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to the modified boundary condition. In particular, our formulation allows one
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1. Introduction19

The Ohta-Kawasaki (OK) model [1] was originally derived by Takao Ohta20

and Kyozi Kawasaki to investigate mesoscopic phase separation in block copoly-21

mers. The phase separation in copolymeric substances results in the formation22

of two distinct regions, each rich in a particular ingredient. Domains of various23

shape may emerge in the system under various ratios of molecular weight of the24

two species. It is necessary to investigate such systems as the resulting proper-25

ties are different from those observed in multiphase systems of single monomer26

types. The model has garnered strong interest since its emergence and has been27

connected to areas beyond which it was originally proposed. Examples of ap-28

plications include problems in condensed matter physics and biological systems29

[2].30

In the original work of Ohta and Kawasaki [1], an energy functional was pro-31

posed to investigate the phenomenon of phase separation where both attractive32

(short-range) and repulsive (long-range) forces play their part in determining the33

configurations. The evolution equation corresponding to the functional and its34

steady version was first mentioned in [3], where a connection was made between35

Hele-Shaw (HS) flow equations and the time-dependent OK problem. In this36

paper, we present a formal derivation of the corresponding sharp-interface limit37

using matched asymptotic expansions, and show that the limiting process leads38

to an HS-type moving interface problem. This allows us to recast the long-time39

evolution of the OK problem as a modified HS problem and focus our attention40

to the latter to obtain insight into the original pattern formation problem. The41

analytical solutions are ruled out owing to the complicated geometry and we42

investigate the problem mainly using numerical approaches.43

While other numerical techniques like phase-field equations have been used44

for OK problem [4], the boundary integral method is a preferred choice as a45

numerical method for HS-type problems because it entails dimension reduction,46

i.e., the problem defined on a domain becomes a problem defined on the domain47

boundary. However, the equations of dynamics constitutes stiff equations due48

to the surface tension acting at the fluid-fluid interface, and without the special49

numerical techniques described in [5], it is practically impossible to perform50

long-time numerical simulations. Several references have used this technique51

with great success and we refer the interested reader to [6, 7, 8, 9, 10]. We52

also note that our equations differ from the traditional HS equations [11] in a53

few subtle ways. In the original HS model, the far-field boundary condition is54

of Neumann type which very naturally corresponds to injection/removal of the55

fluid. Our problem, on the other hand, is driven by a Dirichlet type boundary56

condition in the far-field. This renders the constraint on the integral of velocity57

to be different in our case. We also note that the far-field boundary is at a58

finite distance from the origin in our case while in the classical HS problems,59

the radius of the far-field boundary is infinite.60

The main contribution of this paper can be summarized as follows: starting61

with a rescaled formulation of the OK equation, we present a matched asymp-62

totic analysis in the long-time limit that governs the dynamics of the emerging63
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interfaces and this leads to modified HS equations of the OK model. We then64

prescribe a transformation that converts the HS equations from the Poisson65

equation to the Laplace equation and transform the interfacial and far-field66

boundary conditions accordingly. The equations are then investigated using a67

linear analysis. We prescribe a boundary integral formulation for the Laplace68

equation using free-space Green’s function and we investigate the boundary inte-69

gral equations numerically as the analytical solutions are known in very limited70

cases. The numerical methods allow us to investigate the steady-state config-71

uration for various patterns hitherto not explored in detail. Throughout our72

computation, we demonstrate high accuracy which is a trademark of bound-73

ary integral computations. Nonlinear computations indicate that the interface74

morphologies depend strongly on the mass flux into the system before the sys-75

tem reaching equilibrium. Simulations of multiple equilibrating interfaces show76

complicated interactions between phase domains including interface alignment77

and coarsening.78

This paper is organized as follows: In Section 2, we give a formulation for79

the boundary value problem of the OK equation in a rescaled form that is suit-80

able for the asymptotic analysis using matched asymptotic expansions, which is81

carried out in Section 3. In Section 4, the analytical solutions of the problem82

are discussed. Numerical methods on the boundary integral equations, the spa-83

tial discretization of the integral equations using spectrally accurate quadrature84

rules, the dynamical equations, and the small-scale decomposition are discussed85

in Section 5. The interface is updated based on these methods. Finally, we86

present results of numerical simulations in Section 6 and summarize our find-87

ings in Section 7.88

2. Formulation of the Ohta-Kawasaki phase-field model89

In the framework of density functional theory, the OK problem in its dimen-90

sionless form it is [1, 3]91

FOK[φ] =

∫
Ω

1

2
(∇φ)2 + F (φ)− F (φ−) +

α

2
ψ(φ− φ̄) dxdy. (1)

In a domain Ω, φ(t,x) is the density difference, φA(x) − φB(x), at position92

x = (x, y) and at time t, where the overbar denotes the average of a quantity,93

e.g.94

φ̄ ≡ 1

|Ω|

∫
Ω

φ dxdy . (2)

ψ is given by the solution of the Poisson problem,95

−∆ψ = φ− φ̄ on Ω, (3a)

∂ψ

∂n∂Ω
= 0 on ∂Ω, (3b)

ψ̄ = 0, (3c)
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where the last condition is introduced to enforce the uniqueness of ψ. Here, we96

use for the double-well free energy F the form97

F (φ) =
1

4
φ4 − 1

2
φ2 (4)

which has two minima at φ± = ±1. The chemical potential µ is obtained by98

the first variation of the functional FOK99

µ = −∆φ+ (φ3 − φ)− αψ, (5a)

which yields the flux100

j = −∇µ. (5b)

The system is closed via mass conservation101

∂φ

∂t
= −∇ · j (5c)

together with boundary and initial conditions102

j · n∂Ω = 0,
∂φ

∂n∂Ω
= 0 on ∂Ω, (5d)

φ(x, 0) = φinit(x). (5e)

Derivations of the Ohta-Kawasaki phase-field model using the gradient flow103

approach can be found in, e.g., [12, 13, 14].104

3. The sharp-interface limit105

For diblock copolymers, the long-time interface formation during phase sep-106

aration that sets the small-scale related to the interface width is directly con-107

nected to the parameter α, via ε = α1/3 [15, 16]. It is thus convenient to108

rescale the Ohta-Kawasaki model to this regime via x = α−1/3x̃, ψ = α−2/3ψ̃,109

µ = α1/3µ̃, τ = αt, and F̃OK = εFOK. After dropping the tildes, the rescaled110

free energy can be written as111

FOK[φ] =

∫
Ω

1

2
ε(∇φ)2 + ε−1 (F (φ)− F (φ−)) +

1

2
ψ(φ− φ̄), (6)

and thus the corresponding phase-field model112

∂φ

∂τ
= ∆µ, (7a)

µ = −ε∆φ+ ε−1(φ3 − φ)− ψ, (7b)

−∆ψ = φ− φ̄, (7c)
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∂φ

∂n∂Ω
= 0,

∂ψ

∂n∂Ω
= 0,

∂µ

∂n∂Ω
= 0 on ∂Ω, (7d)

φ(x, 0) = φ0(x). (7e)

Due to the small parameter ε multiplying the Laplace operator in the chemical113

potential, the problem is singularly perturbed as ε → 0. While such problems114

have been considered before with different methods [17, 18, 3], we investigate115

this “outer” problem through matched asymptotic expansions, where asymp-116

totic approximations for the outer problem are matched to approximations of117

a corresponding “inner” problem in the neighborhood of the sharp interface.118

Our investigation follows a similar method applied by [19] for the Cahn-Hilliard119

equations. We assume φ(τ,x), µ(τ,x), and ψ(τ,x) have the asymptotic ex-120

pansions, φ = φ0 + εφ1 + ε2φ2 + O(ε3), µ = µ0 + εµ1 + ε2µ2 + O(ε3), and121

ψ = ψ0 + εψ1 + ε2ψ2 + O(ε3). Substitution into (7) yields the asymptotic122

problems for φi up to order ε2,123

O
(
ε0
)

