arXiv:2109.02481v2 [physics.flu-dyn] 7 Sep 2021

Large-scale flow in a cubic Rayleigh-Bénard cell: Long-term turbulence statistics and
Markovianity of macrostate transitions
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We investigate the large-scale circulation (LSC) in a turbulent Rayleigh-Bénard convection flow
in a cubic closed convection cell by means of direct numerical simulations at a Rayleigh number
Ra = 10°. The numerical studies are conducted for a single flow trajectory up to 10° convective
free-fall times to obtain a sufficient sampling of the four discrete LSC states and the two crossover
configurations which are taken in between for short periods. It is found that the statistics and
time history depends strongly on the Prandtl number Pr of the working fluid which takes values
of 0.1, 0.7, and 10. It changes from very rapid switches for the lowest Prandtl number to the
spontaneous lock in one of the four states for the whole period for the largest one. Alternatively,
we run ensembles of up to 1800 short-term simulations to study the transition probabilities between
the discrete LSC states. This second approach is also used to probe the Markov property of the
dynamics. The ensemble analysis revealed that the sample size might still be too small to conclude
firmly the Markovianity of the transition process from one LSC state to another even though it is
indicated.
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I. INTRODUCTION

Turbulent convection is a classic example of dynamical system driven out of equilibrium which is omnipresent in
nature; astrophysical [I], atmospheric, and oceanic convection [2] are the primary contributing factors for observed
phenomenona in planets and stars. Contrary to the notion of presence of multiple scales and vigorous mixing due
to turbulence, natural turbulent convection frequently exhibits formation of large scale structures and patterns, such
as in clouds [3] and supergranules in Sun [4, [5]. On a physically attainable scale, such natural turbulent convection
can be investigated using the simplified Rayleigh-Bénard convective (RBC) system, where a layer of fluid is confined
between two plates with a thermal gradient [6H8]. Thermal convection originates due to density differences in the
fluid as a result of the constant thermal gradient across the fluid layer, represented by the dimensionless Rayleigh
number, which is given by

3
Ra — agéTH ’ (1)
VK

where o represents the isobaric thermal expansion coefficient, g the acceleration due to gravity, 67" = Thottom — Ltop
the temperature difference maintained along the fluid layer of thickness H, and v and « being the kinematic viscosity
and thermal diffusivity of the fluid, respectively. Convection begins when the temperature difference between the
plates exceeds the critical value, 6T > 67,, which corresponds to the critical Rayleigh number of Ra, = 1708 when
the impermeable plates satisfy the no-slip boundary condition for the velocity [6]. The onset is generally characterized
by laminar structures. Subsequent increment of Ra leads to a transition from laminar to turbulent region, which is
characterized by thinning of boundary layers and generation of spatially extended coherent structures which are now
denoted as superstructures of convection [J].

Turbulent RBC in confined geometries, such as cubic or cylindrical cells, also leads to an alignment of the rising
and falling thermal plumes to form a coherent structure known as the large scale circulation or the mean wind of
thermal convection [I0HI5]. The alignment of the plumes into an LSC and the increasing confinement towards a
space direction can significantly influence the heat transport in the system [I6HI8]. In such cases the aspect ratio,
which denotes the ratio of the horizontal extension (diameter or side length) to the height H, is decreased. Daya
and Ecke took a further perspective on this subject and asked how the specific geometry at same aspect ratio alters
the heat transfer [I9]. Cubic closed cells are very specific since the LSC cannot drift azimuthally, but appears in a
finite number of discrete macroscopic flow states [20H24]. In detail, the LSC appears preferentially in the form of
circulation rolls along the two diagonals. This results in four states if one takes two orientations along each diagonal
into account. Fast switches between these states proceed via four transient LSC states that are aligned with the side
faces of the cell. While the configurations parallel to the diagonals are considered as stable, longer living LSC states
of the turbulent convection flow, the ones along the side faces of the closed cube are unstable, short-living convection
states.

