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We extract the folding free energy landscape and the time-
dependent friction function, the two ingredients of the gener-
alized Langevin equation (GLE), from explicit-water molecular
dynamics (MD) simulations of the α-helix forming polypeptide
alanine9 for a one-dimensional reaction coordinate based on the
sum of the native H-bond distances. Folding and unfolding times
from numerical integration of the GLE agree accurately with
MD results, which demonstrate the robustness of our GLE-based
non-Markovian model. In contrast, Markovian models do not
accurately describe the peptide kinetics and in particular, cannot
reproduce the folding and unfolding kinetics simultaneously, even
if a spatially dependent friction profile is used. Analysis of the
GLE demonstrates that memory effects in the friction significantly
speed up peptide folding and unfolding kinetics, as predicted by
the Grote–Hynes theory, and are the cause of anomalous diffusion
in configuration space. Our methods are applicable to any reac-
tion coordinate and in principle, also to experimental trajectories
from single-molecule experiments. Our results demonstrate that a
consistent description of protein-folding dynamics must account
for memory friction effects.

protein folding | non-Markovian processes | mean first-passage times |
generalized Langevin equation | memory effects

B iological macromolecular function relies on coupled pro-
cesses that take place on widely different timescales; this

makes the theoretical description of such systems challenging.
For proteins, the topic of this paper, folding occurs in the range
of microseconds to many minutes or even hours and involves
bond vibrations and hydration water motion on subpicosecond
times (1–3). In order to enable large-scale simulations as well as
meaningful theories, which should concentrate on the essential
features of such processes, several methods for the elimination
of irrelevant degrees of freedom have been introduced. For the
classical dynamics of an interacting many-body system, the rig-
orous treatment is based on the Liouville equation and employs
the projection operator formalism to integrate out all degrees of
freedom except one or a few reaction coordinates (4, 5). Instead
of 6N equations of motion for all positions and momenta of an
N -particle system, the dynamics is described by few equations for
the observables of interest. This coarse-graining procedure leads
from a deterministic Hamiltonian to a stochastic description by
the generalized Langevin equation (GLE), which for the case of
a one-dimensional coordinate q(t), reads (4–7)

mq̈(t) =−∇U [q(t)]−
∫ t

0

ds Γ(t − s)q̇(s) +FR(t), [1]

where m is the effective mass of the coordinate q . The potential
of mean force U (q), which for proteins, corresponds to the fold-
ing free energy landscape, is obtained from the equilibrium prob-
ability distribution ρ(q) via U (q) =−kBT ln ρ(q), where kBT is
the thermal energy with kB the Boltzmann constant and T the
absolute temperature. The elimination of degrees of freedom
introduces non-Markovian effects in terms of the memory func-
tion Γ(t), which describes time-dependent friction and thereby,
couples the present dynamics to the past states, and stochas-
tic effects in terms of the random force FR(t). In equilibrium,
the random force FR(t) is related to Γ(t) via the fluctuation–

dissipation theorem 〈FR(t)FR(t ′)〉= kBTΓ(|t − t ′|) (7). The
derivation of the GLE in Eq. 1 relies on several approximations
(8–11). Thus, for a given reaction coordinate that is a nonlinear
function of the microscopic coordinates, the validity of Eq. 1 is
not guaranteed and needs to be explicitly checked.

The folding free energy U (q) can be straightforwardly
obtained from simulations; it can also be obtained from single-
molecule experiments (12–15). Clearly, there is no guarantee
that a given reaction coordinate, which could be an experi-
mental observable such as the distance between two attached
fluorophores, is a good reaction coordinate, meaning that it leads
to a Markovian description of the folding process. Different reac-
tion coordinates have been proposed for the efficient description
of protein-folding simulations (16); schemes to construct reac-
tion coordinates that optimally yield the transition state, which
separates unfolded and folded basins of attraction from each
other, have been developed (17). As an alternative to continuous
reaction coordinates, Markov models describe protein dynamics
in terms of a set of metastable states (18, 19), for which full access
to the underlying microscopic coordinates is typically needed.
These works have in common that descriptions are sought that
minimize memory effects, so that stochastic Markovian theory
applies. In the opposite direction, various methods were devel-
oped to extract the memory function Γ(t) from time series data
for a given reaction coordinate (9, 20–25), but the complexities
of the GLE, in particular for a nonlinear protein-folding free
energy in combination with a numerically determined memory
function, prevented predictions of protein-folding times from
the GLE, with the notable exception of dialanine (26). This is
why in protein-folding theory, the Markovian Langevin equation
(LE), where the memory integral is replaced by an instantaneous