: ∂τφ0 = ∆µ0, O
(
ε1
)

: ∂τφ1 = ∆µ1, O
(
ε2
)

: ∂τφ2 = ∆µ2. (8)

Similarly for µi,124

O
(
ε−1
)

: 0 = F ′ (φ0) , (9a)

O
(
ε0
)

: µ0 = F ′′ (φ0)φ1 + ψ0, (9b)

O
(
ε1
)

: µ1 = F ′′ (φ0)φ2 +
1

2
F ′′′ (φ0)φ2

1 −∆φ0 + ψ1, (9c)

and ψi,125

O
(
ε0
)

: −∆ψ0 = φ0 − φ̄, O
(
ε1
)

: −∆ψ1 = φ1, O
(
ε2
)

: −∆ψ2 = φ2. (10)

On the fixed boundary ∂Ω, the rescaled boundary conditions are126

∂φi
∂n∂Ω

= 0,
∂µi
∂n∂Ω

= 0,
∂ψi
∂n∂Ω

= 0, on ∂Ω for i = 0, 1, 2, . . .

To derive the inner problems, it is convenient to introduce a parametrization127

r(τ, s) = (r1(τ, s), r2(τ, s)) of the free interface Γ via the arc length s, and128

ν(τ, s), the normal inward-pointing vector along the free boundary, so that any129

point in the thin ε-region around Γ can be expressed by130

x(τ, s, z) = r(τ, s) + εzν(τ, s),

where εz is the distance along the inward normal direction ν(τ, s) from the131

sharp interface Γ, given by132

ν(τ, s) = (−∂sr2, ∂sr1) , t(τ, s) = (∂sr1, ∂sr2) .

The relation between the derivatives of a quantity ṽ(τ, s, z) defined in inner133

coordinates and the derivatives in outer coordinates v(τ,x) can be expressed as134

a product of matrices, see Appendix A and [20].135
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Similar to the outer problem, we assume that the inner asymptotic expan-136

sions for φ̃(τ, s, z), µ̃(τ, s, z), and ψ̃(τ, s, z) are given by φ̃ = ũ0 + εũ1 + ε2ũ2 +137

O(ε3), µ̃ = µ̃0 + εµ̃1 + ε2µ̃2 + O(ε3), and ψ̃ = ψ̃0 + εψ̃1 + ε2ψ̃2 + O(ε3). Af-138

ter application of the coordinate transformations to the governing equations,139

we obtain asymptotic subproblems for φ̃, µ̃ and ψ̃ for the inner region. These140

problems are solved and matched to the outer solutions. The details of the141

arguments, the matching conditions for the asymptotic analysis, are carried out142

in Appendix A, resulting in the sharp-interface problem143

φ0 = ±1, (11a)

−∆ψ0 = φ0 − φ̄ in Ω, (11b)

∆µ0 = 0 in Ω±, (11c)

µ0 = σκ− ψ0 on Γ, (11d)

V =
1

2

[
∂µ0

∂n

]
on Γ, (11e)

∂µ0

∂n∞
= 0,

∂ψ0

∂n∞
= 0 on ∂Ω, (11f)

where σ is the surface tension and Ω = Ω+∪Γ∪Ω− a domain, with Ω+ and the144

Ω− the regions where φ0 = +1 and φ− = −1, respectively, and Γ is the interface145

between them. The normal to the latter pointing from Ω+ to Ω− is called n. We146

will, more specifically, denote by Ω+ the exterior and Ω− the interior domain.147

The boundary of Ω is denoted by ∂Ω and the jump of µ across the interface Γ148

is given by149 [
∂µ0

∂n

]
=
∂µ+

0

∂n
− ∂µ−0

∂n
.

Finally, the value of σ can be expressed as150

σ =
1

φ+ − φ−

∫ φ+

φ−

√
2(F (φ)− F (φ−)) dφ . (12)

For the derivation of the boundary integral formulation, it is convenient to151

reformulate the sharp-interface problem in terms of the variable152

u := ψ0 + µ0. (13)

We consider a bounded domain Ω = Ω+ ∪ Γ ∪ Ω− ⊂ R2 where Ω+, the outer153

domain, and Ω−, the inner domain, are open sets of R2 and Γ is the moving154

interface separating the exterior domain Ω+ and the interior domain Ω−. The155

interior domain Ω− is a disjoint union of finitely many open, connected com-156

ponents Ω−1 ,Ω
−
2 , · · · ,Ω

−
M and thus Γ = ∪Mk=1∂Ω−k . The outer boundary of Ω is157

denoted by Γ∞. A schematic diagram of the problem is given in Fig. (1). The158

sharp-interface model is the following problem:159

−∆u = 1− 2χΩ− in Ω\Γ, (14a)
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u = σκ on Γ, (14b)

∂u

∂n∞
= 0 on Γ∞, (14c)

V =
1

2

[
∂u

∂n

]
on Γ, (14d)

where u is an unknown function, χA is the characteristic function of the set A, κ160

is the curvature of boundary Γ, σ is the surface tension parameter, the operator161

∂

∂n
is the normal derivative where n denotes the normal directed from Ω− to162

Ω+. While the function u is continuous, the derivative of u suffers a jump across163

the interface Γ and is given by

[
∂u

∂n

]
=
∂u+

∂n
− ∂u−

∂n
, where u+ and u− are the164

solutions of the OK problem in the exterior and interior domains respectively.165

The interface Γ moves due to the velocity V .166

To eliminate the source term in the field equation and recast the problem in167

terms of the Laplace equation, we introduce a new function w defined as168

w = u+
(1− 2χΩ−)

4
|x|2 , (15)

where |x|2 = x2 + y2. Then the functions u+ and u− are replaced by w+ =169

u+ + 1
4 |x|

2
and w− = u− − 1

4 |x|
2

in Ω+ and Ω− respectively. The boundary170

condition Eq. (14b) on Γ splits into conditions on w− and w+ as follows:171

w− = σκ− |x|
2

4
, (16)

w+ = σκ+
|x|2

4
. (17)

We also transform the far-field boundary condition Eq. (14c) to172

∂w+

∂n∞
=

1

2
x∞ · n∞, (18)

where x∞ is a point on the outer boundary Γ∞ and n∞ is the outward normal173

at x∞. The normal velocity of the interface Γ separating the interior and the174

exterior domain becomes175

V =
1

2

[
∂w

∂n

]
− 1

2
x · n, (19)

where, as in Eq. (14d),

[
∂w

∂n

]
=
∂w+

∂n
− ∂w−

∂n
.176

4. Analytical solution of original equations177

It is not possible to find analytical solutions of the OK equations for arbitrary178

geometry and multiply connected regions. However, for simplified cases, like179

7



Ω−1

Ω−2

Ω−3

Ω+

Γ1

Γ3

Γ2

Γ∞

Figure 1: A schematic diagram of Ohta-Kawasaki problem. The interior domain Ω− is the
disjoint union of three connected and bounded regions Ω−1 ,Ω

−
2 and Ω−3 . The boundary of Ω−

consists of Γ = ∂Ω−1 ∪ ∂Ω−2 ∪ ∂Ω−3 . The outer region Ω+ is bounded and surrounds Ω−.

