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ABSTRACT: The urea−urease clock reaction is a pH switch from acid to basic that can turn
into a pH oscillator if it occurs inside a suitable open reactor. We numerically study the
confinement of the reaction to lipid vesicles, which permit the exchange with an external
reservoir by differential transport, enabling the recovery of the pH level and yielding a constant
supply of urea molecules. For microscopically small vesicles, the discreteness of the number of
molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that
intrinsic noise induces a significant statistical variation of the oscillation period, which
increases as the vesicles become smaller. The mean period, however, is found to be remarkably
robust for vesicle sizes down to approximately 200 nm, but the periodicity of the rhythm is
gradually destroyed for smaller vesicles. The observed oscillations are explained as a canard-
like limit cycle that differs from the wide class of conventional feedback oscillators.

Oscillations are vital for the processes of life, such as
metabolism, signaling, cell growth, and cell division,1,2

with examples ranging from fast signaling cycles and calcium
oscillations to slow circadian rhythms.3 Cells gain control over
these processes by biochemical reaction networks,4,5 e.g., gene-
regulatory, protein-interaction, and metabolic networks, which
almost always involve enzyme-catalyzed reactions. Protonation
and biprotonation can significantly affect the enzymatic
activity, leading to a bell-shaped dependence of the reaction
speed upon the H+ concentration or, equivalently, the pH
level.6 Such a dependence can give rise to pronounced periodic
pH variations, the key driving factor for pH oscillators.7 A
conventional pH oscillator is built up by balancing a positive,
autocatalytic feedback (production of H+) with a time-delayed,
negative feedback (e.g., consumption of products).2,7 A
qualitatively different pH oscillator has recently been suggested
for a lipid vesicle with the urea−urease clock reaction8−10

periodically recovered by the differential transport of acid and
urea across the vesicle membrane.11−13

Experimentally, urea−urease pH oscillations were observed
thus far in macroscopic reaction volumes.9,14 Also, most
analyses of pH oscillators to date have relied on deterministic
reaction rate equations (RREs). Furthermore, there is a
growing interest in chemical oscillators for applications.15−19

This motivates the question whether stable limit cycles persist
and how they change upon downscaling from the macroscopic
to, e.g., intracellular reaction volumes. Indeed, the cytoplasm is
a highly heterogeneous medium exhibiting macromolecular
crowding and compartmentalization, with repercussions on the
reaction kinetics.20−23 Enzymatic activity is confined to small
reaction chambers ranging from about 10 μm for lipid

membrane organelles24 down to 20 nm for bacterial micro-
compartments25,26 and outer membrane vesicles.27,28 Such
small compartments can host only very limited copy numbers
of molecules, necessitating the replacement of RREs by their
discrete and inherently stochastic counterparts.29−31 Intrinsic
noise as a result of such molecular discreteness leads to a
breakdown of the macroscopic theory of Michaelis−Menten
kinetics.32−34 For monostable reaction networks, not only the
size of fluctuations35,36 but also the mean concentrations37,38

become volume-dependent. Furthermore, intrinsic noise may
change the stability of steady states, inducing oscillations in
deterministic systems without limit cycles,39,40 or alter the
characteristics of limit cycles.41 However, its impact on pH-
regulated systems has remained largely unexplored.
In this work, we consider the urea−urease reaction and

study how the stable rhythmic variation of the pH level12,14 is
affected by intrinsic noise when decreasing reaction volumes to
biologically relevant scales. Within one cycle, molecular copy
numbers can vary from a few molecules to several thousands
almost instantaneously, which is captured by the stochastic
simulations. We detect irregular oscillations, perform a
statistical analysis of the period lengths, and gain further
insight into the oscillation mechanism.
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Our study is based on a minimal model for the urease-
catalyzed urea hydrolysis, which exhibits pH oscillations while
admitting a simple representation as a reaction network to
facilitate the stochastic simulations. Bańsaǵi and Taylor11

