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Abstract

The Ohta-Kawasaki model for diblock-copolymers is well known to the scientific
community of diffuse-interface methods. To accurately capture the long-time
evolution of the moving interfaces, we present a derivation of the correspond-
ing sharp-interface limit using matched asymptotic expansions, and show that
the limiting process leads to a Hele-Shaw type moving interface problem. The
numerical treatment of the sharp-interface limit is more complicated due to the
stiffness of the equations. To address this problem, we present a boundary inte-
gral formulation corresponding to a sharp interface limit of the Ohta-Kawasaki
model. Starting with the governing equations defined on separate phase do-
mains, we develop boundary integral equations valid for multi-connected do-
mains in a 2D plane. For numerical simplicity we assume our problem is driven
by a uniform Dirichlet condition on a circular far-field boundary. The integral
formulation of the problem involves both double- and single-layer potentials due
to the modified boundary condition. In particular, our formulation allows one
to compute the nonlinear dynamics of a non-equilibrium system and pattern
formation of an equilibrating system. Numerical tests on an evolving slightly
perturbed circular interface (separating the two phases) are in excellent agree-
ment with the linear analysis, demonstrating that the method is stable, efficient
and spectrally accurate in space.

Keywords: Hele-Shaw flow, Ohta-Kawasaki model, matched asymptotic
expansions, boundary integral methods, diblock copolymer
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1. Introduction

The Ohta-Kawasaki (OK) model [1] was originally derived by Takao Ohta
and Kyozi Kawasaki to investigate mesoscopic phase separation in block copoly-
mers. The phase separation in copolymeric substances results in the formation
of two distinct regions, each rich in a particular ingredient. Domains of various
shape may emerge in the system under various ratios of molecular weight of the
two species. It is necessary to investigate such systems as the resulting proper-
ties are different from those observed in multiphase systems of single monomer
types. The model has garnered strong interest since its emergence and has been
connected to areas beyond which it was originally proposed. Examples of ap-
plications include problems in condensed matter physics and biological systems
[2].

In the original work of Ohta and Kawasaki [1], an energy functional was pro-
posed to investigate the phenomenon of phase separation where both attractive
(short-range) and repulsive (long-range) forces play their part in determining the
configurations. The evolution equation corresponding to the functional and its
steady version was first mentioned in [3], where a connection was made between
Hele-Shaw (HS) flow equations and the time-dependent OK problem. In this
paper, we present a formal derivation of the corresponding sharp-interface limit
using matched asymptotic expansions, and show that the limiting process leads
to an HS-type moving interface problem. This allows us to recast the long-time
evolution of the OK problem as a modified HS problem and focus our attention
to the latter to obtain insight into the original pattern formation problem. The
analytical solutions are ruled out owing to the complicated geometry and we
investigate the problem mainly using numerical approaches.

While other numerical techniques like phase-field equations have been used
for OK problem [4], the boundary integral method is a preferred choice as a
numerical method for HS-type problems because it entails dimension reduction,
i.e., the problem defined on a domain becomes a problem defined on the domain
boundary. However, the equations of dynamics constitutes stiff equations due
to the surface tension acting at the fluid-fluid interface, and without the special
numerical techniques described in [5], it is practically impossible to perform
long-time numerical simulations. Several references have used this technique
with great success and we refer the interested reader to [6, 7, 8, 9, 10]. We
also note that our equations differ from the traditional HS equations [11] in a
few subtle ways. In the original HS model, the far-field boundary condition is
of Neumann type which very naturally corresponds to injection/removal of the
fluid. Our problem, on the other hand, is driven by a Dirichlet type boundary
condition in the far-field. This renders the constraint on the integral of velocity
to be different in our case. We also note that the far-field boundary is at a
finite distance from the origin in our case while in the classical HS problems,
the radius of the far-field boundary is infinite.

The main contribution of this paper can be summarized as follows: starting
with a rescaled formulation of the OK equation, we present a matched asymp-
totic analysis in the long-time limit that governs the dynamics of the emerging
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interfaces and this leads to modified HS equations of the OK model. We then
prescribe a transformation that converts the HS equations from the Poisson
equation to the Laplace equation and transform the interfacial and far-field
boundary conditions accordingly. The equations are then investigated using a
linear analysis. We prescribe a boundary integral formulation for the Laplace
equation using free-space Green’s function and we investigate the boundary inte-
gral equations numerically as the analytical solutions are known in very limited
cases. The numerical methods allow us to investigate the steady-state config-
uration for various patterns hitherto not explored in detail. Throughout our
computation, we demonstrate high accuracy which is a trademark of bound-
ary integral computations. Nonlinear computations indicate that the interface
morphologies depend strongly on the mass flux into the system before the sys-
tem reaching equilibrium. Simulations of multiple equilibrating interfaces show
complicated interactions between phase domains including interface alignment
and coarsening.

This paper is organized as follows: In Section 2, we give a formulation for
the boundary value problem of the OK equation in a rescaled form that is suit-
able for the asymptotic analysis using matched asymptotic expansions, which is
carried out in Section 3. In Section 4, the analytical solutions of the problem
are discussed. Numerical methods on the boundary integral equations, the spa-
tial discretization of the integral equations using spectrally accurate quadrature
rules, the dynamical equations, and the small-scale decomposition are discussed
in Section 5. The interface is updated based on these methods. Finally, we
present results of numerical simulations in Section 6 and summarize our find-
ings in Section 7.

2. Formulation of the Ohta-Kawasaki phase-field model

In the framework of density functional theory, the OK problem in its dimen-
sionless form it is [1, 3]

Forld) = [ 5(V0F +F(@) = F(o-) + Gu(o—d) dudy. (1)

In a domain 2, ¢(t,x) is the density difference, ¢4(x) — ¢p(x), at position
x = (z,y) and at time ¢, where the overbar denotes the average of a quantity,

e.g.
_ 1 /

=— | ¢dxdy. 2
o .

1 is given by the solution of the Poisson problem,
Ap=¢-¢ o, (3a)

o

g 0 on 0f), (3b)
'l/_) = Oa (30)
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where the last condition is introduced to enforce the uniqueness of ¥. Here, we
use for the double-well free energy F' the form

1

F(¢) = 16"~ 50 (4)

which has two minima at ¢+ = +1. The chemical potential u is obtained by
the first variation of the functional Fox

p=—A0¢+(¢° = 6) — a, (ha)
which yields the flux
Jj=-Vpu. (5b)

The system is closed via mass conservation
Y =-V-j d¢
5t J (5¢)

together with boundary and initial conditions

. o)
Jj naa =0, Brgs 0 on 90, (5d)

¢(2,0) = Pinit (7). (5e)

Derivations of the Ohta-Kawasaki phase-field model using the gradient flow
approach can be found in, e.g., [12, 13, 14].