when Ω− ∪ Γ ∪ Ω+ is a circular domain centered at origin and Ω− a circular180

domain of smaller radius and centered at zero, it is possible to find an analytical181

solution. In such a case [21], the solution inside Ω− is obtained as182

u− =
1

4

(
x2 + y2 −R2

)
+
σ

R
. (20)

Similarly, in the exterior domain, the solution of the boundary value problem183

of the Poisson equation in (r, θ) coordinates is given by184

u+(r) = −r
2

4
+

(
R2
∞
2

)
log r +

σ

R
+
R2

4
− R2

∞
2

logR. (21)

In steady state, the interface between the two domains does not move (V = 0)185

and Eq. (14d) requires the normal derivative of u to be continuous. From186

Eq. (20) and (21), we get187

∂u

∂n

∣∣∣∣
R−

=
R

2
, (22a)

∂u

∂n

∣∣∣∣
R+

= −R
2

+
R2
∞

2R
. (22b)

Equating the two gives an additional relation between the radii of the interior188

and the total domain,189

R∞ =
√

2R, (23)
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which simply states that the area of the interior and exterior domains are equal,190

as expected for a symmetric diblock copolymer configuration in steady state.191

The solution of the OK equations can be extended further via linear analysis192

on a domain Ω− with the shape of a slightly perturbed circle of the form193

r (t, R, θ) = R (t) + δ (t) cos kθ, 0 ≤ θ < 2π, (24)

where R is the radius of the circle and δ cos kθ is a small perturbation with194

δ (0)

R (0)
∼ O (ε) , ε � 1. Thus, by continuity of the problem, we expect

δ (t)

R (t)
∼195

O (ε), at least for t ≤ T , where T > 0 is possibly a short period of time. In this196

case, it is easier to work with the transformed equations and we presume that197

the solution in polar coordinates is given by198

w± (r, θ) = w±0 (r) + δw±1 (r, θ) +O
(
δ2
)
, (25)

where w±0 is the zeroth order solution and w±1 is the first order solution. A199

straightforward computation yields the zeroth order solution as200

w−0 =
σ

R
− R2

4
, (26a)

w+
0 =

R2
∞
2

log r +
σ

R
+
R2

4
− R2

∞
2

logR. (26b)

Next we compute the first order corrections and in this case, w− is of the form201

A−rk cos kθ where202

A− =
σ
(
k2 − 1

)
Rk+2

− 1

2Rk−1
. (27)

The function w+ is of the form

[
A+rk +

B+

rk

]
cos kθ where203

A+ =
Rk

R2k +R2k
∞

[
σ
(
k2 − 1

)
R2

+
R

2
− R2

∞
2R

]
, (28)

B+ =
RkR2k

∞
R2k +R2k

∞

[
σ
(
k2 − 1

)
R2

+
R

2
− R2

∞
2R

]
. (29)

Once the functions w− and w+ are available up to first order, we may proceed204

to calculate the velocity of the interface as205

V ≈ ṙ = Ṙ+ δ̇ cos kθ (30)

where the “dot” on the respective variables indicate derivative with respect to206

time. The expression on the right of Eq. (30) captures the interface velocity up207

to first order. We equate the right hand side of Eq. (30) to the right hand side208

of Eq. (19) and obtain209

Ṙ = R2
∞/4R−R/2, (31)
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δ̇ =
[
−R2
∞/R

2 + k(t2 − t3)/2− kt1/2− 1/2
]
δ. (32)

where210

t1 = σ(k2 − 1)/R3 − 1/2, (33)

t2 = p1R
2k−1/(R2k +R2k

∞), (34)

t3 = p1R
2k
∞/(R(R2k +R2k

∞)), (35)

p1 = σ(k2 − 1)/R2 +R/2−R2
∞/ (2R) . (36)

These solutions are used later on to validate our numerical methods.211

5. Numerical methods212

In this section, we describe the numerical methods including the derivation213

of the boundary integral equation, its solution, and methods to update the214

interface. The switch from differential equation to boundary integrals results215

in a dimension reduction as the original PDE problem should be solved over a216

domain while the integral equations only have to be solved on the boundary.217

Mathematical preliminaries218

We observe that the interface Γ, on which we have to solve the integral219

equation, is a union of disjoint, smooth, and closed curves ∂Ω−k , k = 1, · · · ,M220

where ∂Ω−k is the boundary of the region Ω−k . We assume that each interface221

∂Ω−k is represented by222

∂Ω−k = {x (α, t) = (x (α, t) , y (α, t)) : 0 ≤ α < 2π} , (37)

where the function x is analytic and 2π-periodic in the parameter α. The local223

tangent and the normal vectors to the interface are224

s = (xα, yα) /sα and n = (yα,−xα) /sα (38)

respectively, where xα and yα are the derivatives w.r.t. to α and sα =
√
x2
α + y2

α225

is the local variation of arc length. If we introduce the angle θ tangent to the226

interface, then we may write n = (sin θ,− cos θ) and the curvature κ = θα/sα =227

θs.228

Boundary integral formulation229

The introduction of the function w in Eq. (15) allows us to transform the230

Poisson equation in the original problem to the Laplace equation. We further231

wish to recast the latter using boundary integral formulation. Consider the free232

space Green’s function G(x,x′) = 1
2π ln |x − x′|. We then write the solution233

w− to the interior problem as a combination of single layer and double layer234

potential, i.e.,235

w− (x) =

∫
Γ

{
∂w− (x′)

∂n (x′)
G (x,x′)− w− (x′)

∂G

∂n (x′)

}
ds′, (39)
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for x ∈ Ω−. As x→ x′ ∈ Γ, we have236

1

2

(
σκ− |x|

2

4

)
=

∫
Γ

{
∂w−(x′)

∂n(x′)
G(x,x′)− w− (x′)

∂G

∂n (x′)

}
ds′. (40)

Similarly for the exterior problem,237

w+(x) = w̃∞ −
∫

Γ

{
∂w+(x′)

∂n(x′)
G(x,x′)− w+(x′)

∂G

∂n(x′)

}
ds′, (41)

for x ∈ Ω+, where w̃∞ is an unknown to be solved. As x→ x′ ∈ Γ, we have238

1

2

(
σκ+

|x|2

4

)
= w̃∞ −

∫
Γ

{
∂w+ (x′)

∂n (x′)
G(x,x′)− w+(x′)

∂G

∂n(x′)

}
ds′. (42)

Adding equations (40) and (42) together, we have239

σκ = w̃∞−
∫

Γ

2V G(x,x′)ds′−
∫

Γ

(x′ ·n′)G(x,x′)ds′+

∫
Γ

|x′|2

2

∂G

∂n(x′)
ds′. (43)

Eq. (43) is the boundary integral equation that we solve numerically. An ad-240

ditional equation is needed to complete the problem. To this end, we integrate241

∆w− = 0 in Ω− and ∆w+ = 0 in Ω+, and we then use the divergence theorem242

to get
∫

Γ
∂w−

∂n ds = 0 and
∫

Γ
∂w+

∂n ds +
∫
∂Ω

∂w+

∂n∞
ds = 0. Subtracting these two243

equations and using equation (19), we get244

J =

∫
Γ

V ds =
1

2
Atotal −A−, (44)

where Atotal is the total area enclosed by Γ∞ and A− is the area enclosed by Γ.245