One such attempt has been demonstrated in Giannakis et al [23] by a data-driven analysis of the eigenfunctions of
the linear Koopman operator that describes the unitary time evolution of observables of the dynamical system rather
than the nonlinear evolution of the states [25] 26]. The leading eigenvectors could be assigned to the 4 stable LSC
states, the subsequent eigenstates were related to secondary flow structures in form of corner vortices that drive the
system from one LSC state to another. However, the simulation time was still too short to obtain a sufficient number
of LSC switches with 10* free-fall times, the characteristic convective time unit of the flow. A detailed analysis of
these re-orientations sets the motivation of the present work.

The question that consequently arises is whether the re-orientation process of the LSC is indeed random and
all discrete LSC states appear with the same probability. A further point is how this dynamics depends on the
dimensionless Prandtl number, which is given by

Pr= . (2)
and quantifies the ratio of viscous to temperature diffusion in the fluid.

In this work, we want to study these points by three-dimensional direct numerical simulations in two different ways.
First, we follow a single long-term trajectory through the phase space of the convection flow for 10° free-fall times and
determine the transitions between the different LSC states. This analysis is conducted for three different flow cases at
a Rayleigh number Ra = 10 and Prandtl numbers Pr = 0.1,0.7 and 10. We demonstrate a strong dependence of the
large-scale flow behavior on Pr at the fixed Ra. Secondly, in the case of Pr = 0.7 an alternative approach to the LSC
dynamics is presented which we term an ensemble simulation. Therefore, we take a coarse grid long-term trajectory
that advances through phase space and start short-term ensemble simulations runs at full resolution from different
outputs along the coarse grid run. The assumption in this approach (which cannot be proven) is that the coarse-grid
trajectory “shadows” the true system evolution sufficiently well [27]. In the present study, we can actually take fully



resolved trajectory from the first analysis part, in studies with higher Rayleigh numbers this would not be possible.
We then test if a Markov State Model (MSM) is able to describe the transitions between different LSC states [28], [29].
A time-discrete MSM describes a hopping process where the probability to get into a future state depends on the
current state only, see [30, BI] for theory, [32] for applications, and [33][34] for software implementations. This implies
that we have to determine the transition probabilities among the different LSC states which will be described more
specifically further below. The study also requires to determine the correct sampling time along the individual short-
term trajectories that form an ensemble. Application of MSMs to stochastic system such as molecular kinetics [30]
and protein folding [29] are known to show promising results, and recently it has been applied to RBC experimental
data as well [35].

The manuscript is organized as follows. In section 2, we discuss in brief the numerical simulation model. Section 3
analysis the large-scale flow along the individual long trajectory. In section 4, we explain the details of the MSM and
probe the Markov state property for the present system. The last section contains a summary and a brief outlook.
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FIG. 1: Instantaneous velocity streamtubes representing different configurations of the large-scale circulation. (a)
Stable large-scale circulation state Sy35 aligned along a diagonal. (b) Stable state Ss5 along the other diagonal. (c)
Unstable large-scale circulation state S,/ which is aligned along one pair of opposite side faces. (d) Decoherent or

null state Sg without any well-defined large scale circulation. All data are for a fluid with Pr = 0.7. The color
coding is with respect to the z-plane as given in the legend.



Run Ra Pr Nu Re Urms ttotal/ty
1 10%° 0.1 6.08 1550.5 0.49 10°
2 10%° 0.7 6.73 437.5 0.37 10°
3 10° 10.0 6.92 26.3 0.08 5 x 10*

TABLE I: Parameters of the simulations. These are the Rayleigh and Prandtl numbers, followed by the Nusselt
number Nu, the Reynolds number Re, the root mean square velocity wu,ys, and the total integration time in units of
the free-fall time ¢.

II. NUMERICAL MODEL

In the Rayleigh—Bénard model, the dimensionless equations of motion of an incompressible fluid undergoing thermal
convection are given by

P
8tu+(u.v)u:—vpﬂ/RvaqurTz, (3)
1
KT+ (u-V)T = ———V>T. 4
o (e VIT = e )
V-u=0. (5)

where u(z,y, z,t) = (ug(z,y,2,t), uy(z,y, 2,t), u(x,y, 2,t)) is the velocity vector field of the fluid, T' = T'(x, vy, 2, t)
denotes the scalar temperature field, and p = p(z,y, 2,t) is the scalar pressure field. We employ the Boussinesq
approximation, whereby the density of the fluid pg is assumed to be constant except in the buoyancy term that leads
to the last term on the right hand side in . The equations are made dimensionless by scaling the length scales
by the thickness of the fluid d, velocity by the free-fall velocity Uy = \/agdT'd, and time by the free-fall time scale
ty = /d/(agdéT). The Rayleigh number Ra and the Prandtl number Pr are two control parameters of the system.
The aspect ratio of the cube is one. In table [ we summarize some important statistical quantities of the three
simulation runs.