3. The sharp-interface limit

For diblock copolymers, the long-time interface formation during phase sep-
aration that sets the small-scale related to the interface width is directly con-
nected to the parameter o, via ¢ = «'/3 [15, 16]. Tt is thus convenient to
rescale the Ohta-Kawasaki model to this regime via z = o~ '/3%, ¢ = a‘2/3@[~1,
p=a'3, = at, and Fok = eFok. After dropping the tildes, the rescaled
free energy can be written as

Foxlé) = [ 5e(VoP +e 7 (F(O) - Fo) + 306 -8, (©)
Q
and thus the corresponding phase-field model
0
a—f = Ap, (Ta)
p=—chdte (¢ - )~ ¢, (7b)
—Ap=¢— 9, (7c)
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00 oy o
e =0 B =0 =0 ond, (7d)

¢(z,0) = ¢o(). (7e)

Due to the small parameter € multiplying the Laplace operator in the chemical
potential, the problem is singularly perturbed as ¢ — 0. While such problems
have been considered before with different methods [17, 18, 3], we investigate
this “outer” problem through matched asymptotic expansions, where asymp-
totic approximations for the outer problem are matched to approximations of
a corresponding “inner” problem in the neighborhood of the sharp interface.
Our investigation follows a similar method applied by [19] for the Cahn-Hilliard
equations. We assume ¢(7,x), p(7, @), and ¢ (7, ) have the asymptotic ex-
pansions, ¢ = ¢o + ep1 + >pa + O(e®), p = po + pn + %pg + O(£?), and
Y = g + ey + e2hy + O(e3). Substitution into (7) yields the asymptotic
problems for ¢; up to order £2,

O (£°) : 0,0 = Apo, O (e') : 0;¢1 = Ap, O (%) : Or 2 = Apo. (8)

Similarly for pu;,

O(™):  0=F(¢), (9a)
O():  po=F"(¢0) 1 + o, (9b)
O m=F' (@) 6+ 5" (G0) 8~ g+, (%)

and 1,
O(%):—Ag=¢o— ¢, O(c"): Ay =¢1, O(%): —Athy = . (10)
On the fixed boundary 0f2, the rescaled boundary conditions are

00 =0, Op =0, v =0, on 0N for i=0,1,2,...
Onaq Onaq Onaq

To derive the inner problems, it is convenient to introduce a parametrization
r(r,s) = (r1(r,8),r2(7,8)) of the free interface T' via the arc length s, and
v(r,s), the normal inward-pointing vector along the free boundary, so that any
point in the thin e-region around I' can be expressed by

x(1,8,2) = r(r,s) + ezv(T, 8),

where ez is the distance along the inward normal direction v(7,s) from the
sharp interface I', given by

v(r,s) = (—0sre,0sr1), t(1,s) = (0sr1,0s72) .

The relation between the derivatives of a quantity o(7,s,z) defined in inner
coordinates and the derivatives in outer coordinates v(7, ) can be expressed as
a product of matrices, see Appendix A and [20].
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Similar to the outer problem, we assume that the inner asymptotic expan—
sions for ¢(, s, z), fi(T, s, z), and z/J(T s,%) are given by qb = Ug + ety + €21 +
O(e*), fi = fio + efin +52ﬂ2+0( 3), and ¥ = g + ety + €2y + O(?). AL
ter application of the coordinate transformations to the governing equations,
we obtain asymptotic subproblems for (j), v and w for the inner region. These
problems are solved and matched to the outer solutions. The details of the
arguments, the matching conditions for the asymptotic analysis, are carried out
in Appendix A, resulting in the sharp-interface problem

¢ = £1, (11a)

—Agg = ¢p — ¢ in €, (11b)

Apo =0 in QF, (11c)

Lo = 0Kk — g on I, (11d)

o
= T 1

V= [an] on T, (11e)
Opo by

o o 0 on 09, (11f)

where o is the surface tension and Q = QT UT'UQ™ a domain, with QT and the
Q™ the regions where ¢y = +1 and ¢_ = —1, respectively, and I is the interface
between them. The normal to the latter pointing from Q7 to Q™ is called n. We
will, more specifically, denote by QT the exterior and 2~ the interior domain.
The boundary of Q is denoted by 02 and the jump of u across the interface I’

is given by
Ao _ Oug g
on on

Finally, the value of o can be expressed as

on on on

1 b4
v V2(F(¢) — F(¢-)) dé. (12)

For the derivation of the boundary integral formulation, it is convenient to
reformulate the sharp-interface problem in terms of the variable

w 1= 1o + po. (13)

We consider a bounded domain Q = QT UT U Q™ C R? where QF, the outer
domain, and 7, the inner domain, are open sets of R? and I' is the moving
interface separating the exterior domain Q% and the interior domain 2. The
interior domain €2~ is a disjoint union of ﬁnitely many open, connected com-
ponents €, ,Q5,---,Q;, and thus I' = U 108 . The outer boundary of Q is
denoted by I's,. A schematlc diagram of the problem is given in Fig. (1). The
sharp-interface model is the following problem:

—Au =1-2xq- in Q\T, (14a)
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U =0k on T, (14b)

ai—i =0 on Iy, (14¢)
1 [0u

where v is an unknown function, x 4 is the characteristic function of the set A, k
is the curvature of boundary I', ¢ is the surface tension parameter, the operator

— is the normal derivative where n denotes the normal directed from €~ to

n
Q. While the function u is continuous, the derivative of u suffers a jump across

+ —
the interface I' and is given by g—u = aai - aﬁl
n n n

solutions of the OK problem in the exterior and interior domains respectively.
The interface I' moves due to the velocity V.

