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Abstract
Molecular dynamics (MD) are extremely complex, yet understanding the slow components of
their dynamics is essential to understanding their macroscopic properties. To achieve this, one
models the MD as a stochastic process and analyses the dominant eigenfunctions of the
associated Fokker–Planck operator, or of closely related transfer operators. So far, the
calculation of the discretized operators requires extensive MD simulations. The square-root
approximation of the Fokker–Planck equation is a method to calculate transition rates as a
ratio of the Boltzmann densities of neighboring grid cells times a flux, and can in principle be
calculated without a simulation. In a previous work we still used MD simulations to determine
the flux. Here, we propose several methods to calculate the exact or approximate flux for
various grid types, and thus estimate the rate matrix without a simulation. Using model
potentials we test computational efficiency of the methods, and the accuracy with which they
reproduce the dominant eigenfunctions and eigenvalues. For these model potentials, rate
matrices with up to O(106) states can be obtained within seconds on a single
high-performance compute server if regular grids are used.

Keywords: molecular dynamics, Markov state model, Smoluchowski equation, square-root
approximation, molecular dynamics simulations, Fokker–Planck equation
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1. Introduction

The dynamics of molecular systems is astonishingly com-
plex. Only a small fraction of their high-dimensional state
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space is actually accessible at room temperature. Yet finding
out which regions of the state space are accessible, requires
sophisticated computer simulations, i.e. molecular dynamics
(MD) simulations. MD can be very sensitive to small changes
in some variables of the system or the environment, but can
also be remarkably robust with respect to changes in other
variables. Humanly understandable models of the MD are
therefore essential for the elucidation of complex molecular
systems.
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Markov state models (MSMs) represent the conforma-
tional dynamics of molecular system as transition probabili-
ties between states in the conformational space [1–6]. From
the dominant eigenvectors and eigenvalues of the transition
matrix T(τ ), one can deduce a wealth of useful information
on the molecular system, such as the long-lived conforma-
tions, the dynamic processes that govern the dynamic equi-
librium between them, transition networks and pathways in
these networks, and one can quantify the sensitivity of exper-
imental observables with respect to the dynamic processes [7,
8]. MSMs are now a well-established and valuable tool for
the elucidation of large molecular systems, and in particular
biomolecular systems [9–15].

In the construction of MSMs, one assumes that the MD is a
stochastic process. The time-evolution of the probability den-
sity is governed by the associated Fokker–Planck equation, or
equivalently: the infinitesimal generator of the stochastic pro-
cess Q. By formally integrating the Fokker–Planck equation
one obtains a transfer operator, whose discretized version is
the MSM transition matrix T(τ ). The matrix elements of T(τ )
can conveniently be estimated from MD simulations as corre-
lation functions. On the other hand, this means that the accu-
racy of the MSM stands and falls with the quality of this
simulation.

Because MD simulations are costly and slow to converge,
enhanced sampling techniques have been developed to speed
up the exploration of state space and the convergence of
ensemble averages [16–19]. With recently developed dynamic
reweighting methods one can additionally recover the corre-
lation functions and thus the MSM of the unbiased system
from these biased simulations [20–23]. But despite enhanced
sampling techniques, there is usually no way to be certain
whether an MD simulation has explored all of the accessible
state space, and even assessing whether the sampling within
the explored state space has converged can be difficult [24,
25]. Thus, there is ample motivation to investigate avenues to
obtain an MSM of a molecular system without generating an
MD simulation.

Square root approximation (SqRA) is a technique that
approximates the Fokker–Planck equation by a rate matrix
[26, 27]. Given a discretization of the state space, the rate from
cell Ωi to cell Ω j is

Qi j,adjacent = Φ
Si j

Vi

√
π(xj)
π(xi)

,

where Φ
Si j
Vi

is the flux of the probability density through the
intersecting surface Si j in the absence of any potential energy
function,Vi is the volume of cellΩi, and π(xi) and π(x j) are the
Boltzmann densities at the centers of cell Ωi and Ω j, respec-
tively. We recently derived the SqRA for ND-dimensional sys-
tems by exploiting Gauss’s flux theorem, and showed that
for infinitely small grid cells the geometric average of the
Boltzmann weights converges to the Smoluchowski diffusion
equation, i.e. the Fokker–Planck equation associated to over-
damped Langevin dynamics [27, 28]. Previously an analo-
gous formula for one-dimensional systems has been derived
from the one-dimensional Smoluchowski equation [29] and

using the maximum caliber (maximum path entropy) approach
[30–32]. In addition the geometric average of the Boltzmann
weights has been used as reweighting factor in the dynamic
histogram analysis method (DHAM) to reweight transition
probabilities [21].

The SqRA opens up a way to calculate the transition rates
without having to resort to rare-event simulations, at least for
systems with not too many degrees of freedom. The ratio of
the Boltzmann densities π(xi)/π(x j) can be readily calculated
from the potential energy function. The grid volume Vi and
the intersecting surface Si j can be calculated from the dis-
cretization of the state space. However, how to best calcu-
late Φ

Si j
Vi

is an open question. In our previous work [27], we

assumed that the factor is Si j
Vi

is constant for all grid cells.
This is true for hyper-cubic grids and approximately true for
Voronoi grids with very small grid cells. We then estimated
the factor Φ

Si j
Vi

by comparing the rate matrix to an MSM
transition matrix, the construction of which required an MD
simulation.

In this contribution, we derive the exact expression for Φ
from the equation of the overdamped Langevin dynamics with
constant potential, and show that it depends on the diffusion
constant and on the discrete Laplace operator. We then com-
pare several methods to calculate Si j

Vi
for different types of

discretizations. For regular grids, this ratio can be calculated
analytically. For Voronoi grids, we use the quickhull algorithm
[33] to calculate Si j

Vi
numerically, and we approximate the ratio

by interpolating between all neighbors of the cell Ωi [34].
We additionally propose a method to calculate Φ

Si j
Vi

by com-
paring to the analytically known transition probability of a
Wiener process (i.e. diffusion at a constant potential energy
function). With these methods, we can construct the rate matrix
without any MD simulation. We test the methods on model
potentials with respect to computational efficiency, the dimen-
sionality of the systems, and accuracy of the resulting rate
matrix.

2. Theory

We consider a system of np particles that move in the
three-dimensional Cartesian space, i.e. in a state space with
ND = 3np dimensions: Ω ⊂ R

ND . Its dynamics is described by
the overdamped Langevin dynamics:

dx(t) = −ξ−1M−1∇V(x(t))dt + σ dB(t), (1)

where x(t) ∈ Ω is the state vector at time t, ξ is a friction
parameter with units of 1/s, M is a diagonal 3np × 3np-mass
matrix, M−1 is its inverse, V(x) is the potential energy func-
tion, and B(t) is an ND-dimensional Wiener process scaled
by the diagonal matrix σ =

√
2kBTξ−1M−1, where T is the

temperature, and kB is the Boltzmann constant. Equation (1)
generates a Markovian, ergodic and reversible process
[1, 35].