Significance

Protein-folding kinetics is often described as Markovian (i.e.,
memoryless) diffusion in a one-dimensional free energy land-
scape, governed by an instantaneous friction coefficient that
is fitted to reproduce experimental or simulated folding times.
For the α-helix forming polypeptide alanine9 and a spe-
cific reaction coordinate that consists of the summed native
hydrogen-bond lengths, we demonstrate that the friction
extracted from molecular dynamics simulations exhibits sig-
nificant memory with a decay time that is in the nanosec-
ond range and thus, of the same order as the folding and
unfolding times. Our non-Markovian modeling not only repro-
duces the molecular dynamics simulations accurately but also
demonstrates that memory friction effects lead to anomalous
and drastically accelerated protein kinetics.

Author contributions: C.A., L.T., F.N.B., J.K., J.O.D., and R.R.N. designed research; C.A. and
L.T. performed research; and C.A. and R.R.N. wrote the paper.y

The authors declare no competing interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y
1 To whom correspondence may be addressed. Email: rnetz@physik.fu-berlin.de.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2023856118/-/DCSupplemental.y

Published July 29, 2021.

PNAS 2021 Vol. 118 No. 31 e2023856118 https://doi.org/10.1073/pnas.2023856118 | 1 of 7

D
ow

nl
oa

de
d 

at
 C

ha
rit

e 
- 

M
ed

. B
ib

lio
th

ek
 o

n 
S

ep
te

m
be

r 
24

, 2
02

1 

http://orcid.org/0000-0001-7154-9744
http://orcid.org/0000-0001-8583-6488
http://orcid.org/0000-0002-8559-907X
http://orcid.org/0000-0003-0147-0162
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rnetz@physik.fu-berlin.de
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023856118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2023856118/-/DCSupplemental
https://doi.org/10.1073/pnas.2023856118
https://doi.org/10.1073/pnas.2023856118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2023856118&domain=pdf


friction term, is predominantly used. Such a Markovian theory
yields many useful insights into protein-folding dynamics and cul-
minated in the comparison of transition-path times and mean
folding times (27, 28). However, the success of free energy fold-
ing theory on the Markovian level relies partly on the fact that
the friction, which determines the prefactor of the Kramers fold-
ing time, is normally used as a fitting parameter. Even when the
friction is allowed to vary with the reaction coordinate and is
extracted from simulations, it is typically computed from folding
or reconfiguration times, which by construction, leads to self-
consistent predictions of the kinetics (29, 30). In fact, recent
experiments revealed significant inconsistencies when compar-
ing directly measured free energy barrier heights with those
inferred from transition path and folding times (15), which were
suggested to be due to memory effects (31, 32). The same incon-
sistencies are obtained when the friction of a reaction coordinate
is not fitted to folding times but rather, extracted directly from
simulation trajectories and used in the framework of Markovian
theory, as we demonstrate here.