To eliminate the source term in the field equation and recast the problem in
terms of the Laplace equation, we introduce a new function w defined as

(1 - QXSZ*) 2
M x

, where u™ and v~ are the

w=u+ , (15)
where [x|* = 22 + 42, Then the functions v and u~ are replaced by wt =
ut 41 |x|2 and w™ =u" — 1 \x|2 in Q" and Q~ respectively. The boundary
condition Eq. (14b) on T splits into conditions on w™ and w* as follows:

- X 1

w ok ==, (16)
x|”
wt =ok+ ——. (17)
4

We also transform the far-field boundary condition Eq. (14c) to
owt 1
3 = 5%oo " Noo, 1
O 5Xoo 1) (18)

where X, is a point on the outer boundary I', and n, is the outward normal
at Xoo. The normal velocity of the interface I' separating the interior and the
exterior domain becomes

1 [ow 1
V_z[an} X (19)
—+ —
where, as in Eq. (14d), [g:] = 6@% - 8@%

4. Analytical solution of original equations

It is not possible to find analytical solutions of the OK equations for arbitrary
geometry and multiply connected regions. However, for simplified cases, like
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Figure 1: A schematic diagram of Ohta-Kawasaki problem. The interior domain Q~ is the
disjoint union of three connected and bounded regions 27,2, and Q5 . The boundary of 2~

consists of I' = 9Q] U 925 U 9823 . The outer region Q% is bounded and surrounds Q.

when Q- UT U QT is a circular domain centered at origin and Q= a circular
domain of smaller radius and centered at zero, it is possible to find an analytical
solution. In such a case [21], the solution inside Q™ is obtained as

~_ L., 2 2 g
=- - R —=. 20
u 1 (17 +y ) + Ji) (20)
Similarly, in the exterior domain, the solution of the boundary value problem
of the Poisson equation in (r, ) coordinates is given by

2 2 2 2
)= Rﬂ 1 g i — Rﬂ] R 21
u'(r) 4+<2>0gr+R+4 5 g R. (21)
In steady state, the interface between the two domains does not move (V = 0)
and Eq. (14d) requires the normal derivative of u to be continuous. From
Eq. (20) and (21), we get

ou R

- [ 22
=3 (220)
ou R R?

e L 22b
on|py 2 + 2R (22b)

Equating the two gives an additional relation between the radii of the interior
and the total domain,
Ro = V2R, (23)
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which simply states that the area of the interior and exterior domains are equal,
as expected for a symmetric diblock copolymer configuration in steady state.

The solution of the OK equations can be extended further via linear analysis
on a domain Q~ with the shape of a slightly perturbed circle of the form

r(t,R,0)=R(t)+(t)coskd, 0<6<2m, (24)

where R is the radius of the circle and § cos k@ is a small perturbation with
4 (0 o (t

R((O)) ~ O (e),e < 1. Thus, by continuity of the problem, we expect R((t)) ~
O (¢), at least for t < T, where T' > 0 is possibly a short period of time. In this
case, it is easier to work with the transformed equations and we presume that

the solution in polar coordinates is given by
w* (r,0) = wy (r) + swi (r,0) + O (6%) (25)

where w3 is the zeroth order solution and wi is the first order solution. A
straightforward computation yields the zeroth order solution as

g B

wy, = = (26a)
2 R2 2
wg:?'ologr—k%—&-j—%logf?' (26D)

Next we compute the first order corrections and in this case, w™ is of the form
A~r* cos k@ where

__o(k-1) 1

A RF+2 - 9Rk-1° (27)
B+
The function w™ is of the form [A"’rk + rk} cos kO where
A+ R* oc(k*-1) R R%Z
T RRrRE| R 2 2R\ (28)
N RFR* |o(k*—1) R R2
BY = gwrpr | " T2 2| (29)

Once the functions w~ and w™ are available up to first order, we may proceed
to calculate the velocity of the interface as

V ~ =R+ dcosk (30)

where the “dot” on the respective variables indicate derivative with respect to
time. The expression on the right of Eq. (30) captures the interface velocity up
to first order. We equate the right hand side of Eq. (30) to the right hand side
of Eq. (19) and obtain

R=R% /AR - R/2, (31)
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6= [~R%/R* + k(t2 — t3)/2 — kt1/2 — 1/2] 6. (32)

where
tiy =o(k®* —1)/R*—1/2, (33)
ty = p1 R*71J(R* + R?), (34)
ts = p1RZ /(R(R** + R2Y)), (35)
p1=o0(k* —1)/R*+ R/2 — R% / (2R). (36)

These solutions are used later on to validate our numerical methods.

5. Numerical methods

In this section, we describe the numerical methods including the derivation
of the boundary integral equation, its solution, and methods to update the
interface. The switch from differential equation to boundary integrals results
in a dimension reduction as the original PDE problem should be solved over a
domain while the integral equations only have to be solved on the boundary.

Mathematical preliminaries

We observe that the interface I', on which we have to solve the integral
equation, is a union of disjoint, smooth, and closed curves 082 ,k = 1,--- , M
where 02 is the boundary of the region 2, . We assume that each interface
051, is represented by

09, ={x(a,t) = (z(o,t) ,y (a,1)) : 0 < < 27}, (37)

where the function x is analytic and 27-periodic in the parameter ce. The local
tangent and the normal vectors to the interface are

s = (Za,Ya) /Sa and n= (Yo, —Za)/5a (38)

respectively, where z, and y,, are the derivatives w.r.t. to o and s, = \/x2 + y2
is the local variation of arc length. If we introduce the angle 6 tangent to the
interface, then we may write n = (sin, — cos8) and the curvature k = 0, /s, =

0.

Boundary integral formulation

The introduction of the function w in Eq. (15) allows us to transform the
Poisson equation in the original problem to the Laplace equation. We further
wish to recast the latter using boundary integral formulation. Consider the free
space Green’s function G(x,x’) = st In|x — x’|. We then write the solution
w~ to the interior problem as a combination of single layer and double layer
potential, i.e.,

w0 = [{G B om0 2 e )

10
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forx e Q7. Asx —» x' €T', we have

1 X\ _ o) o OG
2(0/{—4)—/1“{WG(X,X)—U) (x)an(x/)}ds. (40)

Similarly for the exterior problem,

Y 9 BTN P /ISR P
wri) =i~ [ {5 G - wr ) 00 bas )

for x € QF, where ., is an unknown to be solved. As x — x’ € I, we have

L XY _ g Ot (X) o n_9G 1\
3 <0H+4> —woo—/P{an(X/)G(x,x)—w"’(x)an(X/)}ds. (42)

Adding equations (40) and (42) together, we have

x| oG

5 an(xl)ds’. (43)

aff:u?oo—/ 2VG(X,X/)dSl—/(X/-HI)G(X,X/)dSI-I-
r r

Eq. (43) is the boundary integral equation that we solve numerically. An ad-
ditional equation is needed to complete the problem. To this end, we integrate
Aw™ =0in O~ and Aw™ =0 in O, and we then use the divergence theorem
to get [ %—ds = 0 and [, ag;: ds + [5q gg’: ds = 0. Subtracting these two
equations and using equation (19), we get

1
J = / Vds = *Atotal - A_v (44)
1_‘ 2

where A;oiq; is the total area enclosed by I'oo and A~ is the area enclosed by T'.
We solve for W, and the normal velocity V' using equations (43) and (44). The
physical meaning of W+, in the integral equation is evident: It is the value of w
at I's corresponding to the flux given in the right hand side of Eq. (44). Our
formulation thus allows us to investigate the (unknown) Dirichlet condition at
the far-field corresponding to a (known) Neumann condition.

