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Abstract – We study the non-Markovian Langevin dynamics of a massive particle in a one-
dimensional double-well potential in the presence of multi-exponential memory by simulations.
We consider memory functions as the sum of two or three exponentials with different friction
amplitudes γi and different memory times τi and confirm the validity of a previously suggested
heuristic formula for the mean first-passage time τMFP. Based on the heuristic formula, we derive a
general scaling diagram that features a Markovian regime for short memory times, an asymptotic
long-memory-time regime where barrier crossing is slowed down and τMFP grows quadratically
with the memory time, and a non-Markovian intermediate regime where barrier crossing is slightly
accelerated or slightly slowed down, depending primarily on the particle mass. The relative weight
of different exponential memory contributions is described by the scaling variable γi/τ 2

i , i.e.,
memory contributions with long memory times or small amplitudes are negligible compared to
other memory contributions.

Copyright c© 2020 EPLA

Introduction. – Most rare events in biology and chem-
istry at the nano-scale, e.g., chemical reactions and pro-
tein folding, are governed by thermal noise and can be
described by Langevin or Fokker-Planck equations. Often
these processes are approximated by barrier-crossing
events in a one-dimensional reaction-coordinate land-
scape [1–10]. The Markovian approximation assumes that
all orthogonal degrees of freedom relax faster than the
diffusive and inertial time scales of the reaction coor-
dinate [11–16]. However, this approximation is not al-
ways valid, for example for dihedral barrier dynamics in
peptides and ion-pairing kinetics, the characteristic time
scales of the reaction coordinate and the environment
are similar and, therefore, one has to account for non-
Markovian effects [17–23]. It was shown that for single-
exponential memory, for long memory time the mean
first-passage time (MFPT) τMFP follows an asymptotic
power law τMFP � τ2/γ as a function of the memory time
τ and the friction coefficient γ [24]. This means that in
the presence of very slowly decaying memory, the barrier-
crossing kinetics is modified even when the MFPT is much
longer than the memory time; thus, simple time-scale sep-
aration, according to which memory should only influence
the MFPT up to time scales of the memory time itself,
breaks down. For intermediate values of the memory time

and in the friction-dominated regime, memory was shown
to speed up barrier-crossing kinetics, meaning that the
MFPT becomes shorter than in the Markovian limit [24].
Thus, whether memory speeds up or slows down reaction
kinetics depends on the precise value of the memory time.
For most systems, memory effects are not characterized by
one time scale and one necessarily has to take into account
several memory time scales depending on the complexity
of the system [11,17,25–28]. Very recently it was shown
that for bi-exponential memory and the restricted case
where both exponentials contribute equally to the total
friction, the barrier-crossing time becomes independent of
the longer memory time if at least one of the two mem-
ory times is larger than the intrinsic diffusion time [29].
In the present work, we focus on barrier crossing in the
presence of a memory function that is written as a sum
of two or three exponentials with unequal friction ampli-
tudes and we confirm that a previously proposed heuris-
tic formula for the mean first-passage time τMFP [29] is
valid also when the friction amplitudes and memory times
of the individual exponential memory contributions vary
widely. Based on the heuristic formula, we show that
the weights of individual exponential memory contribu-
tions are governed by the scaling variables γi/τ2

i , meaning
that memory contributions with long memory times or
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small friction amplitudes become negligible compared to
other memory contributions. We construct a general scal-
ing diagram for bi-exponential memory in terms of the
scaling variables γ1/τ2

1 and γ2/τ2
2 that displays a Marko-

vian regime for large γ1/τ2
1 and γ2/τ2

2 , an asymptotic non-
Markovian regime for small γ1/τ2

1 and γ2/τ2
2 where τMFP

grows quadratically with the memory times, and non-
Markovian intermediate regimes where barrier crossing is
slightly accelerated or slightly slowed down, depending on
particle mass and the friction amplitude ratio γ1/γ2.

To proceed, we consider the generalized Langevin equa-
tion (GLE) [10,30–35]

mẍ(t) = −
∫ t

0
Γ(t − t′)ẋ(t′)dt′ − U ′(x(t)) + FR(t), (1)

where m is the effective mass of the reaction coordinate
x, Γ(t) is the memory kernel function and U ′(x) is the
derivative of the potential U(x). FR(t) denotes the Gaus-
sian time-dependent random force with 〈FR(t)〉 = 0. In
equilibrium, which is the scenario we consider in this pa-
per, the relation between the friction kernel Γ(t) and the
autocorrelation of the random force is

〈FR(t)FR(t′)〉 = kBTΓ(|t − t′|), (2)

where T is the temperature and kB is the Boltzmann con-
stant. In non-equilibrium situations, this relation is not
satisfied anymore and one has to deal with in general two
distinct functions, namely the memory function and the
noise correlation function [21,36]. In fact, non-equilibrium
scenarios with colored noise have been shown to be useful
for accelerating simulations [37].

