynamicists

continue to think in terms of vortices” (Chakraborty, Balachandar, and Adrian, 2005). The same,

in fact, is true for the question of “what a TC is”. There are only vague notions about the flow

being circular, the presence of a depression, or the cloud structure (Houze, 2009). Vortices can be

characterized by high local vorticity, more rigid-body rotation than stretching or shearing, low local

pressure, closed or spiraling streamlines or pathlines, and coherent motion of neighboring fluid

particles (Epps, 2017).

1. Indicator quantities for vortex core extraction

There is an abundance of methods for the extraction of vortex cores. Even though many of them

are based on decomposing the velocity gradient ∇u into strain-rate tensor A = 1
2(∇u+∇uᵀ) and

vorticity tensor B = 1
2(∇u−∇uᵀ), they may provide different results.

• The widely used Q-criterion (Hunt, Wray, and Moin, 1988) identifies a vortex as a “connected

fluid region with a positive second invariant of ∇u” (Kolář, 2007) , i.e.,

Q =
1
2
(‖B‖2−‖A‖2)> 0. (1)

• Ω was introduced to represent the ratio of vortical deformation over the whole deformation
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inside a vortex core (Liu et al., 2016), i.e.,

Ω =
‖B‖2

‖B‖2 +‖A‖2 .

To avoid division by 0, it was proposed (Dong et al., 2018) to add a small positive number

εΩ = 0.001(‖B‖2−‖A‖2)max to the denominator such that the criterion becomes

Ω =
‖B‖2

‖B‖2 +‖A‖2 + εΩ

> 0.5. (2)

The authors claim that this method “is pretty universal and does not need much adjustment in

different cases and the isosurfaces of Ω = 0.52 can always capture the vortices properly” (Liu

et al., 2016). However, in order to capture the vortex core region, further adjustment of the

threshold is needed. Ω is both dimensionless and normalized, resulting in values that are

restricted to the interval [0,1].

• The kinematic vorticity number (Truesdell, 1953) Wk = ‖B‖/‖A‖ is another promising tool

for the determination of vortex properties (Schielicke, Névir, and Ulbrich, 2016). If the

rotation rate prevails over the strain rate, Wk is larger than 1. Early circulations that have a

potential to develop into stronger vortices could be captured with a lower threshold of Wk

(e.g., Wk slightly smaller than 1). On the other hand, a higher threshold of Wk focuses on

already developed strong vortices. To avoid non-physical noise, in our calculation we use an

εWk = 0.03(‖B‖−‖A‖). The vortex core is then identified by

Wk =
‖B‖

‖A‖+ εWk

> 1. (3)

Similar to Ω, Wk is dimensionless, but it is not normalized. Hence, values can potentially fall

into the interval [0,∞].

All three indicator quantities describe vortices, but their application may result in different vortex

regions. The inequalities in Eq. 1-3 provide only theoretical thresholds. For real-case analyses,

these values need to be adjusted to capture the appropriate structures. Fig. 4 shows vortex regions

extracted using Q > 0.02 and Ω > 0.52. Although at the highest hurricane intensity (yellow and

orange structures), both quantities can capture the structures of the vortex core well, there are some

issues during the intensification and weakening phases. Structures extracted with Q > 0.02 shrink

up to 4.6 km while regions defined with Ω > 0.52 do not represent TC cores correctly. In Fig. 5,

the value intervals for three indicator quantities over the time frame of interest are shown (Fig. 3).
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Figure 4. Vortex regions extracted using Q > 0.02 (left) and Ω > 0.52 (right). The top image shows extracted

vortex regions for every 12 hours from the time frame of 02-07 September. For Ω, the following time

steps were chosen: 02 September 00:00, 04 September 00:00, 05 September 00:00, 06 September 00:00, 07

September 23:00. Colors represent the intensity of TC according to the Saffir-Simpson scale (see legend in

Fig. 3).

Ω lies always in [0,1] while the extremum values for Q and Wk change over time. For the further

analysis, parameter values that do not exist are excluded. The upper limits of the selected parameter

intervals are depicted by a red line in Fig. 5.