Solving the integral equations

The boundary integral equation (43) in equal arc length parameter is given by
Weo — / 2V (x () G(x (o) ,x (&) 80 (o) dc’
r

=ok+ /F (x () n(a))G(x(a),x(a))sq (@) da’

7/ [x () [ 9G(x (a) . x ()
ro 2 In(x(a'))

5o () da/. (45)

This along with Eq. (44) should be solved to find the velocity V of the interface
as well as wy,. We use the Nystrom method to discretize the integral equations

11
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using highly accurate quadrature rules on the various integrals in Eq. (45).
We discretize each of the curves using N marker points using equal arc length
parametrization «; = jh where h = 2r/N. We choose N = 2" for some
positive integer n. Next, we investigate the smoothness of the various integrals
in Eq. (45).

Double-layer potential

The kernel % of the integral fr % %ds’ does not a have a singularity
dlog|x (@) = x (')
S on(x (@)
tion of trapezoidal or alternating point quadrature is enough to ensure spectral
accuracy [22]. One may also apply the hybrid Gauss-trapezoid quadrature rules
derived using the Euler-Maclaurin formula, as suggested in [23].

=1k (a)+ O(a—a') with o’ — a. Thus, an applica-

Single-layer potential

The second integrals, both in the left and right hand side of Eq. (45), possess
a logarithmic singularity and cannot be handled by trapezoidal rule as it is
only second-order accurate. However, the integration can be performed by first
splitting the log kernel as

log |z (o, t) — x (o, t)] = log 2

in (45 szt

and then by applying the additive rule of integration. The kernel of the in-
tegration f027r f(a,a’)log?2 “’20‘,
use of a Hilbert transform [5] or quadrature referred in [24] results in spectral
accuracy. In this work we use the method suggested in [5]. The kernel of second
|z (a,t) —z (o', 1))

2 sn (252)|
at a = o’ and can be evaluated via alternating point quadrature rule.

The overall discretization of the integral equation gives rise to a dense system
of linear equations comprising of M N + 1 equations, where M is the number
of connected components of 2~ and N is the number of marker points on the
boundary of each component. We have an additional unknown in the form
of ws. We solve this system using an iterative GMRES [25] technique. The
GMRES requires only the (dense) matrix-vector multiplication routine and this
is the most time consuming part of the iterative solver. Since our matrix is dense,
the routine is completed by O (M2N?) operations. The cost of matrix-vector
multiplication operation can be reduced by the application of a parallel matrix-
vector multiplication. It can also be reduced to O (M N log (M N)) by the use
of fast summation algorithms [26, 27, 28]. We do not use any preconditioner in
the solver.

sin( )’do/ is still singular at o = o/, but the

integration fOZW f(a,a)log da/ has a removable singularity

FEvolution of domain interfaces
The discretization of the integral equation gives rise to a stiff system of ODEs
as the motion of the interface is curvature driven [5]. The time explicit methods

12
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result in a stability constraint At ~ O (As3) where As is the spatial resolution.
Moreover, the Lagrangian marker points can come close to each other during the
course of evolution. To circumvent these problems, we implement the small scale
decomposition technique due to Hou et. al. [5]. This special temporal scheme
reduces the stiffness requirement to At ~ O (As). The scheme also prevents
two points from coming too close to each other by distributing the markers on
the interface using equal arc length frame and then maintaining the same at all
time by the addition of a tangential velocity T at every step of calculation.

Dynamics of the interface

Once the velocity V is obtained for each marker point, we do not update
Eq. (19) directly. Instead, the dynamics of the problem is recast in terms of the
lengths L of the interfaces and the angle 6 that the tangent to the marker point
makes with the positive z-axis. First, we add a tangent velocity T (a,t) to the
interface where T (a, t) is given by

T (a,t) =T (0,t) + / shk'Vda' — ;ﬁ’V da’. (47)
0 ™
After adding the tangential velocity, the motion of the interface is given by

%x (a,t) =V (a,t)n+ T (a,t) s. (48)
The addition of the tangential velocity does not change the shape of the in-
terface; however, it is crucial for maintaining the equal arc length distribution
of the marker points throughout the computation and prevents the clustering
problem. Once the equal arc length distribution is taken care of, we pose the
dynamics of the problem with the following two equations,

27
L= / 0LV (a,t) da, (49)
0
] 2 ) .
engf(_v;+T29;), i=1,...,M. (50)

The subscripts a and t denote derivatives with respect to these variables. We
use an additional superscript ¢ to indicate the interface for which the equations
are written. We obtain one equation for L for each of the M domains, while we
get one equation for 8 for every marker point on the boundaries of the domains.
Thus, we must solve M + M N ordinary differential equations in total. It should
be noted that the interface can be fully recovered from L and 6 by integrating
the relation

X = L;(:) (cos ' (a, 1), sin 8 (a, 1)) . (51)

Small-scale decomposition and updating the interface
The stiffness of the original problem propagates to Eq. (50), while Eq. (49)
is non-stiff. The latter can be integrated explicitly, but the solution technique
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for the #-equation is far from trivial. This equation is solved using small-scale
decomposition (SSD), an idea which has been successfully used in a number of
problems in the domain of, e.g., HS flow, micro-structure evolution [29, 30], vesi-
cle wrinkling [31], and dynamics of an epitaxial island [32]. In problems driven
by Laplace-Young boundary conditions, the critical factor in the numerical com-
putation is the curvature of the interface. It introduces higher derivatives in the
dynamical equations and results in severe stability constraints. For example,
the analysis of the equations of motion reveals [5] that, at small spatial scales,
V(a,t) ~ é’H [0ae] where H [0nq] denotes the periodic Hilbert transform of

0o and therefore Eq. (50) becomes

S%H Baaa] + N (a,1), (52)

0, =

where the term N (a,t) = (Vs + KT) — 5 H [laaa] - In the last equation and the
subsequent ones, we suppress i in the superscript to keep our notation simple,
but its presence should be understood. SSD reveals that the part 8%7-[ (2

gives rise to a stiffness condition At < C (As)3. The same analysis shows that
the term N (a,t) is non-stiff.
We identify that in Fourier space, the dominant term on the right hand side
of the Eq. (52) diagonalizes and the equation becomes
j o [n|’

