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Many complex systems occurring in various application share the property that the underlying
Markov process remains in certain regions of the state space for long times, and that transitions
between such metastable sets occur only rarely. Often the dynamics within each metastable set is
of minor importance, but the transitions between these sets are crucial for the behavior and the
understanding of the system. Since simulations of the original process are usually prohibitively
expensive, the effective dynamics of the system, i.e. the switching between metastable sets, has to
be approximated in a reliable way. This is usually done by computing the dominant eigenvectors and
eigenvalues of the transfer operator associated to the Markov process. In many real applications,
however, the matrix representing the spatially discretized transfer operator can be extremely large,
such that approximating eigenvectors and eigenvalues is a computationally critical problem.

In this article we present a novel method to determine the effective dynamics via the transfer
operator without computing its dominant spectral elements. The main idea is that a time series of
the process allows to approximate the sampling kernel of the process, which is an integral kernel
closely related to the transition function of the transfer operator. Metastability is taken into account
by representing the approximative sampling kernel by a linear combination of kernels each of which
represents the process on one of the metastable sets. The effect of the approximation error on
the dynamics of the system is discussed, and the potential of the new approach is illustrated by
numerical examples.

This is a preliminary version. Do not circulate!

Introduction

This article deals with a novel approach to the identification of the effective dynamical behavior of
complex systems. It will be assumed that the evolution of the system under consideration can be
described by a Markov process. Furthermore we will be mainly interested in systems that (A) are
high dimensional and (B) that exhibit metastable or almost invariant sets that are characterized by the
property that the expected exit times from these sets define the timescales of the effective dynamical
behavior of the system. Systems with these properties are pervasive; for example, they occur in the
geo-sciences (e.g. climate dynamics with warm and ice ages or atmospheric blocking dynamics), in the
economic sciences (e.g., financial markets and their dynamical regimes or employment dynamics), or
in the life sciences. Form the latter field our guiding example is taken: In biomolecular systems the
metastable sets are called conformations and the effective dynamics can be described as transitions
between these conformations with specific internal motion within each conformation [5, 6]. Transitions
between conformations are critical to the function of proteins and nucleic acids. They include ligand
binding [1], complex conformational rearrangements between native protein substates [2, 3], and folding
[4], so that their analysis is the key to understanding the biophysics of living cells.
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In many of these application the mathematical models used to describe the dynamics of the respective
system are high dimensional ordinary differential equations (ODE). Mostly, appropriate models do not
only contain the system’s degrees of freedom but also additional degrees of freedom that represent the
environment or heat bath in which the system is embedded or to which it is coupled. Considering the
evolution of the system thus often means considering a process that results from the projection of some
higher dimensional ODE to the system’s state space. A typical example for this approach are thermostat
models in molecular dynamics [38]. Under certain conditions (e.g., on the time scales of the effective
dynamics) the resulting process still is a Markov process. In many cases, however, the projected process
is remodelled in form of a stochastic differential equation (SDE). Because of this, we will mainly consider
SDE models for Markov processes on the state space of the system under consideration. Projected ODEs
is briefly discussed in the appendix.

Mathematically each Markov process can be described by the associated Markov or transfer operator,
and the effective dynamical behavior of the process by the essential properties (e.g. dominant eigenvalues
and eigenvectors) of its transfer operator; there is a remarkably long list of articles about this topic from
which the following may fit best to the topic considered herein [8, 10, 12, 18, 14, 15, 28, 16, 29, 30]. Using
the transfer operator in order to study the effective dynamics has one main advantage and one main
disadvantage: the advantages is that independent of the (mostly strong) nonlinearity of the dynamics,
the transfer operator is a linear operator that governs the propagation of a probability density by
the underlying dynamics. The disadvantage, however, is that the transfer operator lives in a high
dimensional function space whose dimension is that of the state space of the system. In many real-
world cases, computation of its essential properties (dominant spectral elements) thus suffers from the
curse of dimensionality although there are several articles that offer cures to this problem for specific
problems mainly for biomolecular systems, see [13, 11, 20] for example.

This article provides a novel approach to the analysis of the effective dynamics via the transfer
operator without computing its dominant spectral elements. Instead, we will consider the approximation
of the integration kernel of the transfer operator. We will demonstrate that for non-deterministic
dynamics this kernel has some nice structural properties that may allow to approximate it well even
in high dimensional cases. We then will study how some mathematical properties of the dynamics,
particularly its metastability properties, may change if we exchange the original transfer operator with
the one that results from approximation of the kernel. Furthermore, we will introduce some algorithmic
kernel approximation techniques that have the potential to work well even in high dimensions. Finally,
we will present some numerical experiments to illustrate the concept itself and the performance of our
kernel approximation techniques. However, it should be emphasized that this article can just give a
first introduction of the key ideas: we will mainly consider diffusive dynamics in low dimensions for the
sake of clarity and completeness, and we will base our kernel approximation algorithm on just one kind
of ansatz functions. Generalizations are under investigation but will not be discussed herein.

1 Transfer Operators and Kernels

Throughout this article we study homogeneous Markov processes Xt = {Xt}t∈I on a state space X ⊂ R
d,

where I is an interval in R. The dynamics of Xt is given by the stochastic transition function

p(t, x,A) = P[Xt+s ∈ A |Xs = x] , (1)

for every t, s ∈ I, x ∈ X and A ⊂ X. We say that the process Xt admits an invariant probability
measure µ on the corresponding measure space (X,A, µ), if

∫

X

p(t, x,A)µ(dx) = µ(A) for all A ∈ A.

In the following we shall always assume that the invariant measure of the process exists and is unique.
A Markov process is called reversible with respect to an invariant probability measure µ, if it satisfies

∫

A

p(t, x,B)µ(dx) =

∫

B

p(t, x,A)µ(dx)
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for every t ∈ I and A,B ∈ A. If moreover p(t, x, ·) is absolutely continuous with respect to the Lebesgue
measure, then we denote by ρ(t, x, y) the associated flat-space transition density, i.e., we have

p(t, x,A) =

∫

A

ρ(t, x, y)dy .