In our approach, instead of searching for a good reaction
coordinate, we employ a standard one-dimensional coordinate
that consists of the sum of the separations between native con-
tacts. We use accurate tools for extracting all parameters of the
GLE from molecular dynamics (MD) simulations for the helix-
forming polypeptide Ala9 in water. The free energy U (q) shows
multiple minima separated by low barriers, indicative of the
sequential formation of the helix, while the longest decay time
of the multiexponential memory function Γ(t) is of the order
of the unfolding time. These properties render Ala9 as a very
sensitive test of kinetic theory. We simulate the resulting GLE
by Markovian embedding techniques. By comparison of the MD
and GLE results for the mean folding and unfolding times, we
demonstrate that the one-dimensional GLE is an accurate and
practical tool for the description of protein-folding dynamics. On
the other hand, the Markovian version of the overdamped GLE
cannot describe the folding and unfolding kinetics of the pep-
tide as long as the friction is not a fitting parameter but rather,
taken as extracted from the MD simulations. This stays true even
when the friction coefficient is allowed to depend on the reaction
coordinate. As predicted by the Grote–Hynes theory, mem-
ory typically accelerates barrier crossing, where the acceleration
magnitude depends primarily on the ratio of the memory time
and the distance between the minimum and the barrier in reac-
tion coordinate space (33–38). This memory-induced speedup
of folding and unfolding is found to be accompanied by pro-
nounced anomalous diffusion in reaction coordinate space. Our
results are corroborated by a systematic Kramers–Moyal coef-
ficient (KMC) analysis, which shows that higher-order quartic
KMCs are nonnegligible and that the linear and quadratic KMCs
vanish in the short time limit, as expected in the presence of
non-Markovian effects. This implies that the description of pro-
tein folding in terms of the Fokker–Planck equation is only valid
above a certain timescale that needs to be suitably chosen. We
also find that a spurious reaction coordinate–dependent friction
profile arises when non-Markovian protein dynamics is described
using a Markovian model.

Results and Discussion
MD Simulations and GLE Parameter Extraction. The effective GLE
is constructed from a 10-µs-long MD trajectory for Ala9 in water,
which is the simplest polypeptide that forms an α-helix (39)
(Methods and SI Appendix, section 1 have details). As a reaction
coordinate, we use the summed separations between the H-bond
donor nitrogen of residue n and the acceptor oxygen of residue
n + 4,

q(t) =
1

3

4∑
i=2

‖rNi (t)− rOi+4(t)‖, [2]

which characterize the left-handed α-helical conformation. In
the α-helical state, q has a value around 0.3 nm, the mean H-
bond length between nitrogen and oxygen. We will further also
consider the end-to-end distance as an alternative reaction coor-
dinate. The free energies U (q) in Fig. 1A for different simulation
lengths demonstrate that the simulation is fully converged after
about 6µs. The free energy displays several metastable states,
which are also discernible in the trajectory in Fig. 1B and make
this simple polypeptide challenging for theoretical description.

Using a generalization of earlier methods (40), we extract the
running integral G(t) =

∫ t

0
dsΓ(s) (SI Appendix, section 2 has

details), from which the memory function Γ(t) is obtained via
a numerical derivative and fitted using least-square methods to a
multiexponential of the form

Γ(t) =

5∑
n=1

γn
τn

e−t/τn . [3]

The extracted G(t) (gray line) is compared with the correspond-
ing fit (red line) in Fig. 2A; no significant deviations can be
discerned. The comparison of the extracted and fitted memory
function Γ(t) in Fig. 2B reveals oscillations below a picosecond,
which are not reproduced by the exponential fit function but also
do not play a role for the kinetics, as will be shown below. The
fitted memory times τn and friction coefficients γn are presented
in Table 1; the typical reconfiguration time, which can be qual-
itatively inferred from the trajectory in Fig. 1B, is of the order
of the longest decay time τ5≈ 5 ns. This means that the reaction
coordinate is not particularly good since it exhibits pronounced
non-Markovian effects and thus, constitutes a suitable test of our
methods.