The time-evolution of the associated probability density
ρ(x, t) is given by the following Fokker–Planck equation
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∂tρ(x, t) =
σ2

2
Δρ(x, t) +∇

(
ρ(x, t) · ξ−1M−1∇V(x)

)
= Qρ(x, t), (2)

which is also known as the Smoluchowski diffusion equation.
The symbol ∇ denotes the gradient of a function f : Rn → R,
and Δ = ∇×∇ is the corresponding Laplacian. The factor
in front of the Laplacian can be interpreted as the matrix of
the diffusion coefficients D = 1

2σ
2, which are assumed to be

independent of the particle positions [35]. Equation (2) intro-
duces the Fokker–Planck operator Q. Q can also be inter-
preted as the infinitesimal generator of a transfer operator (or
propagator) with lag time τ : T (τ ) = exp (Qτ ). The opera-
tor T (τ ) propagates ρ(x, t) forward in time by a time inter-
val τ : T (τ )ρ(x, t) = ρ(x, t + τ ). The stationary solution of
equation (2) is the Boltzmann density

π(x) =
exp

(
− 1

kBT V(x)
)

Z
, (3)

where Z =
∫
Ω exp

(
− 1

kBT V(x)
)

dx is the classical partition

function, i.e. ∂tπ(x) = Qπ(x) = 0.

2.1. Square root approximation

The SqRA of the infinitesimal generator is a method to dis-
cretize Q, and to calculate the corresponding matrix elements
[26, 27]. We will briefly review its derivation in the following
section.

Consider a disjoint decomposition of the state space Ω into
N Voronoi cells Ωi, such that Ω = ∪N

i=1Ωi. The characteristic
function associated to each Voronoi cell Ωi is

χi(x) =

{
1 if x ∈ Ωi

0 otherwise,
(4)

We introduce the following scalar product
〈u|v〉π =

∫
Ω u(x)v(x)π(dx) =

∫
Ω u(x)v(x)π(x)dx. For disjoint

sets, the Galerkin discretization of Q is computed via
Qi j = (〈χ j|χi〉π)−1〈χ j|Qχi〉π which reduces to

Qi j =
1
πi
〈χ j|Qχi〉π, (5)

if we use equation (4) as ansatz functions. We remark that
Qχi(x) is formally not defined, because Q is a differential
operator, but χi(x) is not differentiable. In the mathematical
treatment of Markov processes the possibility to replace the
non-differentiable functions χi with differentiable approxima-
tions has been discussed [36]. Different possibilities for this
replacement are imaginable, for example using the Fourier
transform. The term πi = 〈χi|χi〉π =

∫
Ωi
π(x)dx denotes the

stationary probability of cell Ωi.
Equation (5) defines an N × N transition rate matrix Q with

elements Qi j, where Qi j, for i 
= j, denotes the rate from cell
Ωi to cell Ω j. The discretization is analogous to the discretiza-
tion of the transfer operator in the derivation of MSMs [1, 5],
which yields a transition matrix T(τ ) with matrix elements

Ti j(τ ) = (〈χ j|χi〉π)−1〈χ j|T (τ )χi〉π. Just as in MSMs, the state
space Ω is usually so high-dimensional that solving the inte-
gral in equation (5) is not a viable option. However, in contrast
to MSMs, the numerator in equation (5) cannot be estimated
from correlation functions obtained by simulating the stochas-
tic process in equation (1) [5, 37]. The square root approx-
imation provides a solution to this impasse, which neither
requires solving the high-dimensional integral nor sampling
the stochastic process.

The derivation starts by noting that for time-homogeneous
processes the rate matrix and the transition matrix are related
by Q := ∂T(τ )

∂τ

∣∣
τ=0

. For a detailed discussion on the relation
betweenQ, Q, T (τ ), and T(τ ), see references [26, 27, 28]. For
infinitesimally small lag times τ , the transition rates between
cells which do not share a common boundary is certainly zero.
Thus, we can set the rate matrix elements for non-adjacent
cells to

Qi j = 0 if i 
= j, and Ωi is not adjacent to Ω j. (6)

Because the matrix elements Ti j(τ ) represent transition prob-
abilities, we can use the Gauss theorem to show that the rate
matrix elements for adjacent cells satisfy [26, 27]

Qi j =
1
πi

∮
∂Ωi∂Ω j

Φ(z)π(z)dS(z), (7)

where
∮

denotes a surface integral. Furthermore,
∂Ωi∂Ω j is the common surface between the cell Ωi and
Ω j. Φ(z) = δΩi=Ω jv · n denotes the flux of the configurations z
through the surface ∂Ωi∂Ω j. The vector v is the velocity field
associated to the time-dependent probability density. This
is analogous to the fluid velocity in fluid dynamics, which
describes the velocity of a small element of fluid such that the
mass is conserved.

To approximate the surface integral in equation (7), we
introduce the first of two assumptions of SqRA:

(a) The flux does not depend on the position in state space:
Φ(x) = Φ. Then

Qi j =
1
πi
Φ

∮
∂Ωi∂Ω j

π(z)dS(z). (8)

The remaining surface integral in equation (8) represents
the stationary density on the intersecting surface ∂Ωi∂Ω j.
To approximate it, we formulate our second assumption:

(b) Each cell is small such that the potential energy V(x) is
almost constant within the cell: V(x)|Ωi ≈ Vi.

It follows that the stationary densityπ(x), and, by extension,
also the time-dependent density ρ(x, t), is constant within a
given cell Ωi. The continuous and the discretized probabilities
are related by

πi =

∫
Ωi

π(x)dx ≈ π(xi)Vi

ρi(t) =
∫
Ωi

ρ(x, t)dx ≈ ρ(xi, t)Vi (9)

3
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where
∫
Ωi

1 dx = Vi is the volume of the cell Ωi, and in partic-
ular we have

π(xi) =
1
Z

exp

(
− 1

kBT
Vi

)
, (10)

where xi is the center of Ωi. Likewise, we can assume that
the potential energy function on ∂Ωi∂Ω j is essentially con-
stant, and that it can be approximated by some average of
Vi and V j. We choose the arithmetic mean V(x)|∂Ωi∂Ω j ≈
Vi+V j

2 , because for this type of mean-value calculation one can
show that the resulting discretized operator Q converges to
the Fokker–Planck-operator Q in the limit of infinitesimally
small cells [27, 28]. The surface integral in equation (8) then
becomes

∮
∂Ωi∂Ω j

π(z)dS(z)=
∮
∂Ωi∂Ω j

1
Z

exp

(
− 1

kBT
Vi + V j

2

)
dS(z)

= Si j

√
π(xi)π(x j), (11)

where
∮
∂Ωi∂Ω j

1 dS(z) = Si j is the area of the intersecting sur-
face. Note that an arithmetic mean of the potential energy func-
tion results in a geometric mean of the stationary densities:√
π(xi)π(x j).
With this approximation of the surface integral and with

equation (9), we obtain the following expression for rates
between adjacent cells [equation (7)]

Qi j,adjacent =
1
πi
ΦSi j

√
π(xi)π(x j) = Φ

Si j

Vi

√
π(x j)
π(xi)