showed that the full model of the urea−urease reaction cycle,
involving the concentrations of eight molecular species, can be
reduced to an effective five-variable model. To further simplify,
we eliminate one more species (OH−) from the reaction
network with merely small quantitative changes to the
evolution of the remaining concentrations (see the Supporting
Information). The corresponding reaction scheme involves
only four species and consists of two core reactions that are
assumed to take place inside a lipid vesicle, serving as a small-
size, well-mixed reaction compartment of volume V. In
addition, the vesicle can exchange molecules with its exterior
via a permeable membrane (Figure 1a). Under the action of
urease enzymes, urea CO(NH2)2 as the substrate species S is
converted into ammonia molecules NH3 as product P (Figure
1b). Concomitantly, ammonia reacts with the acid to form
ammonium ions (abbreviated as PH+ in the following). Thus,
the reactions inside the vesicle read as follows:

⎯ →⎯⎯⎯⎯S 2P
k

urease

cat (1a)

+ + +H IoP H PH
k

k

2r

2

(1b)

The speed of reaction 1a is crucially affected by the acidity of
the medium and controlled by the available amount XH

+ of
protons H+; the proton concentration [H+] = XH

+/VM is
converted to the pH value via pH = −log10([H+]/1 M) in
terms of the molar volume VM = VNA and Avogadro’s number
NA. Hereafter, we denote the numbers of molecules of species
S, H+, P, and PH+ as XS, XH

+, XP, XPH
+, respectively; we will

reserve square brackets to refer to concentrations, namely, [S]
= XS/VM, etc.
The efficacy of the catalytic step (reaction 1a) is modeled by

an effective rate6,11,42

[ ] [ ] =
[ ]

+ [ ] + [ ]
+

+ +k
k

K K
( S , H )

( S )
1 H / / Hcat

cat
M

E1 E2 (2)

with the conventional Michaelis−Menten rate in the absence
of pH effects given by

[ ] =
+ [ ]

k
v

K
( S )

Scat
M max

M (3)

and the Michaelis−Menten constant9,11,43 KM = 3 × 10−3 M.
The rate kcat([S], [H+]) possesses a maximum that is
proportional to νmax at an optimal amount of H+, and reaction
1a is suppressed for H+ concentrations smaller and larger than
this value or equivalently at large and small pH values, as
determined by the constants9,11,43 KE1 = 5 × 10−6 M and KE2 =
2 × 10−9 M (see Figure 1c). For the stochastic simulations in
terms of particle numbers XS, we evaluate kcat(XS/VM, XH

+/VM)
as the propensity for reaction 1a to occur. This reaction is
further coupled to reaction 1b, meaning that the product is also
affected by the acidity and can reversibly turn into ammonium
ions PH+. The corresponding rates are set as9,11,44 k2 = 4.3 ×
1010 M−1 s−1 and k2r = 24 s−1.
Apart from the in-volume reactions 1a and 1b, we assume

outflow or decay of the product in both of its forms, P and
PH+, with the rate constant k > 0. Further, we consider an
explicit exchange of S and H+ with the exterior of the vesicle
serving as a reservoir, with rates kS and kH, respectively, equal
in both directions. The spatial exchange between the interior
and exterior of the vesicle is modeled as the stochastic jump
process along the lines of the spatiotemporal master
equation45,46 and can be written as reactive transitions. Thus,
the interaction with the exterior of the reaction volume is
summarized as

→ ⌀ → ⌀+k kP , PH (4a)

+ +H Ioo H Ioo
k k

S S , H H
S

ext
H

ext (4b)

We treat the reservoir as sufficiently large, such that reactions
4b lead only to marginal changes to the amounts of Sext and
H+

ext. Therefore, we approximate their concentrations by fixed
values [Sext] and [H+

ext] and replace reactions 4b by

⌀ ⌀
[ ]

+

[ ]+
H Iooooo H IooooooooS , H
k

k

k

k

S HS ext

S

H ext

H

(5)

To inspect oscillatory regimes, we rely on the parameters
that were shown to exhibit periodic deterministic oscillations
for the urease-loaded membrane.11 Generally, the rate of
proton transport kH should be faster than that of urea kS; here,
we use kH = 9 × 10−3 s−1 and kS = 1.4 × 10−3 s−1. The outflow
rate of the products is set to k = kS, and the maximum speed is
set to νmax = 1.85 × 10−4 M s−1, where the latter corresponds
to an urease solution with a catalytic enzyme activity of 50
units (μmol/min). In all simulations, the external values of XS
and XH