The effective mass follows from the equipartition theorem
according to m = kBT/〈q̇2〉 and turns out to be independent of
q and given by m = 31.3 u (SI Appendix, section 3). The motion
described by the GLE is expected to become diffusive after the
inertial time τm =m/γ̄, where the total friction coefficient is
given by γ̄=

∑
n γn = 3.5 · 105 u/ps (Table 1). It follows that

τm = 0.1 fs, even shorter than the MD integration time step;
thus, inertial effects are completely negligible. Nevertheless, the

A

B

Fig. 1. (A) The free energy U(q) for the mean hydrogen-bond distance
reaction coordinate of Ala9 for different simulation lengths; representative
snapshots of the polypeptide backbone in all local minima are shown. The
barrier used for the calculation of unfolding and folding times is positioned
at qB = 0.54 nm. (B) A 200 -ns-long segment of the trajectory is shown.
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Fig. 2. (A) Running integral G(t) over the memory function; Inset shows a lin-log plot. The horizontal dashed line denotes the total friction coefficient
γ̄. (B) Memory function Γ(t); Inset includes short times. Gray lines correspond to the numerical data; red lines correspond to the multiexponential fit
according to Eq. 3. (C) Mean-square displacement of the reaction coordinate; MD (blue line) and GLE (orange broken line) simulation results agree perfectly
and exhibit superdiffusion for times up to 0.1 ps and subdiffusion up to 1 ns. Underdamped (underd.; red line) and overdamped (overd.; green line,
underneath the red line) Markovian Langevin simulations agree perfectly with each other but miss the anomalous diffusion.

acceleration term in Eq. 1 is kept in the GLE simulations, as
it stabilizes the numerical integration. In order to estimate the
importance of memory effects, the memory times τn are com-
pared with the diffusion timescale τD =βγ̄L2/2 (36), which is the
time it takes a free Brownian particle to diffuse over a length L in
reaction coordinate space where β= 1/kBT is the inverse ther-
mal energy. For L= 0.22 nm, the distance between the folded
minimum at q = 0.32 nm and the barrier at q = 0.54 nm in
Fig. 1, one obtains τD = 6.8 ns, which is of the order of the
longest memory time τ5. This places the system in the so-called
memory-acceleration regime, where memory effects are relevant
and significantly accelerate barrier crossing (36–38).

Comparison of MD and GLE Simulations. Numerical integration of
the GLE is straightforwardly achieved by Markovian embedding
(i.e., by transforming the GLE into a system of linearly coupled
LEs) (22) (SI Appendix, section 4).

In Fig. 3A, we show profiles of the mean first-passage time
(MFPT) τMFPT(qS , qF ) for unfolding (start position qS = qL =
0.32 nm; solid lines) and folding kinetics (start position qS =
qR = 0.99 nm; broken lines) as a function of the final position
qF . Statistical errors are determined accounting for data corre-
lations (41) (SI Appendix, section 5) and are smaller than the
line thickness. MD and GLE simulation results (blue and orange
lines, respectively) agree nicely; this demonstrates that GLE-
based non-Markovian modeling of protein folding is feasible and
accurate. Even first-passage time distributions from GLE and
MD simulations agree satisfactorily with each other, as shown
in SI Appendix, section 6.

Beyond reproducing MD results, the GLE is a diagnostic tool
that allows us to quantify the importance of memory effects.
In order to modulate memory effects in the GLE, we rescale
the memory times according to τn→ατn for n = 2, 3, 4, 5 while
keeping the memory time τ1 of the fastest exponential contri-
bution fixed. Since τ1 = 7 fs is above the simulation time step
of 1 fs, this ensures that in the limit α→ 0, we obtain a regu-
larized model that, as we will show below, corresponds to the
Markovian limit. In Fig. 3B, we show MFPTs between the three
positions qL = 0.32 nm, qB = 0.54 nm, and qR = 0.99 nm as a
function of the rescaling factor α from GLE simulations. The six
different MFPTs are illustrated in Fig. 3 C, Inset by filled and
closed arrows and indicated in Fig. 3B by corresponding filled
and open colored spheres. We see that reducing the memory
time increases all MFPTs; in other words, memory accelerates
barrier crossing (36). As expected, the GLE results approach the
overdamped Markov limit, denoted by the horizontal lines in the