We choose a symmetric double-well potential

U(x) = U0

[( x

L

)2
− 1

]2

, (3)

where the separation between the two wells is 2L and the
barrier height is defined by U0. In the main part of this
article we use U0 = 3kBT .

We consider the memory kernel as a sum of N exponen-
tials

Γ(t) =
N∑

i=1

γi

τi
e−t/τi, (4)

where τi and γi are the memory times and friction coef-
ficients. Accordingly, the random force in eq. (1) can be
decomposed as

FR(t) =
N∑

i=1

fRi(t), (5)

where

〈fRi(t)fRj (t
′)〉 = kBT

γi

τi
e−|t−t′|/τiδij . (6)

The integral over the memory function γ =
∫ ∞
0 Γ(t)dt =∑N

i=1 γi defines the total friction coefficient and by con-
struction is independent of the memory times. For ease of

Fig. 1: Two-dimensional particle trajectories for τm/τD = 0.01
and γ2/γ1 = 10 without an external potential for the Marko-
vian case τ1/τD = τ2/τD = 0 (red), for bi-exponential mem-
ory with τ1/τD = 0.01, τ2/τD = 0.00316 (green) and τ1/τD =
100, τ2/τD = 31.6 (blue).

discussion, we introduce two effective time scales,

τD =
L2γ

kBT
, (7)

τm =
m

γ
. (8)

The diffusion time τD is the time it would take the
particle in the overdamped limit and in the absence of
a potential to diffuse by L, the inertial time τm char-
acterizes the time scale of viscous dissipation of particle
momentum. For N = 2 we can thus describe the sys-
tem by U0/(kBT ) and three dimensionless time-scale ra-
tios τm/τD, τ1/τD and τ2/τD. To simulate the GLE in an
efficient manner, we couple auxiliary variables with relax-
ation times τi and friction coefficients γi to the particle,
as explained in the appendix [38]. The numerical simu-
lations are based on a fourth-order Runge-Kutta integra-
tion scheme [39,40]. From the simulations, we obtain the
first-passage time (FPT) distribution, defined as the dis-
tribution of times necessary for the particle to go from
one potential minimum to the other for the first time. By
averaging over the FPT distribution we obtain the mean
first-passage time (MFPT) τMFP.

To illustrate the effects of memory on the dynamics we
plot in fig. 1 particle trajectories in two spatial dimen-
sions for vanishing potential U(x, y) = 0 and for vari-
ous memory times τ1/τD and τ2/τD for τm/τD = 0.01
and γ2/γ1 = 10. One clearly sees drastic differences be-
tween the Markovian case (red) for τ1/τD = τ2/τD =
0, the intermediate-memory case (green) for τ1/τD =
0.01, τ2/τD = 0.00316 and the long-memory case (blue) for
τ1/τD = 100, τ2/τD = 31.6, the longer the memory times
are, the more persistent the particle trajectories become.

Results. – We first consider bi-exponential memory.
Figure 2(a) shows the rescaled MFPT τMFP/τD as a func-
tion of τ1/τD for fixed τm/τD = 1 and γ2/γ1 = 2. Dif-
ferent colors in fig. 2(a) label different values of τ2/τD.
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(a) (b) (c)

Fig. 2: Mean first-passage time for bi-exponential memory and U0/kBT = 3: (a) the rescaled MFPT τMFP/τD as a function of
τ1/τD for several values of τ2/τD and fixed τm/τD = 1, γ2/γ1 = 2. (b) τMFP/τD for fixed τ1/τD = 1, τ2/τD = 10 as a function
of γ2/γ1 for several values of τm/τD, (c) τMFP/τD for fixed τ1/τD = 0.316, τ2/τD = 31.6 as a function of γ2/γ1 for several values
of τm/τD. Stars show the simulation results and colored lines represent the heuristic formula (9). The horizontal dash-dotted
lines represent the Markovian limit, corresponding to τ1 = τ2 = 0. In plot (a) the black horizontal lines for high τ1/τD values
denote the single-exponential limit, i.e., γ1 = 0. The horizontal black lines in (b) and (c) denote the single-exponential memory
kernel limit for γ2 = 0 on the left and γ1 = 0 on the right, in the latter limit the three black lines lie on top of each other.