Transfer Operator. Given some measure ν, we consider the function spaces

Lp
ν = {f : X → C :

∫

|f(x)|pν(dx) < ∞},

Lp
ν(X × X) = {f : X × X → C :

∫

|f(x, y)|pν(dx)ν(dy) < ∞}

with p = 1 or p = 2. The associated norms will be denoted by ‖ · ‖ν,p. We will consider two cases:
when ν stands for the Lebesgue measure we call the spaces flat, and when ν is equal to the invariant
measure µ, then the spaces are called weighted. We define the semigroup of Markov propagators or
forward transfer operators P t : Lr

µ → Lr
µ with t ∈ I and 1 ≤ r < ∞ by

∫

A

P tf(y)µ(dy) =

∫

X

f(x)p(t, x,A)µ(dx)

for any measurable A ⊂ X. If µ is invariant under the dynamics Xt, then it is easy to see that the
characteristic function 1X ∈ L1

µ of the entire state space is an invariant density of P t, i.e., we have

P t1X = 1X. As following from its definition, P t conserves norm, ‖P tf‖1 = ‖f‖1 and positivity, i.e.,
P tf ≥ 0 whenever f ≥ 0. Hence, P t is a Markov operator. The perhaps simplest case is that of an
ODE ż = F (z). Let its solution be unique for all initial values z(0) = z0 and denote its flow map
by Φt such that z(t) = Φtz0. Then, the associated transfer function is p(t, x,A) = 1A(Φtx) where 1A

denotes the characteristic function of the set A. Let µ be some measure that is invariant under Φt. The
corresponding transfer operator then reads P tf(x) = f(Φ−tx).

Basic assumption. In all of the subsequent we will suppose that p(t, x, ·) as well as the associated
invariant measure are absolutely continuous with respect to the Lebesgue measure. This simplifies our
considerations. Needless to say that all of the subsequent definitions can be generalized to the case
where absolute continuity cannot be assumed. Moreover, we tacitly assume that the invariant measure
µ is nonzero almost everywhere. Again, this assumption can be dropped if the following arguments are
restricted to the subset {x ∈ X : µ(x) > 0} ⊂ X, but this would make the notation somewhat more
complicated.

Kernels. With these assumption, the expression for the propagator P t becomes

P tf(y) =

∫

X

kt(y, x)f(x)µ(x)dx , f ∈ Lp
µ, (2)

where µ(dx) =: µ(x)dx, and we have introduced the transition kernel

kt(y, x)µ(y) = ρ(t, x, y) (3)

that is defined for all x, y for which µ > 0. Obviously, the transition kernel satisfies
∫

X

kt(y, x)µ(y)dy = 1 , ∀(x, t) ∈ X × I . (4)

A kernel with property (4) is called a Markov kernel. For a reversible process the transition kernel is
symmetric, i.e., kt(x, y) = kt(y, x). We will furthermore consider a second kernel function, called the
sampling kernel, being defined by

κt(x, y) = µ(x) ρ(t, x, y) = µ(x)kt(y, x)µ(y). (5)
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The sampling kernel is particularly important because it can be sampled directly from a given realization
of the investigated process (see Sec. 2.4 for an example). In the following we will often fix a time t and
then ignore the index t so that we simply can write the transition function as ρ(x, y), the sampling
kernel as κ(x, y), and the transfer operator as Pf(y) =

∫

X
k(y, x)f(x)µ(x)dx in Lp

µ. For convenience
we introduce the abbreviation Pf = k ∗ f , knowing that we have to understand it relative to the space,
especially weighting, considered.

2 Gaussian Kernels and Ornstein-Uhlenbeck processes

2.1 Ornstein-Uhlenbeck sampling kernels

Consider an Ornstein-Uhlenbeck process

ẋ = −F (x − x̄) + ΣẆ , (6)

with symmetric, positive definite matrices F ∈ R
d×d and Σ ∈ R

d×d, and define B = Σ2. The transition
function of such a process is absolutely continuous with respect to the Lebesgue measure. The corre-
sponding transition density at time t with respect to the initial condition to start in x0 at time t = 0 is
given by

ρ(t, x0, x) = Z(t) exp

(

−
1

2
(x − ξ(t))T C(t)−1(x − ξ(t))

)

, (7)

where

ξ(t) = x̄ + exp(−tF )(x0 − x̄)

Z(t) = (2π)−d/2(det C(t))−1/2.

and C(t) is the solution of

C(t)F + FC(t) = B − exp(−tF )B exp(−tF ). (8)

It is well-known that for any M1,M2,M3 ∈ R
d×d the matrix equation XM1 + M2X = M3 has a unique

solution if λ(1) + λ(2) 6= 0 for all eigenvalues λ(1) of M1 and λ(2) of M2. Since F is positive definite, a
unique solution of Eq. (8) exists. As a consequence of (7), the invariant measure is absolutely continuous
with respect to the Lebesgue measure and has the form

µ(x) = Z∞ exp

(

−
1

2
(x − x̄)T C−1

∞ (x − x̄)

)

, (9)

with C∞ such that C∞F + FC∞ = B. The last equation again has a unique solution; it satisfies

C(t) = C∞ − exp(−tF )C∞ exp(−tF ). (10)

The associated Markov operator Pt in the flat Lp space is obtained from Ptf(x) =
∫

ρ(t, x0, x)f(x0)dx0.
We consider the sampling kernel

κt(x0, x) = ρ(t, x0, x)µ(x0), (11)

because this is the object that can be sampled directly from a given realization of the Ornstein-Uhlenbeck
process (for details see Sect. 2.4 below). Eq. (7) and (9) yield that the sampling kernel can be expressed
as

κt(x0, x) = Z(t)Z∞ exp

(

−
1

2
((x − x̄)T , (x0 − x̄)T )C(t)−1

(

x − x̄
x0 − x̄

))

, (12)

with

C−1(t) =

(

C(t)−1 −C(t)−1 exp(−tF )
− exp(−tF )C(t)−1 exp(−tF )C(t)−1 exp(−tF ) + C−1

∞

)

. (13)
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According to (5), the associated Markov kernel with respect to the invariant measure µ has the form

kt(x, x0) =
1

µ(x)
κt(x0, x)

1

µ(x0)
,

and we observe that kt is indeed symmetric (this follows from (10)) as it should be since the Ornstein-
Uhlenbeck process is a reversible Markov process.

2.2 Parameter estimation from a time series of the sampling kernel

Suppose now that the parameters F , x̄, and Σ of the process are unknown, and that only a sampling of
the sampling kernel is given. Based on this sampling, the parameters of the Ornstein-Uhlenbeck process
can be estimated as follows:

1. Approximate the covariance matrix Ĉ ≈ C of the sampling kernel and its inverse

Ĉ−1(t) =

(

M11 M12

MT
12 M22

)

.