2. Geometrical attributes of vortex regions

A vortex core region is associated with a dense cylinder-like structure. Based on this mental

image and the examples shown above, the following attributes were chosen to describe the geometry

of the extracted vortex core regions:

ncells number of voxels

hmin minimum height

hmax maximum height

dmin minimum diameter

dmax maximum diameter

Cd compactness value (Bribiesca, 2008)

The number of voxels describes the overall size of the structure. Minimum and maximum heights

give the lowest and the highest levels where the structure is defined. These attributes help to ensure

that the extracted structure starts at a very low level and reaches a large height. The diameters of
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Figure 5. Minimum and maximum values for three chosen indicator quantities in the time frame of 02-07

September 2018. Red line represents the upper limit of analysis intervals. Color gradient in the axis area

represents the intensity of TC (see legend in Fig. 3).

the structure were computed for each individual horizontal slice using the formula

d =
√

dX2
max +dY 2

max,

where dXmax and dYmax are the maximum distances the structure spreads in x and y directions,

respectively. The derived value d approximates the diameter of a circle enclosing all selected

voxels in the slice. It can be interpreted as the radius of the circumscribed circle. The diameter

attributes are derived as minimum and maximum values of d over all horizontal slices. Diameter

and compactness value control the width of the structure and its shape. The latter was introduced

by Bribiesca (2008) and is defined as

Cd =
Ac

Acmax

,

where Ac is the contact surface area and Acmax the maximum contact surface area. For a solid

composed of n voxels, the approximation Acmax ≈ 3(n− (n)
2
3 ) can be used. The measure of discrete

compactness is dimensionless, has values from 0 to 1 and is maximized by a cube.
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Figure 6. Parallel coordinates plot window and structures extracted by selecting proper parameter values

for three indicator quantities Q, Ω and Wk. Red and blue isosurfaces correspond to smallest and biggest

structures respectively.

3. Analysis and results

Three indicator quantities from Sect. IV A 1 were computed based on the velocity field u for 13

time steps in time interval 02-07 September 2018. For each indicator quantity and each time step,

sample structures were derived using 100 evenly distributed values from the appropriate parameter

interval, i.e.,

• Q ∈ [0,0.05]

• Ω ∈ [0.5,0.99]

• Wk ∈ [1,8]
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Figure 7. Vortex regions showing the average structure from the derived intervals for Q (left) and Ω (right).

Time steps at every 12 hours of the time frame of 02-07 September are shown. Colors represent the intensity

of TC according to the Saffir-Simpson scale (see legend in Fig. 3).

Properties describing each structure were computed as discussed in Sect. IV A 2. To inspect the

3D structures defined by properties selected via the PC plot, isosurfaces of the minimum and

maximum structures are used, i.e., structures corresponding to the upper and lower limit of the

derived parameter interval, respectively.

PC plots with the desired attributes for the three indicator quantities are shown in Fig. 6. The

vortex core should start at the first presented level 0.2 km and have at least 8 km height. To

limit the horizontal spread, structures with maximum diameter exceeding 600 km and with small

compactness value, i.e., Cd < 0.8, were excluded. Lines representing structures meeting all the

constraints are shown in the PC plot by two shades of blue. Dark blue highlights the interval that

would lead to the derivation of structures with the desired properties for every time step included in

the analysis.

The procedure leads to the following structure definitions for TC cores based on the indicator

quantities Q, Ω and Wk:

CQ = {x ∈ R3 |Q(x) > τQ; τQ ∈ [0.002,0.0076]},

CΩ = {x ∈ R3 |Ω(x) > τΩ; τΩ ∈ [0.7574,0.8316]},

CWk = {x ∈ R3 |Wk(x)> τWk ; τWk ∈ [1.4949,1.9899]}.

The obtained definitions correspond to the ERA5 reanalysis data of Hurricane Florence 2018.

Further analyses are necessary in order to get structure definitions that are more generally applicable.

Some resulting structures found for Q and Ω for the whole time window are shown in Fig. 7.

Both indicator quantities provide comparable vortex core regions.
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B. TC core line

A TC core line is a structure that describes position and course of a TC. It is located in or close

to the center of the TC vortex and represents another mental concept that is not explicitly described

by data fields. Representation of the TC domain in cylindrical coordinates that are centered at the

vortex core line is very useful for studying TC structure and dynamics (see (Päschke et al., 2012;

Dörffel et al., 2021)). Quantitative results, however, highly depend on a TC core line.

1. Core line computation

Here, we extract TC core lines based on the TC vortex core regions that were discussed

previously. In addition to the indicator quantities, the mathematical definition of the center should

be considered. We focus on two methods for core line computation. Both methods compute one

point per horizontal slice.

Extremum method: This method identifies the center of a vortex as the extremum of an indicator

quantity (Sahner, Weinkauf, and Hege, 2005). Usually, the maximum is used; in some cases, e.g.,

for pressure fields, the minimum value may be used.