corresponding color and calculated from the exact expression in
Eq. 10, without adjustable parameters as α tends to zero. Inter-
estingly, for folding to the barrier (open green circles), the MFPT
for α= 1 and the Markovian limit for α→ 0 differ only by a fac-
tor of around 2.5. On the other hand, for unfolding to the barrier
(filled red circles), the α→ 0 and α= 1 MFPTs differ by a fac-
tor of around nine. This means that even when treating the total
friction coefficient γ̄ as a free parameter, the Markovian over-
damped theory Eq. 10, because it is linear in the friction, can
reproduce either the MD folding or unfolding times to the bar-
rier but not both simultaneously. This is not due to inertial effects
since the overdamped Markovian theory works perfectly for α→
0, as seen in Fig. 3B. Rather, memory effects influence the times
of folding and unfolding to the barrier top differently. This is
demonstrated by the plot of MFPT ratios as a function of α in
Fig. 3C, where it is seen that the ratio of the folding and unfold-
ing times to the barrier top τMFPT(qR, qB )/τMFPT(qL, qB ),
denoted by open green and filled red spheres, depends sensi-
tively on α. In contrast, the ratios of reciprocal MFPTs (i.e.,
MFPTs with interchanged start and final positions), denoted
by red, green, and blue lines with identically colored open and
filled circles, do not depend on α, which shows that the mem-
ory dependence of ratios of MFPTs depends on the precise
MFPT definition and by no means indicates a breakdown of
the detailed balance or the law-of-mass action. In SI Appendix,
section 6, we demonstrate that the memory-induced speedup is
even more pronounced for transition-path times compared with
folding and unfolding times, in agreement with previous findings
(15, 31, 32).

The high accuracy of GLE simulations is furthermore reflected
by the good agreement of the mean-square displacement
〈∆q(t)2〉= 〈(q(t ′+ t)− q(t ′))2〉 from MD and GLE simula-
tions in Fig. 2C, which exhibits pronounced subdiffusive behav-
ior with an exponent 0.4 for times between 1 ps and 1 ns.
Anomalous diffusion is often modeled by fractional theories

Table 1. Fitted memory function parameters from Eq. 3

n γn (u/ps) τn (ps)

1 2.2 · 103 0.007
2 1.2 · 104 4.6
3 4.2 · 104 40.3
4 2.4 · 105 399
5 5.7 · 104 4,970
γ̄=

∑
n γn 3.5 · 105
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BA C

Fig. 3. (A) Comparison of unfolding and folding MFPTs τMFPT(qS, qF ) from MD (blue) and GLE (orange) simulations as a function of the final position qF for
start positions qS = qL = 0.32 nm (solid lines) and qS = qR = 0.99 nm (broken lines). The gray curve shows the folding free energy U(q). (B) Dependence of
different MFPTs from GLE simulations on the memory time rescaling factor α; the corresponding start and final positions are illustrated in C, Inset. Open and
filled circles correspond to open and filled arrows, respectively, in C, Inset. The colored horizontal lines denote corresponding results for the overdamped
Markov limit from Eq. 10. (C) Ratios of the MFPTs shown in B. Ratios of reciprocal MFPTs do not depend on α (red, green, and blue lines that connect colored
circles); only the ratio of the folding and unfolding times to the barrier top, τMFPT(qR, qB)/τMFPT(qL, qB) (open green and filled red spheres), depends on α.

(31, 42). Fig. 2C shows that it is accurately reproduced by
multiexponential memory and that it disappears when memory
effects are eliminated, in line with recent theoretical analy-
sis (43). The overall good agreement between MD and GLE
simulation results shows that the GLE in the form of Eq. 1
describes the kinetics of Ala9 very accurately. This is not due
to our specific choice of reaction coordinate, as demonstrated
in SI Appendix, section 7, where we present a similar GLE-
based analysis using the Ala9 end-to-end distance as reaction
coordinate.