We performed direct numerical simulations (DNS) of the eqns. 7 for three different fluids corresponding to
Prandtl numbers of Pr = 0.1,0.7, and 10 and sustain a Rayleigh number to be Ra = 106 in each case. Consequently,
the effective Reynolds number and the Kolmogorov scales change in each case, allowing us to study the effect of
Reynolds number on re-orientations between the large scale circulations. The Reynolds number measures the turbulent
momentum transfer in RBC and is given by

Ra .
Re =4/ B Urms With  Upms = \/<ui + ug +u)vy, (6)

where (-)y: denotes a combined volume and time average. The variation of Pr alters also the magnitude of the
Nusselt number Nu, the dimensionless measure of the turbulent heat transfer which is given by

Nu =1+ vVRaPr(uw.T)v,, (7)

see again Table [}

The simulations were performed using an open source code nek5000 based on a spectral element method [36, 37].
Our system consists of a cubic container of side unity in each direction. The system is uniformly heated from below
at z = 0 and cooled from at z = 1, i.e., Dirichlet conditions for the temperature field apply. We assume no-slip
boundary conditions, which translates to u, = u, = u, = 0 at all boundaries. We also assumed insulating boundaries
for temperature field at the four side faces, i.e., n- VI = 0. We took 16 elements along each direction for simulations
and the order of the Lagrangian interpolation polynomials along each space direction and on each spectral element is
5. The vertical profiles of the mean kinetic energy dissipation rate were analysed to verify that this spectral resolution
is sufficient. For the LSC flow analysis, we interpolate the vector and scalar fields spectrally onto a uniform mesh.

In agreement with previous studies [22] 23], we identify four stable LSC states along the diagonals. There are
denoted as S5, S135, S225, and Sz15. Once the flow gets into one of these stable states, it stays here for a considerable
amount of time before re-orienting into another stable configuration. The re-orientations between the stable large
scale circulations transition via the unstable large scale structures aligned along the edges of the cube. These four
individual states are summarized to a fifth LSC configuration which is denoted as S, /o with n = 0,1,2,3. In addition
to the stable and unstable LSC states, we identified a sixth state which does not belong to any of the previous states.



LSC state Orientation angle 6 Stability

Sas 45 stable
8135 135 stable
Soas 225 stable
S315 315 stable
Snr/2 0, 90, 180, 270  unstable
So - unstable

TABLE II: Six large-scale flow states in the cubical convection cell. The orientation angle 6 is given in figure 2.
Stability is meant rather in terms of a mean living time of the state than a linear stability property of the flow
configuration.

In this state, termed as the decoherent state or Null state Sg, the turbulent system do not have any distinct large
scale circulation. Figure[I] provides a visualization of typical stable and unstable large scale circulations for a Prandtl
number of 0.7. Table [T also summarizes the 6 LSC states. The identification of the specific states is described in the

subsequent section.
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FIG. 2: (a) Schematic representation of the interpolated grid on the circle from data of the uniform rectangular grid
at the mid plane z = 0.5. The rectangular and circular grids are superimposed on each other for clarity in
comprehension. The angle of the LSC () is measured with respect to the origin in clockwise direction. (b)

Probability distribution function (PDF) of the fraction of energy & (see eq. (8)) carried by the largest Fourier mode

The shaded portion represents the region in which the events were considered to be the Null or decoherent states.
(c) Shows the temporal variation of § over a short window.