Centroid method: This method depends on a search radius R (Nguyen, Molinari, and Thomas,

2014). The location of the minimum pressure on a constant height surface was used as first guess,

and the centroid was calculated within a circle of radius R around the first guess:

x̄ =
∑

r<R
xiωi

∑
r<R

ωi
and ȳ =

∑
r<R

yiωi

∑
r<R

ωi
, (4)

where xi, yi are grid points within a circle of radius R and ωi is the values of indicator quantity

at this point. In order to determine the center based on the quantity that should be minimized,

inverted values could be used, e.g., pressure deficit p′ = p̄− p. Potential vorticity (PV) was

proposed (Nguyen, Molinari, and Thomas, 2014) as indicator ω considering only points within the

circle with positive PV. We combine this with the extracted structures, i.e., instead of determining

the first guess center and using various radii R, we apply Eq. 4 on the TC vortex core regions

extracted using indicator quantities Q, Ω, and Wk.
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2. Geometrical attributes for a line

With the same motivation as in Sect. IV A 2, we determined the following attributes for line-like

features to help identify structures matching our mental image of a core line:

hmin minimum height

hmax maximum height

dX overall horizontal displacement

dX mean of horizontal displacement

max(dX) maximum horizontal displacement

c line curvature (Leger, 1999)

Minimum and maximum height are the smallest and largest z-coordinates over all line points. It

corresponds to hmin and hmax defined for the TC vortex core region. Further properties, such as

horizontal displacement and line curvature, are describe the smoothness of a line. Horizontal

displacement is computed as Euclidean distance between two 2D points Xzi and Xz j , i.e.,

dXi j = d(Xzi,Xz j),

where zi and z j are the corresponding horizontal levels. Overall horizontal displacement is measured

between the start and end points of the line. Mean and maximum horizontal displacement are

the average and maximum values of dX , respectively, calculated for every two consecutive levels.

Finally, line curvature is defined as

c(A,B,C) = 4
Area of the triangle(A,B,C)

d(A,B)d(B,C)d(C,A)

= 2
sin(∠ABC)

d(C,A)
,

where A, B and C are points that represents two consecutive line sections and d(·, ·) is the Euclidean

distance in R3 (Leger, 1999).

3. Analysis and results

First, we compare the two line extraction methods, that is, the extremum with the centroid

method. Fig. 8 shows some examples of the extracted structures using indicator Ω. The lines

extracted using the extremum method show less variation; however, most of them are of zigzag
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Figure 8. Lines extracted by maximum (blue lines, top row) and centroid method (red lines, bottom row)

using - from left to right - Ω > 0.5, Ω > 0.65, Ω > 0.7 and Ω > 0.8.

form. At the same time, the centroid method provides smoother lines the shape of which can

drastically change along with the parameters, as can be seen in Fig. 8, bottom row, left two images.

The visualization of this example suggests that the structures extracted with the extremum method

are worse than those extracted with the centroid method. Incorporating parameter space exploration

with structure visualization can help objectify this observations. Interestingly, no common interval

can be found for the extremum method for the same parameters that derive reasonable TC centers

as with using the centroid method, see Fig. 8. Lines extracted for this parameter setting can be

found in Fig. 12. To depict multiple lines at ones, we used the easiest but at the same time most

informative technique where we show the lines together without further adjustments. The main

issue with this visualization occurs if lines perfectly overlap. Therefore, this approach leads to an

indistinct representation of structures found by the extremum method, while it worked well for the

lines defined by the centroid method.

Next, we focus on the centroid method and utilize the PC tool to investigate the parameter space

for three selected indicator quantities. First, we applied the height restrictions hmin = 0.2 km and

hmax > 8 km to ensure that derived lines have a desired height. Extracted structures still have a
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Figure 9. Comparing two TC core line extraction methods using parallel coordinates plot.

high variation (especially the ones found with Ω), see Fig. 10. Taking horizontal displacement

parameters into consideration, i.e., dX < 3 km and maxdX < 15 km, leads to intervals listed in the

following table.

indicator core region center line

Q [0.002,0.0076] [0.0025,0.03] ∪ [0.0045,0.0076]

Ω [0.7574,0.8316] [0.7871,0.8366]

Wk [1.4949,1.9899] [1.6364,1.9192]

Identified intervals for TC vortex core region and TC center line overlap but do not perfectly match.

Overall the intervals derived for center line definition are more strongly restricted.