, (12)

and the following rate matrix

Qi j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Φ
Si j

Vi

√
π(x j)
π(xi)

if i 
= j, and Ωi is adjacent to Ω j

0 if i 
= j, and Ωi is not adjacent to Ω j

−
∑n

j=1, j
=i Qi j if i = j.
(13)

This is the SqRA of the Fokker–Planck operator Q. Note
that in our previous publication [27], we did not write the factor
Si j/Vi explicitly, because we assumed that it is approximately
the same for all pairs of adjacent cells and can be incorporated
into Φ̂ = Φ

Si j
Vi

.
The discretization of the Fokker–Planck equation

[equation (2)] then is

∂tρ
�(t) = ρ�(t)Q, (14)

where ρ(t) is the vector-representation of the continuous prob-
ability density ρ(x, t) with elements ρi(t) =

∫
Ωi
ρ(x, t)dx =∫

Ω ρ(x, t)χi(x)dx, and ρ�(t) denotes the transpose of ρ(t).
Equation (14) can be rewritten as an evolution equation for
the individual vector elements

∂tρ j(t) =
N∑

i=1

ρi(t)Qi j =

⎡
⎣ N∑

i=1,i 
= j

ρi(t)Qi j

⎤
⎦

+ ρ j(t)

⎡
⎣− n∑

k=1,k 
= j

Q jk

⎤
⎦ , (15)

which is often written more concisely as a master equation

∂tρ j(t) =
∑
i∼ j

[
ρi(t)Qi j − ρ j(t)Q ji

]
, (16)

where
∑

i∼ j denotes the sum over all adjacent cells Ωi of
cell Ω j.

The great appeal of the SqRA of the Fokker–Planck
operator is that, apart from the grid-dependent flux Φ

Si j
Vi

, it
only requires the Boltzmann-density π(xi) at the cell centers
[equation (13)], which are readily available from the poten-
tial energy surface of the system. In principle, no time-series
are required to calculate the rate matrix. The challenge lies in
estimating Φ

Si j
Vi

. In the following, we introduce two different

approaches to calculate Φ
Si j
Vi

that do not rely on a realization
of equation (1).

2.2. Φ
Sij
Vi

by discretizing the Laplacian

If the flux Φ does not depend on the potential energy function
(assumption a), one should be able to determine Φ by analyz-
ing the overdamped Langevin dynamics on a constant potential
V(x) = const.,

dxt = σdBt, (17)

and the associated Fokker–Planck equation

∂tρ(x, t) =
σ2

2
Δρ(x, t) = Qρ(x, t). (18)

This has two advantages. First, the differential opera-
tor in equation (18) essentially consists of the Laplacian,
whose discretization is known. Second, the stationary density
[equation (3)] of this process is constant, which simplifies the
expression for the rates [equation (12)].

Applying the Gauss theorem, the Laplacian of the proba-
bility density ρ(x, t) over a small region with volume V and
surface S, is written as [38]

Δρ(x, t) = lim
V→0

1
V

∮
S
∇ρ(z, t) · n dS(z), (19)

where n is the unit vector orthogonal to the surface S. It fol-
lows, that on a Voronoi tessellation of the space, the discrete
Laplacian on a small Voronoi cell Ωi is [39, 40]

Δρ(x, t)|x=x j
=

1
V j

∑
i∼ j

∇ρ(x, t)|x=x j
· n jiS ji. (20)

The term ∇ρ(x, t)|x=x j
· n ji is the gradient in the direction

j → i (directional derivative), which can be approximated by
the finite difference

∇ρ(x, t)|x=x j
· n ji ≈

ρ(xi, t) − ρ(x j, t)
h ji

, (21)

4
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where h ji = x j − xi is the distance between the centers of
the cells Ω j and Ωi. Inserting this finite difference into
equation (20) yields

Δρ(x, t)|x=x j
=

1
V j

∑
i∼ j

ρ(xi, t) − ρ(x j, t)
h ji

S ji. (22)

Assuming that the density ρ(x, t) is approximately constant
within cell Ωi (assumption b), we have ρi(t) ≈

∫
Ωi
ρ(xi, t)dx =

ρ(xi, t)Vi. Substituting ρ(xi, t) = ρi(t)
Vi

in equation (22) and
inserting into equation (18) yields

∂t
ρ j(t)
V j

=
σ2

2
1
V j

∑
i∼ j

ρi(t)
Vi

− ρ j(t)
V j

hi j
Si j, (23)

and we obtain the discrete Fokker–Planck equation
[equation (18)] at constant potential

∂tρ j(t) =
σ2

2

∑
i∼ j

ρi(t)
Vi

− ρ j(t)
V j

hi j
Si j

=
∑
i∼ j

σ2

2
1

hi j

Si j

Vi
ρi(t) −

σ2

2
1

hi j

Si j

V j
ρ j(t). (24)

Comparing equation (24) to the master equation
[equation (16)] and to the definition of rates between
adjacent cell within the SqRA [equation (12)] we obtain the
following equality

Qi j,adjacent = Φ
Si j

Vi
=

σ2

2
1

hi j

Si j

Vi
, (25)

where we used that
√

π(x j)
π(xi)

= 1 at constant potential. Thus,

Φ =
σ2

2hi j
. (26)

We have obtained an analytical expression forΦ between adja-
cent cells that only depends on the distance hi j between the
cell centers. Appendix B contains an alternative derivation of
equation (26) using Fick’s first law of diffusion.

The rate matrix [equation (13)] can now be written more
concretely as

Qi j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ2

2
1

hi j

Si j

Vi

√
π(x j)
π(xi)

if i 
= j, and Ωi is adjacent to Ω j

0 if i 
= j, and Ωi is not adjacent to Ω j

−
∑n

j=1, j
=i Qi j if i = j.
(27)

Section 3 introduces formulas to evaluate 1
hi j

Si j
Vi

for various grid
types.

2.3. Φ
Sij
Vi

by analyzing the transition probability density

Our starting point is again equation (13), and we introduce a
third assumption:

(c) The volumes of all cells are approximately equal
(Vi ≈ V , ∀ Ωi), and the intersecting surfaces
areas are approximately equal for all adjacent cells
(Si j ≈ S, ∀ Ωi adjacent toΩ j).

In this case, the factor Φ
Si j
Vi

≈ Φ S
V = Φgrid has approxi-

mately the same value for each pair of adjacent cells. Φgrid is
thus a flux value which is characteristic for a given grid rather
than for a specific pairs of cells. This is the assumption we used
in reference [27].

Every grid can be represented as an unweighted graph, in
which nodes correspond to the grid cells Ωi, and two nodes
are connected by an edge if the corresponding grid cells are
adjacent. At constant potential, the rate matrix [equation (13)]
can then be written as the Laplacian matrix of the graph L
multiplied by the grid flux

Q = −Φ
S
V L = −ΦgridL, (28)

where the Laplacian matrix of the graph is defined as

Li j =

⎧⎪⎪⎨
⎪⎪⎩
−1 if i 
= j, and Ωi is adjacent to Ω j

0 if i 
= j, and Ωi is not adjacent to Ω j

−
∑n

j=1, j
=i Li j if i = j.
(29)

Note that L = D − A, where A is the adjacency matrix of
the graph, with elements Ai j = 1 if Ωi and Ω j are neighbors,
and Ai j = 0 otherwise. D is the degree matrix of the graph, a
diagonal matrix whose diagonal entries contain the number of
neighbors for each cell, i.e. Dii =

∑
j Ai j.