III. LARGE-SCALE CIRCULATION STATES ALONG SINGLE LONG-TERM TRAJECTORY

We began our simulations from a random initial condition and waited for the flow to become fully turbulent. Once
the system reached a steady state, we performed the simulations for another 10° free fall times and output the data at
each free fall time (in cases Pr = 0.1,0.7). For the purpose of measuring the orientation angles of the LSC, we isolated
the mid-plane z = 0.5 and computed the vertical velocities at all grid points in this plane, as shown in figure (a).
Thereafter, we interpolated the vertical velocities to a circular grid with fixed radius of » = 0.45 and an angle 0
(measured with respect to the y-axis in a clockwise manner) varying by 5° for each subsequent grid point.

Thereafter, we obtained the discrete Fourier transform of the vertical velocities interpolated on the circular grid
in the mid-plane. In presence of a distinct LSC structure in the cubic cell, the largest Fourier mode will possess
considerable amount of energy and the corresponding phase will give a measure of the angle of orientation (6) of the
LSC. Figure c) shows the ratio § of the energy carried by the largest Fourier mode to that of the total energy of
the system as a function of time which is given by

(5(75) _ maxy, mz(kg,tﬂg

T3, (ke t)2 (8)

The majority of the time, the system will be either in one of the four stable states or in the unstable LSC states
Spr/2. When there is no distinct LSC (Null state), the ratio § will be minuscule. This low value of § in the Null state
So is obviously expected as in absence of any LSC structure, the total energy is almost equally distributed among all
the Fourier modes. These Null states are extremely rare and hence to identify them, we first calculate the probability
distribution function (PDF) of the ratio § which is shown in figure 2{b). We then calculated the standard deviation
o of the PDF of §. All the events which fall below —2¢ and thus have extremely low values of § are identified as
the Null states. It is noted that all events larger than 420 still fall into the category of distinct LSC structures. A
visualization of the flow structure in a typical Null state is shown in figure d).

As mentioned in the previous sections, we performed the single trajectory analysis in case of fluids with Pr = 0.1,0.7
for 10° free fall time units. We assigned an angle of orientation (#) of the LSC structure with each time frame obtained
at every free fall time. The classification is conditioned to both, the values of § and §. Figures [3(a) and (b) show
the temporal evolution of the LSC orientation angle (6) for the cases of Pr = 0.1 and Pr = 0.7, respectively. In
both cases, we classified the flow trajectory into 6 distinct “macrostates” or basic states. The plots underline that the
runtime is long enough to capture all states equally. The first four macrostates correspond to stable LSC orientations
parallel to the diagonals, with an angle of orientation of 6§ = 315°,225°, 135°, and 45° and value of § > 20. All the
LSC orientations which have 6 values £20° to the diagonals are also clubbed in the same macrostate. Therefore, a
particular macrostate can have many distinct microstates in the trajectory. The fifth macrostate is the unstable LSC
state parallel to the edges having § = n x 90° + 20° for n = 0,1,2,3 and 6 > 20. We do not distinguish between
different n and summarize all LSC states that are aligned with the side faces into S, /2. The sixth and the final
macrostate Sy is indicated by the black dots in both panels. Its occurrence is rare.

For both Prandtl numbers in figure [3] the stable LSC states appear to occur approximately equal number of times.
The overall pattern differs slightly. The case at Pr = 0.7 can be characterized by less frequent switches between
the stable states. For the lowest Prandtl number in our series at Pr = 0.1, the large-scale flow indicates a stronger
decoherence for the present Rayleigh number. One possible reason could be the difference of the mean viscous and
thermal boundary layer thicknesses which drive the thermal plume formation and thus LSC jointly. The derivation
of clear trends in the Prandtl number dependence of the LSC in this specific geometry would require a generation of
additional long-term trajectories at further higher Rayleigh numbers.

The unstable LSC states parallel to the edges, S,/ are seen to fill up the trajectory in both cases as the transition
to any stable state occurs via these unstable states. It is also be noted that data in figure [3| are averaged over 20 time
frames to obtain a lucid representation. The Null state appears when there is a transition from one state to another
and the flow re-orients itself. In the case of Pr = 10 once the flow reaches a stable state, it remains locked there
until and unless subjected to strong perturbation. We followed this state for 5 x 10* free-fall times without a switch.
Therefore, this trajectory at the highest of the three Prandtl numbers in our DNS series is not shown here.