+ were fixed to match the concentrations [Sext] = 3.8 ×

Figure 1. Schematic representation of the enzyme-assisted reaction network. (a) Enzyme (urease) catalyzes conversion of the substrate (urea) into
product (ammonia) in a lipid vesicle compartment affected by changing acidity (hydrogen ion, H+). The products (ammonia and ammonium) are
subjected to decay or outflow from the vesicle, while the substrate and acid exchange with the exterior of the vesicle. (b) Volume reactions 1a and
1b taking place in the vesicle, showing the meaning of the involved components; H2O and CO2 have been omitted in the first reaction. (c) Reaction
speed ν = kcat([S], [H

+])[S] of the catalytic step (reaction 1a) evaluated for urease (see eq 2) shows a strong dependence upon the level of pH =
−log10([H+]/1 M); it is fastest in a neutral medium (pH ≈ 7).
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10−4 M and [H+
ext] = 1.3 × 10−4 M or equivalently to an acidic

environment at pH 3.9. Inside of the vesicle, the initial values
of XS and XH

+ were chosen to correspond to concentrations
[S]0 = 5 × 10−5 M and [H+]0 = 1 × 10−5 M (or pH 5),
respectively.
The deterministic evolution of the macroscopic concen-

trations obeys the RREs of the four-species model (see eqs
S1a−S1d of the Supporting Information). For the parameter
values chosen above, the results from numerical integration are
quantitatively similar to the earlier findings within the five-
variable model.11 For an exemplary vesicle size of 250 nm in
diameter (i.e., a reaction volume of V = 8.18 × 10−18 L), the
evolution of all variables after a short transient displays clear
periodic oscillations (solid lines in Figure 2). Especially, the

pH level varies strongly between pH ≈ 4.2 and pH ≈ 8.3
(upper panel). Correspondingly, the copy number of protons
XH

+ = [H+]VM (as rescaled solution of the RREs) on a
logarithmic scale mirrors this behavior, and the product XP
evolves in antiphase relative to XH

+, with both quantities
changing over 4 orders of magnitude rapidly (middle panel).
The values of XPH

+ show comparably little variation and remain
large and distinctly greater than those of the other species
(bottom panel). The maximum copy numbers of XP and XH

+

are similar in magnitude to the typical values for the substrate
S, while the minima of XP and XH

+ correspond formally to
average copy numbers of the order 10−2. Although such values
are not prohibited by the reaction rate formalism, the actual
copy numbers must be integers, with the closest allowed values
being either 0 or 1. This inconsistency is a signature of the
deficiency of the macroscopic description at such a small scale.
Stochastic simulations of reactions 1, 4a, and 5 were

performed by the stochastic simulation algorithm.47,48 In the
macroscopic limit of a large reaction volume (e.g., for giant
vesicles with a diameter of 10 μm), the stochastic concen-
trations converge to the solution of the deterministic RREs
given by eqs S1 of the Supporting Information, as
expected.31,48 With a decreasing volume, the role of intrinsic
noise grows and one anticipates deviations from the
deterministic description. The stochastic trajectories develop
well-pronounced fluctuations and differ significantly from the
corresponding deterministic solutions, as demonstrated for a
vesicle size of 250 nm in Figure 2. These stochastic effects are
weaker for species of a large copy number, e.g., PH+, while they
are strong for the acid and product, whose amounts drop to a
few molecules and even become 0 frequently. The same
features are reflected in the oscillations of the pH level, which
directly follows from XH

+.
We stress that the intrinsic noise perturbs the rhythm of the

pH variation. The stochastic oscillations become clearly
irregular from time to time, showing either longer or shorter
periods compared to their strictly regular deterministic
counterparts. To characterize this kind of stochasticity, we
have extracted the period lengths T from a single, long
trajectory of XH

+ covering about 1500 periods. The obtained
sequence of T values shows a high variability (Figure 3a)
around the mean period of Tav = 17.46 ± 0.06 min, which is
slightly shorter than the value predicted by the deterministic

