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Abstract
We present a novel kernel-based machine learning algorithm for identifying the
low-dimensional geometry of the effective dynamics of high-dimensional multiscale
stochastic systems. Recently, the authors developed a mathematical framework for the
computation of optimal reaction coordinates of such systems that is based on learning a
parameterization of a low-dimensional transition manifold in a certain function space.
In this article, we enhance this approach by embedding and learning this transition
manifold in a reproducing kernel Hilbert space, exploiting the favorable properties of
kernel embeddings. Under mild assumptions on the kernel, the manifold structure is
shown to be preserved under the embedding, and distortion bounds can be derived.
This leads to a more robust and more efficient algorithm compared to the previous
parameterization approaches.

1 Introduction

Many of the dynamical processes investigated in the sciences today are characterized
by the existence of phenomena on multiple, interconnected time scales that determine
the long-term behavior of the process. Examples include the inherently multiscale

Communicated by Oliver Junge.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00332-020-09668-z.

B Andreas Bittracher
bittracher@mi.fu-berlin.de

1 Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany

2 Department of Mathematics, Imperial College London, London, UK

3 AlFaisal University, Riyadh, Kingdom of Saudi Arabia

4 Zuse Institute Berlin, Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-020-09668-z&domain=pdf
https://doi.org/10.1007/s00332-020-09668-z
https://doi.org/10.1007/s00332-020-09668-z


3 Page 2 of 41 Journal of Nonlinear Science (2021) 31 :3

dynamics of atmospheric vortex- and current formation which needs to be considered
for effective weather prediction (Klein 2010;Majda andKlein 2003), or the vast differ-
ence in time scales on which bounded atomic interactions, side-chain interactions, and
the resulting formation of structural motifs occur in biomolecules (Freddolino et al.
2010; Camacho and Thirumalai 1993; Bowman et al. 2011). An effective approach
to analyze these systems is often the identification of a low-dimensional observable
of the system that captures the interesting behavior on the longest time scale. How-
ever, the computerized identification of such observables from simulation data poses
a significant computational challenge, especially for high-dimensional systems.

Recently, the authors have developed a novel mathematical framework for iden-
tifying such essential observables for the slowest time scale of a system (Bittracher
et al. 2017). The method—called the transition manifold approach—was primarily
motivated bymolecular dynamics, where the dynamics is typically described by a ther-
mostated Hamiltonian system or diffusive motion in molecular dynamics landscapes.
In these systems, local minima of the potential energy landscape induce metastable
behavior, which is the phenomenon that on long time scales, the dynamics is character-
ized by rare transitions between certain sets that happen roughly along interconnecting
transition pathways (Noé et al. 2009; Schütte et al. 2013; E andVanden-Eijnden 2006).
The sought-after essential observables should thus resolve these transition events, and
are called reaction coordinates in this context (Socci et al. 1996; Best and Hummer
2005), a notion that we will adopt here. Despite of its origins, the transition manifold
approach is also applicable to other classes of reducible systems.

At the heart of this approach is the insight that good reaction coordinates can be
found by parameterizing a certain transition manifold M in the function space L1.
For metastable systems, this manifold has strong connections to the aforementioned
transition pathway (Bittracher et al. 2018), but the two concepts are not equivalent. Its
defining property is that for times τ that fall between the fastest and slowest time scales,
the transition density functions with relaxation time τ concentrate around M. Hence,
M can be seen as the “backbone” of the slowly equilibrating parts of the dynamics.

The original algorithmic strategy to compute an RC by parameterizingM, proposed
in Bittracher et al. (2017) can be summarized as follows:

1. Randomly choose starting points in the dynamically relevant regions of the state
space.

2. Approximate the transition densities associated with each starting point by Monte
Carlo simulation.

3. Embed the transition densities into a Euclidean space by a suitable embedding
function.

4. Uncover the manifold structure in the set of embedded transition densities with the
help of some manifold learning algorithm.

The result is a reaction coordinate evaluated in the starting points. For an appropri-
ately chosen embedding function, this reaction coordinate has been shown to be as
expressive as the dominant eigenfunctions of the transfer operator associated with the
system (Bittracher et al. 2017), which can be considered an “optimal” reaction coordi-
nate (Froyland et al. 2016; Bowman et al. 2014; McGibbon et al. 2017). One decisive
advantage of the transition manifold reaction coordinates over the eigenfunctions,
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however, is the ability to compute the reaction coordinate locally (by choosing the
starting points), whereas with conventional methods, the inherently global computa-
tion of transfer operator eigenfunctions quickly becomes infeasible due to the curse of
dimensionality [although kernel-based methods alleviate this problem to some extent
(Schwantes and Pande 2015; Klus et al. 2018)]. Moreover, the number of dominant
eigenfunctions can be significantly larger than the “natural” dimension of the reaction
coordinate, which the transition manifold method successfully discovers (Bittracher
et al. 2017).

Despite the success of the original framework in defining and computing dynami-
cally verifiable reaction coordinates, the original algorithm had several shortcomings
related to the choice of the embedding function. First, in order to ensure the preserva-
tion of the manifold’s topology under the embedding, the dimension of M had to be
known in advance. Second, the particular way of choosing the embedding functions
allowed no control over the distortion of M under the embedding, which may render
the parameterization problem numerically ill-conditioned.

The goal of this article is to overcome both of these problems by kernelizing the
transition manifold embedding. That is, we present a method to implicitly embed the
transitionmanifold into a reproducing kernel Hilbert space (RKHS) with a proper ker-
nel, instead of embedding it into a Euclidean space. The RKHS is—depending on the
kernel—a high- or even infinite-dimensional function space with the crucial property
that inner products between functions embedded into it can be computed by cheap ker-
nel evaluations, without ever explicitly having to compute the embedding (Steinwart
and Christmann 2008; Schölkopf and Smola 2001), something that is known as the
kernel trick. In our case, this means that the pairwise distance between embedded tran-
sition densities—a key component in the manifold learning part of the algorithm—can
be computed efficiently by kernel evaluations at samples of the densities.