In the following, we will intend to focus on an alternative analysis approach to the large-scale flow, namely by the
application of Markov State Models. In such an approach, the main objective is to calculate the macrostate transition
probability matrix. Using this information, we can predict how the large-scale statistics of the system evolves in the
future, without requiring to observe a trajectory that reaches statistical equilibrium.
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FIG. 3: Trajectories of the orientation angle 6 of the large-scale circulation for Pr = 0.1 (top panel) and Pr = 0.7
(bottom panel). Time ¢ is measured in units of the free-fall time ;. States S,/ are given in gray, Null states Sg in
black. In both cases, an sliding time-windowed average with a width of 20 ¢, is applied.

IV. ENSEMBLE ANALYSIS OF TRANSITION PROBABILITIES

We proceed with the aim of calculating the probability of transition from one LSC state to another. This analysis
is conducted for the case of Pr = 0.7 only. Needless to say that we shifted from the single trajectory approach to a
more comprehensive statistical ensemble approach. The ensemble averaging approach is more prudent than the single
trajectory approach, as it cancels out any inaccuracy that might arise due to observation of rare events for a single
trajectory run. For direct numerical simulations at higher Rayleigh numbers than used here, it might be the only way
to sample the phase space sufficiently well, namely to advance with a coarse grid run for a long time interval and to
start short-term highly-resolved simulations from the coarse grid outputs. In the present case, the long-term single
trajectory run was already sufficiently well resolved such that an upscaling is not necessary.

As mentioned in preceding section, we classified the system in six basic states — four stable LSC configurations
(Sas5, 5135, S225, and S315), the unstable LSC configuration (S, 2), and the "Null” or undefined configuration sans
any LSC (Sp). Consequently, the transition probability matrix will be a matrix of dimension 6 x 6, with the matrix
elements A;; representing the probability of transition from state i to state j. The accuracy of the computed matrix
depends upon two pivotal parameters: (i) The number of short term simulations for ensemble averaging, (ii) the
duration of a single ensemble run for determining the transition probability. Also for this method, we have to stick
to a finite and attainable amount of runs for ensemble averaging.
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FIG. 4: Schematic representation of the ensemble averaging process to obtain the transition probability matrix. The
blue line denotes high resolution long single trajectory run (such as the ones shown in fig. [3| (a) and (b)), where the
output states (black ‘e’) are printed at every free fall time. The curves in the dashed box represents a typical shorter
ensemble run, where starting from a randomly chosen initial condition, the system is perturbed and allowed to
evolve in time.
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FIG. 5: Ensemble run analysis to test the Markov state model. (a) Color coded transition probability matrix A;; for

a long runtime of 2500 free-fall times. (b) Probability distribution function (PDF) of time tpe,s for which a system

persists in a specific large-scale flow configuration (macrostate). 1800 individual trajectories were used to determine
the statistics in panel (a).

The initial conditions for the short term simulations were chosen randomly from the output of the single long-
term trajectory (as depicted in fig. E[) We chose sixty turbulent flow configurations each belonging to a specific
LSC configuration (macrostate). This results in 360 initial configurations that were picked along the single long-term
trajectory in total. Each of the 360 initial conditions is then perturbed five times distinctively. Therefore, in effect, we
have 300 of such short-term simulations, starting from each LSC configuration or macrostate. The ensemble analysis
is consequently based on a total of 1800 short-term trajectories. Unlike the case of single trajectory approach, the
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FIG. 6: Plot of absolute values of second, third, and fourth-largest eigenvalues of the transition probability matrix
as a function of time (blue dots). The eigenvalues are computed from the matrices A; for each time frame and the
red dashed curve represents the fitted exponential curve. The data for the fit are the eigenvalues for ¢ > ¢, = 5.

output is now coarser with respect to time. The turbulence fields are written out after a finite lag time and not at
every free-fall time in order to keep the amount of data limited.

The appropriate choice of the output time along the trajectories has to be determined first. If the lagtime is
too small then one would not observe transitions to another LSC state. For long lagtimes, one would be missing
information about intermediate transitions. Also, the longer the lagtime, the larger the ensemble needs to be to resolve
the transition statistics, as these spread over more macrostates. Figure a) represents the color-coded transition
probability matrix for a lagtime along the short-term trajectories of 2500 free-fall times ¢; to give a first example.
Each box in the figure signifies the value of an element A;; of the matrix. The average is taken over all 1800
trajectories. As it can be inferred from the figure, all states except the Null state Sy get populated more or less
equally, irrespective of the initial condition. The Sy state, obviously, has the lowest probability of occurrence. This,
however, might not portray the correct picture because in the course of its dynamical evolution the system might
have undergone transitions and the ensemble trajectories might have diverged strongly in phase space of each other.
We conclude that this chosen lagtime is by far too long.