0 = — 0 (k,t)+ N (k,t). (53)

3
Sa

We time-integrate the f-equation in Fourier space with a semi-implicit time-
stepping algorithm [5]. Using an integrating factor, we obtain

d [ _a=® _alnl®
7 <e % Gt) =e <& N (k). (54)

Then, we use a second-order Adams-Bashforth (AB2) method to discretize
Eq. (54) as

07 (k) = ex (tny tnsr) 07 (k)

+ % (3€k (tnstns1) N™ (k) = ex (tn—1, tny1) N1 (k)) 69

where the subscript/superscript n denotes numerical solution at t = ¢,, and we
define .
n+1 dt
tnytns1) =exp | —o k| — . 56

To evaluate the term ey, (¢,,tn+1), we first integrate the non-stiff Eq. (49) using
AB2 which gives

Lt =1"+ % (BM™ — M1, (57)
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with M = *i 0% V(a,t) 0, da. Also, s, = L/27, and we apply the trape-

zoidal rule to evaluate integrals in ey (¢,,,t,+1) and eg (tn—1,tn41) as

bttt At 1 1
N — ), 58
L ww~5 <<Sg>3 (Sg+1)3> %)

trnt1 dt 1 1 1
~A =+ + ~ . 59
/tnl Sg (t) <2 (53—1)3 (83)3 9 (524_1)3) ( )

The AB2 method depends on two previous values, and therefore, we initiate the
computation at time ¢ = 0 using Euler’s method to obtain the relevant quantities
at t = At. In the subsequent time-steps, we use the AB2 method as two previous
time-step values are always known. The accumulation of noise is a problem [33];
therefore, we employ a cutoff filter to prevent the accumulation of round-off error
[34] and a 25th-order Fourier filter to damp the higher, nonphysical modes and
suppress the error due to aliasing.

6. Numerical Results

In this section, we discuss the results of our numerical simulations. We
first compare the results of nonlinear simulation with linear analysis and then
demonstrate the spatio-temporal accuracy of our code. Finally, we compute
several interesting cases where the domain 2~ has different initial configuration.
In all our simulations, we set the surface tension parameter to o = 0.47.

6.1. Comparison of results of linear analysis and nonlinear simulation

The evolution of a perturbed circular interface is investigated, with the initial
interface at t = 0 given by

R+ dcosdf =2+ 0.01 x cos 40, (60)

and we choose R, = 10. The simulation is carried out up to a time te,q = 1.0.
Evolution of R(t) and d(t) against time are shown in Fig. 2, using results from
the nonlinear simulation and the linear analysis (Eqgs. (31) and(32)). The plots
indicate excellent match between the two in the beginning thus validating our
numerical methods. Once § becomes large, we observe disagreement between
the results of the linear analysis and the nonlinear simulation, especially in the
evolution of §. It is evident from the plots that the linear system over-predicts
the growth of the mode. This simulation confirms that the linear solution holds
for a short time span and the fully nonlinear simulation is needed to predict the
evolution over a longer time.

Fig. 3 shows the evolution of the interface, where the innermost contour
corresponds to the shape at ¢t = 0. For all simulations up to this point, we used
a GMRES tolerance of € = 10719, The filters are also set to this tolerance.
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Figure 2: Comparison of results from the nonlinear simulation and the linear analysis for R(t)
and 6(t) against time. We choose o = 0.47, Roo = 10, N = 1024, and At = 2 x 1073 to obtain
the match between the two setups and the simulation are stopped when the linear analysis
results starts to over-predict the nonlinear results at tep,q = 1.0.

-2 +
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Figure 3: Time evolution of the interface

6.2. Spatio-Temporal convergence

Figs. 4(a) and 4(b) show the spatio-temporal accuracy of our numerical
simulation using initial shape defined in Eq. (60) and with other parameters
unchanged. Note that our numerical method is spectrally accurate is space
and second-order accurate in time. In Fig. 4(a), we demonstrate the spectral
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accuracy of our code by plotting the maximum of
—logyq [x (£, N) — x (t, Ny = 1024)]

for values N = 64,128, 256, and 512 at time tenq = 1.0. At =5 x 1072 is chosen
so that the results are very accurate in time. Observe that even with N = 64,
the results match up to 107!, This indicates very a rapid decay of error with
N and confirms the spectral accuracy of our code.

In Fig. 4(b), we plot the maximum of —logy, [x (At, N) —x (5 x 1074, N) |
for N = 1024 and three values of At = 5x1073,2.5x1073, and At = 1.25x 1073
until the time to,q = 1. The distance between the lines is 0.6, indicating second-
order convergence. We deliberately choose large IV during temporal convergence
study to ensure high accuracy in space such that the space discretization error
does not interfere with the error due to time discretization.

6.3. Simulation of different steady state configurations

In this section, we show different steady state configurations starting with
various initial conditions. We set the GMRES tolerance to € = 1078, N = 512,
filter tolerance to 10719, and At = 5 x 10~* unless stated otherwise. We found
that the relaxed tolerance does not interfere with the accuracy of simulation,
but a stricter temporal resolution helps improve convergence. We further found
that NV = 512 is enough for space resolution throughout the simulation as the
morphologies are not complicated. All simulations except the last one are per-
formed using an Intel(R) Core(TM) i5-7200U processor with maximum clock
speed @ 2.50GHz and in a laptop with 8 GBs of RAM space. The last sim-
ulation with 12 regions was carried out on a desktop machine with Intel(R)
Core(TM) 19-10900 processor with maximum clock speed @ 2.80GHz and 64
GB RAM.

In all our simulations, we maintain the following protocol: We start the
simulation under transient conditions where the system is driven by the flux
given in Eq. (44). Once the right hand side of the equation is less than a
tolerance value of 0.001, we set the flux forcefully to zero. We do this because
the flux goes to zero only as t — oo but, for all practical purposes, can be
neglected when it goes below the small tolerance we set. Once that happens, the
system moves into the zero-flux regime or the relaxation phase and we observe
the evolution for sufficiently long time to investigate the domain configurations
in the steady-state. We stop the simulation at tenq = 25 if it does not stop
earlier due to a topological singularity showing up in the system. In time plots,
we always use semilog in the z-axis.

First, we perform a simulation using a four-domain configuration and dis-
play the results of various important parameters of the simulation in Fig. 5(a),
Fig. 5(b), and Fig. 5(c). The domains at ¢ = 0 are elliptic in shape and we have
one domain each along the positive and negative - and y-axes. The major and
minor axes of the ellipses are set to the values a = 1.5 and b = 1.0. We set
R = 4 and the centroids of the domains are at (2,0),(0,2),(—2,0),(0,—2).
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Figure 4: Demonstration of spectral accuracy and second-order convergence in time of the
nonlinear simulation.