Due to their popularity, the metric properties of the kernel embedding are well-
studied (Smola et al. 2007; Fukumizu et al. 2007; Sriperumbudur et al. 2010; Gretton
et al. 2012; Muandet et al. 2017). In particular, for characteristic kernels, the RKHS is
“large” in an appropriate sense, and geometrical information is well-preserved under
the embedding. For our application, this will mean that distances between points on
the transition manifold M are approximately preserved, and thus the distortion of M
under the embedding can be bounded.Also, such a “large”RKHS can embed transition
manifolds of arbitrary finite dimension, hence a priori knowledge of the dimension of
M is no longer required.

In a more general machine learning context, the kernel trick is often used to
derive nonlinear versions of originally linear algorithms, by interpreting the RKHS-
embedding of a data set as a high-dimensional, nonlinear transformation, and
(implicitly) applying the linear algorithm to the transformed data. This approach has
been successfully applied to methods such as principal component analysis (PCA)
(Schölkopf et al. 1998), canonical correlation analysis (CCA) (Melzer et al. 2001), and
time-lagged independent component analysis (TICA) (Schwantes and Pande 2015),
to name but a few. Transferred to our application this means that, if the transforma-
tion induced by the kernel embedding is able to approximately linearize the transition
manifold, there is hope that efficient linear manifold learning methods can be used to
parameterize the embedded transition manifold.
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The main contributions and the structure of this article are as follows: In Sect. 2,
we will revisit the definition of transition manifolds and discuss conditions under
which systems possess such manifolds. Also, the old algorithm based on Euclidean
embeddings is revisited here. Section 3 constitutes the main part of this article. In
Sect. 3.1, reproducing kernel Hilbert spaces and the kernel trick are introduced. Also,
our new algorithm is derived by reformulating the old algorithm using the kernel trick.
In Sect. 3.2, we derive bounds for the maximum possible distortion of the transition
manifold under the kernel embedding. These bounds provide insight into the condition
and well-posedness of our newmethod. In Sect. 4, the performance of the algorithm is
evaluated by three examples. In Sect. 4.1, the kernel reaction coordinate is computed
for a two-dimensional standard benchmark system (the Müller–Brown potential), and
compared to an “optimal” reaction coordinate. In Sect. 4.2, the distortions of the
transition manifold under the Euclidean and the kernel embedding are compared using
a two-dimensional toy system. In Sect. 4.3, the method is applied to a 66-dimensional
peptide system, revealing the transition pathways between metastable conformations.
Finally, a conclusion and comments on future work are given in Sect. 5.

2 Reaction Coordinates Based on TransitionManifolds

In what follows, let {Xt }t≥0 (abbreviated as Xt ) be a reversible, ergodic, stochastic
process on a compact connected state space X ⊂ R

n with positive, finite Lebesgue
measure. Let there furthermore exist a unique invariant density ρ ∈ L1(X), 0 <

ρ < ∞ of Xt , i.e., if X0 ∼ ρ, then Xt ∼ ρ for all t ≥ 0. L1(X) here denotes
the space of absolutely integrable functions over X with respect to the Lebesgue
measure. For instance, a process generated by a stochastic differential equation (SDE)
with sufficiently smooth parameters, uniformly non-degenerate noise coefficient, and
a domain X with sufficiently smooth boundary fulfills these requirements. Typical
classes of these SDEs are (overdamped) Langevin equations, where ρ takes the form
of theBoltzmann–Gibbs distribution. See, e.g., (Mattingly andStuart 2002), for related
statements.

For fixed x ∈ X and t > 0, let ptx : X → R>0 denote the transition density function
of the system, i.e., ptx describes the probability density at time t , after having started
in point x at time 0. Under sufficient smoothness requirements on the system, ptx is
indeed a function, and we will often consider ptx as a point in L1(X), and later also
other related function spaces. For the sake of clarity, we will from now on omit the
argument of L p when referring to functions over X.

2.1 Reducibility of Dynamical Systems

We assume the state space dimension n to be large. The main objective of this work
is the identification of good low-dimensional reaction coordinates (RCs) or order
parameters of the system. An r -dimensional RC is a smooth map ξ : X → Y from
the full state space X to a lower-dimensional space Y ⊂ R

r , r � n. Loosely speak-
ing, we call such an RC good if on long enough time scales the projected process
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ξ(Xt ) is approximately Markovian and the dominant spectral properties of the oper-
ator describing its density evolution of ξ(Xt ) resemble those of Xt . This ensures that
important long-time statistical properties such as equilibration times are preserved
under projection onto the RC.

We will now introduce a conceptual framework for finding such RCs. This so-
called transition manifold framework, introduced by some of the authors in Bittracher
et al. (2017), ties the existence of good RCs to certain geometrical properties of the
following family of transition densities:

Definition 2.1 Let τ > 0 be fixed. The set of functions

˜M := {pτ
x | x ∈ X} ⊂ L1,

is called the fuzzy transition manifold of the system.

The name fuzzy transition manifold is motivated by the following observation: If
and only if for some lag time τ the transition density functions pτ

x do not depend
on the full coordinate x , but only depend smoothly on some r -dimensional reaction
coordinate ξ(x), i.e.,

pτ
x = p̃ τ

ξ(x)

for all x ∈ X and some smooth injective function p̃ τ
(·) : Y → L1(X), then ˜M will

form an r -dimensionally parameterizable set in L1. In a slight misuse of denotation,
we will call such a set an r-dimensional manifold for short, and whenever we talk
of a manifold, we mean this special type of manifold (i.e., extrinsically defined by a
parameterization), and not a general topological manifold. Likewise, if and only if pτ

x
“almost depends” only on ξ(x), i.e.,

pτ
x ≈ p̃τ

ξ(x), (1)

then the ˜M will “almost form” an r -dimensional manifold. More precisely, ˜M will
then cluster around some actual r -dimensional manifoldM ⊂ L1, i.e., ˜Mwill be close
toM in some appropriate metric. This leads to the following definition:

Definition 2.2 Theprocess Xt is called (ε, r)-reducible if there exists an r -dimensional
manifold of functions M ⊂ ˜M such that for a fixed lag time τ , it holds that

min
f ∈M ‖ f − pτ

x‖L2
1/ρ

≤ ε for all x ∈ X. (2)

Any such M is called a transition manifold (TM) of the system.