2. Compute an estimate F̂ ≈ F by solving

F̂ = − log(−M−1
11 M12)/t

where log(·) denotes the matrix logarithm. Since (−M−1
11 M12) is (at least approximately) a sym-

metric and positive definite matrix, the matrix logarithm is well-defined via the logarithm of the
eigenvalues.

3. Approximate Σ̂ ≈ Σ via

Ĉ−1
∞ = M22 − MT

12M
−1
11 M12,

B̂ = Ĉ∞F̂T + F̂ Ĉ∞,

Σ̂ =
√

B̂.

If Ĉ∞ and F̂ are symmetric and positive definite, then so is B̂, and the matrix Σ̂ =
√

B̂ can be
obtained by computing the eigendecomposition of B̂ and taking the square roots of the eigenvalues.

2.3 Invariant Measure of Sampling Kernels

Whenever a sampling kernel κ is known, then the associated invariant measure is computable by means
of simple integration:

µ(x) =

∫

ρ(x0, x)µ(x0)dx0 =

∫

κ(x0, x)dx0.

As in (5), ρ(·, ·) denotes the flat space transition function of the underlying process. For Gaussian
sampling kernels

κ(x, x0) ∝ exp
(

−
1

2
(xT , xT

0 )

(

Mxx Mxx0

MT
xx0

Mx0x0

)(

x
x0

)

)

,

we thus get for the associated measure

µ(x) ∝ exp
(

−
1

2
xTMx

)

, with M = Mx0x0
− MT

xx0
M−1

xx Mxx0
. (14)

The kernels are symmetric (and thus induce a reversible process) iff Mxx = Mx0,x0
and Mx0x = MT

x0x.
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Fig. 1 Sampling (as resulting from DNS) of the Ornstein-Uhlenbeck transition kernel for F = 4 and σ = 0.45
with t = 0.5 and m = 1000 steps.

m 1000 2000 10000 ∞

F̂ 4.530 4.050 4.010 4.000

Σ̂ 0.503 0.456 0.452 0.450

Table 1 Dependence of the estimators on the sampling length m.

2.4 Numerical Illustration.

Let us consider the 1d-case with F = 4, x̄ = 0 and Σ = 0.45. A direct numerical simulation (DNS)
of the system (with Euler-Maruyama discretization in time with timestep 0.001) yields a time series
x0:m−1 = {x0, . . . , xm} with xn ∈ X. If the DNS is ergodic in the sense that the generated ensemble of
points in state space is approximately distributed according to the invariant measure µ of the process),
then the sampling x0:m−1 directly induces a sampling z0:m−1 = {z0, . . . , zm−1} of the sampling kernel
by letting zn = (xn, xn+1) ∈ X × X. This sampling is illustrated in Figure 1 for t = 0.5 and m = 1000
sampling points.

In the one-dimensional case, one obtains C∞ = Σ2/2F , C(t) = C∞(1 − exp(−2tF )), and

C−1(t) = C−1(t)

(

1 − exp(−tF )
− exp(−tF ) 1

)

.

Hence, the covariance matrix of the sampling kernel is

C(t) =
Σ2

2F

(

1 exp(−tF )
exp(−tF ) 1

)

.

An estimate Ĉ = (Ĉij)i,j of this matrix is directly available from the given data. The approximations

F̂ ≈ F and Σ̂ ≈ Σ can be computed via

F̂ = log
(

Ĉ11/Ĉ12

)

/t, Σ̂N =

√

2F̂N Ĉ11.

Table 1 shows that the estimates converge to the correct values as the length m of the time series
increases.

The example shows that the sampling kernel allows to estimate the parameters of the underlying
Ornstein-Uhlenbeck process in an easy way. However, in many realistic applications, the underlying
SDE does not have the simple form (6), because the process is metastable. Nevertheless, it will be
shown how such situations can be treated by a superposition of kernels each of which represents an
Ornstein-Uhlenbeck process.
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3 Metastability

Let us make a simple Gedankenexperiment (experiment of thought): Assume we consider a diffusion
process xt in state space R, governed by the SDE

ẋt = −F (xt) + ΣẆt,

where F = −DV (x) is the gradient of a smooth potential V with several local minima. Then it is
well known that for small enough Σ the process stays for long periods of time in the disjoint wells
M1, . . . ,MN ⊂ R of V while the exit from the well Mi has an expected exit time that scales like
exp(−2∆Vi/Σ2), where ∆Vi is the lowest energy barrier from the respective well into a neighboring one.
That is, the process is metastable and the sampling kernel of this process will then have the following
approximate form: it will be a superposition of ”peaks” in each of the wells, i.e., in Mi×Mi, i = 1, . . . , N .
Such processes occur in many real-life applications; examples have been given in the introduction. This is
our motivation to study Markov processes that belong to sampling kernels constructed by superposition,
and subsequently analyse their metastability properties.

3.1 Superposition kernels

Let us now discuss how to construct Markov operators and kernels by superposition. Suppose that Pi,
i = 1, . . . , N are Markov operators in Lp

µi
with respective invariant probability measures µi, and that

αi ∈ R are non-negative weights with α1 + . . . + αN = 1. In this case, we consider the Markov operator
P in Lp

µ given by the superposition

∫

A

Pf(x)µ(dx) =
N
∑

i=1

αi

∫

A

Pif(x)µi(dx), with Pif(x) =

∫

ki(x, y)f(y)µi(dy),

where µ is the invariant probability measure of P . These facts guarantee that Pi1X = 1X ∈ Lp
µi

and
P1X = 1X ∈ Lp

µ. Inserting this into the above equation yields that µ is the invariant probability
measure of P if and only if

µ =

N
∑

i=1

αiµi. (15)

The kernel associated with P is then given by

µ(x)k(x, y)µ(y) =
N
∑

i=1

αiµi(x)ki(x, y)µi(y), (16)

where ki denotes the Markov kernel of Pi, and it is assumed that all of the invariant measures are
absolutely continuous with respect to the Lebesgue measure. A kernel with this structure will be called
a superposition kernel.

The kernels are living in the respectively weighted spaces. What is the flat space transition density
ρflat(·, ·) if the flat space transition densities ρi,flat(·, ·) belong to the kernels ki? By using (5) and (16),
we find the answer

ρflat(x, y) =
N
∑

j=1

αj
µj(x)

µ(x)
ρj,flat(x, y), (17)

where we assumed that µ is positive (almost) everywhere.