We denote these domains by D1, D2, D3, and D4, respectively. The initial con-
figuration (lower left panel of Fig. 5(a)) is symmetric about the z- and y-axes.
It also has certain rotational symmetries. The governing equations demand that
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these symmetries should be preserved at all later times and we find that this is
indeed true for our simulation.

With this configuration, we find that the changes are rapid at the beginning.
The outer parts of the ellipses bulge out and align themselves along the boundary
perhaps because more space is available towards the outer region as compared
to region near the center, and by time ¢ = 2.5, the shapes no more resemble
ellipses. The system enters equilibrium configuration at ¢, = 8.75 when the flux
approaches zero. To understand more about this phase, we refer to the plot
of the maximum interfacial velocity max||v|| = |lv|,, (top panel of Fig. 5(a))
where the maximum is taken over all marker points over all interfaces. It is
observed in this plot that the velocity decreases monotonically to zero, and close
to t., the maximum magnitude of the velocity max||v|| = |jv||,, is negligible.
Therefore, the system configuration changes very little in the relaxation phase.
This is confirmed by comparing the plots of the configuration (lower panels of
Fig. 5(a)), in which the changes after ¢ = 2.5 are small. At ¢ = tenq, we find
that the domains lose their elliptic form and are approximately circular.

The evolution of two additional quantities, the arc length parameter s, =
L/27 for each interface, and the far-field function value wy,, are shown in
Fig. 5(c¢) and Fig. 5(b), respectively. Because of the symmetry, all four curves
are on the top of each other in Fig. 5(c). The far-field flux is flat at the begin-
ning but eventually changes rapidly before entering the relaxation phase, giving
it the shape of a sigmoid curve. The change in arc length parameter is rapid
at the beginning but this curve flattens very quickly once the system enters the
relaxation phase.

Next, we consider a simulation with three domains. We do this by removing
one particle from the previous configuration. In Fig. 6(a), the initial configura-
tion is symmetric about both the z- and y-axis. We start with elliptic particles
with semi-axes dimensions of a = 1.5 and b = 1.0, and with their centroids at
(2,0),(0,2) and (—2,0). We label these regions D1, D2, and D3, respectively.
The radius of the far-field boundary is R, = 4.

We observe that the domains D1 and D3, originally aligned along positive
and negative z-direction respectively, rotate quickly, by almost 45 degrees. By
t = 1.25, significant rotation occurs and it continues further, even as the angular
speed slows down. The domain D2 shrinks in the y-direction and grows in the
x-direction. After sufficient time, this domain is ellipse-like with major axis in
z-direction and minor axis along y-axis.

An interesting point is the difference in the area occupied by each domain
as the time progresses. The area of the domains are equal in the beginning.
As the simulation progresses, all regions grow in size, with region D2 growing
slower the other two particles. This is prominent during the early stages of
evolution. However, the area of D2 increases somewhat faster during the later
stages of evolution (after ¢ = 10), and eventually, the ratio of the arc length
parameters of D2 and D1/D3 is approximately 1.2. The flux approaches zero
at approximately t. = 9.35.

Figs. 7(a), 7(b), and 7(c) show simulation results corresponding to two el-
liptic phase domains. The domains are aligned along the z- and y-axes with
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semi-axes dimensions ¢ = 1.5 and b = 1.0. We set R, = 4. The centroid of the
phase domain with major axes along z-direction is at (2,0), and the other one
is located at (0,2). This configuration is symmetric about the line y = x. The
domains undergo rotation during evolution, aligning themselves along the line
x = y and growing in size during the alignment process due to a positive flux.
The particle shapes are convex towards the boundary 02 while they are concave
in the inner region. As with the simulation with four and three domains, the
graph of we, has a sigmoid shape.

6.4. Domain shrinkage

Figs. 8(a), 8(b), and 8(c) are results of simulations with seven elliptic do-
mains. The centroids of the domains are at (0,0), (2.5,0), (5,0), (—2.5,0),
(=5,0), (0,4), and (0,—4) with major axis ¢ = 1.5 and minor axis b = 0.9.
We denote these domains by D1 to D7, respectively. The outer boundary is at
R = 6. The configuration is symmetric about the z- and y-axes and has a
rotational symmetry of 180 degrees.

The evolution of this seven-domain configuration reveals a number of inter-
esting aspects. Most notable of these is the shrinkage and gradual disappear-
ance of the domain D1. All domains at ¢ = 0 have the same area but as time
progresses, D1 shrinks. In the beginning, the area shrinks slowly but later the
shrinking process speeds up. We note that near the singularity, around ¢ = 4.75,
the code crashes and the results may not be very accurate. This is evident in
the velocity plot where the maximum normal velocity decays at first and then
increases very rapidly towards the end. Thus, our fixed time-steps may not
capture the results towards the end of the simulation very well. The domains
D6 and D7 are the ones that grow the most in the process. After these, the
next largest growths are seen for D3 and D5, and then for D2 and D4. The arc
lengths of the domains D2 and D4 display non-monotonic behavior with time.

As a related phenomenon, we mention here the problem of particle coarsen-
ing [35, 36, 33] in alloy formation where, once the system enter the relaxation
phase, the phase-domains may undergo topological changes. The domains tend
to acquire compact shapes owing to the minimum surface energy requirements,
and in the process, large domains try to grow at the expense of smaller regions.
In this simulation, we find results analogous to that.

Figs. 9(a), 9(b), and 9(c), show results of a different seven-domain configu-
ration. In this simulation, the regions D1 to D7 have their centroids at (0, 0),
(2.7,0), (5,0), (=2.7,0), (—5,0), (0,4.2), and (0,—4.2) at t = 0, respectively.
The domain D1 has major and minor axes a = 2.0 and b = 1.4, domains D2
to D5 have major and minor axes a = 1.6 and b = 0.9, and domains D6 and
D7 have major and minor axes a = 2.7 and b = 1.6. The areas of domains
D1, D2, and D4 all decrease with the domains D2 and D4 shrinking faster than
D1. This is in contrast with our previous simulation where D1 decreases fastest.
Eventually D1 survives, but D2 and D4 disappears. Also the orientation of D1
changes, at time ¢ = 0 the major axis of D1 is aligned in y-direction, in an
intermediate stage it is circular but towards the end it regains its elliptic shape
to a certain extent and the major axis is in z-direction. In this simulation we
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use a time step At = 2.5 x 10™%, unlike in other simulations, as the reduced
time step improves convergence.