The algorithmic idea now is based on the inverse problem: suppose (2) holds,
and we know (or are able to compute) a homeomorphic parameterization E ofM, i.e.,
E : M → Y ⊂ R

r . Then, as wewill describe in detail in Sect. 2.3, an RC ξ fulfilling (1)
can be constructed from E , and such a ξ indeed preserves the slowest time scales of
the system.
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The remaining question is under which conditions a process Xt is (ε, r)-reducible.
Unfortunately, a full characterization is still missing. The general intuition is that in
time scale separated systems, the r -dimensional structure in ˜M emerges with progres-
sive equilibration of the fast time scales. Let δx denote the Dirac distribution centered
in x . For τ → 0, we have ˜M → {δx | x ∈ X} (in the sense of distributions), which
is one-to-one to X, an n-dimensional space. On the other hand, for τ → ∞, we have
˜M → {ρ}, as every pτ

x converges to the invariant density ρ. If the system now consists
of r slowly-equilibrating “components”, and n − r quickly-equilibrating “compo-
nents”, separated by a significant time scale gap, then ˜M must go through a phase of
being almost r -dimensional on its path from being n- to being 0-dimensional.

It is hard to pinpoint what exactly “component” here means, and the meaning varies
with the class of the system under consideration. On the one hand, the explicitly time
scale separated systems, following the SDE

dX (1)
t = f (X (1)

t , X (2)
t )dt + dW (1)

t ,

dX (2)
t = 1

κ
g(X (1)

t , X (2)
t )dt + 1√

κ
dW (2)

t

with small parameter 0 < κ � 1, possess the slow variable x (1) ∈ R
r , and the fast

variable x (2) ∈ R
n−r . Here, we conjecture that for large enough τ , pτ

x essentially
depends only on ξ(x) = x (1), hence an r -dimensional TM exists. While this statement
can be easily understood for concrete systems, a general formulation and proof is still
lacking.

For metastable systems, on the other hand, one common misconception is that
the number of slow components corresponds to the number of dominant eigenval-
ues of the Perron–Frobenius operator (see Sect. 2.2 for its definition), and that the
RC corresponds to the dominant eigenfunctions. However, it has been demonstrated
in Bittracher et al. (2017), Appendix B, that the number of dominant eigenvalues is
only an upper bound for r . Moreover, the RC is suspected to be more closely related to
a parameterization of the network of transition pathways that connects the metastable
sets, than to the eigenfunctions. While again we do not have rigorous proof of that
conjecture, or of the existence of a TM in general metastable systems, the following
two-dimensional example supports the claim that both are reasonable assumptions:
stop

Example 2.3 Consider the process Xt to be described byoverdampedLangevin dynam-
ics

dXt = −∇V (Xt )dt +√2/βdWt , (3)

with the energy potential V , the inverse temperature β, and Brownian motionWt . The
potential depicted in Fig. 1 (left) possesses two metastable states, located around the
two local energy minima, that are connected by a one-dimensional transition path.

If the temperature is sufficiently low, and the lag time τ is high enough, the proba-
bility to find the system at time τ outside of the metastable sets is miniscule, for each
starting point. Hence, for each x , the transition density pτ

x is essentially a convex com-
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Fig. 1 Illustration of ametastable systemand its transitionmanifold. Left: Two-dimensional energypotential
with two metastable sets. Right: Relative positions of the transition densities to each other. The densities
for each gray starting point resemble each other, hence they concentrate around one point in L1. The same
holds for the white starting points. Overall, the densities pτ

x vary only substantially with the progress of x
along the transition pathway. Hence, the set ˜M concentrates around a one-dimensional manifold in L1

bination of the two quasi-stationary densities1 of the metastable sets. Moreover, the
convex factor here only depends on the horizontal coordinate of x , i.e., ξ(x) = x (1),
as the probability of whether a trajectory will be “caught” by the left or right well
depends almost exclusively on the progress of x along the transition path, which can
be described by the horizontal coordinate. Hence, we have

pτ
x ≈ p̃ τ

ξ(x)

for some functions p̃ τ
(·), and thus ˜M concentrates around a one-dimensional manifold

M in L1.

Due to the aforementioned difficulties in connecting the existence of a TM to
more conventional conditions for reducibility, we will in the following always directly
assume that the process Xt is (ε, r)-reducible with small ε and r � n.

Two technical remarks regarding Definition 2.2 are in order:

1. Note that in the above definition, the L2
1/ρ norm is used tomeasure distances, where

L2
1/ρ is the space of (equivalence classes of) functions that are square-integrable

with respect to the measure induced by the function 1
ρ
, and thus for f ∈ L2

1/ρ ,

‖ f ‖L2
1/ρ

=
(∫

X

f (x)2
1

ρ(x)
dx

)1/2

.

Closeness with respect to the L2
1/ρ-norm instead of the L1-norm is indeed a strict

requirement here, as measuring the quality of a given RC will require a Hilbert
space, see Sect. 2.2. Note that under appropriate assumptions on the system, it
holds that ptx ∈ L2

1/ρ for all x ∈ X. This will be shown in Lemma 3.13 and implies
˜M ⊂ L2

1/ρ , which together with the requirement M ⊂ ˜M makes (2) well-defined.