Remark 3.1 A realization of the process corresponding to the superposition kernel can be computed
by repeating the following steps. Draw a random variable r from the uniform distribution [0, 1] and

choose the index j such that r ∈ [βj−1(x), βj(x)), where βj(x) =
∑j

k=1 αkµk(x)/µ(x), and j = N
if r = 1. Then, the current state x is updated according to the j−th transition density ρj,flat(x, y).
However, we emphasize that our goal is to solve the inverse problem: How can the parameters αi and
the densities ρi be estimated if a realization of the stochastic process is given? Before this question is
addressed, we investigate the relation between superposition kernels and metastability.
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3.2 Almost invariance and superposition kernels

As above let ki, i = 1, . . . , N , be Markov kernels with invariant probability measures µi. We consider

the mixed kernel µ(x)k(x, y)µ(y) =
∑N

i=1 αiµi(x)ki(x, y)µi(y), with the invariant measure µ =
∑

i αiµi

and weights αi such that
∑

i αi = 1. Let us assume that the measures µi all are absolutely continuous
with respect to the Lebesgue measure, and that µ is positive (almost) everywhere.

Definition 3.2 The Markov kernel k is called ǫ-metastable if

Oij =

∫

µi(x)µj(x)

µ(x)
dx ≤ ǫ

for all i, j = 1, . . . , N with j 6= i.

Almost invariant densities of k. In the µ-weighted space, the invariant densities of the Markov
operators Pi are

Φi(x) = µi(x)/µ(x).

Obviously, these functions are densities in L1
µ. A nice property of these densities is formulated in the

following lemma.

Lemma 3.3 The kernel k is ǫ-metastable if and only if

Oij =

∫

Φi(x)Φj(x)µ(x) dx = 〈Φi,Φj〉µ ≤ ǫ. (18)

for all i, j = 1, . . . , N with j 6= i.

The proof follows directly from Definition 3.2.

Other useful properties are:

N
∑

j=1

αjΦj(x) = 1, ∀x, i.e., {Φj}j=1,...,N is a partition of unity,

0 ≤ Φi(x) ≤ 1/αi, ∀i, (19)

∣

∣

∣Φi(x) −
1

αi

∣

∣

∣µ(x) =
1

αi

(

N
∑

j=1

j 6=i

αjµj(x)
)

. (20)

The latter equation follows from

∣

∣

∣
Φi(x) −

1

αi

∣

∣

∣
µ(x) =

∣

∣

∣
µi(x) −

N
∑

j=1

αj

αi
µj(x)

∣

∣

∣
=

N
∑

j=1

j 6=i

αj

αi
µj(x).

With these properties we can prove that the propagator with kernel k leaves the density Φi nearly
invariant with respect to the measure µ:

Theorem 3.4 Let the kernel k defined as above be ǫ-metastable, let all measures µi be absolutely
continuous with respect to the Lebesgue measure, and let µ be positive (almost) everywhere. Then, for
all i = 1, . . . , N :

‖k ∗ Φi − Φi‖1,µ ≤ 2(1 − αi) ǫ

where (k ∗ Φi)(y) =
∫

X
k(y, x)Φi(x)µ(x)dx
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Proof. The proof requires some preparations:

‖k ∗ Φi − Φi‖1,µ =

∫

∣

∣

∣

∫

µ(y)k(y, x)Φi(x)µ(x)dx − Φi(y)µ(y)
∣

∣

∣ dy

=

∫

∣

∣

∣

∑

j

αj

∫

µj(y)kj(y, x)Φi(x)µj(x)dx − Φi(y)µ(y)
∣

∣

∣
dy

=

∫

∣

∣

∣

∑

j

αjµj(y)

∫

kj(y, x)Φj(x)µi(x)dx − Φi(y)µ(y)
∣

∣

∣
dy

≤

∫ N
∑

j=1,j 6=i

αj

∫

kj(y, x)Φj(x)µi(x)dx µj(y)dy

+

∫

∣

∣

∣αiµi(y)

∫

ki(y, x)Φi(x)µi(x)dx − Φi(y)µ(y)
∣

∣

∣ dy.

The first of these terms can be estimated using that
∫

kj(y, x)µj(y)dy = 1:

∫ N
∑

j=1,j 6=i

αj

∫

kj(y, x)Φj(x)µi(x)dx µj(y)dy ≤
N
∑

j=1,j 6=i

αj〈Φi,Φj〉µ ≤ (1 − αi)ǫ.

The second term is split into two parts:
∫

∣

∣

∣
αiµi(y)

∫

ki(y, x)Φi(x)µi(x)dx − Φi(y)µ(y)
∣

∣

∣
dy

≤

∫

∣

∣

∣αiµi(y)

∫

ki(y, x)
1

αi
µi(x)dx − Φi(y)µ(y)

∣

∣

∣ dy

+αi

∫ ∫

ki(y, x)
∣

∣

∣Φi(x) −
1

αi

∣

∣

∣µi(x)dx µi(y)dy.

The first part vanishes because
∫

∣

∣

∣µi(y)

∫

ki(y, x)µi(x)dx − Φi(y)µ(y)
∣

∣

∣ dy

=

∫

∣

∣

∣

∫

ki(y, x)µi(x)dx − 1X

∣

∣

∣µi(y) dy

=

∫

∣

∣

∣
Pi1(y) − 1X

∣

∣

∣
µi(y) dy = 0

since Pi1X = 1X in L2
µi

. The second part allows the following estimate based on (20) and the fact that
∫

ki(y, x)µi(y)dy = 1:

∫ ∫

ki(y, x)
∣

∣

∣Φi(x) −
1

αi

∣

∣

∣µi(x)dxµi(y)dy ≤

∫

1

αi

(

N
∑

j=1

j 6=i

αjµj(x)
)

Φi(x)dx

≤
1

αi

N
∑

j=1

j 6=i

αj

∫

µj(x)Φi(x)dx

≤
1

αi
(1 − αi)ǫ.

Putting the two terms together again we get

‖k ∗ Φi − Φi‖1,µ ≤ (1 − αi)ǫ + (1 − αi)ǫ.
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Let us now assume that K is a Markov kernel which cannot be represented exactly by a weighted
sum of other kernels ki but which can be approximated by such a representation, i.e.

µ(x)K(x, y)µ(y) ≈ µ(x)k(x, y)µ(y) =

N
∑

i=1

αiµi(x)ki(x, y)µi(y).

As before, let µi be the invariant measures of the Markov kernels ki and let µ be the invariant measure
of k. It is assumed that µ is positive almost everywhere, and that all measures are absolutely continuous
with respect to the Lebesgue measure. The coefficients αi are positive with

∑

j αj = 1.