Reaction Coordinate–Dependent Friction. We so far demonstrated
that the GLE in the form of Eq. 1 reproduces the MD simulation
kinetics and that memory effects are significant. We now inves-
tigate whether reaction coordinate–dependent friction effects,
which are not included in the GLE, are relevant. The Marko-
vian LE that incorporates a friction function γ(q) has been amply
used to describe protein-folding dynamics (29, 30, 44). In the
underdamped version, it reads

mq̈(t) =−U ′(q)− γ(q)q̇(t) +
√

kBTγ(q) η(t), [4]

which for general U (q), unfortunately is analytically intractable.
The overdamped version

0 =−U ′(q)− γ(q)q̇(t)− kBT

2

γ′(q)

γ(q)
+
√

kBTγ(q) η(t) [5]

is much more useful since the MFPTs can be calculated analyti-
cally. In these expressions, the random force η(t) has vanishing
mean, and its correlator is given by 〈η(t)η(t ′)〉= 2δ(t − t ′). For
constant friction, the underdamped LE (Eq. 4) can be derived
from the GLE (Eq. 1) by a systematic expansion of the inte-
gral kernel (SI Appendix, section 8). The overdamped LE (Eq.
5) follows from Eq. 4 by neglecting the inertia term; the term
proportional to the gradient γ′(q) cancels a spurious drift term
and follows by mapping on the Fokker–Planck equation (SI
Appendix, section 9) (6). In fact, from the overdamped LE with
constant friction, an arbitrary friction profile γ(q) can be created
by a nonlinear transformation of the reaction coordinate (29, 30)
(SI Appendix, section 10); this suggests that spatially dependent
friction is related to nonlinearities in the reaction coordinate that
are not straightforwardly captured by the projection techniques
used to derive the GLE Eq. 1.

Various methods to extract γ(q) from experimental or sim-
ulated trajectories have been proposed; a systematic approach

involves the KMCs, which for the overdamped case and for finite
lag time ∆t , read

Dk (q) =
1

k !

1

∆t

〈
(q(t + ∆t)− q(t))k

〉
q(t)=q

. [6]

The Fokker–Planck equation for the time-dependent probability
distribution P(q , t) in terms of the KMCs follows in the limit
∆t→ 0 as (7)

∂P(q , t)

∂t
=

∞∑
k=1

∂k

∂qk
[Dk (q)P(q , t)], [7]

and the underdamped case is treated in SI Appendix, section 11.
According to Pawula’s theorem, for a Markovian process, all
KMCs with k > 2 vanish for ∆t→ 0, and Eq. 7 takes the stan-
dard form of a second-order partial differential equation (7). For
a non-Markovian process [i.e., if the memory function Γ(t) in Eq.
1 has a finite range], all KMCs with k > 1 vanish for ∆t→ 0, and
thus, the stochastic properties of the process cannot be described
by a partial differential equation for P(q , t) at all (SI Appendix,
section 12).

For the underdamped LE, the relation between the second-
order velocity KMC Dvv and the friction profile γUD(q)
reads (7)

Dvv (q) =
1

2∆t
〈(v(t + ∆t)− v(t))2〉q(t)=q = kBT

γUD(q)

m2
. [8]

For the overdamped LE, γOD(q) follows from the second-order
position KMC Dqq as

Dqq(q) =
1

2∆t
〈(q(t + ∆t)− q(t))2〉q(t)=q =

kBT

γOD(q)
[9]

(SI Appendix, section 9). For the numerical computation of
the KMCs, we use kernel-density estimators (45) (SI Appendix,
section 13). In Fig. 4A, we show the friction profiles γUD(q) (cir-
cles) and γOD(q) (lines) computed from the KMCs for different
lag times ∆t ; a number of points are noteworthy. 1) We find
no significant deviations between the friction profiles extracted
from MD (solid lines and filled circles) and GLE (broken lines
and open circles) trajectories; this reverberates that the GLE
describes the protein dynamics very faithfully. 2) The under-
damped and overdamped friction profiles γUD(q) and γOD(q)