1 The quasi-stationary density of a set A is the equilibrium density of the system Xt conditioned on
remaining inside A for all future times (Gesùa et al. 2016).
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2. The original definition of (ε, r)-reducibility (see Bittracher et al. 2017, Defini-
tion 4.4), is marginally different from the definition above: Instead of M ⊂ L2

1/ρ ,

we here requireM ⊂ ˜M ⊂ L2
1/ρ . The introduction of this slightly stronger technical

requirement allows us to later control a certain embedding error, see Proposition 2.7.
Note that the proofs in Bittracher et al. (2017) regarding the optimality of the final
reaction coordinate are not affected by this change.

2.2 AMeasure for the Quality of Reaction Coordinates

We will now present a measure for evaluating the quality of reaction coordinates that
is based on transfer operators, first derived in Bittracher et al. (2017). The Perron–
Frobenius operator P t : L1 → L1 associated with the process Xt is defined by

(

P t u
)

(y) =
∫

X

u(x) ptx (y)dx .

This operator can be seen as the push-forward of arbitrary starting densities, i.e., if
X0 ∼ u, then Xt ∼ P t u.

As L2
1/ρ ⊂ L1 (see Bittracher et al. 2017, Remark 4.6) we can consider P t as

an operator on the inner product space L2
1/ρ , where it has particularly advantageous

properties (see Baxter and Rosenthal 1995; Schervish and Carlin 1992; Klus et al.
2018). Here, it is self-adjoint due to the reversibility of Xt . Moreover, under relatively
mild conditions, it does not exhibit any essential spectrum (Schütte et al. 2013). Hence,
its eigenfunctions form an orthonormal basis of L2

1/ρ and the associated eigenvalues
are real. Now, the significance of the dominant eigenpairs for the system’s time scales
is well-known (Schütte et al. 2013). This is the primary reason for the choice of the
L2
1/ρ-norm in Definition 2.2.
Let θ ti be the eigenvalues of P t , sorted by decreasing absolute value, and ψi the

corresponding eigenfunctions, where i = 0, 1, . . . . It holds that θ0 = 1 is independent
of t , isolated and the sole eigenvalue with absolute value 1. Furthermore,ψ0 = ρ. The
subsequent eigenvalues decrease monotonously to zero both for increasing index and
time. That is,

lim
i→∞ |θ ti | = 0 and lim

t→∞ |θ ti | = 0.

The associated eigenfunctions ψ1, ψ2, . . . can be interpreted as sub-processes of
decreasing longevity in the following sense: Let u ∈ L2

1/ρ , with u = ∑∞
i=0 αiψi ,

αi ∈ R, then

P t u =
∞
∑

i=0

θ ti αiψi ≈
d
∑

i=0

θ ti αiψi
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since for the lag time τ > 0 as defined above, there exists an index d ∈ N such that
|θ ti | ≈ 0 for all t ≥ τ and all i > d. Hence, the major part of the information about
the long-term density propagation of Xt is encoded in the d dominant eigenpairs.

The operator P t describes the evolution of densities of the full process Xt . In order
to monitor the dependence of densities on the reduced coordinate ξ only, we first
introduce the projection operator �ξ : L1(X) → L1(X),

(

�ξ(u)
)

(y) = Eρ

[

u(x)
∣

∣ x ∈ ξ−1(ξ(y)
)]

, (4)

i.e., we take the expectation value of uwith respect toρ on the ξ(y)-levelset. Intuitively,
�ξ averages a function u ∈ L1(X) over the individual level sets of ξ , hence �ξu is
constant on each level set of ξ . �ξ is equivalent to the Zwanzig projection operator
from statistical physics (Zwanzig 2001, Nov 1961), although the latter is typically
constructed as a map into L1(Y). We however require �ξ to map into L1(X) to be
able to directly compare its input and output functions. For a detailed investigation of
�ξ , see Zhang et al. (2016) and Bittracher et al. (2017).

Using �ξ , the effective transfer operator P t
ξ : L1(X) → L1(X) associated with ξ

is then given by

P t
ξu = �ξ

(

P t (�ξu)
)

,

see Bittracher et al. (2017). We now want to preserve the statistics of the dominant
long-term dynamics of Xt under the projection onto ξ , i.e.,

P t u ≈ P t
ξu, (5)

for t ≥ τ , where τ is some lag time that is long enough for the fast processes, associated
with the non-dominant eigenpairs, to have equilibrated. A sufficient condition for (5)
is

�ξψi ≈ ψi , i = 0, . . . , d,

that is, the dominant eigenfunctions ψi must be almost constant along the level sets
of ξ . This motivates the following definition of a good reaction coordinate:

Definition 2.4 Let (ψi , θ
t
i ) be the eigenpairs of the Perron–Frobenius operator. Let

τ > 0 and d ∈ N such that θ ti ≈ 0 for all i > d and t ≥ τ . We call a function
ξ : X → R

r a good reaction coordinate if for all i = 0, . . . , d there exist functions
ψ̃i : Rr → R such that

∥

∥ψi − ψ̃i ◦ ξ
∥

∥∞ ≈ 0. (6)

If condition (6) is fulfilled, we say that ξ (approximately) parameterizes the dominant
eigenfunctions.

For a formal evaluation of the condition (6), see Bittracher et al. (2017), Corollary 3.6).
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2.3 Optimal Reaction Coordinates

We now justify why reaction coordinates that are based on parameterizations of the
transitionmanifoldM indeed fulfill condition (6). Let Q : L2

1/ρ → L2
1/ρ be the nearest-

point projection onto M, i.e.,

Q( f ) = argming∈M ‖ f − g‖L2
1/ρ

.

Assume further that some parameterization γ : M → R
r of M is known, i.e., γ is

one-to-one on M and its image in R
r . Then the reaction coordinate ξ : Rn → R

k

defined by
ξ(x) := (γ ◦ Q

)

(pτ
x ) (7)

is good in the sense of Definition 2.4 due to the following theorem:

Theorem 2.5 (Bittracher et al. 2017, Corollary 3.8). Let the system be (ε, r)-reducible
and ξ defined as in (7). Then for all i = 0, . . . , d, there exist functions ψ̃i : Rr → R

such that
∥

∥ψi − ψ̃i ◦ ξ
∥

∥∞ ≤ ε

|θτ
i | . (8)

Let us add two remarks:

1. The choice of the L2
1/ρ-norm in Definition 2.2 is crucial for Theorem 2.5 to hold.

2. Metastable systems typically exhibit a time scale gap after the d dominant eigen-
values, i.e.,

∣

∣θ td − θ td+1

∣

∣

∣

∣θ td+1 − θ td+2

∣

∣

� 1 for suitably large t > 0.