Definition 3.5 The kernel K is said to be (ǫ, δ)-metastable if there is an ǫ-metastable kernel k that
satisfies the above assumptions such that

‖K − k‖1,µ =

∫ ∫

|K − k|(y, x)µ(x)dxµ(y)dy ≤ δ.

Now we again consider the functions Φi(x) = µi(x)/µ(x) as candidates for almost invariant densities.
By definition, we obtain

‖K ∗ Φi − Φi‖1,µ ≤ ‖k ∗ Φi − Φi‖1,µ

+

∫ ∫

|K − k|(y, x)Φi(x)µ(x)dx µ(y)dy,

where the first term can be estimated due to Theorem 3.4, while the second term can be simplified
again if K is (ǫ, δ)-metastable:

∫ ∫

|K − k|(y, x)Φi(x)µ(x)dx µ(y)dy ≤
1

αi
‖K − k‖.

That is, we have shown the following result:

Theorem 3.6 Let K be an (ǫ, δ)-metastable Markov kernel with associated mixed kernel

µ(y)k(x, y)µ(x) =

N
∑

j=1

αjµj(y)kj(x, y)µj(x).

Then the bounded functions Φi(x) = µi(x)/µ(x) are almost invariant under K:

‖K ∗ Φi − Φi‖1,µ ≤ 2(1 − αi) ǫ +
δ

αi
.

It should be pointed out that in Theorem 3.4 and Theorem 3.6 the invariance is measured with
respect to the weighted norm ‖ · ‖1,µ. This has important consequences which will be discussed below
(cf. Sect. 5.1).

3.3 Perturbation of the spectrum

Which consequence does the approximation of the kernel function have for the eigenvalues of the asso-
ciated operators? This question can be answered, at least under additional assumptions. Assume that
the original transfer operator P has invariant measure µ and kernel K(·, ·), and that the associated
Markov process is reversible. Then, P is self-adjoint in the Hilbert space L2

µ. Furthermore, consider a

symmetric approximation k(·, ·) ≈ K(·, ·). Let k induce the operator P̃ with the same invariant measure

µ. This assumption simplifies the analysis, because now both P and P̃ can be considered as operators
in L2

µ. Next, we assume that P − P̃ is a Hilbert-Schmidt operator which is the case if and only if

‖K − k‖2
2,µ =

∫ ∫

|K − k|2(y, x)µ(x)dxµ(y)dy ≤ ∞. (21)

In this situation, Theorem 3 of [36] applies and yields:
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Corollary 3.7 The above assumptions on P , P̃ , K and k imply that there exist enumerations {λi},
and {νi} of the spectra of P and P̃ , respectively, in L2

µ, such that

∞
∑

i=1

|λi − νi|
2 ≤ ‖K − k‖2

2,µ.

The corollary indicates that if K and its approximation k are close enough in Hilbert-Schmidt norm
then the spectra of the associated transfer operators are very similar. Since the dominant eigenvalues
define the most important metastable timescales, this means that the approximation of the kernel of
a transfer operator at least has the potential of approximating the effective dynamics also. However,
the result does not imply that the Hilbert-Schmidt norm is the appropriate norm for getting optimal
approximation of the dominant part of the spectrum.

Remark 3.8 The above results on the approximation of essential features of the dynamics lead to
two different norms, ‖ · ‖1,µ and ‖ · ‖2,µ. Let k be a kernel and κ the associated sampling kernel. Then,
these norms read

‖k‖1,µ =

∫ ∫

|κ(x, y)|dxdy

‖k‖2,µ =

(∫ ∫

( κ(x, y)

µ(x)1/2µ(y)1/2

)2

dxdy

)2

,

that is, 1-norm approximation means sampling kernel approximation in an unweighted (Lebesgue) mea-
sures sense, while 2-norm means sampling kernel approximation with a weighting which is large where
the invariant measure is small.

The results of this section mean, roughly speaking, that an (ǫ, δ)-metastable kernel K can be ap-
proximated by a superposition of kernels k1, . . . , kN , and that the corresponding invariant measures
µ1, . . . , µN allow to construct functions Φ1, . . . ,ΦN which are almost invariant densities of K in the
weighted space. It will now be our goal to construct such an approximative kernel in a situation where
K is not known explicitly and only a sampling of the associated process is given. We will see that un-
der appropriate conditions this process can locally be approximated by the linear Ornstein-Uhlenbeck
process discussed in Sect. 2. The goal is then to find the parameters (means and covariance matrices)
of these local Ornstein-Uhlenbeck processes, and to combine these processes in such a way that the
metastability behaviour is correctly reproduced.

4 Kernel Approximation by Mixture Models

Let us assume that we have a sampling z0:m−1 = {z0, . . . , zm−1} of the sampling kernel κ of the Markov
process Xt under consideration (zn ∈ X × X for all n = 0, . . . ,m − 1). At the moment it is of no
importance whether this sampling results from a long-term observation of Xt or from an ensemble of
short-term observations. We want to exploit the sampling z0:m−1 in order to get an approximation of
κ by a superposition kernel relative to the Lebesgue measure (i.e. in the 1-norm sense with respect to
the associated kernel function, see Remark 3.8).

To this end we assume that z0:m−1 is an observation of m independent and identically distributed
realizations of some random variable Z that is distributed according to a mixture model, i.e., the density
ρ(z|θ) of the probability P(Z ∈ A|θ) =

∫

A
ρ(z|θ)dz for measurable sets A ∈ X × X has the form of a

weighted sum of N component densities:

ρ(z|θ) =

N
∑

y=1

ρ(z|y, θ)P(Y = y|θ).

Here, θ denotes unknown parameters that determine the form of the probability densities. For example,
letting the component densities ρ(Z|y, θ), y = 1, . . . , N be Gaussians, then ρ(Z|θ) is a weighted sum of
N Gaussians, and we speak of a Gaussian mixture model. Note that we treat Y as a random variable
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whose value y ∈ 1, . . . , N we do not know. Therefore, Y is called the hidden assignment variable for Z
to one of the component densities, and P(Y = y|θ) is the probability of a certain value y of Y given θ.
If we knew the value of Y , say Y = y, then the density for Z was just the y-th component density.