Finally, extracted lines for the selected time frame are shown in Fig. 12. For all time steps, 9, 11,

and 5 lines represent the selected intervals corresponding to Q, Ω, and Wk, respectively.

As a result we find that possible structure definitions of center lines are given per horizontal

slice by xω = (x̄ω , ȳω) with

x̄ω =

∑
i∈Cω

xiωi

∑
i∈Cω

ωi
and ȳω =

∑
i∈Cω

yiωi

∑
i∈Cω

ωi
,
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Figure 10. Parallel coordinates window and core lines identified by Q, Ω and Wk using only height

restrictions.

where i are the indices of grid points (xi,yi) within one of the volumes

CQ = {x ∈ R3 |Q(x)> τQ; τQ ∈ [0.0025,0.03]∪ [0.0045,0.0076]},

CΩ = {x ∈ R3 |Ω(x)> τΩ; τΩ ∈ [0.7871,0.8366]},

CWk = {x ∈ R3 |Wk(x)> τWk ;τWk ∈ [1.6364,1.9192]}.

V. DISCUSSION AND FUTURE WORK

In many scientific fields, e.g., meteorology, important concepts are described only verbally w.r.t.

a mental image rather than by precise mathematical definitions. Research over the past decades has

22



Figure 11. Parallel coordinates window and core lines extracted by selecting proper parameter values for

three indicator quantities Q, Ω and Wk.

shown that finding such mathematical descriptions is not an easy task and “does not just happen”.

In this work, we describe a systematic approach to address this problem and demonstrate

the applicability of the approach using two structures from meteorology. A key question in this

approach is, how a mental image can be turned into an precise, formal structure definition. This is

achieved by identifying and computing suitable attributes that allow one to measure how well an

extracted structure matches the mental image, and by subsequently relating these attributes to the

complete parameter space of the structure definition including computational methods, indicator

quantities, and parameter intervals. We use the paradigm of linking & brushing on the attribute

space together with a direct 3D visualization of the selected structures to allow the user to verify
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Figure 12. Core lines detected using the centroid method for Q (top), Ω (middle), and Wk (bottom), showing

9, 11, 5 lines, respectively. Selected time frame: 02-07 September.

whether the obtained structure definition indeed describes the mental image. This allows us to

narrow the structure definition further and further. In order to identify structure definitions that

are applicable to all time steps of a time-dependent data set, a common scenario in the analysis of

meteorological phenomena, it is essential to look at all time steps at the same time.

One inherent limitation of our approach is that it requires a potentially large number of structures

to be extracted for different parameters and time steps along with the computation of all the

necessary attributes describing the structures. However, this can usually be done automatically in a

preprocessing step. Once this is done, our approach is interactive.

In order to test the proposed approach, we implemented an interactive prototype tool based
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on parallel coordinates to identity definitions for two structures from meteorology, vortex core

regions and core lines of tropical cyclones (TC). Our aim was not to identify the best method for

the extraction of these specific structures. Rather, the analyses carried out in this presentation were

done to illustrate that it is possible to objectify mental images using interactive exploration by

coupling structure attributes and parameter intervals.

One motivation for the development of the presented tool is the fact that the vortex core line is a

major ingredient for the asymptotic theory on strongly tilted TCs (Päschke et al., 2012; Dörffel

et al., 2021). The TC core line prescribes the origin of a tilted cylindrical coordinate system and

both, symmetric and asymmetric structures, are assessed relative to this origin. Hence, further

evaluations of this theory require a robust definition of the TC core line for which this work not

only provides a definition but also an estimate on the uncertainty comprised in the ensemble. Along

this line, we will apply our prototype tool to further TC data, e.g., Hurricanes Isabel 2003, Earl

2010, Eduoard 2014, and Fiona 2016. The question we will ask is whether we can find similar

parameter ranges across different TC data including higher-resolution simulations like ICON.

Other future work will include the application and extension of our tool to further meteorological

structures including convective cells and cold fronts. This will show limitations of our current

prototype and allow us to generalize the tool further.

In the examples we have given, only a one-dimensional parameter space was explored. However,

the approach and the presented tool also support multi-dimensional parameter spaces. The main

problem here will be the sampling of the multi-dimensional parameter space and the handling of the

potentially very larger number of extracted sample structures. Therefore, more elaborate sampling

methods than the one used here might be needed.

Our prototype implementation implicitly concatenates the attribute selection using the logical

AND operation, thus creating a single high-dimensional attribute interval. However, the support

of more complicated logical expressions might be needed for other structures. For this, the

development of an expression editor alongside the parallel coordinates plot will be explored.
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