In this case, τ can be chosen such that
∣

∣θτ
d+1

∣

∣ is close to zero and
∣

∣θτ
i

∣

∣ , i = 0, . . . , d,

is still relatively large. Consequently, the denominator in (8) is not too small, and
thus the RC (7) is indeed good according to Definition 2.4.

The main task for the rest of the paper is now the numerical computation of an
(approximate) parameterization γ ofM.

2.4 Whitney Embedding of the TransitionManifold

One approach to find a parameterization of M, proposed by the authors in Bittracher
et al. (2017), is to first embed M into a more accessible Euclidean space and to
parameterize the embeddedmanifold. In order to later compare itwith our newmethod,
we will briefly describe this approach here.

To construct an embedding E that preserves the topological structure ofM, without
prior knowledge about M, a variant of the Whitney embedding theorem can be used.
It extends the classic Whitney theorem to arbitrary Banach spaces and was proven by
Hunt and Kaloshin in Hunt and Kaloshin (1999).
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Theorem 2.6 [Whitney embedding theorem in Banach spaces, (Hunt and Kaloshin
1999)]. Let V be a Banach space and let K ⊂ V be a manifold of dimension r. Let
k > 2r and let α0 = k−2d

k(d+1) . Then, for all α ∈ (0, α0), for almost every (in the sense

of prevalence) bounded linear map F : V → R
k there exists a C > 0 such that for all

x, y ∈ K,

C ‖F(x) − F(y)‖α
2 ≥ ‖x − y‖V ,

where ‖ · ‖2 denotes the Euclidean norm in R
k . In particular, almost every F is

one-to-one onK and its image, and F−1
∣

∣

F(K)
is Hölder continuous with exponent α.

In particular, almost every such map F is a homeomorphism between K and its
image in R

k , which in short is called an embedding of K (see e.g. Munkres 2000,
§18). This means that the imageF(M)will again be an r -dimensional manifold inRk ,
provided that k > 2r .Wewill apply this result to the transitionmanifold, i.e.,V = L2

1/ρ
andK = M, and for simplicity restrict ourselves to the lowest embedding dimension,
i.e., k = 2r + 1. Any “randomly selected” continuous map F : L2

1/ρ → R
2r+1 then

is an embedding ofM.
Unfortunately, there is no practical way to randomly draw from the space of contin-

uous maps on L2
1/ρ directly. Instead of arbitrary continuous maps, we therefore restrict

our considerations to maps F : L2
1/ρ → R

2r+1 of the form

F( f ) :=
∫

X

η(x ′) f (x ′)dx ′, (9)

where

η(x) := Ax, A ∈ R
(2r+1)×d , A ∼ σ,

where σ is some distribution on the (finite-dimensional) space of (2r+1)×d-matrices
(e.g., Gaussian matrices). The linear map η : X → R

2r+1, called feature map, is
bounded due to the boundedness of X. Maps of the form (9) are therefore continuous
on L1, and thus in particular on the subspace L2

1/ρ .
By drawing from the distribution σ of the matrices A, we can effectively sample

maps of form (9). There is however no formal guarantee that maps of form (9) fall
into the prevalent set of maps predicted by Theorem 2.6, and for general manifolds
K ⊂ L2

1/ρ , this is indeed not the case.2 However, there is empirical evidence that
transition manifolds in real-world systems, specifically molecular dynamical systems,
are “sufficiently regular” for (9) to preserve their features well (Bittracher et al. 2018).
Still, this necessary restriction to a finite-dimensional class of embedding functions
represents a significant deficit of the framework described here. We will see later how
this deficit can be resolved by instead using embeddings based on kernel functions.

2 For example, ifK is an r -dimensional linear subspace of L21/ρ spanned by basis functions with identical
expectation values, then no F of form (9) will embed K.
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Still, for the moment, we assume that a randomly drawn function of form (9) with
linear η almost surely is an embedding of M. The dynamical embedding of a point
x ∈ X is then defined by

E(x) := F(ptx ) =
∫

η(x ′)ptx (x ′)dx ′. (10)

This is the Euclidean representation of the density ptx , and the set {E(x) | x ∈ X} ⊂
R
2r+1 is the Euclidean representation of the fuzzy transitionmanifold. It again clusters

around an r -dimensional manifold inR2r+1, namely the imageF(M) of the transition
manifold under F :

Proposition 2.7 Let the process Xt be (ε, r)-reducible with transition manifold M,
and F : L2

1/ρ → R
2r+1 and E : Rn → R

2r+1 defined as in (9) and (10). Then

inf
v∈F(M)

‖v − E(x)‖∞ ≤ ‖η‖∞ε for all x ∈ X.

Proof Let x ∈ X. By the (ε, r)-reducibility of Xt (Definition 2.2), and the fact that
M ⊂ ˜M, i.e.,M itself consists of transition densities, there exists an x∗ ∈ X such that
ptx∗ ∈ M and ‖ptx − ptx∗‖L2

1/ρ
≤ ε. Thus we have

inf
v∈F(M)

‖v − E(x)
︸︷︷︸

=F(ptx )

‖∞ ≤ ‖F(ptx∗) − F(ptx )‖∞

=
∥

∥

∥

∥

∫

X

η(x ′)
(

ptx∗(x ′) − ptx (x
′)
)

dx ′
∥

∥

∥

∥∞
≤ ‖η‖∞ ‖ptx∗ − ptx‖L1

︸ ︷︷ ︸

≤‖ptx∗−ptx‖L21/ρ

≤ ‖η‖∞ε,

where ‖ · ‖L1 ≤ ‖ · ‖L2
1/ρ

was derived in Bittracher et al. (2017), Remark 4.6. ��

Remark 2.8 Together, Theorem 2.6 and Proposition 2.7 guarantee at least a minimal
degree of well-posedness of the embedding problem: The embedded manifold F(M)

has the same topological structure asM, andF(˜M) clusters closely around it (if ‖η‖∞
is small). However, guarantees on the condition number of the problem cannot be
made. The manifold M will in general be distorted by F , to a degree that might pose
problems for numerical manifold learning algorithms. This problem is illustrated in
Fig. 2. Such a situation typically occurs if some of the components of the embedding
F are strongly correlated.