Figure 2. Stochastic evolution of molecule numbers. The pH level
(upper panel) and molecule numbers for the species H+ and P
(middle panel) and S and PH+ (bottom panel) as functions of time
for the urea−urease reaction scheme [Figure 1 and eqs 1−5)]
confined to a vesicle of 250 nm in diameter, which corresponds to a
reaction volume of V = 8.18 × 10−18 L. Note the logarithmic scales.
Solid lines are solutions to the deterministic reaction rate equations
(eqs S1a−S1d of the Supporting Information). Dots show an
exemplary solution to the stochastic reaction dynamics obtained
with Gillespie’s stochastic simulation algorithm;47 the special value
XH

+ = 0 is represented as 0.01 (pH ≈ 8.7).

Figure 3. Time periods and their statistical characteristics. (a) Sequence of period lengths (dots) for a vesicle size of 250 nm (reaction volume V =
8.18 × 10−18 L) with the mean over 1500 periods (horizontal line). (b) Mean periods with their statistical errors (disks and bars) and coefficient of
variation (CV, squares) for different vesicle sizes. The dashed line indicates the macroscopic value of the period length, Tdet = 17.8 min.
(c) Histogram of the period lengths for vesicle sizes of 500 and 250 nm; arrows indicate the mean periods.
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model, Tdet = 17.79 ± 0.01 min. Further, the data show no sign
of a temporal trend in the period length, and an
autocorrelation analysis suggests that the lengths of subsequent
periods are independent. The large scatter of period lengths
along a stochastic trajectory is evidenced from their statistical
distribution, shown in Figure 3c for vesicle sizes of 250 and
500 nm. The scatter is larger for the smaller vesicle, and we
infer a small shift of the mean value. Indeed, Figure 3b
corroborates that the mean oscillation period becomes
monotonically shorter upon decreasing the size of the vesicle.
At the same time, the coefficient of variation (CV), which is
the dimensionless ratio of the standard deviation over the
mean, gradually grows for smaller reaction volumes (see Figure
3b). At large volumes, CV tends to 0 as required by the
macroscopic limit; for the smallest vesicle size shown (200
nm), we have CV ≈ 0.2. Generally, this trend is expected
because smaller reaction volumes correspond to more discrete
and, therefore, more noisy systems. Overall, with the decrease
in volume, the oscillations become more and more irregular.
For very small vesicles (e.g., 100 nm; see Figure S1 of the
Supporting Information), the size of fluctuations becomes
comparable to the oscillation amplitude and the periodic
oscillatory behavior breaks down.
For a dynamic system showing regular oscillations, the

deterministic solution (after an initial transient) follows a limit
cycle, i.e., an attractive, closed orbit in the space of
concentrations. For the four-variable model studied here,
Figure 4a shows the deterministic limit cycle (solid line) in the
pS−pH plane, where pS = −log10(XS/VM), overlaid with a
short exemplary stochastic trajectory (dots). In this repre-
sentation, the cycle is followed clockwise. We infer that
intrinsic noise causes pronounced irregularities of the
stochastic loop, with the trajectory points distributed well
around the deterministic cycle for the smaller values of pH
(high XH

+) but significantly deviating from it for larger pH (low
XH

+). The latter is due to the fact that non-integer copy

numbers are not permitted in the stochastic simulation. The
discreteness of the number of protons XH

+ is apparent in the
figure for pH ≳ 6 and incompatible with the deterministic
solution, which implies 0 < XH

+ < 1 for pH ≳ 7 for the chosen
reaction volume. Thus, the lowest possible values of XH