To evaluate the lagtime, we evaluate the time for which the system remains in a state before transitioning to a
different state and label this time as the persistence time t,qrs. The persistence times t,ers for all possible stable and
unstable states (S45, 5135, S225, 9315, and S, /2) were computed separately, using the data from the original single
trajectory run, except the rarely occurring Sy state. We, then, plotted the probability distribution functions (PDF's)
of these persistence times as shown in figure (b) The PDFs for all macrostates peak around 5 ¢y, indicating that
for most initial conditions a first transition can occur at a lagtime as short as 5 free fall times ;. These PDFs are
obtained using the raw data without any averaging and hence this short persistence time is connected to the turbulent
fluctuations of the convection flow. Note also that all PDFs have fat tails up to 100 free fall times. The latter time
would correspond to the persistence time of a macrostate, if we average out small scale fluctuations, as observed from
figure|3| We proceed by taking a lagtime of 10 ¢y which is twice the persistence time ¢,ers. Thus more than 50% of the
cases would be transition to the subsequent macrostate. Thereafter, we used again the method described in section [ITI]
to identify the state of the system at the corresponding time and to determine A;; (which are always averaged over
the ensemble of 1800 trajectories).

V. PROBING THE MARKOV STATE PROPERTY

Based on the ensemble run data, we now proceed to test the Markovianity of the estimated model. This is done
by means of the eigenvalue spectrum of the transition probability matrices A;; at different output times which are
multiples of 10 ¢; as discussed in the last section. To begin with, we calculated the ensemble averaged transition
probability matrix A; at different lagtimes ¢ > ¢, where ¢, = 5ty is a reference time for Markov analysis. The
eigenvalues \;(t), i = 1,...,6 are always ordered according to descending magnitude. The largest eigenvalue A; will
remain unity at all times, since the matrices are all stochastic. The subsequent eigenvalues may remain unity for
times ¢ < t, until they start to leave the initial macrostates and decrease thereafter.

If A; defines the transition matrix up to lagtime ¢ then for a truly Markovian process the so-called Chapman—
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FIG. 7: Time evolution of the transition probability matrix. The color coded transition probability matrix are
plotted for four different values of time instants (a) t = 10, (b) t = 30, (c¢) t = 50, and (d) t = 70 free fall time units.

Kolmogorov identity should be satisfied. It is given by
At+5 = A.tAS for S,t >0. (9)

This means for the eigenvalues, that they must satisfy A;(t) = exp(—w;t) for some rate w; € C. Clearly, due to the
coarse graining, as we discussed above, we can expect the Chapman—Kolmogorov identity to hold best for lagtimes
s,t > t.. Less dominant, i.e., faster decaying eigenvalues correspond to faster dynamical processes. Hence they are
harder to estimate by the sampling procedure. We thus discard the two smallest eigenvalues A5 and Mg and test
[Ai(t)] =~ exp(—a;t) for t > t, for i = 2,3, 4, and appropriate «; > 0.

The ensemble analysis is now conducted for the 1800 trajectories, each advanced in time for 250 free-fall times. For
t > t, = 5 we output each 10 free-fall times. These data are used to test Markovianity. The trend of variation of
eigenvalues \;(t) of A; as a function of time yielded strong fluctuations, most likely due to the insufficient sample size.
Hence, to obtain superior statistical averaging, we further divided these short term simulations into three different
sections of a temporal length of 70 free-fall time each, separated by a window of 10 free-fall times. The window of
10 free fall time steps is chosen between the sections to decorrelate the time intervals. The three chunks of data are
treated as independent trajectories, and the whole process of computing the matrices A; and their eigenvalues A;(t)
was repeated. Figure [§] shows the magnitude of the second, third, and fourth-largest eigenvalues of A; as a function
of time. The figures indicate a better representation of an exponential decay and inferring to the fact that improving
the statistics further with lead to an even better fit. Note that for the fits, we used the eigenvalues computed at every
free-fall time.