Additionally, theWhitney embedding theorem cannot guarantee that the fuzzy tran-
sition manifold ˜M will be preserved under the embedding, as analytically ˜M is not a
manifold. Thus, F is in general not injective on ˜M.
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L2
1/µ M

F�−→

R
2r+1 F(M)

L2
1/µ

˜M

F�−→
ptx2

ptx1

R
2r+1 F( ˜M)

F(ptx2
)F(ptx1

)

Fig. 2 Illustration of the consequences of bad choices for the embedding function. While the topology
of the transition manifold M is preserved under the embedding, the relative distances between its points
may be heavily distorted (top row). Intuitively, points that lie on distant parts of the manifold might be
mapped closely together. As a consequence, a manifold learning algorithm based on distances between a
finite number of samples of F(˜M) would have difficulties learning the (in this case circular) topology of
M (bottom row)

2.5 Data-Driven Algorithm for Parameterizing the TransitionManifold

Due to the implicit definition of M, the embedded transition manifold F(M) is hard
to analyze directly. However, as M ⊂ ˜M and F(˜M) concentrates

(‖η‖∞ε
)

-closely
around F(M), one can expect that any parameterization of the dominant directions of
F(˜M) is also a good parameterization of F(M). We now explain how F(˜M) can be
sampled numerically and how this sample can be parameterized.

Let XN = {x1, . . . , xN } be a finite sample of state space points, which covers the
“dynamically relevant” part of state space, i.e., the regions ofX of substantial measure
ρ. The exact distribution of the sampling points is not important here. If X is bounded
or periodic, XN could be drawn from the uniform distribution or chosen to form a
regular grid. In practice, it often consists of a sample of the system’s equilibrium
measure ρ.

The set F
({ptx | x ∈ XN }) will serve as our sample of F(˜M). Its elements can be

computed numerically in the following way: Let Xτ (x0, ω) denote the end point of
the time-τ realization of Xt starting in x0 ∈ X and outcome ω ∈ �, where � is the
sample space underlying the process Xt . For x ∈ X, τ > 0 fixed as in Definition 2.2
and arbitrarily chosen {ω1, . . . , ωM } ⊂ �, let y(k)(x) := Xτ (x, ωk). In short, the
y(k)(x), k = 1, . . . , n, sample the density ptx . In practice, the y

(k)(x)will be generated
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bymultiple runs of a numerical SDE solver starting in x withM different random seeds
(“bursts of simulations”).

With the samples y(k)(x), we approximate F(ptx ) by its Monte Carlo estimator:

F(ptx ) =
∫

η(x ′)ptx (x ′)dx ′ ≈ 1

M

M
∑

k=1

η(y(k)(x))

︸ ︷︷ ︸

=: ̂E(x)

.

Due to Proposition 2.7, the point cloud F
({ptx | x ∈ XN }), and for a large enough

burst sizeM also its empirical estimator̂E
(

XN
)

, then clusters around the r -dimensional
manifold F(M) in R2r+1.

Parameterizing ̂E
(

XN
)

, i.e., finding the dominant nonlinear directions in this point
cloud in R

2r+1, now can be accomplished by a variety of classical manifold learning
methods. We assume that we have a method at our disposal that is able to discover the
underlying r -dimensional manifold within the point cloud ̂E

(

XN
)

, and assign each of
the points {̂E(x) | x ∈ XN } a value γ̃

(

̂E(x)
) ∈ R

r according to its position on thatman-
ifold. For examples of such algorithms see Sect. 3.1. Hence, γ̃ : ̂E(XN ) → R

k can be
seen as an approximate parameterization ofF(M), defined however only at the points
̂E(XN ). Any parameterization of F(M) in turn corresponds to a parameterization of
M, due to F being an embedding. Finally, any parameterization ofM corresponds to
a good reaction coordinate due to Theorem 2.5. Thus, the map ξ(x) : XN → R

r ,

ξ(x) := γ̃
(

̂E(x)
)

,

forms a good reaction coordinate. Note however that it is only defined on the sample
points XN .

The strategy of computing reaction coordinates by embedding densities sampled
from ˜M into R

2r+1 by a random linear map and learning a parameterization of the
embedded manifold was first presented in Bittracher et al. (2017). The following
algorithm summarizes the overall procedure:

Algorithm 2.1 Reaction coordinate computation based on Whitney embeddings.
Input: Transition manifold dimension r , intermediate lag time τ , matrix distribution σ .
1: Choose test points XN = {x1, . . . , xN } that cover the relevant parts of state space.
2: Randomly draw a matrix A ∈ R

(2r+1)×d from σ . Define the map η : x �→ Ax .
3: for i = 1, . . . , N do
4: for l = 1, . . . , M do
5: Simulate trajectory of length τ with new random seed. Let the end point be denoted by y(l)

i .
6: end for
7: end for
8: Compute the embedded empirical densities as zi ← 1

M
∑M

j=1 η
(

y( j)
i

) ∈ R
2r+1.