4 of 7 | PNAS
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Fig. 4. (A) Friction coefficient profiles γ(q) from KMC analysis for differ-
ent lag times ∆t (different colors) for the underdamped (underd.) Langevin
model, Eq. 8, from MD (filled circles) and GLE simulations (open circles) and
for the overdamped (overd.) Langevin model, Eq. 9, from MD (solid lines)
and GLE simulations (broken lines). The gray horizontal line shows the total
friction coefficient γ̄ extracted from MD simulations. (B) Friction profiles
computed from the MD MFPT profiles in Fig. 3A using Eq. 11. γunf(qF ) fol-
lows from the unfolding MFPTs for start position qS = 0.32 nm, and γfol(qF )
follows from folding MFPTs for qS = 0.99 nm. The gray horizontal line
denotes the friction coefficient γ̄ extracted from MD simulations. The gray
curve in the background shows the folding free energy U(q). (C) MFPTs from
MD and GLE simulations are compared with overd. Markovian predictions
according to Eq. 10 using γunf(qF ) and γfol(qF ) from B.

disagree for all lag times ∆t , which very clearly demonstrates an
inconsistency in the Markovian description of protein folding. In
fact, in the limit ∆t→ 0, both Dqq and Dvv vanish; thus, γOD(q)
diverges, while γUD(q) goes to zero (SI Appendix, section 12). 3)
While the underdamped friction γUD(q) never reaches a realis-
tic value close to γ̄, the overdamped friction γOD(q) approaches
γ̄ for ∆t ≈ 1 ns. This shows that lag times of the order of the
longest memory time have to be used in order to generate real-
istic friction values. 4) The friction profiles extracted from the
GLE simulations are position dependent, seen most clearly in
γOD(q) for ∆t = 1 ns (purple broken line); this is clearly a spu-
rious effect since the GLE has no position-dependent friction.
We conclude that the mapping of a non-Markovian process onto
a Markovian LE produces spurious position-dependent friction
effects. Presumably, the effective friction of proteins will in gen-
eral exhibit a dependence on the reaction coordinate, but the

extraction of friction profiles would have to account for mem-
ory effects in order to avoid spurious effects. The capability of
the GLE Eq. 1 to very accurately reproduce the MD simulation
kinetics suggests that for the present case of Ala9, the spatial
dependence of friction is negligible.

An alternative way to determine a friction profile γ(q) in
the overdamped limit uses the one-to-one relation between the
MFPT profiles in Fig. 3A and γ(q). From the expressions for
the folding and unfolding times (Eq. 10), γ(q) follows by inver-
sion according to Eq. 11 (30). In Fig. 4B, we show γunf(qF ) and
γfol(qF ) computed from unfolding and folding MFPTs from MD
simulations for start positions qS = qL and qS = qR, respectively.
Not surprisingly, the profiles γunf(qF ) and γfol(qF ) are rather
close to γ̄ extracted from the MD simulations, which is shown as
a gray horizontal line in Fig. 4B, but differ significantly from each
other. This suggests that a single friction profile cannot describe
folding and unfolding of Ala9 simultaneously. In fact, the values
of γunf(qF ) and γfol(qF ) go down as qF moves to the respective
start positions (i.e., as the folding and unfolding times become
shorter). This reflects that memory effects particularly accelerate
fast transitions (36–38).

To demonstrate the limitations of the friction profiles in Fig.
4B, we show in Fig. 4C folding and unfolding MFPT profiles
that are calculated according to Eq. 10 from γunf(q) (filled cir-
cles) and γfol(q) (open circles). By construction, the MFPTs
using γunf(q) reproduce the unfolding simulation data, while
the MFPTs using γfol(q) reproduce the folding simulation data.
In contrast, the MFPTs using γunf(q) fail to reproduce the
simulated folding times, and the MFPTs using γfol(q) fail to
reproduce the simulated unfolding times, in particular when the
folding/unfolding times become smaller than about 10 ns. In con-
trast, the GLE model (broken lines) reproduces both folding and
unfolding MD dynamics (solid lines). This underlines that there
is no consistent way of describing the complete folding/unfolding
dynamics with a Markovian model.