The transition matrix T(τ ) and the rate matrix Q are
related by

T(τ ) = exp(τQ) = exp
(
−τ ΦgridL

)
. (30)

If one knows the transition probability of a Ti j(τ ) of sin-
gle pair of adjacent cells at constant potential, one can
calculate Φgrid by comparing Ti j(τ ) to the matrix element[
exp

(
−τ ΦgridL

)]
i j

. The transition probability is defined as
the integral transition probability density p(x, y, τ ) over the
initial and final cell

Ti j(τ ) =
1
πi

∫
Ωi

∫
Ω j

p(x, y, τ )π(x) dx dy, (31)

where π(x) is the unconditional probability density of finding
the system at point x at time t, and p(x, y, τ ) is the conditional
probability density of finding the system in ydy at time t + τ
given that it started in point x at time t. In reference [27] we
obtained the transition probability by constructing an MSM
based on a simulation of the dynamic process.

Here, we propose a different approach. We again use the
idea that the flux, and by extension Φgrid, does not depend on
the potential energy function. Therefore, it can be determined
from an overdamped Langevin dynamics at constant poten-
tial energy [equation (17)], for which the transition probability

5
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density is:

p(x, y, τ ) =

(√
1

2πσ2τ

)ND

exp

(
− (y − x)2

2σ2τ

)
, (32)

where ND is the dimension of the state space. If the cells are
small (assumption b), the distance from any point in cell Ωi

to any other point in Ω j is approximately equal to the dis-
tance of the centers of the two cells, i.e. y − x ≈ x j − xi for all
x ∈ Ωi, y ∈ Ω j. With this assumption equation (31) becomes

Ti j(τ ) =
1
πi

(√
1

2πσ2τ

)ND

× exp

(
−

h2
i j

2σ2τ

)∫
Ωi

π(x)dx
∫
Ω j

1 dy

=

(√
1

2πσ2τ

)ND

exp

(
−

h2
i j

2σ2τ

)
V , (33)

where hi j = x j − xi is the distance between the centers of Ωi

and Ω j. Besides ND, σ, and hi j, one only needs the average cell
volume V to calculate Ti j(τ ). The lag time τ can in principle
be chosen freely.

Now that we have a closed-form approximation for Ti j(τ ) at
constant potential, we can use equation (30) to calculate Φgrid.
Because the Laplacian matrix L is not invertible, we cannot
determine Φgrid by rearranging equation (30). Instead we use
Φ as a parameter that minimizes the difference between T(τ )
and exp (−τΦL), i.e. we minimize the function:

f (Φ) =
(

Ti j(τ ) −
[
exp (−τΦL)

]
i j

)2
. (34)

and Φgrid = arg max
Φ

f (Φ). This approach requires calculat-

ing the matrix exponential of the potentially large but sparse
matrix L and is tested in the result section.

It is tempting to avoid the minimization of f(Φ)
[equation (34)] by approximating the matrix exponential
as a truncated Taylor series, and solving for Φ. Mathemati-
cally this is possible. But the resulting equation for Φgrid is a
poor approximation to the true value of Φgrid, and we do not
recommend using this approach. Appendix C discusses the
details.

3. Methods

In section 2.2 we showed that the grid-dependent flux fac-
tor can be expressed in terms of the known parameters σ and
hi j: Φ

Si j
Vi

= σ2

2hi j

Si j
Vi

. In this section, we summarize methods to

evaluate Si j/Vi for different grid types.

3.1. Arbitrary grid/exact method

‘The quickhull algorithm’ [33], implemented in the MATLAB
function ‘convhulln()’, computes the convex hull of a set of
multidimensional points and can be used to numerically calcu-
late the surface Si j and the volume Vi of an arbitrarily shaped

cell. We will call this the ‘exact method’, because it directly
calculates Si j

Vi
without any assumptions on the grid geome-

try. However, the algorithm requires not only the centers of
the cells, but also the vertices of each cell, which makes it
computationally expensive for high-dimensional spaces.

3.2. Hyper-rectangular grid

On a (hyper-)rectangular grid, the ratio between interface sur-
face and cell volume is simply given by the cell length in
direction i → j, i.e. Si j

Vi
= 1

hi j
, and

Qi j,adjacent,rectangular =
σ2

2h2
i j

√
π(x j)
π(xi)

. (35)

Note that on a (hyper-)cubic grid hi j = h is the same in
all grid dimensions, while for a one-dimensional grid one
obtains the equation derived in reference [29] from the one-
dimensional reaction–diffusion equation. Appendix B shows
that equation (35) converges to the Fokker–Planck equation in
the limit of infinitesimally small cells [27, 28].

3.3. Hexagonal grid

The apothem a of a cell is the distance from the cell center to
one of the midpoint of its sides. On a two-dimensional hexag-
onal grid, a = h/2, where h = hi j is the distance between
cell centers. Using the apothem we can calculate the inter-
secting surface, which is equal to the length of each side of
the hexagon Si j =

2√
3
a = h√

3
, Thus, Si j

Vi
= 2

3hi j
, and the rate

between adjacent hexagonal cells is

Qi j,adjacent,hexagonal =
σ2

3h2
i j

√
π(x j)
π(xi)

. (36)

3.4. Voronoi grid via the neighbors-method

On arbitrary Voronoi grids, several methods [41] have been
proposed to approximate Si j

Vi
. For example, from the Taylor

expansion of a function on an irregular mesh, the rate between
adjacent cells can be expressed as [34]

Qi j,adjacent,Voronoi =
σ2

2
4

ni h̄i hi j

√
π(x j)
π(xi)

, (37)

where ni is the number of neighbors of the cell Ωi, and h̄i is the
average distance between the cell Ωi and all the neighbors.

3.5. Method overview

Table 1 summarizes the methods that are now at our disposal
to evaluate Φ

Si j
Vi

. In the following analysis, we will compare
the eigenvalues κi and left eigenvectors li

l�i Q = κil�i (38)

of rate matrices Q constructed using equation (28) in combi-
nation with the methods in Table 1. Note that equation (28)
implies that the row-sums of each of these matrices Q are zero,
consistent with equation (27).
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Table 1. Methods to calculate Φ
Si j
Vi

in the SqRA.