According to our assumption, each of our independent samples zn of Z has its own assignment value
yn, i.e., the realization zn of Z comes from the realization yn of Y . However, by this assumption, for
given θ, the y0, . . . , ym−1 are statistically independent, as well as the z0, . . . , zm−1. Our aim is to choose
the parameters θ such that the likelihood

L(θ | z0:m−1) =

m−1
∏

n=0

ρ(zn | θ) =

m−1
∏

n=0

N
∑

y=1

ρ(zn|y, θ)P(Ytn
= y|θ),

is maximized, i.e., we ssek the parameters for which the probability of the given observation over the

family of models under consideration is maximal. Thus, the maximum likelihood estimate (MLE) θ̂
satisfies

θ̂ = argmaxθL(θ | z0:m−1).

Equivalently, the MLE can be defined via the logarithm of L, which according to the assumed statistical
independencies, reads

θ̂ = argmaxθ logL(θ | z0:m−1)

with logL(θ | z0:m−1) =

m−1
∑

n=0

log

(

N
∑

y=1

ρ(zn|y, θ)P(Ytn
= y|θ)

)

. (22)

Here, however, we do not have observations of Yt, i.e., in some sense we have to consider the optimization
task for all possible probability densities for Yt. This is indeed feasible by means of the expectation-
maximization (EM) algorithm. Herman O. Hartley [32] pioneered the research on the EM algorithm in
the late 1950s, followed by Dempster, Laird, and Rubin [33] in the late 1970s. Over the years, the EM
algorithm has found many applications in various domains and has become a powerful estimation tool
[23, 34].

The EM algorithm is an iterative optimization procedure. Starting with an initial parameter estimate
θ(0), each iteration monotonically increases the likelihood function L(θ | x) = L(θ). Each iteration
consists of two steps: (a) the E-step or the expectation step and (b) the M -step or the maximization
step.

EM for the Gaussian mixture model. Let us now specify that the component densities are Gaus-
sians with mean z̄y and covariance matrices Σy, y = 1, . . . , N :

ρ(z | y, θ) = G(z; z̄y,Σy). (23)

Thus, the free parameters θ of our model are the means and covariances of the Gaussian component
densities, and the probabilities that component y is active,

αy = P(Y = y | θ). (24)

These probabilities obviously have to satisfy the constraint
∑N

y=1 αy = 1. We thus have the parameter
set

θ = (z̄1, . . . , z̄N ,Σ1, . . . ,ΣN , α1, . . . , αN ).

In this case, the EM iteration takes the form of Algorithm 1.

The meaning of the algorithm becomes clearer with the interpretation of γ
(i)
n (y) as the probability

that according to the mixture model with parameters θ(i) at time tn the observation zn has to be
assigned to hidden state y. Thus, some sample zn can be assigned to several of the hidden states with
probability between 0 and 1.
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Algorithm 1 EM-algorithm for Gaussian mixture model

Require: Time series z0:m−1 = {z0, . . . , zm−1}, tolerance tol, initial guess of parameters

θ(0) = (z̄(0)
y ,Σ(0)

y , α(0)
y )y=1,...,N .

Ensure: Maximum likelihood estimate θ̂.
(1) Formally set i = −1.
(2) i := i + 1.
(3) Expectation step (E-step): Compute the occupation probabilities

γ(i)
n (y) =

G(zn; z̄
(i)
y ,Σ

(i)
y )α

(i)
y

∑N
y=1 G(zn; z̄

(i)
y ,Σ

(i)
y )α

(i)
y

, y = 1, . . . , N, n = 0, . . . ,m − 1

(4) Maximization step (M-Step):
For y = 1, . . . , N, compute the new optimal parameter estimates

Σ(i+1)
y =

1

γ(i)(y)

m−1
∑

n=0

γ(i)
n (y)(zn − z̄(i)

y )(zn − z̄(i)
y )⊤

z̄(i+1)
y =

1

γ(i)(y)

m−1
∑

n=0

γ(i)
n (y) zn

α(i+1)
y =

1
∑N

y=1 γ(i)(y)
γ(i)(y),

where γ(i)(y) =
∑m−1

n=0 γ
(i)
n (y).

(5) Compute the log-likelihood log cL(θ(i+1)) using Eqs. (22), (23), and (24).
If L(θ(i+1)) − L(θ(i)) > tol, go to Step (2). Otherwise, terminate with θ(i+1) as the desired approxi-

mation of θ̂.

Remark 4.1 Let x0:m−1 = {x0, . . . , xm} be some given observation sequence of the Markov process
Xt under consideration. It induces a sampling zn = (xn, xn+1) ∈ X×X of the associated sampling kernel
κ. In this case the basic assumption of the mixture model that z0:m−1 results from repeated independent
and identically distributed realization of some random variable Y seems strange since we know that the
zn are correlated by the Markov process. Nevertheless the EM algorithm for the Gaussian mixture
model often results in excellent approximations of the sampling (provided the underlying structure of
the data is that of an superposition Gaussian kernel). However, one can take the Markov-like correlations
in z0:m−1 into account by means of generalizing the mixture model to hidden Markov models (HMM)
which again leads to a specific version of the EM algorithm [25, 35].

Remark 4.2 Whenever we want to estimate the Gaussian parameters of the sampling kernel of
some reversible Markov process it can be of interest to add appropriate symmetry contraints to the EM
iteration. This is indeed possible by different means. The easiest way is, when considering a sampling
z0:m−1 with zn = (xn, xn+1) that is induced by a long-term time series, to extend it into a reversible one
by adding zm:2m−1 = {zm, . . . , z2m−1}, zn+m = (xn, xn+1), and then apply Algorithm 1 to the extended
sampling.

5 Kernel Approximation of Metastable Processes

We will now study metastable dynamics associated with the nonsymmetric double-well potential

V (x) = (x2 − 1)2 + 0.25x,

which is illustrated in Fig. 2.
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Fig. 2 Nonsymmetric double well potential as used below for numerical tests.
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Fig. 3 Sampling and histogram of sampling kernel for the OU process as discussed in the text. Points outside
of the black box on the left hand side have not been hit by the sampling.

5.1 Diffusion in a double well potential

Let us return to a 1d Ornstein-Uhlenbeck process, this time of the form

ẋ = −F (x) + ΣẆ

with Σ = 0.45, and force field F (x) = dV
dx (x) where V denotes the above nonsymmetric double-well

potential.
After again performing a DNS of the system (now with Euler-Maruyama discretization in time with

timestep 0.001), we directly get a sampling of the sampling kernel κt(x, x0) with respect to the invariant
measure µ of the process. For t = 0.5 and N = 10000 sampling points, the sampling is illustrated in
the left panel of Figure 3. The right panel of Figure 3 shows the corresponding histogram.