+ either
undershoot (XH

+ = 1) or overshoot (XH
+ = 0, i.e., formally pH

= ∞) the upper branch of the deterministic limit cycle.
Further insight into the oscillation mechanism is gained by

studying the structure of the deterministic flow (stream lines in
Figure 4a). Because such a flow map is non-trivial to obtain for
a system of more than two variables, we have approximately
reduced the four-variable RRE system to a two-dimensional
dynamic system, by resorting to the quasi-steady-state
assumptions49 for the products P and PH+. This ad hoc
simplification preserves the fixed points of the original system
and captures the qualitative structure of the flow; in particular,
it yields a limit cycle quantitatively close to that of the full
model for pH ≲ 6.5. The closed-loop attractor results from the
interplay of an unstable focus point at (pS, pH) ≈ (4.31, 4.57),
which is the only fixed point, and a canard-type behavior50,51 at
high pH values. This combination leads to an oscillator motif
that differs from standard pictures typical of chemical feedback
oscillators2,7,52 (Figure 4b).
Typical for canard-type behavior is a coupling between fast

and slow dynamics. As depicted in Figure 4b, the upper branch
of the pH nullcline (i.e., the manifold d[H+]/dt = 0) is strongly
attractive (solid line) and combines fast, almost transverse
motion toward the limit cycle orbit followed by the creeping
along it (pS increases), which holds until the turning point
(open circle) is reached. At this point, the nullcline bends back
accompanied by a change of stability: the manifold between
the turning point and the fixed point (red circle) is unstable
(dashed line) and locally separates the flow into regions of
increasing and decreasing pH level. In contrast to toy models
for canard dynamics, where the dynamics switches between
two attractive branches, the rest of the nullcline in the present

Figure 4. Phase portrait and limit cycle in the pS−pH plane. (a) Limit cycle from the deterministic model (solid line) and stochastic simulations
(dots) with pS = −log10(XS/VM). Stochastic results are for a vesicle size of 250 nm and cover six oscillation periods (same data as in Figure 2); data
points with XH

+ = 0 are drawn at the upper frame border, and colors encode time. Open triangles along the limit cycle are equally spaced in time
and indicate the speed along the cycle (clockwise); their distribution reflects the alternating phases of fast and slow motion. Gray arrows depict the
flow of the dynamic system, obtained approximately for a reduced, two-variable model (see the main text). (b) Structure of the flow and the limit
cycle (thick green line) emerge from the combination of an unstable focus (solid, red circle) and canard-type behavior. The latter is determined by
the pH nullcline (purple line), where d[H+]/dt = 0, which consists of an attractive branch (solid line), passing through a turning point (open circle)
to a repelling (dashed line) and neutrally stable (dotted line) branch. Gray arrows indicate the direction of the phase flow.
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system is neutrally stable (dotted line) and has no obvious
effect on the flow structure. Thus, after the turning point is
reached, the pH level decreases quickly and the phase
trajectory follows the flow set between the repelling manifold
and the outer flow field around the unstable focus until the
loop is closed. For the stochastic trajectories, which traverse
the interior of the limit cycle, we infer that different crossing
points of the separatrix lead to a scatter in the phase plane
(near pS ≈ 4.8−5.1), which explains the observed variability in
the period length.
In conclusion, we have studied the urea−urease reaction

confined to a nanosized lipid vesicle, which presents a typical
clock reaction8 effectively raising the pH level. Under suitable
conditions, the clock recovers as a result of the exchange of
acid and urea with an external reservoir, leading to a pH
oscillator that differs from the wide class of conventional
feedback oscillators;7 instead, it resembles a canard dynam-
ics.50,51 The insight gained into the oscillation mechanism can
help to optimize experimental setups and design chemical
oscillators based on the same principles.
The presented stochastic analysis, in contrast to determin-

istic studies, shows that intrinsic noise induces a significant
statistical variation of the oscillation period, which increases
upon downscaling the vesicle size. We note that, although the
mean period is remarkably robust for intermediate vesicle sizes,
it slightly changes with the vesicle size. Therefore and because
of the inevitable size disparity in vesicle suspensions,12 different
oscillators possess slightly detuned eigenfrequencies, an
important issue for understanding intervesicle communication
and synchronization of rhythms,53−55 which would not be
captured by deterministic models. Finally, our findings suggest
that below a certain scale, which may still be relevant for
applications, the periodicity of the rhythm is gradually
destroyed. Namely, apart from the irregularity in the period
length, strong deviations appear in the oscillation amplitude
masked by fluctuations growing with the decrease in the vesicle
size. It is likely that similar trends take place for other pH
oscillators, which can be answered by specific tests along the
lines presented here.
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