We observe that in the right part of the plot, i.e., for
τ2/τD � τ1/τD, the value of the MFPT becomes indepen-
dent of τ1/τD, i.e., the value of the longer memory time
becomes irrelevant.

We compare our results for the MFPT with a heuristic
crossover formula that was previously proposed based on
simulations for bi-exponential memory functions, N = 2,
with equal amplitudes γ1 and γ2 [29]

τMFP =
N∑

i=1

τ i
OD +

( N∑
i=1

1/τ i
ED

)−1

, (9)

which is the sum of the overdamped contribution

τ i
OD

τD
=

γie
βU0

γβU0

[
π

2
√

2
1

1 + 10βU0τi/τD
+

√
βU0

τm

τD

]
(10)

and the energy-diffusion contribution to the MFPT

τ i
ED

τD
=

γeβU0

γiβU0

[
τm

τD
+ 4βU0

(
τi

τD

)2

+
√

βU0
τm

τD

]
, (11)

where β−1 = kBT .
The heuristic formula (9) is shown by continuous lines

in fig. 2(a) and is seen to describe the numerical data very
accurately. The black horizontal lines to the right de-
note the predictions of the heuristic formula in the single-
exponential case and are obtained by setting γ1 = 0 in
eq. (9) and using the unmodified value of τD for the rescal-
ing of the MFPT in fig. 2(a).

This demonstrates that for a memory time τ1 that
is long compared to the diffusion time, that means for
τ1/τD � 1, the effect of the exponential memory contri-
bution proportional to γ1 on the MFPT disappears, as
has been shown for the symmetric friction case γ1 = γ2
before [29]. For τ2/τD = 0.1 and τ2/τD = 0.316 the MFPT
is almost constant over the entire range of τ1/τD, which

reflects the fact that for these values of τ2/τD, in both
limits τ1/τD � 1 as well as τ1/τD � 1, the MFPT is
dominated by the overdamped contribution to the MFPT
in eq. (10) and in fact is almost equal to the Markovian
result, depicted by a horizontal dash-dotted line.

Next we investigate how the ratio between the two fric-
tion coefficients γ2/γ1 affects the MFPT. For this we show
in fig. 2(b) the rescaled MFPT τMFP/τD as a function of
γ2/γ1 for various values of τm/τD and fixed τ1/τD = 1 and
τ2/τD = 10. There are some deviations between the sim-
ulation results and eq. (9), in particular for small γ2/γ1,
but overall the heuristic formula constitutes a good ap-
proximation of our simulation results. We notice that in
the left and the right parts of the figure, i.e., for γ2 � γ1
and γ2 � γ1, respectively, τMFP becomes constant. The
black horizontal lines denote the predictions of the heuris-
tic formula in the single-exponential case for γ1 = 0 on
the right and for γ2 = 0 on the left. As expected, as
the amplitude of one of the two exponential contributions
to the memory kernel becomes substantially smaller than
the amplitude of the other contribution, its effect on the
MFPT disappears.

In fig. 2(c) the ratio between the memory times τ2 and
τ1 is larger and corresponds to 100. Similarly to fig. 2(b),
in the left and right parts of the plot the MFPTs saturate
at constant values, but the crossover regime within which
the MFPT depends on the friction coefficient ratio γ2/γ1 is
larger. While in fig. 2(b), where τ2/τ1 = 10, the crossover
regime spans two orders of magnitude in γ2/γ1, the
crossover regime in fig. 2(c), where τ2/τ1 = 100, extends
over four orders of magnitude in γ2/γ1. This suggests al-
ready that the scaling variable that describes the relative
importance of exponential memory contributions is pro-
portional to γi/τ2

i , which further below we will derive from
the heuristic formula eq. (9). To demonstrate the memory
effects on the MFPT, also in fig. 2(b) and (c) we represent
the Markovian limit by horizontal dash-dotted lines.
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(a) (b)

Fig. 3: Mean first-passage time for tri-exponential memory for fixed τm/τD = 1, τ1/τD = 0.316, τ2/τD = 1, τ3/τD = 3.16 and
U0/kBT = 3. In (a) we plot the simulation results for the rescaled MFPT τMFP/τD as a function of γ2/γ1, differently colored
stars represent simulation results for various values of γ3/γ1. In (b), τMFP/τD is shown as a function of γ1/γ2 for various values
of γ3/γ2. In both plots colored lines represent the heuristic formula (9) and the horizontal black lines to the right represent
eq. (9) for single-exponential memory, in (a) for γ1 = γ3 = 0 and in (b) for γ2 = γ3 = 0, while the horizontal black lines to the
left represent eq. (9) for bi-exponential memory. The horizontal black lines in (b) to the left are for γ3/γ2 = 1000 and 10000
and lie on top of each other. The dash-dotted horizontal lines denote the Markovian limit for τ1 = τ2 = τ3 = 0.