We assume that the underlying kernel is (ǫ, δ)-metastable and apply Algorithm 1 to this sampling.
This yields the following results for the mean values (estimated equilibria (x̄, x̄0)i for i = 1, 2) and the
respective covariance matrices Σi(t), i = 1, 2:

(x̄, x̄0)1 = (−1.012,−1.012), (x̄, x̄0)2 = (0.933, 0.933),

and

Σ1(t) =

(

0.0208 0.0010
0.0010 0.0211

)

, Σ2(t) =

(

0.0299 0.0047
0.0047 0.0308

)

.
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Fig. 4 Left: Invariant measures µ1 (dashed), µ2 (dashed) and the full measure µ (solid) as computed from the
DNS sampling with τ = 0.5. Right: Corresponding approximate invariant densities Φ1 and Φ2.

We observe that the two parts of the kernel can be well approximated by Gaussians that both have the
structure and form of Gaussian kernels resulting from an Ornstein-Uhlenbeck process.

We now aim at understanding the full kernel Kt(x, x0) as an superposition kernel kt(x, x0) in the
sense of Sec. 3.1:

µ(x)Kt(x, x0)µ(x0) ≈ µ(x)kt(x, x0)µ(x0) =
2
∑

j=1

αjµj(x)kj(x, x0)µj(x0),

where the ki are the two Gaussian kernels that have been determined above, and

α1 = 0.948, α2 = 0.052,

as a further result of the Gaussian mixture model. But this means that we determined everything that
is required to construct the superposition kernel kt(x, x0) that approximates Kt(x, x0). In terms of
the weighted 1-norm ‖kt − K‖1,µ the agreement is very good (as far as this can be checked based on
histograms of kt).

Based on these results we are able to inspect the approximate invariant densities Φ1 and Φ2 (see
Fig. 4) and compute the corresponding overlap O12 = 〈Φ1,Φ2〉µ. We get

O12 = 2.8 × 10−9,

such that we can enter the above metastability results with ǫ = O12 = 2.8 × 10−9. This shows that the
kernel is ǫ-metastable, but it also shows that the current approximation contains “too much metasta-
bility” in the following sense: The metastable sets exhibit stronger metastability with respect to the
approximate superposition kernel than with respect to the original process. This is a consequence of the
fact that the approximation of the sampling kernel was based on the 1-norm instead on the 2-norm (see
Remark 3.8); in the 1-norm the weights of the transition regions are small since the sampling kernels
are small there.

5.2 Assignment to Metastable and Transition States

Let us consider the above example again. Let us denote the available time series generated by DNS
by x0:m = {x0, . . . , xm}. From this we get the time series underlying the sampling kernel; this will be
denoted z0:m−1 = {z0, . . . , zm−1}, where zn = (xn, xn+1).

According to the previous analysis we have two main metastable states. Points in the shortened time
series x0:m−1 can be assigned to these states via the almost invariant densities Φi, i = 1, 2, in the sense
of constructing the two sets

Mi = {xn : 0 ≤ n ≤ m − 1, Φi(xn) > θ‖Φi‖∞}, i = 1, 2.
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Fig. 5 Sampling of the sampling kernel with coloring of points according to assignment as described in the
text (θ = 0.95). The two clouds of grey and black dots represent M1 and M2, respectively. The crosses indicate
M10 (black) and M01 (green), the circles M12 (black) and M21 (light grey), and the stars M20 (black) and M02

(light grey).

where θ > 0.5 is some appropriate user-selected threshold (e.g., 0.95). The properties of the Φi guarantee
that M1 ∩M2 = ∅. All other xn will be collected in the transition set

M0 = {xn : 0 ≤ n ≤ m − 1, Φi(xn) ≤ θ‖Φi‖∞, i = 1, 2}.

Transitions are events n where xn ∈ Mj for j = 0, 1, 2 but xn+1 6∈ Mj . We can classify these via the
timeseries z as follows: First introduce

Mij = {zn = (xn, xn+1) : 0 ≤ n ≤ m − 1, xn ∈ Mi and xn+1 ∈ Mj}.

See Figs. 5 and 6 for illustrations of these sets for different values of θ.
Let now #A denote the number of elements in the set A. Then, we observe that for all i = 0, 1, 2

#Mi =
∑

j

#Mij ,

and the optimal Markov transition matrix (in a MLE sense, i.e., under the condition of the observation

X̂ made) between the sets Mi, i = 0, 1, 2 has transition probabilities

p(i, j) =
#Mij

#Mi
.

In our case we get (θ = 0.95)

⊤ =





0 0.8112 0.1888
0.0001 0.9997 0.0002
0.0003 0.0030 0.9967



 .
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Fig. 6 Sampling of the sampling kernel with coloring of points according to assignment as described in the
text (θ = 0.99). The two clouds of grey and black dots represent M1 and M2, respectively. The crosses indicate
M10 (black) and M01 (light grey), the circles M12 (black) and M21 (light grey), and the stars M20 (black) and
M02 (light grey).

The eigenvalues of this matrix are 1.0000, 0.9965,−0.0001 which illustrates that, as long as we are
interested in metastability, the process can be further aggregated by means of the PCCA algorithm
[18, 19] into the 2 × 2 process

⊤ =

(

0.9998 0.0002
0.0031 0.9969

)

.

which describes the jumps between M1 and M2.

Let us conclude our considerations with the following sketch of the algorithmic approach we are
advocating herein:

• Use Algorithm 1 to find an approximate superposition kernel
∑M

i=1 αiκi based on a sampling (time
series with lag time τ) of the sampling kernel of the system under investigation.

• Construct the almost invariant functions Φi based on the invariant measures of the approximate
superposition kernel and compute the transition matrix ⊤ as outlined in this section.

• Take the Markov chain associated with ⊤ as description of the effective dynamics of the system on
timescale τ and the dynamics associated to the sampling kernels κi, i = 1, . . . ,M as local dynamics
within each of the M metstable sets.