Conclusions
By extracting the time-dependent friction from MD simulations
for the polypeptide Ala9 from explicit-water MD simulations, we
demonstrate that the resulting GLE model can be straightfor-
wardly integrated numerically and reproduces the folding and
unfolding kinetics of the MD simulations very accurately. Our
findings are not restricted to a reaction coordinate based on the
summed distances between native H bonds. As we show in SI
Appendix, section 7, the same analysis of the Ala9 end-to-end
distance leads to similar results. Decreasing the memory time in
the GLE while keeping the friction coefficient (i.e., the integral
over the memory function) constant, the folding kinetics changes
significantly for folding and unfolding events. This shows that
memory effects are important even for the formation kinetics of
a single α-helix.

In contrast, the Markovian LE cannot reproduce the full
Ala9 reconfiguration dynamics, even with a fitted friction profile;
this follows from the comparison of the folding and unfold-
ing kinetics, which would need to be modeled with differ-
ent friction profiles in order to reproduce the MD simulation
kinetics.

We have mostly used the GLE model as a diagnostic
tool to understand and quantify non-Markovian effects; since
non-Markovian simulations are rather inexpensive, they can
also be used as an efficient tool to simulate the response
of proteins to environmental changes (e.g., externally applied
forces). In fact, our extraction technique for the memory func-
tion can in principle also be applied to trajectories from
single-molecule experiments (13–15), which would enable us
to perform non-Markovian GLE simulations on experimen-
tal systems directly, without the need of atomistic MD sim-
ulations. Because of the limited time resolution of typical
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experimental data, suitable extraction techniques would have to
be used (24, 46).

Methods
MD and GLE Simulation Details. We use the all-atom Amber03 force field
(47) with extended simple point-charge (SPC/E) water (48). The cubic simu-
lation box has side lengths of 4.95 nm and contains 4,023 water molecules.
The Lennard–Jones interactions are cut off after 1.0 nm. For long-range
electrostatic interactions, we use the particle Mesh Ewald method (49).
The simulation time step is 1 fs, and the total simulation time is 10µs.
All simulations are performed in the NVT ensemble using the Gromacs
2019 MD package (50). Further details are given in SI Appendix, section
1. In the GLE simulations, we used the same time step and simulation
time as in the MD simulations. Input files of the MD simulations are avail-
able for download under (http://dx.doi.org/10.17169/refubium-29935). Our
Python scripts for the numerical extraction of the memory kernel, for per-
forming a GLE simulation, and computing MFPTs can be found in GitHub
(https://github.com/lucastepper/memtools).

From MFPTs to Friction Profiles. The MFPT is defined as the mean time
needed to reach the final position qF for the first time when starting from
a position qS. For the overdamped LE in Eq. 5, it reads for qS < qF (51),

τMFPT(qS, qF ) = β

∫ qF

qS

dq eβU(q)
γ(q)

∫ q

qmin

dq′ e−βU(q′ ) [10a]

and for qS > qF ,

τMFPT(qS, qF ) = β

∫ qS

qF

dq eβU(q)
γ(q)

∫ qmax

q
dq′ e−βU(q′)

. [10b]

Taking the derivative of Eq. 10 w.r.t. qF gives the friction profile γ(qF ) as (30)

γunf(qF ) = kBT
e−βU(qF )

Z1

∂τMFPT

∂qF
for qS < qF , [11a]

γfol(qF ) =−kBT
e−βU(qf )

Z2

∂τMFPT

∂qF
for qS > qF , [11b]

where Z1 =
∫ qF

qmin
dq e−βU(q) and Z2 =

∫ qmax
qF

dq e−βU(q).

Data Availability. Derivations that support the findings of this study
are included in SI Appendix. Simulation input files data have been
deposited in Institutional Repository (http://dx.doi.org/10.17169/refubium-
29935). Our codes for extracting the memory kernel, running GLE simu-
lations, and for computing MFPTs are available in GitHub (https://github.
com/lucastepper/memtools).
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