We now consider triple-exponential memory kernels,
which are characterized by three friction coefficients γ1,
γ2, γ3 and three rescaled memory times τ1/τD, τ2/τD,
τ3/τD and τm/τD. In fig. 3 we compare simulation data
with the heuristic formula (9). In the two plots, the MFPT
is shown as a function of γ2/γ1 and γ1/γ2 for various fixed
values of γ3/γ1 and γ3/γ2, respectively, and for fixed val-
ues of τ1/τD = 0.316, τ2/τD = 1, τ3/τD = 3.16. In both
plots we observe good agreement between the heuristic
formula, shown by solid lines, and the simulation data,
shown by stars, demonstrating the validity of the heuris-
tic formula also for tri-exponential memory kernels. This
suggests that the heuristic formula (9) holds also for any
multi-exponential memory.

We also observe in fig. 3 in both plots, that τMFP/τD

reaches the single-exponential limit, marked by a horizon-
tal black line to the right, if the amplitude of one memory
kernel becomes very large, i.e., for γ2/γ1 → ∞ in fig. 3(a)
and γ1/γ2 → ∞ in fig. 3(b). If the amplitude of one ex-
ponential memory contribution becomes very small, i.e.,
for γ2/γ1 → 0 in fig. 3(a) and γ1/γ2 → 0 in fig. 3(b),
the bi-exponential memory kernel limit is asymptotically
approached, which is marked by horizontal black lines to
the left.

In fig. 4 we show simulation data for the rescaled MFPT
τMFP/τD for bi-exponential memory as a function of the
rescaled barrier height U0/kBT and compare with the
heuristic formula (9). We observe good agreement for bar-
rier heights larger than U0/kBT ≥ 2 for all three friction
coefficient ratios γ2/γ1 = 0.1, 2, 10. This means that the
asymptotic exponential scaling of MFPT, dominated by
the exponential τMFP ∼ eU0/kBT and which corresponds
to the classical Arrhenius law, is already realized for quite
small barrier heights.

We thus have established that the heuristic formula
for the MFPT, eq. (9), is a good approximation for
multi-exponential memory kernels with general friction

Fig. 4: Bi-exponential memory. Results for the rescaled MFPT
τMFP/τD as a function of the rescaled barrier height U0/kBT
for τm/τD = 1, τ1/τD = 10 and τ2/τD = 1 and different values
γ2/γ1 = 0.1, 2, 10. The stars depict the simulation data and
the lines depict the heuristic formula (9).

coefficients and memory times if the barrier height is
larger than a few kBT . Based on this validation, we will
use that formula to investigate the global scaling behav-
ior of τMFP. We first derive the proper scaling variables
to be used in a global analysis of the MFPT. If we as-
sume that for all memory times τi/τD � 1 holds, eq. (9)
simplifies to

τMFP

τD
∝ 4eβU0

[∑
i

(
τ2
D

τ2
i

γi

γ

)]−1

. (12)

This demonstrates that the MFPT in this limit de-
pends on the scaling variables [(τD/τi)2γi/γ]−1 and that
it is dominated by the exponential memory contribution
for which (τD/τi)2γi/γ is largest. The scaling variables
look at first sight counter-intuitive, since one would ex-
pect the effect of an exponential memory contribution
to be proportional to its memory time. However, bar-
rier crossing in the energy-diffusion limit is dominated by
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Fig. 5: (a) and (b): scaling diagrams for the MFPT in the presence of bi-exponential memory, based on the heuristic formula (9)
as a function of the scaling variables (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 for U0/kBT = 3 and three ratios of the friction coefficients
γ2/γ1 = 1, 3, 10. The transition from the Markovian regime to the intermediate memory speed-up regime is defined by the
location where τMFP is smaller by 5% than the value in the Markovian limit (τ1 = τ2 = 0). The transition from the Markovian
regime to the intermediate memory slowdown regime is defined by the location where τMFP is larger by 5% than the value in the
Markovian limit. The asymptotic memory slowdown regime is defined where τMFP is ten times the value in the Markovian limit.
Results are shown for the high-friction case τm/τD = 0.01 in (a) and for the low-friction regime τm/τD = 10 in (b). The dashed
blue line in (a) represents the transition between the intermediate memory speed-up regime and the intermediate memory
slowdown regime, the intermediate memory slowdown regime is for τm/τD = 0.01 only present for γ2/γ1 = 10. The dashed
black diagonal lines in (a) and (b) in the asymptotic memory slowdown regime indicate the crossover from the τ1-dominated
barrier crossing for τ 2