6.5. Simulation with large number of domains

In the last simulation, we present the results of a simulation with a twelve do-
main configuration in Figs. 10(a), 10(b), and 10(c). The domains are arranged
in “two rings”. The inner ring consists of four particles (D1 to D4 arranged
in counter clockwise direction having centroids at (3.75,0), (0,4), (—3.75,0),
and (0,—4), respectively) and the outer ring consists of eight particles, D5 to
D12. Their centroids are located at (7.5,0), (5,5), (0,=7), (—5,5), (=7.5,0),
(=5,-5), (0,—7), and (5, —5), respectively. The initial configuration has several
symmetries which are all preserved in the simulation. The configuration enters
the equilibrium phase at ¢, = 11.3 and does not show any coarsening type be-
haviour up to t = 14. We observe that the domains in the outer ring grows more
than the domains in the inner ring. This is probably due to the initial geometry
where the outer domains have more space to grow and the inner domains are
“squeezed” by the outer ring. Going by our previous simulation, we believe that
placement of a central ellipse at (0,0) will result in coarsening.

7. Summary and Conclusion

In this article, we derived and studied a limiting case of Ohta-Kawasaki
model. The resulting model is a variant of the Hele-Shaw problem. We then in-
vestigated the equations of the model using linear analysis and we reformulated
the problem as boundary integral equations. Using small-scale decomposition
technique for the equation of dynamics, we ran numerical simulations of these
equations using a spectrally accurate algorithm in space and a second-order
accurate temporal scheme. We investigated, with our numerical simulations,
the evolution of different configurations of phase domains. Our simulations cap-
tured accurately the intermediate dynamics and final steady-state configuration,
and reveals information about the far-field Dirichlet condition that drives the
evolution.

Choksi et al. [37] related the Ohta-Kawasaki density functional theory (DFT)
to the self-consistent mean field theory (SCFT) and [38] compared the results
of numerical simulations for the DFT, SCFT, and the Swift-Hohenberg model.
Our future work will build upon these studies and the results introduced in
this paper by comparing numerical simulations from the DFT, SCFT and the
boundary integral method. Specifically, the energies of the stationary states and
the metastability of the defect structures of the three models will be investigated.
This will establish the feasibility of the boundary integral method for phase
space exploration.
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Figure 5: Time evolution of 4 elliptic regions with semi-axes a = 1.5 and b = 1.0. The other
parameters are Roo = 4 and surface tension o = 0.47. The system enters equilibrium at
teq = 8.75. Centroids of the domains D1, D2, D3, and D4 are at (2,0), (0,2), (—2,0), and
(0,—2) at t = 0, respectively.

22



[a]. Normal Velocity

1.5 = : e
’ Normal Velocity
g 1 1
5 <— 1t =935
— 0.5 ¢ 1
0 L L
10" 100 t 10" 102
[b]- Morphologies
t=0 t=1.25 t=2.5 t=10 t=25
5 5
-5 - - - -
5 0 5 -5 0 5 -5 05 -5 05 -5 0 5
(a) t—Maximum normal velocity plot
6.6 1.9 ‘
—D1 Jo—
6.4 186 | gg /, -~
6.2 /
1.7 /
6 & /
;85.8 5t /’,
5.6 15 ,', .
54 e -
5.2 B I
1074 102 10° 102 107 10° 10’ 102
t t
(b) t — woeo plot (¢) t — sa plot

Figure 6: Time evolution of 3 elliptic regions with semi-axes a = 1.5 and b = 1. We set
Rso = 4. The system enters the equilibrium phase at t. = 9.35. Centroids of the domains D1,
D2, and D3 are at (2,0), (0,2), and (—2,0) at t = 0, respectively.
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Figure 7: Time evolution of 2 elliptic regions with semi-axes a = 1.5 and b = 1. We set
R~ = 4. The system enters equilibrium at t. = 9.7. Centroids of the domains D1 and D2 are
at (2,0) and (0,2) at t = 0, respectively.
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Figure 8: Time evolution of 7 elliptic regions with semi-axes a = 1.5 and b = 0.9. We set
Ro = 6. Centroids of the domains D1 to D7 are at (0,0), (2.5,0), (5,0), (—2.5,0), (—5,0),
(0,4), and (0,—4) at t = 0, respectively.
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Figure 9: Time evolution of 7 elliptic regions D1 to D7 with centroids at (0,0), (2.7,0), (5,0),
(—2.7,0), (—5,0), (0,4), and (0,—4) at t = 0, respectively. The domain D1 has major and
minor axes a = 2.0 and b = 1.4, domains D2 to D5 have major and minor axes a = 1.6 and
b = 0.9, and domains D6 and D7 have major and minor axes a = 2.7 and b = 1.6. We set

Roo = 6.
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Figure 10: Time evolution of 12 elliptic regions D1 to D12 with centroids at (3.75,0), (0,4),
(_3757 O)? (07 _4)7 (757 O)v (575)7 (07 _7)7 (_575)7 (_7'570)7 (_57 _5)7 (07 _7)7 and (57 _5) at
t = 0, respectively. The domains D6, D8, D10, and D12 have major and minor axes a = 1.2
and b = 0.9 while the rest of the domains have major and minor axes a = 1.5 and b = 0.9.

We set Roo = 9.
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Appendix A. Derivation of the sharp-interface model

Appendiz A.1. Outer expansions
We assume ¢(7, ), u(r, ) and ¢ (7, ) have the asymptotic expansions, ¢ =

do+ep1 +e2pa+0(), 1 = po+epr +e2ua+0(2), 9 = Yo+epy +e2hy +O(3).
The asymptotic problems in “outer” variables are for ¢;

O (50) 1 O0r 0 = Apo, O (51) 1 0-01 = Apg, O (52) 2 0r0 = Apo.

(A1)

Similarly for u;,
O):  0="F(¢), (A.22)
O("):  po=F"(do) 1+ o, (A.2b)
O(e'): p1 = F" (¢o) p2 + %F”/ (¢0) &7 — Ado + 1. (A.2c)

and 1/%
O (80) : —Awo = ¢0 - (5, @ (61) : —A?/}l = ¢1, @ (62) : —A1/12 = ¢)2. (A3)

On the fixed boundary 02, the boundary conditions for the asymptotic sub-
problems are

0p; 0 Opi 0 0,
oo onoq Inao

=0, on 0Q for, i=0,1,2,...