We solve for w̃∞ and the normal velocity V using equations (43) and (44). The246

physical meaning of w̃∞ in the integral equation is evident: It is the value of w247

at Γ∞ corresponding to the flux given in the right hand side of Eq. (44). Our248

formulation thus allows us to investigate the (unknown) Dirichlet condition at249

the far-field corresponding to a (known) Neumann condition.250

Solving the integral equations251

The boundary integral equation (43) in equal arc length parameter is given by252

w̃∞ −
∫

Γ

2V (x (α′))G(x (α) ,x (α′)) sα (α′) dα′

= σκ+

∫
Γ

(x (α′) · n (α′))G(x (α) ,x (α′)) sα (α′) dα′

−
∫

Γ

|x (α′)) |2

2

∂G(x (α) ,x (α′))

∂n(x (α′))
sα (α′) dα′. (45)

This along with Eq. (44) should be solved to find the velocity V of the interface253

as well as w∞. We use the Nyström method to discretize the integral equations254
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using highly accurate quadrature rules on the various integrals in Eq. (45).255

We discretize each of the curves using N marker points using equal arc length256

parametrization αj = jh where h = 2π/N . We choose N = 2n for some257

positive integer n. Next, we investigate the smoothness of the various integrals258

in Eq. (45).259

Double-layer potential260

The kernel ∂G
∂n(x′) of the integral

∫
Γ

∂G
∂n(x′)

|x|2
2 ds′ does not a have a singularity261

as
∂ log |x (α)− x (α′)|

∂n(x (α′))
= 1

2κ (α) + O (α− α′) with α′ → α. Thus, an applica-262

tion of trapezoidal or alternating point quadrature is enough to ensure spectral263

accuracy [22]. One may also apply the hybrid Gauss-trapezoid quadrature rules264

derived using the Euler-Maclaurin formula, as suggested in [23].265

Single-layer potential266

The second integrals, both in the left and right hand side of Eq. (45), possess267

a logarithmic singularity and cannot be handled by trapezoidal rule as it is268

only second-order accurate. However, the integration can be performed by first269

splitting the log kernel as270

log |x (α, t)− x (α′, t)| = log 2

∣∣∣∣sin(α− α′2

)∣∣∣∣+ log
|x (α, t)− x (α′, t)|

2
∣∣sin (α−α′2

)∣∣ , (46)

and then by applying the additive rule of integration. The kernel of the in-271

tegration
∫ 2π

0
f (α, α′) log 2

∣∣∣sin(α−α′2

)∣∣∣ dα′ is still singular at α = α′, but the272

use of a Hilbert transform [5] or quadrature referred in [24] results in spectral273

accuracy. In this work we use the method suggested in [5]. The kernel of second274

integration
∫ 2π

0
f (α, α′) log

|x (α, t)− x (α′, t)|
2
∣∣sin (α−α′2

)∣∣ dα′ has a removable singularity275

at α = α′ and can be evaluated via alternating point quadrature rule.276

The overall discretization of the integral equation gives rise to a dense system277

of linear equations comprising of MN + 1 equations, where M is the number278

of connected components of Ω− and N is the number of marker points on the279

boundary of each component. We have an additional unknown in the form280

of w∞. We solve this system using an iterative GMRES [25] technique. The281

GMRES requires only the (dense) matrix-vector multiplication routine and this282

is the most time consuming part of the iterative solver. Since our matrix is dense,283

the routine is completed by O
(
M2N2

)
operations. The cost of matrix-vector284

multiplication operation can be reduced by the application of a parallel matrix-285

vector multiplication. It can also be reduced to O (MN log (MN)) by the use286

of fast summation algorithms [26, 27, 28]. We do not use any preconditioner in287

the solver.288

Evolution of domain interfaces289

The discretization of the integral equation gives rise to a stiff system of ODEs290

as the motion of the interface is curvature driven [5]. The time explicit methods291
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result in a stability constraint ∆t ∼ O
(
∆s3

)
where ∆s is the spatial resolution.292

Moreover, the Lagrangian marker points can come close to each other during the293

course of evolution. To circumvent these problems, we implement the small scale294

decomposition technique due to Hou et. al. [5]. This special temporal scheme295

reduces the stiffness requirement to ∆t ∼ O (∆s). The scheme also prevents296

two points from coming too close to each other by distributing the markers on297

the interface using equal arc length frame and then maintaining the same at all298

time by the addition of a tangential velocity T at every step of calculation.299

Dynamics of the interface300

Once the velocity V is obtained for each marker point, we do not update301

Eq. (19) directly. Instead, the dynamics of the problem is recast in terms of the302

lengths L of the interfaces and the angle θ that the tangent to the marker point303

makes with the positive x-axis. First, we add a tangent velocity T (α, t) to the304

interface where T (α, t) is given by305

T (α, t) = T (0, t) +

∫ α

0

s′ακ
′V dα′ − α

2π
κ′V dα′. (47)

After adding the tangential velocity, the motion of the interface is given by306

d

dt
x (α, t) = V (α, t) n + T (α, t) s. (48)

The addition of the tangential velocity does not change the shape of the in-307

terface; however, it is crucial for maintaining the equal arc length distribution308

of the marker points throughout the computation and prevents the clustering309

problem. Once the equal arc length distribution is taken care of, we pose the310

dynamics of the problem with the following two equations,311

Lit =

∫ 2π

0

θiαV
i (α, t) dα, (49)

θit =
2π

Li
(
−V iα + T iθiα

)
, i = 1, . . . ,M. (50)

The subscripts α and t denote derivatives with respect to these variables. We312

use an additional superscript i to indicate the interface for which the equations313

are written. We obtain one equation for L for each of the M domains, while we314

get one equation for θ for every marker point on the boundaries of the domains.315

Thus, we must solve M+MN ordinary differential equations in total. It should316

be noted that the interface can be fully recovered from L and θ by integrating317

the relation318

xiα =
Li (t)

2π

(
cos θi (α, t) , sin θi (α, t)

)
. (51)

Small-scale decomposition and updating the interface319

The stiffness of the original problem propagates to Eq. (50), while Eq. (49)320

is non-stiff. The latter can be integrated explicitly, but the solution technique321
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for the θ-equation is far from trivial. This equation is solved using small-scale322

decomposition (SSD), an idea which has been successfully used in a number of323

problems in the domain of, e.g., HS flow, micro-structure evolution [29, 30], vesi-324

cle wrinkling [31], and dynamics of an epitaxial island [32]. In problems driven325

by Laplace-Young boundary conditions, the critical factor in the numerical com-326

putation is the curvature of the interface. It introduces higher derivatives in the327

dynamical equations and results in severe stability constraints. For example,328

the analysis of the equations of motion reveals [5] that, at small spatial scales,329

V (α, t) ∼ σ
s2α
H [θαα] where H [θαα] denotes the periodic Hilbert transform of330

θαα and therefore Eq. (50) becomes331

θt =
σ

s3
α

H [θααα] +N (α, t) , (52)

where the term N (α, t) = (Vs + κT )− σ
s3α
H [θααα] . In the last equation and the332

subsequent ones, we suppress i in the superscript to keep our notation simple,333

but its presence should be understood. SSD reveals that the part σ
s3α
H [θααα]334

gives rise to a stiffness condition ∆t ≤ C (∆s)
3
. The same analysis shows that335

the term N (α, t) is non-stiff.336

We identify that in Fourier space, the dominant term on the right hand side337

of the Eq. (52) diagonalizes and the equation becomes338

θ̂t = −σ |n|
3

s3
α

θ̂ (k, t) + N̂ (k, t) . (53)

We time-integrate the θ-equation in Fourier space with a semi-implicit time-339

stepping algorithm [5]. Using an integrating factor, we obtain340

d

dt

(
e
−σ|n|

3

s3α θ̂t

)
= e
−σ|n|

3

s3α N̂ (k, t) . (54)