1 /γ1 � τ 2
2 /γ2, to the τ2-dominated barrier crossing for τ 2

2 /γ2 � τ 2
1 /γ1. One sees that the Markovian

regime is entered when both (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 become small. Conversely, the asymptotic memory slowdown
regime is entered when both (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 become large. The two asymptotic regimes are separated by
intermediate slowdown or speed-up regimes. The small deviation between the scaling boundaries for the three different ratios
of the friction coefficients γ2/γ1 = 1, 3, 10 demonstrates that the scaling diagram in terms of the scaling variables (τ1/τD)2γ/γ1

and (τ2/τD)2γ/γ2 describes the global behavior very well and leads to a diagram that is almost independent of γ2/γ1. In (c)
and (d) the rescaled MFPT τMFP/τD is plotted according to eq. (9) as a function of (τ2/τD)2γ/γ2 for fixed (τ1/τD)2γ/γ1 = 10−4

for different fixed ratios γ2/γ1 for τm/τD = 0.01 in (c) and for τm/τD = 10 in (d). The dashed horizontal lines denote the
Markovian limit, obtained from eq. (9) by setting τ1 = τ2 = 0.

slow energy exchange between particle and heat bath. In
this limit, the barrier crossing rate for multi-exponential
memory is the sum of the individual barrier-crossing rates
of each single-exponential memory contribution and is
thus dominated by the memory contribution with the
shortest memory time, which most quickly can exchange
energy [41].

We therefore construct scaling diagrams for the behav-
ior of τMFP for bi-exponential memory as a function of the
inverse scaling variables (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2.
In fig. 5(a) we present the scaling diagram of the MFPT
for high friction, τm/τD = 0.01, and in fig. 5(b) for
low friction, τm/τD = 10, for various values of γ2/γ1,
based on a numerical analysis of the heuristic formula
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for the MFPT equation (9). For short rescaled mem-
ory times (τ1/τD)2γ/γ1 → 0 and (τ2/τD)2γ/γ2 → 0 the
Markovian regime is obtained, where memory effects are
absent. Depending on whether the friction is large or
small, this Markovian regime corresponds to the Marko-
vian high-friction regime or the Markovian inertial regime.
We define the transition to the asymptotic memory
slowdown regime, which is observed when (τ1/τD)2γ/γ1
and (τ2/τD)2γ/γ2 are both large, by the location where
τMFP is ten times the value in the Markovian limit, de-
fined by τ1 = τ2 = 0. The dashed black diagonal lines
in the asymptotic memory slowdown regime indicate the
crossover from the asymptotic scaling behavior τMFP ∼ τ2

1
for τ2

1 /γ1 � τ2
2 /γ2, to the asymptotic scaling behavior

τMFP ∼ τ2
2 for τ2

2 /γ2 � τ2
1 /γ1. Between the Markovian

regime and the asymptotic memory slowdown regime two
different intermediate regimes exist. We define the transi-
tion between the Markovian regime and the intermediate
memory speed-up regime by the location where τMFP is
smaller than the Markovian limiting result by 5%. Analo-
gously, we define the transition between the Markovian
regime and the intermediate memory slowdown regime
by the location where τMFP is larger than the Marko-
vian limiting result by 5%. The intermediate memory
speed-up regime in the high-friction limit, which was first
observed for single-exponential memory [24], can be intu-
itively understood by the fact that memory friction pushes
the particle towards the barrier after an unsuccessful
barrier-crossing attempt and therefore accelerates the bar-
rier crossing. In fig. 5(a) we observe both the intermediate
memory speed-up regime and the intermediate memory
slowdown regime for γ2/γ1 = 10, the transition between
these two intermediate regimes is denoted by a blue bro-
ken line. For the other values of γ2/γ1 the intermediate
memory slowdown regime is absent, which is why there is
only a blue broken line visible. We observe that the inter-
mediate regimes slightly shrink in size as the ratio γ2/γ1
increases, particularly in the direction of (τ1/τD)2γ/γ1.
Nevertheless, we conclude that the global behavior of the
MFPT can be very efficiently described in terms of the
scaling variables (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2.