Method Grid Φ
Si j
Vi

Equation

Exact ratio of intersecting surface area and cell volume

Exact Arbitrary σ2

2
1

hi j

Si j
Vi

Equation (27)

Rectangular Hyper-cube σ2

2h2
i j

Equation (35)

Hexagonal 2D-hexagonal σ2

3h2
i j

Equation (36)

Approximate ratio of intersecting surface area and cell volume

Neighbors Voronoi σ2

2
4

nih̄ihi j
Equation (37)

Comparison to transition probability

Minimization Arbitrary argmin
Φ

(
Ti j(τ ) −

[
exp (−τΦL)

]
i j

)2
Equation (34)

4. Results and discussion

4.1. Computational efficiency

The usefulness of the SqRA critically depends on how many
dimensions ND the dynamical system in equation (1) may
have, before the calculation of Q via equation (13) becomes
computationally intractable. Q is an N × N square matrix,
where N is the number of cells Ωi. If each dimension of the
dynamical system is discretized into Nbins, the number of cells
is given as N = NND

bins, i.e. N grows exponentially with the
number of dimensions ND. Thus, even for low-dimensional
systems we have to construct a sparse but extremely high-
dimensional rate matrix Q.

To compare the computational efficiency of the methods
to estimate Φ

Si j
Vi

, we devised a model system, which consists
of particles of mass m = 1 kg moving in a ND-dimensional
Cartesian space according to equation (1) with ξ = 1 s−1 and
σ = 2.2 J

1
2 kg− 1

2 s−
1
2 . The potential energy function consists

of uncoupled terms for each Cartesian coordinate xi

V(x1, . . . , xND ) =
ND∑
i=1

Vi(xi), (39)

defined on the domain Ω = {(x1, . . . , xND) : −π < xi � π
for i = 1, . . . , ND}. We applied periodic boundary conditions
in each direction, and the one dimensional potential energy
term

Vi(xi) =
1
2

ki (1 + cos(mi · xi − x0i)) , (40)

is 2π-periodic in direction i. The parameter ki is the force
constant, mi is the multiplicity and describes the number
of barriers and wells of the function, and x0i is the phase.
For each direction i, we used the same triplet of parameters
ki = 2 kg s−1, mi = 2 and x0i = 0 rad. Figure 1(A) shows
the potential for the one-dimensional system, which is a peri-
odic double well potential. For an ND-dimensional system,
the potential has 2ND wells in the ND-dimensional space.
Equation (40) mimics the function that governs torsion angles

in MD force fields. By choosing a Cartesian space with peri-
odic boundary conditions rather then an actual torsion angle,
we avoid any complications that arise from the coordinate
transformation to the torsion angle space, and a volume ele-
ment in Ω is simply given as dV = dx1 dx2 . . . dxND.

For the system with ND = 1, we constructed a reference
solution with Nbins = 60 bins using the method ‘rectangular’.
The leading eigenvalues of Q are κ0 = 0, κ1 = −1.56;
κ2 = −2.87; κ3 = −6.51. Figure 1(B) shows the eigen-
vector l0, which corresponds to the stationary distribution.
Figure 1(C) shows the eigenvector l1, which represents a
transition between the regions [0, π) and [π, 0).

We next scanned the number bins between 2 and 60 to
find the coarsest possible discretization that still yields accu-
rate results for the dominant processes of the one-dimensional
system. For Nbins = 5, κ1 = −1.58, which is 1.2% lower than
the reference value; while κ2 = −2.69 and κ3 = −5.68 are
respectively 6.2 % and 11.4 % higher than the reference values.
A smaller number of bins yield considerable deviations from
the reference value. Figures 1(B) and (C) show the approxi-
mation of the two leading eigenfunctions with Nbins = 5. In
spite of the very low resolution of the eigenvector, we can
identify the two peaks corresponding to the two wells of the
potential.

We constructed grids for up to ND = 9 dimensions. For
the hypercubic grids, we discretized each dimension into
Nbins = 5 equally-sized bins, where the distance between
two adjacent states is h = 2π/5 ≈ 1.26. For the Voronoi
grids, we discretized each dimension into Nbins = 5 bins
of random size. The number of states N are: ND = 1:5,
ND = 2:25, ND = 3:125, ND = 4:625, ND = 5:3125,
ND = 6:15 625, ND = 7:78 125, ND = 8:390 625, and
ND = 9:1935 125 states. Likewise the memory size of the
corresponding rate matrices grows exponentially with ND.
For the case with ND = 9, the full matrix Q occupies more
than 28 TB of memory, but its corresponding sparse matrix is
just 578 MB, which is manageable by modern computers.
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Figure 1. Computational efficiency. (A) One-dimensional periodic potential function, and corresponding first (B) and second (C)
eigenfunction of the Fokker–Planck operator Q (black lines) compared to the eigenvectors of the corresponding rate matrix Q (histograms).
The fringes at −π and π indicate that this crosses the periodic boundary. (D) First four eigenvalues for each ND-dimensional system;
(E) execution time for each ND-dimensional system.

We included the following methods in this scan:
‘rectangular’ on a hypercubic grid, and ‘exact’, ‘neighbors’,
and ‘minimization’ on a Voronoi grid. The method ‘hexagonal’
is excluded, because a hexagonal grid can only be constructed
on a two-dimensional Cartesian space. The method ‘exact’
for the hypercubic grid is not shown explicitly, because it is
identical to the method ‘rectangular’. For each rate matrix,
we calculated the four leading eigenvalues. For this system
the second eigenvalue has a degeneracy equal to the number
of dimensions. Because they perfectly overlap, there appear
to be less eigenvalues for the higher-dimensional systems
in figure 1(D). All four methods yield eigenvalues that are
in excellent agreement with the reference solution. Thus, at
least at this level of discretization, approximating the ratio
Si j
Vi

by these methods does not introduce an error of relevant
magnitude.

However, the computational cost varies drastically between
the methods [figure 1(E)]. Three separate tasks go into calcu-
lating the eigenvectors and eigenvalues of Q: (i) constructing
the adjacency matrix of the grid from which the Laplacian
matrix of the grid L can then be calculated, (ii) calculatingΦSi j

Vi
using one of the four methods, and (iii) calculating the domi-
nant eigenvalue–eigenvector pairs for the resulting matrix Q.
The most efficient method is ‘rectangular’ on a hypercubic
grid, for which we could calculate rate matrices for up to nine
dimensions on a server with an Intel Xeon CPU (E5-2690 v3
@ 2.60 GHz) and 160 GB of RAM. Using MATLAB, the
execution time was 45 s. We provide an example script on
hypercubic grids, the distance hi j between neighboring cells

is a constant, and the factor Φ
Si j
Vi

= 1
2
σ2

h2 can be calculated
at negligible cost. Moreover, one can build adjacency matri-
ces and construct the matrix Q very efficiently using sparse
matrices and the Kronecker product [see supplementary mate-
rial (https://stacks.iop.org/JPCM/33/115902/mmedia)]. Con-
sequently, approximately the 90% of the computational time
is used up by the third task: solving the eigenvalue problem

[figure 1(E), magenta triangles]. The time to solve the eigen-
value problem primarily depends on the dimension of the
matrix Q, i.e. the number of cells N. It does not depend
on the method of computing the flux, and it only weakly
depends on the type of grid. Thus, the computational cost,
that is displayed as magenta triangles in figure 1(E) is part
of every calculation in figure 1(E). Note that the execution
time depends on the algorithm used to solve the eigenvalue
problem. The MATLAB function ‘eigs()’ permits to provide
the number of eigenvalues–eigenvectors to be calculated. This
is particularly useful when one is interested only in the slow-
est dominant processes, which are associated to the largest
eigenvalues.