Then, we use a second-order Adams-Bashforth (AB2) method to discretize341

Eq. (54) as342

θ̂n+1 (k) = ek (tn, tn+1) θ̂n (k)

+
∆t

2

(
3ek (tn, tn+1) N̂n (k)− ek (tn−1, tn+1) N̂n−1 (k)

)
, (55)

where the subscript/superscript n denotes numerical solution at t = tn and we343

define344

ek (tn, tn+1) = exp

(
−σ |k|3

∫ tn+1

tn

dt

s3
α (t)

)
. (56)

To evaluate the term ek (tn, tn+1), we first integrate the non-stiff Eq. (49) using345

AB2 which gives346

Ln+1 = Ln +
∆t

2

(
3Mn −Mn−1

)
, (57)
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with M = − 1
2π

∫ 2π

0
V (α, t) θα dα. Also, sα = L/2π, and we apply the trape-347

zoidal rule to evaluate integrals in ek (tn, tn+1) and ek (tn−1, tn+1) as348 ∫ tn+1

tn

dt

s3
α (t)

≈ ∆t

2

(
1

(snα)
3 +

1(
sn+1
α

)3
)
, (58)

∫ tn+1

tn−1

dt

s3
α (t)

≈ ∆

(
1

2
(
sn−1
α

)3 +
1

(snα)
3 +

1

2
(
sn+1
α

)3
)
. (59)

The AB2 method depends on two previous values, and therefore, we initiate the349

computation at time t = 0 using Euler’s method to obtain the relevant quantities350

at t = ∆t. In the subsequent time-steps, we use the AB2 method as two previous351

time-step values are always known. The accumulation of noise is a problem [33];352

therefore, we employ a cutoff filter to prevent the accumulation of round-off error353

[34] and a 25th-order Fourier filter to damp the higher, nonphysical modes and354

suppress the error due to aliasing.355

6. Numerical Results356

In this section, we discuss the results of our numerical simulations. We357

first compare the results of nonlinear simulation with linear analysis and then358

demonstrate the spatio-temporal accuracy of our code. Finally, we compute359

several interesting cases where the domain Ω− has different initial configuration.360

In all our simulations, we set the surface tension parameter to σ = 0.47.361

6.1. Comparison of results of linear analysis and nonlinear simulation362

The evolution of a perturbed circular interface is investigated, with the initial363

interface at t = 0 given by364

R+ δ cos 4θ = 2 + 0.01× cos 4θ, (60)

and we choose R∞ = 10. The simulation is carried out up to a time tend = 1.0.365

Evolution of R(t) and δ(t) against time are shown in Fig. 2, using results from366

the nonlinear simulation and the linear analysis (Eqs. (31) and(32)). The plots367

indicate excellent match between the two in the beginning thus validating our368

numerical methods. Once δ becomes large, we observe disagreement between369

the results of the linear analysis and the nonlinear simulation, especially in the370

evolution of δ. It is evident from the plots that the linear system over-predicts371

the growth of the mode. This simulation confirms that the linear solution holds372

for a short time span and the fully nonlinear simulation is needed to predict the373

evolution over a longer time.374

Fig. 3 shows the evolution of the interface, where the innermost contour375

corresponds to the shape at t = 0. For all simulations up to this point, we used376

a GMRES tolerance of ε = 10−10. The filters are also set to this tolerance.377
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Figure 2: Comparison of results from the nonlinear simulation and the linear analysis for R(t)
and δ(t) against time. We choose σ = 0.47, R∞ = 10, N = 1024, and ∆t = 2× 10−3 to obtain
the match between the two setups and the simulation are stopped when the linear analysis
results starts to over-predict the nonlinear results at tend = 1.0.
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Figure 3: Time evolution of the interface

6.2. Spatio-Temporal convergence378

Figs. 4(a) and 4(b) show the spatio-temporal accuracy of our numerical
simulation using initial shape defined in Eq. (60) and with other parameters
unchanged. Note that our numerical method is spectrally accurate is space
and second-order accurate in time. In Fig. 4(a), we demonstrate the spectral
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accuracy of our code by plotting the maximum of

− log10 |x (t,N)− x (t,Nf = 1024)|

for values N = 64, 128, 256, and 512 at time tend = 1.0. ∆t = 5×10−3 is chosen379

so that the results are very accurate in time. Observe that even with N = 64,380

the results match up to 10−11. This indicates very a rapid decay of error with381

N and confirms the spectral accuracy of our code.382

In Fig. 4(b), we plot the maximum of − log10 |x (∆t,N) − x
(
5× 10−4, N

)
|383

for N = 1024 and three values of ∆t = 5×10−3, 2.5×10−3, and ∆t = 1.25×10−3
384

until the time tend = 1. The distance between the lines is 0.6, indicating second-385

order convergence. We deliberately choose large N during temporal convergence386

study to ensure high accuracy in space such that the space discretization error387

does not interfere with the error due to time discretization.388

6.3. Simulation of different steady state configurations389

In this section, we show different steady state configurations starting with390

various initial conditions. We set the GMRES tolerance to ε = 10−8, N = 512,391

filter tolerance to 10−10, and ∆t = 5× 10−4 unless stated otherwise. We found392

that the relaxed tolerance does not interfere with the accuracy of simulation,393

but a stricter temporal resolution helps improve convergence. We further found394

that N = 512 is enough for space resolution throughout the simulation as the395

morphologies are not complicated. All simulations except the last one are per-396

formed using an Intel(R) Core(TM) i5-7200U processor with maximum clock397

speed @ 2.50GHz and in a laptop with 8 GBs of RAM space. The last sim-398

ulation with 12 regions was carried out on a desktop machine with Intel(R)399

Core(TM) i9-10900 processor with maximum clock speed @ 2.80GHz and 64400

GB RAM.401

In all our simulations, we maintain the following protocol: We start the402

simulation under transient conditions where the system is driven by the flux403

given in Eq. (44). Once the right hand side of the equation is less than a404

tolerance value of 0.001, we set the flux forcefully to zero. We do this because405

the flux goes to zero only as t → ∞ but, for all practical purposes, can be406

neglected when it goes below the small tolerance we set. Once that happens, the407

system moves into the zero-flux regime or the relaxation phase and we observe408

the evolution for sufficiently long time to investigate the domain configurations409

in the steady-state. We stop the simulation at tend = 25 if it does not stop410

earlier due to a topological singularity showing up in the system. In time plots,411

we always use semilog in the x-axis.412

First, we perform a simulation using a four-domain configuration and dis-413

play the results of various important parameters of the simulation in Fig. 5(a),414

Fig. 5(b), and Fig. 5(c). The domains at t = 0 are elliptic in shape and we have415

one domain each along the positive and negative x- and y-axes. The major and416

minor axes of the ellipses are set to the values a = 1.5 and b = 1.0. We set417

R∞ = 4 and the centroids of the domains are at (2, 0) , (0, 2) , (−2, 0) , (0,−2) .418

17



64 128 256 512

N

8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

-l
o

g
1

0
|x

(
 t

=
5

1
0

-3
,N

)-
x

(
 t

=
5

1
0

-3
,N

=
1

0
2

4
)|

(a) Spectral accuracy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

-l
o

g
1
0

|x
(

 t
,N

=
1

0
2

4
)-

x
(0

.0
0

1
2

5
,N

=
1

0
2

4
)|

 t = 5  10
-3

 t = 2.5  10
-3

 t =1.25  10
-3

(b) Temporal accuracy

Figure 4: Demonstration of spectral accuracy and second-order convergence in time of the
nonlinear simulation.