In fig. 5(c) and (d) we show the rescaled MFPT as a
function of (τ2/τD)2γ/γ2 for fixed (τ1/τD)2γ/γ1 = 10−4 in
the high and low-friction regimes, this corresponds to ver-
tical paths in the scaling diagrams. In fig. 5(c) we see that
for small values of (τ2/τD)2γ/γ2, τMFP/τD has the same
value as in the Markovian regime, indicated by a dashed
horizontal line. Increasing the value of (τ2/τD)2γ/γ2 the
barrier crossing accelerates as one enters the intermedi-
ate memory speed-up regime and τMFP/τD decreases. For
γ2/γ1 = 10, τMFP/τD increases as (τ2/τD)2γ/γ2 grows
further as one enters the intermediate memory slowdown
regime, but the asymptotic memory slowdown regime is
not entered. For γ2/γ1 = 3, τMFP/τD slightly increases
but does not become larger than the Markovian limit,
therefore one stays in the intermediate memory speed-
up regime. In fig. 5(d) we see that the MFPT τMFP/τD

increases monotonically as (τ2/τD)2γ/γ2, increases, indi-
cating the intermediate memory slowdown regime.

Conclusion. – We studied numerically the barrier
crossing of a massive particle in a one-dimensional double-
well potential based on the generalized Langevin equation
in the presence of bi- and tri-exponential memory ker-
nels. We particularly studied the case where the different
exponential contributions have different amplitudes and
validated the heuristic crossover formula (9) that was pre-
viously introduced based on simulations for bi-exponential
memory with equal friction amplitudes γ1 = γ2. Based on
that heuristic formula, we show that the relative effect of
different exponential memory contributions on the MFPT
is described by the scaling variable (τD/τi)2γi/γ, which is
given by the rescaled ratio of the individual friction coef-
ficient γi and the squared memory time τ2

i . A global dia-
gram for the scaling behavior of the MFPT is constructed
in terms of these scaling variables for bi-exponential mem-
ory. In that scaling diagram the Markovian regime for
small memory times is separated from the asymptotic
memory slowdown regime by intermediate regimes, where
the MFPT is slightly larger or smaller than in the Marko-
vian regimes, depending on the parameters.

The scaling diagrams derived here look similar to the
scaling digrams derived previously for the restricted case
of bi-exponential memory with equal friction amplitudes
γ1 = γ2 [29], but are in fact much more general since by use
of the scaling variables (τD/τ1)2γ1/γ and (τD/τ2)2γ2/γ
they apply to the general case where the friction ampli-
tudes γ1 and γ2 are unequal. As a main result, we find
that in the non-Markovian limit, the barrier-crossing time
becomes dominated by the memory contributions that are
characterized by the largest scaling variables (τD/τi)2γi/γ.
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Appendix

The generalized Langevin equation can be rewritten as
the coupled set of dimensionless Markovian equations

˙̃x(t̃ ) = z̃(t̃ ), (A.1)

τm

τD

˙̃z(t̃ ) =
N∑

i=1

τD

τi

γi

γ
[ỹj(t̃) − x̃(t̃ )] + F̃ (x̃(t̃ )), (A.2)

˙̃yi(t̃ ) = −τD

τi
[ỹi(t̃ ) − x̃(t̃ )] +

√
γ

γi
ξ̃i(t̃ ), 1 ≤ i ≤ N,

(A.3)

where t̃ = t/τD, x̃(t̃) = x(τD t̃)/L, z̃ and the ỹi are aux-
iliary variables, F̃ (x̃) = (kBT )−1LU ′(Lx̃), dots on top of
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functions denote derivatives with respect to t̃, and the
correlators of the dimensionless random forces ξ̃i(t̃) :=
(kBT )−1L fRi(τD t̃) are given by

〈ξ̃i(t̃)ξ̃j(t̃′)〉 = 2δ(t̃ − t̃′)δij . (A.4)

Solving the inhomogeneous harmonic-oscillator equa-
tion (A.3) for the auxiliary variable ỹi, substituting the
result into eq. (A.2), it is seen that eqs. (A.1)–(A.4)
are equivalent to the GLE equations (1), (2) [29]. In
the simulations we used eqs. (A.1)–(A.4) with the 4th-
order Runge-Kutta method. The time step was fixed at
Δt̃ = Δt/τD = 0.01 · min{τm/τD, τ1/τD, τ2/τD, 1}.
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