In Sec. 2.3 of [37] this approach has been applied to the small peptide trialanine; it has been demon-
strated that its results coincide with results of other algorithmic approaches to metastable dynamical
behavior in molecular systems.
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6 Relation to other approaches

6.1 Extended state space

Let us consider again Markov kernels ki, i ∈ I = {1, . . . , N} with invariant probability measures µi,
and associated flat space transition densities ρi(x, ·). Assume that ki and ρi are associated with a lag
time τ . Let us assume that the measures µi are absolutely continuous with respect to the Lebesgue
measure and that the ρi are positive (almost) everywhere. Let the underlying state space be Ω. Now we
consider the extension of the process to the extended state space Ω×I, i.e., the number of the respective
component ki of the process now is part of the state information. Now, consider the following Markov
transition density on this extended state space:

ρext(x, i, y, j) = ρi(x, y)Tij(y), (25)

where i, j ∈ I, and Tij denotes the i, j-entry of the transition matrix T = exp(τR) of the Markov jump
process with rate matrix R on I. R and T are supposed to depend on y such that π = (πj(y))j∈I , the
invariant measure of T (y), satisfies

πj(y) = αjµj(y)/µ(y),

with some fixed positive numbers αi that do not depend on y and satisfy
∑

j∈I αj = 1, and µ(y) =
∑

j αjµj(y). Under these conditions we easily verify that the invariant measure of the extended transi-
tion function with density ρext is

µext(x, i) = αiµi(x).

We can now lump the extended transition function together again, i.e., we consider its marginal
transition density

ρmar(x, y) =
∑

i,j∈I

πi(x)ρext(x, i, y, j). (26)

Interestingly we then get back to the transition density of the superposition process on Ω:

ρmar(x, y) =
∑

i∈I

αi
µi(x)

µ(x)
ρi(x, y).

6.2 Towards HMMSDE

Let ρi, i = 1, . . . , N be Markov transition densities and R ∈ R
N×N a rate matrix. The transition matrix

associated with R and step t = 1 is ⊤ = exp(R). Let π be the invariant measure of ⊤, i.e., πT⊤ = πT .

Consider the extended state space Ω̂ = Ω × {1, . . . , N}. Then introduce the transition density

ρ(x, i, y, j) = ρi(x, y)⊤ij

which defines a “1-step” Markov kernel on Ω̂. In contrast to what has been considered above we do no
longer assume that ⊤ depends on the target state y ∈ Ω.

In case that the ρi(x, y) are transition functions of Ornstein-Uhlenbeck processes

ẋ = −DV (i)(x) + Σ(i)Ẇ ,

the such defined process is governed by the HMMSDE model [24]

ẋ(t) = −DV (i(t))(x(t)) + Σ(i(t))Ẇ ,

i(t) = Markov jump process with rate matrix R.

Concerning parameterization of this process by the time series at hand, we get the ρi by approximation
of the sampling kernel and the transition matrix from the above EM algorithm and counting scheme.
In [21, 24, 26], another approach to parameter estimation for the HMMSDE model has been presented.
Further investigations will have to work out whether these algorithms can also be used for the advanced
kernel approximation scheme.
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[2] S. Fischer, B. Windshügel, D. Horak, K. C. Holmes, and J. C. Smith. Structural mechanism of the recovery
stroke in the myosin molecular motor. Proc. Natl. Acad. Sci. USA 102, pp. 6873–6878, 2005.
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7 Appendix

As an example in a deterministic setting, we derive an explicit formula for the transition kernel in the
case of a partially observed Hamiltonian system. Consider the ordinary differential equation ż = F (z)
with flow map Φt such that z(t) = Φtz0 if z(0) = z0. Now assume that the trajectory is only partially
observed, i.e., instead of the full state z = (x, ξ) we do only consider the part x = Qz where Q denotes
the projection from the state space onto the subspace corresponding to x. Then, the observed process
has the form x(t) = QΦt(x0, ξ0). Furthermore assume that the flow map Φt leaves the measure π = µ⊗ν
invariant, of which we assume that it is absolutely continuous with respect to the Lebesgue measure
and decomposes according to π(x, ξ) = µ(x)ν(ξ). Under these conditions the transfer operator of the
observed process x(t) on time scale τ has the following form [11, 13] in the function space L2

µ:

P τf(x) =

∫

f(QΦ−τ (x, ξ)) ν(ξ) dξ.

Rewriting it in the above notation under the assumption that the µ is almost everywhere positive
exhibits that the associated kernel in L2

µ has the form

kτ (x, y) =
1

µ(y)

∫

δ(y − QΦ−τ (x, ξ)) ν(ξ) dξ,

where δ denotes the usual delta distribution which is used here for the sake of simplicity.
In order to understand what kind of function kτ may be, consider the following scenario which

originates from molecular dynamics applications: There ż = F (z) should be thought of as a Hamiltonian
system with position x, momentum ξ, and Hamiltonian H(z) = T (ξ)+V (x). Hence, F (z) = −JDH(z)
where DH denotes the derivative of H with respect to z = (x, ξ), and J is the typical skew-symmetric
block matrix J = [0, I; −I, 0]. The associated flow then leaves the measure

π(x, ξ) = µ(x)ν(ξ) =
1

Zx
exp(−βV (x)) ·

1

Zξ
exp(−βT (ξ))
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Fig. 7 Sampling of the sampling kernel for projected Hamiltonian system as described in the text.

invariant, where Zx and Zξ are appropriate normalization constants and β is some arbitrary positive
number. In this context, all above assumptions are satisfied for arbitrary potential energies V and kinetic
energies T that grow strong enough. In order to allow a glimpse on the structure of kτ let us specifically
choose the case of a one-dimensional position coordinate x and V (x) = x2/2 and T (ξ) = ξ2/2, and τ so
that s = sin(τ) 6= 0. Then QΦ−τ (x0, ξ0) = cos(τ)x0 − sin(τ)ξ0, and we find (set c = cos(τ))

kτ (x, y) =
1

µ(y)

1

s
ν
(cx − y

s

)

.

This then results in a sampling kernel of Gaussian form

κτ (x, y) =
1

sZxZξ
exp

(

−
β

2

[

x2 + (
cx − y

s
)2
])

=
1

sZxZξ
exp

(

−
β

2

[x2 − 2cxy + y2

s2

])

.

Next, consider the Hamiltonian H(x, ξ) = T (ξ) + V (x) where V (x) now denotes the double well
potential shown in Fig. 2 (cf. Sect. 5.1). Let β = 5 and τ = 0.5. After performing a DNS of the
projected Hamiltonian system (with Verlet discretization in time with timestep 0.005), we directly get
a sampling of the associated sampling kernel κτ (x, x0) with respect to the invariant measure µ of the
process. This sampling is shown in Fig. 7 below. We observe that the sampling kernel can well be
approximated by a superposition of two Gaussians.
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