We denote these domains by D1, D2, D3, and D4, respectively. The initial con-419

figuration (lower left panel of Fig. 5(a)) is symmetric about the x- and y-axes.420

It also has certain rotational symmetries. The governing equations demand that421
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these symmetries should be preserved at all later times and we find that this is422

indeed true for our simulation.423

With this configuration, we find that the changes are rapid at the beginning.424

The outer parts of the ellipses bulge out and align themselves along the boundary425

perhaps because more space is available towards the outer region as compared426

to region near the center, and by time t = 2.5, the shapes no more resemble427

ellipses. The system enters equilibrium configuration at tc = 8.75 when the flux428

approaches zero. To understand more about this phase, we refer to the plot429

of the maximum interfacial velocity max ‖v‖ = ‖v‖∞ (top panel of Fig. 5(a))430

where the maximum is taken over all marker points over all interfaces. It is431

observed in this plot that the velocity decreases monotonically to zero, and close432

to tc, the maximum magnitude of the velocity max ‖v‖ = ‖v‖∞ is negligible.433

Therefore, the system configuration changes very little in the relaxation phase.434

This is confirmed by comparing the plots of the configuration (lower panels of435

Fig. 5(a)), in which the changes after t = 2.5 are small. At t = tend, we find436

that the domains lose their elliptic form and are approximately circular.437

The evolution of two additional quantities, the arc length parameter sα =438

L/2π for each interface, and the far-field function value w∞, are shown in439

Fig. 5(c) and Fig. 5(b), respectively. Because of the symmetry, all four curves440

are on the top of each other in Fig. 5(c). The far-field flux is flat at the begin-441

ning but eventually changes rapidly before entering the relaxation phase, giving442

it the shape of a sigmoid curve. The change in arc length parameter is rapid443

at the beginning but this curve flattens very quickly once the system enters the444

relaxation phase.445

Next, we consider a simulation with three domains. We do this by removing446

one particle from the previous configuration. In Fig. 6(a), the initial configura-447

tion is symmetric about both the x- and y-axis. We start with elliptic particles448

with semi-axes dimensions of a = 1.5 and b = 1.0, and with their centroids at449

(2, 0) , (0, 2) and (−2, 0). We label these regions D1, D2, and D3, respectively.450

The radius of the far-field boundary is R∞ = 4.451

We observe that the domains D1 and D3, originally aligned along positive452

and negative x-direction respectively, rotate quickly, by almost 45 degrees. By453

t = 1.25, significant rotation occurs and it continues further, even as the angular454

speed slows down. The domain D2 shrinks in the y-direction and grows in the455

x-direction. After sufficient time, this domain is ellipse-like with major axis in456

x-direction and minor axis along y-axis.457

An interesting point is the difference in the area occupied by each domain458

as the time progresses. The area of the domains are equal in the beginning.459

As the simulation progresses, all regions grow in size, with region D2 growing460

slower the other two particles. This is prominent during the early stages of461

evolution. However, the area of D2 increases somewhat faster during the later462

stages of evolution (after t = 10), and eventually, the ratio of the arc length463

parameters of D2 and D1/D3 is approximately 1.2. The flux approaches zero464

at approximately tc = 9.35.465

Figs. 7(a), 7(b), and 7(c) show simulation results corresponding to two el-466

liptic phase domains. The domains are aligned along the x- and y-axes with467
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semi-axes dimensions a = 1.5 and b = 1.0. We set R∞ = 4. The centroid of the468

phase domain with major axes along x-direction is at (2, 0), and the other one469

is located at (0, 2). This configuration is symmetric about the line y = x. The470

domains undergo rotation during evolution, aligning themselves along the line471

x = y and growing in size during the alignment process due to a positive flux.472

The particle shapes are convex towards the boundary ∂Ω while they are concave473

in the inner region. As with the simulation with four and three domains, the474

graph of w∞ has a sigmoid shape.475

6.4. Domain shrinkage476

Figs. 8(a), 8(b), and 8(c) are results of simulations with seven elliptic do-477

mains. The centroids of the domains are at (0, 0), (2.5, 0), (5, 0), (−2.5, 0),478

(−5, 0), (0, 4), and (0,−4) with major axis a = 1.5 and minor axis b = 0.9.479

We denote these domains by D1 to D7, respectively. The outer boundary is at480

R∞ = 6. The configuration is symmetric about the x- and y-axes and has a481

rotational symmetry of 180 degrees.482

The evolution of this seven-domain configuration reveals a number of inter-483

esting aspects. Most notable of these is the shrinkage and gradual disappear-484

ance of the domain D1. All domains at t = 0 have the same area but as time485

progresses, D1 shrinks. In the beginning, the area shrinks slowly but later the486

shrinking process speeds up. We note that near the singularity, around t = 4.75,487

the code crashes and the results may not be very accurate. This is evident in488

the velocity plot where the maximum normal velocity decays at first and then489

increases very rapidly towards the end. Thus, our fixed time-steps may not490

capture the results towards the end of the simulation very well. The domains491

D6 and D7 are the ones that grow the most in the process. After these, the492

next largest growths are seen for D3 and D5, and then for D2 and D4. The arc493

lengths of the domains D2 and D4 display non-monotonic behavior with time.494

As a related phenomenon, we mention here the problem of particle coarsen-495

ing [35, 36, 33] in alloy formation where, once the system enter the relaxation496

phase, the phase-domains may undergo topological changes. The domains tend497

to acquire compact shapes owing to the minimum surface energy requirements,498

and in the process, large domains try to grow at the expense of smaller regions.499

In this simulation, we find results analogous to that.500

Figs. 9(a), 9(b), and 9(c), show results of a different seven-domain configu-501

ration. In this simulation, the regions D1 to D7 have their centroids at (0, 0),502

(2.7, 0), (5, 0), (−2.7, 0), (−5, 0), (0, 4.2), and (0,−4.2) at t = 0, respectively.503

The domain D1 has major and minor axes a = 2.0 and b = 1.4, domains D2504

to D5 have major and minor axes a = 1.6 and b = 0.9, and domains D6 and505

D7 have major and minor axes a = 2.7 and b = 1.6. The areas of domains506

D1, D2, and D4 all decrease with the domains D2 and D4 shrinking faster than507

D1. This is in contrast with our previous simulation where D1 decreases fastest.508

Eventually D1 survives, but D2 and D4 disappears. Also the orientation of D1509

changes, at time t = 0 the major axis of D1 is aligned in y-direction, in an510

intermediate stage it is circular but towards the end it regains its elliptic shape511

to a certain extent and the major axis is in x-direction. In this simulation we512
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use a time step ∆t = 2.5 × 10−4, unlike in other simulations, as the reduced513

time step improves convergence.514

6.5. Simulation with large number of domains515

In the last simulation, we present the results of a simulation with a twelve do-516

main configuration in Figs. 10(a), 10(b), and 10(c). The domains are arranged517

in “two rings”. The inner ring consists of four particles (D1 to D4 arranged518

in counter clockwise direction having centroids at (3.75, 0), (0, 4), (−3.75, 0),519

and (0,−4), respectively) and the outer ring consists of eight particles, D5 to520

D12. Their centroids are located at (7.5, 0), (5, 5), (0,−7), (−5, 5), (−7.5, 0),521