9: Apply a nonlinear manifold learning algorithm to {zi | i = 1, . . . , N }. Let γ̃ (zi ) ∈ R
r denote the

resulting parametrization of the embedded test points.
Output: An r -dimensional reaction coordinate evaluated at the test points:

ξ(xi ) := γ̃ (zi ), i = 1, . . . , N .
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3 Kernel-Based Parameterization of the TransitionManifold

The approach described above for learning a parameterization of the transition man-
ifold M by embedding it into Euclidean spaces requires a priori knowledge of the
dimension ofM. Also, more importantly,Mmight be strongly distorted by the embed-
dingF , as described in Sect. 2.4. The kernel-based parameterization, which is themain
novelty of this work, will address both of these shortcomings by embedding M into
reproducing kernel Hilbert spaces.

3.1 Kernel Reformulation of the Embedding Algorithm

Manifold learning algorithms that can be used in Algorithm 2.1 include diffusion
maps (Coifman et al. 2008), multidimensional scaling (Young 2013; Kruskal 1964),
and locally linear embedding (Roweis and Saul 2000). These, andmany others, require
only a notion of distance between pairs of data points. In our case, this amounts to the
Euclidean distances between embedded points, i.e.,

∥

∥E(xi ) − E(x j )
∥

∥

2, which can be
computed by the Euclidean inner products

〈

E(xi ), E(x j )
〉

, as

∥

∥E(xi ) − E(x j )
∥

∥

2
2 = 〈E(xi ), E(xi )

〉− 2
〈

E(xi ), E(x j )
〉+ 〈E(x j ), E(x j )

〉

.

Other compatible algorithms such as principal component analysis are based directly
on the inner products. The inner products can be written as

〈

E(xi ), E(x j )
〉 =

∫∫

〈

η(yi ), η(y j )
〉

ptxi (yi ) p
t
x j (y j )dyi dy j ,

and the empirical counterpart is

〈

̂E(xi ),̂E(x j )
〉 = 1

M2

M
∑

l1,l2=1

〈

η(y(l1)
i ), η(y(l2)

j )
〉

.

However, rather than explicitly computing the inner product between the features on
the right-hand side, we now assume that it can be computed implicitly by using a
kernel function k : X × X → R, i.e.,

k(yi , y j ) = 〈η(yi ), η(y j )
〉

. (11)

That is, the previously randomly chosen linear observables η are now replaced by
the feature mapping associated with the kernel function. This assumption, called the
kernel trick, is commonly used to avoid the costly computation of inner products
between high-dimensional features. However, instead of defining the kernel k based
on previously chosen features, one typically considers kernels that implicitly define
high- and possibly infinite-dimensional feature spaces. In this way, we are able to
avoid the choice of the feature map η altogether.

Kernels with this property span a so-called reproducing kernel Hilbert space:
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Definition 3.1 [Reproducing kernel Hilbert space (Schölkopf and Smola 2001)]. Let
k : X×X → R be a positive definite function. AHilbert spaceH of functions f : X →
R, together with the corresponding inner product 〈·, ·〉H and norm ‖ · ‖H = √〈·, ·〉H
which fulfills

1. H = span{k(x, ·) | x ∈ X}, and
2. 〈 f , k(x, ·)〉H = f (x) for all f ∈ H

is called the reproducing kernel Hilbert space (RKHS) associated with the kernel k.

Here, A denotes the completion of a set A with respect to ‖ · ‖H. Requirement 2
implies that

〈k(x, ·), k(x ′, ·)〉H = k(x, x ′) for all x, x ′ ∈ X. (12)

The inner product between general functions f , g ∈ span {k(x, ·) | x ∈ X} can there-
fore be expressed as the weighted sum of kernel evaluations: Let

f =
∑

i

αi k(xi , ·), g =
∑

j

β j k(x
′
j , ·),

where the selection of points xi , x ′
j depends on f and g, respectively. Then

〈 f , g〉H =
∑

i, j

αiβ j k(xi , x
′
j ).

For functions on the boundary of span {k(x, ·) | x ∈ X}, the inner product is con-
structed by the usual limit procedure.

The map η : x �→ k(x, ·) can be regarded as a function-valued feature map (the
so-called canonical feature map). However, each positive definite kernel is guaranteed
to also possess a feature map of at most countable dimension:

Theorem 3.2 [Mercer’s theorem (Mercer 1909)].Let k be a positive definite kernel and
ν be a finite Borel measure with supportX. Define the integral operator Tk : L2

ν → L2
ν

by

Tk f =
∫

k(·, x) f (x)dν(x). (13)

Then there is an orthonormal basis {√λi ϕi } of H consisting of eigenfunctions ϕi of
Tk rescaled with the square root of the corresponding nonnegative eigenvalues λi such
that

k(x, x ′) =
∞
∑

i=0

λiϕi (x)ϕi (x
′) for all x, x ′ ∈ X. (14)

The above formulation ofMercer’s theoremhas been taken fromMuandet et al. (2017).
The Mercer features ηi := √

λi ϕi thus fulfill (11) for their corresponding kernel.
The usage of the same symbol η as for the linear feature map from Sect. 2.4 is no
coincidence, as the Mercer features will again serve the purpose to observe certain
features of the full system. In what follows, η(x) will always refer to the vector (or
�2 sequence) defined by the Mercer features. If not stated otherwise, ν will be the
standard Lebesgue measure.
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Example 3.3 Examples of commonly used kernels are:

1. Linear kernel: k(x, x ′) = x�x ′. One sees immediately that (11) is fulfilled by
choosing ηi (x) = xi , i = 1, . . . , n (also spanning the Mercer feature space).

2. Polynomial kernel of degree p: k(x, x ′) = (x�x ′ + 1)p. It can be shown that the
Mercer feature space is spanned by the monomials in x up to degree p.