All three methods to construct the rate matrix on a Voronoi
grid are orders of magnitude slower than the ‘rectangular’
method for hypercubic grids, because building adjacency
matrices for a Voronoi discretization is computationally dif-
ficult and costly. We constructed the adjacency matrices A
using an algorithm based on linear programming as sug-
gested in reference [26]. Note that for Voronoi grids, the
computational cost of diagonalizing the rate matrix (magenta
triangles) makes up only a small fraction of the total
calculation.

Among the methods for a Voronoi grid, the ‘exact’ method
[green dots in figure 1(D)] is about an order of magnitude more
expensive than the methods ‘neighbors’ or ‘minimization’
[blue and red dots in figure 1(D)], because it requires the exact
calculation of cell volumes. Using the same computer as for the
‘rectangular’ method, we were able to build the rate matrix of
the five dimensional system. The calculation took 8.9 × 105 s,
corresponding to more than ten days of calculations. However,
the ‘exact’ method is slightly more accurate then the other
three methods for Voronoi grids. The methods ‘neighbors’
and the ‘minimization’ slightly overestimate the eigenvalues,
but the execution time reduced to 1.2 × 105 s (33.3 h) and
1.1 × 105 s (30.5 h), respectively.
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Figure 2. Two dimensional diffusion process in a four well potential. (A) Potential energy function. (B) Eigenvalue spectrum of the
corresponding Fokker–Planck operator Q. (C) First three eigenvalues of the infinitesimal generator as function of the lag time τ : SqRA
(solid line), MSM (black dots). (D) First four eigenfunctions of Q.

4.2. Accuracy

Next, we test whether the methods in table 1 differ in their
accuracy. We consider a particle of mass 1 kg which moves on
a two-dimensional Cartesian space according to equation (1)
with ξ = 1 s−1 and σ = 15 J

1
2 kg− 1

2 s−
1
2 . The potential energy

function is

V(x, y) = k1(y2 − a2
1)4 + k2(x2 − a2

2)2 +
k12√

(x − y)2 + c2
,

(41)
with the parameters k1 = 0.003, a1 = 3.3, k2 = 1, a2 = 3.5,
k12 = −50 and c = 1. This potential is composed of a
one-dimensional term which describes a slow double-well
dynamics along the x axis, a one-dimensional term which
describes a fast double-well dynamics along the y axis, and
a coupling term [figure 2(A)]. The eigenvalue spectrum of
the Fokker–Planck operator for this system [equation (2)]
exhibits four dominant eigenvalues at κ2D

0 = 0, κ2D
1 = −5.98,

κ2D
2 = −10.2, and κ2D

3 = −15.06 [figure 2(B)]. The cor-
responding eigenfunctions l0(x, y) to l3(x, y) are shown in
[figure 2(D)]. The eigenvector l0(x, y) is equal to the stationary
density. Eigenvectors l1(x, y) and l2(x, y) describe slow transi-
tions along the x and y axis, respectively. Eigenvector l4(x, y)
represents a dynamic process which mixes x and y, and is
due to the coupling term in V(x, y). We constructed this ref-
erence solution by evaluating the SqRA [equation (13))] on a
quadratic grid [equation (35)] with N = 50 × 50 = 2500 cells
on the space [−6, 6]× [−6, 6].

Additionally, we constructed an MSM on the same grid.
We generated a time-discretized trajectory of 1 × 108 time-
steps, with a time-step Δt = 0.001, integrating equation (1)
according to the Euler–Maruyama scheme [42]. The MSM has
been constructed by counting transitions Ci j(τ ) from cell Ωi to
cell Ω j within a lag time τ varied in a range of [5:500] time-
steps [5]. Detailed balance has been enforced by symmetrizing

the resulting 50 × 50-count matrix: Csym(τ ) = C(τ ) + C�(τ ),
where C�(τ ) denotes the transpose of C(τ ). The MSM transi-
tion matrix T(τ ) was obtained by row-normalizing Csym(τ ).

The eigenvectors of the MSM transition matrix are defined
as l�i T(τ ) = λi(τ )l�i . The MSM yielded the same dominant
eigenvectors as the SqRA of the rate matrix. The MSM eigen-
values λi(τ ) and the eigenvalues of the rate matrix can be
interconverted by

λi(τ ) = exp (κiτ ) ⇔ κi =
ln(λi(τ ))

τ
, (42)

and are in excellent agreement [figure 2(C)]. The fact that the
ratio ln(λi(τ ))

τ does not vary with τ indicates that the MSM on
this grid has a negligible projection error. Since the SqRA-
model and the MSM do not deviate from each other, we
can assume that also the SqRA-model has a negligible pro-
jection error. We will therefore use the SqRA-model on a
regular grid with N = 2500 cells as a reference solution for
further tests.

To assess whether the method to estimate the flux has influ-
ence in the accuracy of the SqRA of the rate matrix, we varied
the number of grid cells from N = 4 to N = 225. We con-
structed quadratic grids, hexagonal grids and arbitrary Voronoi
grids. For the arbitrary Voronoi grids, we randomly placed grid
centers in the two-dimensional state space. To account for the
variance in these randomly constructed grids, we constructed
fifty different grids for each value of N and constructed the cor-
responding rate matrix. In figure 3, we report the mean and the
variance of the dominant eigenvalues for Voronoi grids, that
were calculated using the methods ‘exact’ (green), ‘neighbors’
(blue), and ‘minimization’ (red). Figure 3 also shows the dom-
inant eigenvalues for the quadratic grid calculated using the
method ‘rectangular’ (black) and the hexagonal grid calculated
using the method ‘hexagonal’ (orange), as well as the reference
value for the eigenvalues (dashed).
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Figure 3. Accuracy of the flux estimated by discretizing the Laplacian: reference (gray); exact Voronoi (green); rectangular grid (black);
hexagonal grid (orange); neighbors (blue); minimization (red).

The results for the Voronoi grids seem to converge faster
than the results for the regular grid. The mean of the eigen-
values for the Voronoi grids is already reasonably accurate for
N = 9 or N = 16 grid cells. Note however that the variance
is sizable at these low numbers of grid cells and that, depend-
ing on the exact location of the grid cells, the Voronoi results
can also deviate considerably from the reference value. For
N = 25 all five methods yield results that are close to the ref-
erence value, and the accuracy of all five methods increases
only slowly with increasing N. In fact, between N = 100 and
N = 225 we do not find a significant improvement for any of
the five methods. This means that, at least for this potential
energy function, 25 to 100 grid cells are sufficient to discretize
the two-dimensional state space. This is an order of magni-
tude lower than previously reported discretizations of two-
dimensional molecular states spaces that relied on the SqRA
[21, 43].

For N > 100 the eigenvalues obtained from regular grids
are almost exactly equal to the reference values, whereas the
results from Voronoi grids tend to overestimate the eigenval-
ues. This indicates that, if one is interested in a highly accurate
estimate of the dominant eigenvalues, one should opt for a
regular grid.