Appendiz A.2. Inner-outer coordinate transformations

To derive the inner problems it is convenient to introduce a parametrization
r(r,s) = (r1(7,s),r2(7, s)) of the free interface, i.e. the sharp interface I' via
the arc length s, and v(7,s) the normal inward-pointing vector along the free
boundary, so that any point in the thin e-region around I'" can be expressed by

x(7,8,2) =r(T,8) +ezv(T,5).

where £z is the distance alongthe inward normal direction v(7, s) from the sharp
interface I', given by

v(r,s) = (—0sre,0sr1), t(1,s) = (0sr1,0s72) .

The relation the derivatives of a quantity 9(7, s, z) defined in inner coordinates to
derivatives in the outer coordinates v(7,x) can be expresses as a multiplication
of matrices,

Ry Dz dsy 0] [0pv]
0.0 = |0.x 0.y 0| |0yv],
0-v Orx Ory 1 0rv|
and vice versa
O, v (14 ¢e2K)0sr1  —e 10sro 0] [0sD
ol = | (M +ezr)0sr2 e 10sr1 0] - |0,0],
v —(1+ezr)Vt  —e7 V¥ 1] [0,0
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where
Vt=0.x-t, and VY =0,z v,

denote the tangential and normal velocity of the free boundary respectively,
with k denoting the curvature of the free boundary. Thus, the expression of the
rescaled time derivative in terms of the inner-coordinates,

0rv = —(1 + e2K)050 — e VY0, 0 + 0,0.
Applying the respective derivatives to higher order yields
O = &2 (Oy12)" 0220 — =1 [1.(0,r1)” 0.0 + 200710720420
+ (6ST1)2 OgsD — 205110572050 — 2K [K (85r1)2 0,0 + 2857“1857"28326} ,
Oyyv =2 (8571) 000 — e {/{ (8s7r2)° 0,0 — 2887“1557“28526}
+ (8Sr2)2 O0ssV + 2605710572050 — 2K [n (687’2)2 0,0 — 2851"1881"25{%6}
and for the Laplace operator in the inner-coordinates,
AV = Ogav + Oyyv = £720,,0 — e k0,0 + 0550 — 2k20,D.

Appendiz A.3. Inner expansions

_ We assume that inner asymptotic expansions for 95(7, s,2), b(r,s,z) and
(T, s, 2) are given by ¢ = dig + ety + 2o + O(e3), i = fig +ejip +€2fin + O(e?),
¥ =g + ety +e2hy + O(e?). Application of the coordinate transformations to
the governing equations yields the asymptotic subproblems for the inner region
for ¢ up till O(eY),

0(e7?): 0 = 82, (A.5a)

O(™): —V¥8.do = 02fiy — K- o, (A.5b)

O —8.60 — VP8, + rdo = 82fia — kD fin + 2o — 220, fio.
(A.5¢)

For the chemical potential i up to O(g),
O(e™): 0= F'() — 0o, (A
@ (50) : ,[LO = F”(fbo)ﬂl + Haz’fbo — 33&1 + ’1210, (A

1
O (e'): m:—@@+wﬂrﬁﬁMwﬁ@%+FﬁM@+§WﬁMﬁ

+ w1, (A.6C)

and for 1),
O(e7?) - ~0%y =0, (A.Ta)
O(e7): — 0%y + KD = 0, (A.7b)
O (%) —0%0y + KDDL — 824y + 26000 = do — ¢. (A.7¢)
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Appendiz A.4. Matching

From the leading order problem of the inner expansion for the chemical
potential subequation (A.6a),

F'($) — 9260 = 0.
Multiplying by 9,¢o and integrating in z from —oo to oo,

o 0o

F'(¢o)ddo = / (aﬁﬂgo) 9-odz,

—0o0

b0

where the integration limits are lim, , 1o gzNSO(T,s,z) = gboi respectively. Since

lim, 40 %4;0 =0 for gZ)O to be bounded. This leaves

/:(T F’ (éo) dgo = 0,

0

which states that for the symmetric double-well potential the x-axis correspond-
ing to F’ (éo) = 0 is the line of intersection that divides F'(¢) such that the

areas below and above the curve are equal. This implies that the limits of the
integral are the points of intersection, i.e.

¢ =41 in QF resp. (A.8)

This implies for the leading order outer problem in p

Apg=0 in O\l (A.9)
and for g -
Atpy = —(¢0 — 9), (A.10)
with boundary conditions
fon) . Opo _ by -
Do 0, Drge 0, Do 0, on Of. (A.11)

To proceed with the matching we write down the matching conditions by
expanding inner and outer expansions, and express one of them (here the outer)
in terms of the inner independent variables. Then we regroup in orders of € and
obtain

+ 9. -
Hy = Zgrinoo fo(T, T, 2), (A.12a)
pf + 2wVt = lirin p(r,r,2), (A.12b)
Z—I 00
1
uE 4 v -Vt + 5221/ ApE vTpE = zgrinoo fa(T, 7, 2). (A.12¢)
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Integrating (A.5a) twice gives
flo = aoz + bo.

Matching fig to uZ by means of (A.12a) yields ap = 0 and fig = by =constant.
Next, notice that differentiating (A.6a) with respect to z and multiplying by ¢
yields

F"(0) (0200 ) 61— (8200 ) &1 = 0. (A13)

Multiplying the next-order problem of the inner chemical potential (A.6b) by
0.¢0 and using (A.13) gives

o (82(2)0) = (359;50) o1+ (5z¢~50)2 - <3§<51) <3z<50> + o (azﬁgo) .

Integrating the above in z from —oo to oo, applying integration by parts and
using the boundedness of the leading order ¢y and the leading order non-local
term g is a functional of ¢¢ with lim, .4 %o = g [gbat] we obtain

Ho V)oro = Ii/oo (azéo)QdZ-f—@o [ngro ;

—0o0 —00 — o0
where ffooo d,dodz = [(fbo} o the jump of ¢y over the interface. Dividing by
{(;30] and setting

I (3.2(230)2 dz B

W

which is a constant, we obtain
fio = C + 1.
The next-order matching conditions then implies
o = Ck + 1y on T. (A.14)

To obtain the normal velocity of the free boundary V¥ we integrate (A.5b)
from —oo to oo,

1 ~ 100 ]‘ ~ 100
7VV = 5 [azlu’l]—oo 5k [/’LO}—OO7 (A'15)
—_——— N—_——

® ®

From A.14, fip is independent of z, so B = 0. Furthermore, notice that differ-
entiating the next-order matching of fiy in (A.12b) with respect to z yields

0|30 = Oepa|T+ v Vot v V|t = @,

=0
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with 8Zu1|f = 0 since the outer ,uli’s are independent of z. Substituting these
results back into (A.15),

v_ 1[0
v L[] e
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