(−5,−5), (0,−7), and (5,−5), respectively. The initial configuration has several522

symmetries which are all preserved in the simulation. The configuration enters523

the equilibrium phase at tc = 11.3 and does not show any coarsening type be-524

haviour up to t = 14. We observe that the domains in the outer ring grows more525

than the domains in the inner ring. This is probably due to the initial geometry526

where the outer domains have more space to grow and the inner domains are527

“squeezed” by the outer ring. Going by our previous simulation, we believe that528

placement of a central ellipse at (0, 0) will result in coarsening.529

7. Summary and Conclusion530

In this article, we derived and studied a limiting case of Ohta-Kawasaki531

model. The resulting model is a variant of the Hele-Shaw problem. We then in-532

vestigated the equations of the model using linear analysis and we reformulated533

the problem as boundary integral equations. Using small-scale decomposition534

technique for the equation of dynamics, we ran numerical simulations of these535

equations using a spectrally accurate algorithm in space and a second-order536

accurate temporal scheme. We investigated, with our numerical simulations,537

the evolution of different configurations of phase domains. Our simulations cap-538

tured accurately the intermediate dynamics and final steady-state configuration,539

and reveals information about the far-field Dirichlet condition that drives the540

evolution.541

Choksi et al. [37] related the Ohta-Kawasaki density functional theory (DFT)542

to the self-consistent mean field theory (SCFT) and [38] compared the results543

of numerical simulations for the DFT, SCFT, and the Swift-Hohenberg model.544

Our future work will build upon these studies and the results introduced in545

this paper by comparing numerical simulations from the DFT, SCFT and the546

boundary integral method. Specifically, the energies of the stationary states and547

the metastability of the defect structures of the three models will be investigated.548

This will establish the feasibility of the boundary integral method for phase549

space exploration.550
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Figure 5: Time evolution of 4 elliptic regions with semi-axes a = 1.5 and b = 1.0. The other
parameters are R∞ = 4 and surface tension σ = 0.47. The system enters equilibrium at
teq = 8.75. Centroids of the domains D1, D2, D3, and D4 are at (2, 0), (0, 2), (−2, 0), and
(0,−2) at t = 0, respectively.
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Figure 6: Time evolution of 3 elliptic regions with semi-axes a = 1.5 and b = 1. We set
R∞ = 4. The system enters the equilibrium phase at tc = 9.35. Centroids of the domains D1,
D2, and D3 are at (2, 0), (0, 2), and (−2, 0) at t = 0, respectively.
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Figure 7: Time evolution of 2 elliptic regions with semi-axes a = 1.5 and b = 1. We set
R∞ = 4. The system enters equilibrium at tc = 9.7. Centroids of the domains D1 and D2 are
at (2, 0) and (0, 2) at t = 0, respectively.
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Figure 8: Time evolution of 7 elliptic regions with semi-axes a = 1.5 and b = 0.9. We set
R∞ = 6. Centroids of the domains D1 to D7 are at (0, 0), (2.5, 0), (5, 0), (−2.5, 0), (−5, 0),
(0, 4), and (0,−4) at t = 0, respectively.
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Figure 9: Time evolution of 7 elliptic regions D1 to D7 with centroids at (0, 0), (2.7, 0), (5, 0),
(−2.7, 0), (−5, 0), (0, 4), and (0,−4) at t = 0, respectively. The domain D1 has major and
minor axes a = 2.0 and b = 1.4, domains D2 to D5 have major and minor axes a = 1.6 and
b = 0.9, and domains D6 and D7 have major and minor axes a = 2.7 and b = 1.6. We set
R∞ = 6.
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Figure 10: Time evolution of 12 elliptic regions D1 to D12 with centroids at (3.75, 0), (0, 4),
(−3.75, 0), (0,−4), (7.5, 0), (5, 5), (0,−7), (−5, 5), (−7.5, 0), (−5,−5), (0,−7), and (5,−5) at
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and b = 0.9 while the rest of the domains have major and minor axes a = 1.5 and b = 0.9.
We set R∞ = 9.
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Appendix A. Derivation of the sharp-interface model551

Appendix A.1. Outer expansions552

We assume φ(τ,x), µ(τ,x) and ψ(τ,x) have the asymptotic expansions, φ =553

φ0+εφ1+ε2φ2+O(ε3), µ = µ0+εµ1+ε2µ2+O(ε3), ψ = ψ0+εψ1+ε2ψ2+O(ε3).554

The asymptotic problems in “outer” variables are for φi555

O
(
ε0
)

: ∂τφ0 = ∆µ0, O
(
ε1
)

: ∂τφ1 = ∆µ1, O
(
ε2
)

: ∂τφ2 = ∆µ2.
(A.1)

Similarly for µi,556

O
(
ε−1
)

: 0 = F ′ (φ0) , (A.2a)

O
(
ε0
)

: µ0 = F ′′ (φ0)φ1 + ψ0, (A.2b)

O
(
ε1
)

: µ1 = F ′′ (φ0)φ2 +
1

2
F ′′′ (φ0)φ2

1 −∆φ0 + ψ1. (A.2c)

and ψi,557

O
(
ε0
)

: −∆ψ0 = φ0 − φ̄, O
(
ε1
)

: −∆ψ1 = φ1, O
(
ε2
)

: −∆ψ2 = φ2. (A.3)

On the fixed boundary ∂Ω, the boundary conditions for the asymptotic sub-558

problems are559

∂φi
∂n∂Ω

= 0,
∂µi
∂n∂Ω

= 0,
∂ψi
∂n∂Ω

= 0, on ∂Ω for, i = 0, 1, 2, . . .

Appendix A.2. Inner-outer coordinate transformations560

To derive the inner problems it is convenient to introduce a parametrization561

r(τ, s) = (r1(τ, s), r2(τ, s)) of the free interface, i.e. the sharp interface Γ via562

the arc length s, and ν(τ, s) the normal inward-pointing vector along the free563

boundary, so that any point in the thin ε-region around Γ can be expressed by564

x(τ, s, z) = r(τ, s) + εzν(τ, s).

where εz is the distance alongthe inward normal direction ν(τ, s) from the sharp565

interface Γ, given by566

ν(τ, s) = (−∂sr2, ∂sr1) , t(τ, s) = (∂sr1, ∂sr2) .

The relation the derivatives of a quantity ṽ(τ, s, z) defined in inner coordinates to567

derivatives in the outer coordinates v(τ,x) can be expresses as a multiplication568

of matrices,569 ∂sṽ∂z ṽ
∂τ ṽ

 =

∂sx ∂sy 0
∂zx ∂zy 0
∂τx ∂τy 1

 ·
∂xv∂yv
∂τv

 ,
and vice versa570 ∂xv∂yv

∂τv

 =

(1 + εzκ)∂sr1 −ε−1∂sr2 0

(1 + εzκ)∂sr2 ε−1∂sr1 0

−(1 + εzκ)V t −ε−1V ν 1

 ·
∂sṽ∂z ṽ
∂τ ṽ

 ,
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where571

V t = ∂τx · t, and V ν = ∂τx · ν,
denote the tangential and normal velocity of the free boundary respectively,572

with κ denoting the curvature of the free boundary. Thus, the expression of the573

rescaled time derivative in terms of the inner-coordinates,574

∂τv = −(1 + εzκ)∂sṽ − ε−1V ν∂z ṽ + ∂τ ṽ.