5. Conclusion

We have derived, from the equation of the overdamped
Langevin dynamics with constant potential, the expression
of the flux Φ that appears in the SqRA formula [26,
27]. An analogous formula, was previously derived for the
one-dimensional Smoluchowski equation discretized on a
regular grid [29] and later used to estimate the diffusion coef-
ficients of molecular systems projected on one-dimensional
relevant coordinates [44, 45]. Our result generalizes to the case

of ND-dimensional diffusive systems discretized on multidi-
mensional arbitrary grids. Moreover, we proposed and tested
several methods which can be used to calculate the exact or
the approximate value of the multiplicative factor ΦSi j

Vi
for dif-

ferent grid types. We now have an approach in place that in
principle allows us to calculate MSMs of molecular systems
without running MD simulations.

The accuracy with which the dominant eigenvalues of the
rate matrix can be estimated is similar for all methods. But our
analysis has shown that, depending on the grid and the method
to estimate the flux, the relative and absolute computational
costs of these three methods vary drastically. The entire com-
putation of the SqRA of the Fokker–Planck equation, from
discretization of the state space to the analysis of the dominant
eigenvectors, consists of three steps: (i) generate the adjacency
matrix, (ii) calculate the rates Qi j, (iii) calculate the eigen-
value and eigenvectors of the rate matrix. On a regular grids,
the generation of the adjacency matrix using the algorithm
in the supplementary material is computationally cheap. The
factor Φ

Si j
Vi

is essentially a constant, and the computational
cost is dominated by the calculation of the eigenvectors. Thus,
calculating the SqRA on a regular grid is by far the most
efficient approach, if one aims at discretizing the entire state
space.

However, molecules at room temperature only access a
small fraction of their state space, and the experience with
MSMs has shown that Voronoi grids are useful for discretiz-
ing the accessible state space [5]. We therefore do not yet want
to rule out Voronoi grids. We have compared three methods to
calculate Φ

Si j
Vi

: an ‘exact’ method that aims at calculating Si j
Vi

numerically, and two approximate methods. The ‘neighbor’
method is based on an already known interpolation scheme
between all neighbors of a given cell Ωi. The ‘minimization’
method is an approach that we proposed in this contribution,
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and is based on a comparison to the analytically known tran-
sition probability at constant potential. On Voronoi grids, the
construction of the adjacency matrix is computationally much
more demanding than on regular grids, and for the approximate
methods, the computational cost is dominated by the construc-
tion of the adjacency matrix. However, with the ‘exact’ method
the calculation of Si j

Vi
is the most costly step, increasing the

computational cost of the entire calculation by an order of
magnitude. Taking into account that this method only slightly
improves the accuracy of the MSM, the ‘exact’ method is not
suited for an actual application.

With a few seconds computing time on a single compute
server, we could reach O(106) grid cells for regular grids,
while we need a fews days to reach O(103) for Voronoi grids.
Using the ‘neighbors’ or the ‘minimization’ method, O(104)
are within reach for Voronoi grids, and moving the calcula-
tion to high-performance compute clusters or GPUs will likely
push the limit to O(105) states. With grids of this size, the
SqRA becomes useful for small molecules. However, a brute-
force discretization of the entire state space of larger molecules
would require even larger grids. There are two possible reme-
dies: (i) one discretizes only the accessible state space, or (ii)
one projects the dynamics on a lower-dimensional space and
discretizes this space. In the first approach, the accessible state
space will best be formulated in terms of internal coordinates.
Then the distances between grid cells and potentially also
the cell volumes have to be transformed accordingly. In the
second approach, one needs to calculate the free-energy sur-
face and the position-dependent flux on the low-dimensional
space, for which MD simulations are needed [29, 35, 44, 46].
Additionally, one needs to adjust the SqRA to account for the
position-dependent flux. For one-dimensional regular grids,
the adjusted SqRA rates are reported in references [29, 44].
Note that the second approach is currently not limited by the
computational cost for the SqRA, but by the computational
cost for the MD simulations. In future work we compare these
two approaches, and apply the SqRA to molecular systems.
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Appendix A. Estimating the flux from Fick’s laws

In the following, we provide an alternative derivation of the
quantity Φ that appears in equation (13). The Fokker–Planck
equation [equation (2)] can be written in the form of a continu-
ity equation [35], which at constant potential energy function
reduces to Fick’s second law of diffusion [47]

∂tρ(x, t) =
σ2

2
Δρ(x, t) = −∇J, (A1)

where the flux is given by

J(x) = −σ2

2
∇ρ(x, t). (A2)

To discretize the ∇J on a Voronoi grid, we apply the Gauss
theorem, and discretize the surface integral along the sides of
the Voronoi cell Ω j

∇J|x=x j
= lim

V j→0

1
V j

∮
∂Ω j∂Ωi

J(z)dS(z) = lim
V j→0

1
V j

∑
i∼ j

J jiS ji,

(A3)
where

J ji = −σ2

2
∇ρ(x, t)|x=x j

· n ji (A4)

is the flux in direction n ji =
xi−x j

h ji
. Using the same finite

difference as in equation (21), we obtain

∂tρ(x j, t) = −∇J = lim
V j→0

1
V j

∑
i∼ j

σ2

2
ρ(xi, t) − ρ(x j, t)

h ji
· S ji.

(A5)
To convert the continuous probability density evaluated at the
cell centers ρ(x j, t) to discrete probability defined on finite cell
volumes we use the relation ρ j(t) =

∫
Ωi
ρ(x, t)dx ≈ ρ(x j, t)V j.

We obtain

∂tρ j(t) =
σ2

2

∑
i∼ j

(
ρi(t)
Vi

− ρ j(t)
V j

)
1

h ji
· S ji (A6)

which is identical to equation (24). And thus also from the
view-point of the continuity equation and Fick’s laws of diffu-
sion the flux is given as

Φ =
σ2

2hi j
. (A7)

Appendix B. The limit of infinitesimally small cells

We show that the SqRA on a (hyper-)cubic grid converges
to the Fokker–Planck equation in the limit of infinitesimally
small cells. On these grids the cell length h is the same in
each grid dimension, but the extension to rectangular grids is
straight forward.