We fitted an exponential function to the absolute values of the eigenvalues for ¢ > ¢,. and obtained decay coefficients
w; from the fits. The reciprocal of w; provides an estimate for a characteristic time. The fits indicate that such a
decay time is of the order of 150 free-fall time units. Computing the time for which Ay(¢) < 0.01 gives an idea of
the time of convergence to within 1% of statistical equilibrium. Figurelﬂ shows the color-coded transition probability
matrices S; at different multiples of the lagtimes ¢ = 10ty. For the diagonal flow configurations, self-transitions appear
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to be the most likely transitions. The transition probability is lowest to the Sy state. As can be seen, the data is
still accompanied by considerable noise, not allowing to come to any solid conclusion about the Markovianity of these
transition matrices.

VI. SUMMARY AND CONCLUSION

The present numerical study of turbulent Rayleigh—-Bénard convection was focused on the large-scale flow behavior
in a closed cubic cell, a possible configuration of laboratory measurements. Contrary to the more frequently applied
cylinder configuration the present geometry lacks an azimuthal symmetry, which generally causes a slow drift of the
large-scale circulation configuration as a whole, see e.g. ref. [38]. The constrained flow in the cube causes 6 discrete
macrostates of the convection flow and generates an approximate hopping dynamics between these different states in
the high-dimensional phase space the Prandtl number is sufficiently low at a given Rayleigh number (which was here
Ra = 10°%). In this respect, the RBC flow behaves similarly to molecular dynamics systems, such as proteins, that
undergo rapidly conformational changes. This motivated the application of a Markov state model to the RBC system
in this work.

First, we studied the dynamics along a single long-term trajectory that extends over 10° free-fall time units ¢¢. Along
this trajectory each of the macrostates appeared sufficiently often which allowed us to determine their characteristic
lifetime. It is found that this time depends strongly on the Prandtl number. For Pr < 1 our system switches rapidly
between different macrostates. For Pr >> 1, the LSC remains locked in one particular configuration for 5 x 10%¢;.
This behavior will depend on the Rayleigh number, which was fixed to one value only here. As can be seen in Table[l]
the resulting momentum transfer at Ra = 10% and Pr = 10, which is quantified by the Reynolds number Re remains
too small. The flow thus lacks sufficient fluctuations of the velocity field that are able to transfer the flow into a new
configuration. For the case of Pr = 0.7, we analysed the transitions between the different macrostates in the form
of an ensemble analysis and determined the corresponding transition matrix. It was shown that the elements of this
matrix depend strongly on the lagtime that is used to probe a transition from a macrostate i to a macrostate j.

A subsequent analysis of the Markov State Model revealed that the ensemble size used to assemble the model might
be still too small, and statistical errors overshadow dynamical properties. Further sampling beyond the one along
the 1800 trajectories might be necessary to assess how a faithful Markovian model could be constructed. Another
important factor that governs the success of a MSM is the Markovianity assumption, i.e., the independence of the
distribution of the macrostate at time t + ¢, on the macrostate at time ¢ — ¢,., if the macrostate at time ¢ is given
(“memoryless property”). If this condition is not met, either the minimal lagtime ¢, needs to be raised or the explicit
incorporation of memory into the model is required. Alternatively, one could question the choice of macrostates, and
methods could be considered that estimate surrogate macrostate variables directly from data. These are either tuned
to give optimal representation of the state-space geometry [23] 35 B9], or to reproduce optimally certain statistical
properties of the coarse-grained dynamics [40] 41].

The present work is thought as a first proof of concept. Several routes are possible to extend our present research.
It would be desirable to increase the Rayleigh number to values of 107 or 108 which would be line with a modified
hopping dynamics. We expect less coherent large-scale flows due to the enhanced level of velocity fluctuations and
thus shorter mean lifetimes for the macrostates and for all Prandtl numbers. A second route would follow an analysis
in larger-aspect-ratio configurations, i.e., for convection in flat domains. The switching between different large-scale
patterns that might contribute differently to the heat transfer would be an interesting task for future work.
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