Applying the respective derivatives to higher order yields575

∂xxv = ε−2 (∂sr2)
2
∂zz ṽ − ε−1

[
κ (∂sr1)

2
∂z ṽ + 2∂sr1∂sr2∂sz ṽ

]
+ (∂sr1)

2
∂ssṽ − 2κ∂sr1∂sr2∂sṽ − zκ

[
κ (∂sr1)

2
∂z ṽ + 2∂sr1∂sr2∂sz ṽ

]
,

∂yyv = ε−2 (∂sr1)
2
∂zz ṽ − ε−1

[
κ (∂sr2)

2
∂z ṽ − 2∂sr1∂sr2∂sz ṽ

]
+ (∂sr2)

2
∂ssṽ + 2κ∂sr1∂sr2∂sṽ − zκ

[
κ (∂sr2)

2
∂z ṽ − 2∂sr1∂sr2∂sz ṽ

]
and for the Laplace operator in the inner-coordinates,576

∆v = ∂xxv + ∂yyv = ε−2∂zz ṽ − ε−1κ∂z ṽ + ∂ssṽ − zκ2∂z ṽ.

Appendix A.3. Inner expansions577

We assume that inner asymptotic expansions for φ̃(τ, s, z), µ̃(τ, s, z) and578

ψ̃(τ, s, z) are given by φ̃ = ũ0 +εũ1 +ε2ũ2 +O(ε3), µ̃ = µ̃0 +εµ̃1 +ε2µ̃2 +O(ε3),579

ψ̃ = ψ̃0 + εψ̃1 + ε2ψ̃2 +O(ε3). Application of the coordinate transformations to580

the governing equations yields the asymptotic subproblems for the inner region581

for φ̃ up till O(ε0),582

O
(
ε−2
)

: 0 = ∂2
z µ̃0, (A.5a)

O
(
ε−1
)

: −V ν∂zφ̃0 = ∂2
z µ̃1 − κ∂zµ̃0, (A.5b)

O
(
ε0
)

: −∂zφ̃0 − V ν∂zφ̃1 + ∂τ φ̃0 = ∂2
z µ̃2 − κ∂zµ̃1 + ∂2

s µ̃0 − zκ2∂zµ̃0.
(A.5c)

For the chemical potential µ̃ up to O(ε),583

O
(
ε−1
)

: 0 = F ′(ũ0)− ∂2
z ũ0, (A.6a)

O
(
ε0
)

: µ̃0 = F ′′(ũ0)ũ1 + κ∂zũ0 − ∂2
z ũ1 + w̃0, (A.6b)

O
(
ε1
)

: µ̃1 = −∂2
z ũ2 + κ∂zũ1 − ∂2

s ũ0 + zκ2∂zũ0 + F ′′(ũ0)ũ2 +
1

2
F ′′′(ũ0)ũ2

1

+ w̃1, (A.6c)

and for ψ̃,584

O
(
ε−2
)

: −∂2
z ψ̃0 = 0, (A.7a)

O
(
ε−1
)

: −∂2
z ψ̃1 + κ∂zψ̃0 = 0, (A.7b)

O
(
ε0
)

: −∂2
z ψ̃2 + κ∂zψ̃1 − ∂2

s ψ̃0 + zκ∂zψ̃0 = φ̃0 − φ̄. (A.7c)
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Appendix A.4. Matching585

From the leading order problem of the inner expansion for the chemical586

potential subequation (A.6a),587

F ′(φ̃0)− ∂2
z φ̃0 = 0.

Multiplying by ∂zφ̃0 and integrating in z from −∞ to ∞,588 ∫ φ+
0

φ−0

F ′(φ̃0)dφ̃0 =

∫ ∞
−∞

(
∂2
z φ̃0

)
∂zφ̃0dz,

where the integration limits are limz→±∞ φ̃0(τ, s, z) = φ±0 respectively. Since589

limz→±∞
∂φ̃0

∂z = 0 for φ̃0 to be bounded. This leaves590 ∫ φ+
0

φ−0

F ′
(
φ̃0

)
dφ̃0 = 0,

which states that for the symmetric double-well potential the x-axis correspond-591

ing to F ′
(
φ̃0

)
= 0 is the line of intersection that divides F ′(φ̃0) such that the592

areas below and above the curve are equal. This implies that the limits of the593

integral are the points of intersection, i.e.594

φ±0 = ±1 in Ω± resp. (A.8)

This implies for the leading order outer problem in µ595

∆µ0 = 0 in Ω\Γ (A.9)

and for ψ0596

∆ψ0 = −(φ0 − φ̄), (A.10)

with boundary conditions597

∂φ0

∂n∂Ω
= 0,

∂µ0

∂n∂Ω
= 0,

∂ψ0

∂n∂Ω
= 0, on ∂Ω. (A.11)

To proceed with the matching we write down the matching conditions by598

expanding inner and outer expansions, and express one of them (here the outer)599

in terms of the inner independent variables. Then we regroup in orders of ε and600

obtain601

µ±0 = lim
z→±∞

µ̃0(τ, r, z), (A.12a)

µ±1 + zν · ∇µ±0 = lim
z→±∞

µ̃1(τ, r, z), (A.12b)

µ±2 + zν · ∇µ±1 +
1

2
z2ν ·∆µ±0 · νᵀµ±0 = lim

z→±∞
µ̃2(τ, r, z). (A.12c)
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Integrating (A.5a) twice gives602

µ̃0 = a0z + b0.

Matching µ̃0 to µ±0 by means of (A.12a) yields a0 = 0 and µ̃0 = b0 =constant.603

Next, notice that differentiating (A.6a) with respect to z and multiplying by φ̃1604

yields605

F ′′(φ̃0)
(
∂zφ̃0

)
φ̃1 −

(
∂3
z φ̃0

)
φ̃1 = 0. (A.13)

Multiplying the next-order problem of the inner chemical potential (A.6b) by606

∂zφ̃0 and using (A.13) gives607

µ̃0

(
∂zφ̃0

)
=
(
∂3
z φ̃0

)
φ̃1 + κ

(
∂zφ̃0

)2

−
(
∂2
z φ̃1

)(
∂zφ̃0

)
+ ψ̃0

(
∂zφ̃0

)
.

Integrating the above in z from −∞ to ∞, applying integration by parts and608

using the boundedness of the leading order φ̃0 and the leading order non-local609

term ψ̃0 is a functional of φ̃0 with limz→±∞ ψ̃0 = ψ0[φ±0 ] we obtain610

µ̃0

[
φ̃0

]∞
−∞

= κ

∫ ∞
−∞

(
∂zφ̃0

)2

dz + ψ̃0

[
φ̃0

]∞
−∞

,

where
∫∞
−∞ ∂zφ̃0dz =

[
φ̃0

]∞
−∞

, the jump of φ̃0 over the interface. Dividing by611 [
φ̃0

]∞
−∞

and setting612 ∫∞
−∞

(
∂zφ̃0

)2

dz[
φ̃0

]∞
−∞

= C,

which is a constant, we obtain613

µ̃0 = Cκ+ ψ̃0.

The next-order matching conditions then implies614

µ0 = Cκ+ ψ0 on Γ. (A.14)

To obtain the normal velocity of the free boundary V ν we integrate (A.5b)615

from −∞ to ∞,616

−V ν =
1

2
[∂zµ̃1]

∞
−∞︸ ︷︷ ︸

A○

−1

2
κ [µ̃0]

∞
−∞︸ ︷︷ ︸

B○

, (A.15)

From A.14, µ̃0 is independent of z, so B○ = 0. Furthermore, notice that differ-617

entiating the next-order matching of µ̃1 in (A.12b) with respect to z yields618

∂zµ̃1|∞z=−∞ = ∂zµ1|+−︸ ︷︷ ︸
=0

+ ν · ∇µ0|+− ν · ∇µ0|+− ≡ A○,
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with ∂zµ1|+− = 0 since the outer µ±1 ’s are independent of z. Substituting these619

results back into (A.15),620

V ν = −1

2

[
∂µ0

∂ν

]
Γ

. (A.16)
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