The rates between adjacent cells are given by equation (35)

Qi j =
σ2

2
1
h2

√
π(x j)
π(xi)

=
σ2

2h2
exp

(
−β

V j − Vi

2

)
, (B1)

which yields the following the master equation [equation (16)]

∂tρ j(t) =
σ2

2 h2

∑
i∼ j

[
ρi(t) exp

(
−β

V j − Vi

2

)

− ρ j(t) exp

(
−β

Vi − V j

2

)]
. (B2)

We replace the exponential function in equation (B1) by its

first-order Taylor expansion, exp
(
−β

V j−Vi
2

)
= 1 − β

V j−Vi
2 +

O
(
(V j − Vi)2

)
, and obtain

11
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∂tρ j ≈
σ2

2h2

∑
i∼ j

[
ρi

(
1 − β

V j − Vi

2

)
− ρ j

(
1 − β

Vi − V j

2

)]

≈ σ2

2h2

∑
i∼ j

[
(ρi − ρ j) − ρiβ

V j − Vi

2
+ ρ jβ

Vi − V j

2

]
,

(B3)

where we omitted the t-dependence of ρi(t) and ρ j(t) for the
sake of brevity. Next we write V j − Vi = −(Vi − V j) and
substitute ρ jβ

Vi−V j
2 = ρ jβVi − V j − ρ jβ

Vi−V j
2

∂tρ j ≈
σ2

2h2

∑
i∼ j

[
(ρi − ρ j) + ρiβ

Vi − V j

2

+ ρ jβ(Vi − V j) − ρ jβ
Vi − V j

2

]

≈ σ2

2h2

∑
i∼ j

[
(ρi − ρ j) + ρ jβ(Vi − V j)

+ (ρi − ρ j)β
Vi − V j

2

]
. (B4)

We recover the continuous probability density ρ(x, t) from
the discrete probabilities using the relation ρi(t) = ρ(xi, t)Vi =
ρ(xi, t)hn, and the relation for the potential energy function
Vi = V(xi). The cell volume hn appears linearly on both sides
of the equation, and cancels:

∂tρ(x j) ≈
σ2

2h2

∑
i∼ j

[
(ρ(xi) − ρ(x j)) + ρ(x j)β(V(xi) − V(x j))

+ (ρ(xi) − ρ(x j))β
V(xi) − V(x j)

2

]
, (B5)

where xi and x j are the (still discrete) cell enters, and we omit
the t-dependence of ρ(x, t) for the sake of brevity.

We remind the reader that
∑

i∼ j denotes a sum over all cells
Ωi which are adjacent to cell Ω j. On a regular grid, every cell
Ω j has two neighbors in each grid dimension, which are cen-
tered at x j + h × nk and x j − h × nk, where nk is the unit vector
pointing in direction k, and h × nk is the lattice vector along the
kth dimension. We will now sort the sum over adjacent cells
according to grid dimension k and will take the limit h → 0 to
recover the differential equation. With this approach, the first
term in equation (B5) becomes

lim
h→0

1
h2

∑
i∼ j

(ρi − ρ j) = lim
h→0

1
h2

n∑
k=1

[
ρ(x j − hk) − ρ(x j)

+ ρ(x j + hk) − ρ(x j)
]

= lim
h→0

n∑
k=1

ρ(xi− hk)− 2ρ(xi)+ ρ(xi+ hk)
h2

=

n∑
k=1

∂2
kρ(x j)

= Δρ(x j, t), (B6)

where ∂k denotes the derivative with respect to the kth dimen-
sion. Similarly,

lim
h→0

1
h2

n∑
i∼ j

ρ(x j)β(V(xi) − V(x j)) = βρ(x j, t)ΔV(x j). (B7)

The third term in equation (B5) has the following limit

lim
h→0

1
h2

n∑
k=1

(ρ(xi) − ρ(x j))β
V(xi) − V(x j)

2

= lim
h→0

1
h2

n∑
k=1

[
β

2
ρ(x j + hk) − ρ(x j)

hk

V(x j + hk) − V(xi)
hk

+
β

2
ρ(x j − hk) − ρ(x j)

hk

V(x j − hk) − V(xi)
hk

]

= β

n∑
k=1

∂kρ(x j) ∂kV(x j)

= β∇ρ(x j, t)∇V(x j). (B8)

In the limit h → 0 equation (B4) becomes

∂tρ(x, t) =
σ2

2
[Δρ(x, t)+ βρ(x, t)ΔV(x)+ β∇ρ(x, t)∇V(x)] .

(B9)
Applying the product rule and using β = 2

σ2 , we obtain the
Fokker–Planck equation as stated in equation (2):

∂tρ(x, t) =
σ2

2
Δρ(x, t) +∇ (ρ(x, t) · ∇V(x)) . (B10)

Appendix C. Estimating Φgrid via Taylor expansion
of the propagator

The starting point for the derivation is equation (30). We then
express the exponential function in terms of its Taylor series
and truncate the series after the linear term

T(τ ) = exp(τQ) = exp(−τ ΦgridL)

=
∑ (−τ ΦgridL)n

n!
≈ 1 − τ ΦgridL. (C1)

This approximation is valid at small values of τ , and yields the
following approximate expression for the rate matrix

Q = −ΦgridL =
1
τ

(T(τ ) − 1) , (C2)

where 1 is the identity matrix. For adjacent cells Li j = −1, and
[1]i j = 0, and we obtain the following equation for Φgrid

Φgrid ≈
1
τ

Ti j(τ ) =
1
τ

(√
1

2πσ2τ

)n

exp

(
−

h2
i j

2σ2τ

)
V

= Φgrid, approx(τ ), (C3)

where we used equation (33) to express Ti j(τ ). Given the
parameters n, σ, hi j, V , and setting τ to some fixed value, one
can in principle calculate an approximation of Φgrid.

12
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However, Φgrid,approx(τ ) is very sensitive to τ . It is positive
everywhere. For τ → 0 and for τ →∞, it approaches zero,
and in between it has a maximum which, depending on the
other parameters, can be very steep. Thus, choosing τ arbi-
trarily leads to very inconsistent results. Let us instead choose
the value of τ at which Φgrid,approx(τ ) reaches its maximum as
the optimal value for τ . The derivative of Φgrid,approx(τ ) with
respect to τ is

d
dτ

Φgrid,approx(τ ) = − 1
τ

[
1 +

n
2
−
(

h2
i j

2σ2τ

)]
· Φgrid,approx(τ ).

(C4)
Setting d

dτΦgrid,approx(τ ) = 0 and solving for τ yields

τopt =
(

1 +
n
2

)−1 h2
i j

2σ2
. (C5)

Inserting equation (C5) into equation (C3) yields

Φgrid,approx(τopt) =
(n + 2)σ2

h2
i j

· 1
hn

i j
·
((

1 + n
2

)
π

)n/2

× exp
(
−
(

1 +
n
2

))
· V . (C6)

To test whether equation (C6) is a useful approximation, we
compare Φgrid,approx(τ opt) to the grid flux on a hyper-cubic grid

which is given by equation (35) as Φgrid,hyper−cube =
1
2
σ2

h2
i j

. On a

hyper-cubic grid V = hn
i j, and equation (C6) simplifies to

Φgrid,approx(τopt) = (n + 2) ·
((

1 + n
2

)
π

)n/2

× exp
(
−
(

1 +
n
2

))
· σ

2

h2
i j

. (C7)

Note that equation (C7) scales correctly with σ and hi j. For
n = 1, 2, 3 and 4, the ratio Φgrid,approx(τ opt)/Φgrid,hyper−cube is
respectively equal to 0.92, 0.68, 0.58 and 0.54; for n > 4

the ratio grows exponentially as the term
(

(1+ n
2 )

π

)n/2
in

equation (C7) dominates all other terms. Thus,Φgrid,approx(τ opt)
cannot be used as a valid approximation of the characteristic
flux of the grid. Since equation (C6) likely shows a similar
behavior for arbitrary Voronoi grids, we do not recommend
using it, and have not included it in our analysis in the main
part of the publication.
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