3. Gaussian kernel: k(x, x ′) = exp
(

− 1
σ

∥

∥x − x ′∥
∥

2
2

)

, where σ > 0 is called the

bandwidth of the kernel. Let p ∈ N and p = (p1, . . . , pn) with p1 + . . .+ pn = p
be a multi-index. The Mercer features of k then take the form

ηp(x) = ep1(x1) · · · epn (xn),

see Steinwart and Christmann (2008), where

epi (xi ) =
√

2pi

σ 2pi pi ! x
pi
i exp

(

− 1
σ 2 x

2
i

)

. �

Let Fk denote the density embedding based on the Mercer features of the kernel k,
i.e.,

(

Fk(p
t
x )
)

i :=
∫

ηi (x
′)ptx (x ′)dx ′, i = 0, 1, 2, . . . , (15)

and let Ek(x) := Fk(ptx ). The amount of information about ptx preserved by the
embedding Fk depends on the choice of the kernel k. For the first two kernels in
Example 3.3, the information preserved has a familiar stochastic interpretation (see,
e.g., Muandet et al. 2017; Schölkopf et al. 2015; Sriperumbudur et al. 2010):

1. Let k be the linear kernel. Then

∥

∥Fk(p
t
x1) − Fk(p

t
x2)
∥

∥

2
= 0 ⇐⇒

∫

ptx1(y)dy =
∫

ptx2(y)dy,

i.e., the means of ptx1 and ptx1 coincide.
2. Let k be the polynomial kernel of degree p > 1. Then

∥

∥Fk(p
t
x1) − Fk(p

t
x2)
∥

∥

2 = 0 ⇐⇒ mi
(

ptx1
) = mi

(

ptx2
)

, i = 1, . . . , p,

i.e., the first p moments mi of ptx1 and ptx1 coincide.

Remark 3.4 In practice, comparing the first p moments often is enough to sufficiently
distinguish the transition densities that constitute the transition manifold. However,
densities that differ only in higher moments cannot be distinguished by Fk , which
means that for the above two kernels,Fk is not injective onM. Therefore,Fk does not
belong to the prevalent class of maps that is at the heart of the Whitney embedding
theorem 2.6. We can therefore not utilize the Whitney embedding theorem to argue
that the topology of M is preserved under Fk . Instead, in Sect. 3.2, we will use a
different argument to show that the embedding is indeed injective for the Gaussian
kernel (and others).
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Still, by formally using the Mercer dynamical embedding Ek in (10) (abusing nota-
tion if there are countably infinitely many such features), and using the kernel trick,
we can now reformulate Algorithm 2.1 as a kernel-based method that does not require
the explicit computation of any feature vector. This is summarized in Algorithm 3.1.

Algorithm 3.1 Kernel-based computation of the reaction coordinate.
Input: Kernel k : X × X → R, intermediate lag time τ .
1: Choose test points XN = {x1, . . . , xN } that cover the relevant parts of state space.
2: for i = 1, . . . , N do
3: for l = 1, . . . , M do
4: Simulate trajectory of length τ with new random seed. Let the end point be denoted by y(l)

i .
5: end for
6: end for
7: Compute the kernel matrix K ∈ R

N×N :

Ki j = 1

M2

M
∑

l1,l2=1

k(y
(l1)
i , y

(l2)
j ).

8: Compute the distance matrix D ∈ R
N×N :
Di j = Kii + K j j − 2Ki j .

9: Apply a distance-based manifold learning algorithm to the distance matrix D. Denote the resulting
parametrization of the underlying i-th element by γ̃i ∈ R

r .
Output: An r -dimensional reaction coordinate evaluated at the test points:

ξ(xi ) := γ̃i , i = 1, . . . , N .

3.2 Condition Number of the Kernel Embedding

We will now investigate to what extent the kernel embedding preserves the topology
and geometry of the transition manifold.

3.2.1 Kernel Mean Embedding

We derived the kernel-based algorithm by considering the embedding Fk of the tran-
sition manifold into the image space of the Mercer features in order to highlight the
similarity to the Whitey embedding based on randomly drawn features. Of course, the
Mercer features never had to be computed explicitly.

However, in order to investigate the quality of this embedding procedure, it is
advantageous to consider a different, yet equivalent embedding map: The transition
manifold can be directly embedded into the RKHS by means of the kernel mean
embedding operator.

Definition 3.5 Let k be a positive definite kernel and H the associated RKHS. Let p
be a probability density over X. Define the kernel mean embedding of p by

μ(p) :=
∫

X

k(x, ·)p(x)dx
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and the empirical kernel mean embedding by

μ̂(p) := 1

m

∑

i

k(xi , ·) with {x1, . . . , xm} ∼ p.

Note that μ(p) and μ̂(p) are again elements of H and that for ν in (13) being the
Lebesgue measure we obtain μ(p) = Tk p. Further, one sees that

〈

Fk(p
t
x1),Fk(p

t
x2)
〉 = 〈μ(ptx1), μ(ptx2)

〉

H
,

where the inner product 〈·, ·〉 refers to the Euclidean inner product or the inner product
in �2(N0), dependent on whetherFk(p) is finite or countably infinite. Thus, for inves-
tigating whether the embedding Fk preserves distances or inner products between
densities, we can equivalently investigate the embedding μ. This is advantageous as
injectivity and isometry properties of the kernel mean embedding are well-studied.

3.2.2 Injectivity of the Kernel Mean Embedding

Afirst important result is that k can be chosen such thatμ is injective. Such kernels are
called characteristic (Fukumizu et al. 2007). In Sriperumbudur et al. (2010), several
conditions for characteristic kernels are listed, including the following:

Theorem 3.6 (Sriperumbudur et al. 2010, Theorem 7). The kernel k is characteristic
if for all f ∈ L2, f �= 0 it holds that

∫

X

∫

X

k(x, x ′) f (x) f (x ′)dx dx ′ > 0. (16)

Condition (16) is known as the Mercer condition, which is, for example, fulfilled
by the Gaussian kernel from Example 3.3. The Mercer features of such a kernel are
particularly rich.

Theorem 3.7 Assume that the kernel satisfies the Mercer condition (16). Then the
eigenfunctions {ψi } of Tk form an orthonormal basis of L2(ν).

For more details, see, e.g., Schölkopf and Smola (2001) and Steinwart and Christmann
(2008). It is easy to see that for kernels fulfilling (16), μ as a map from L2 to H is
Lipschitz continuous:

Lemma 3.8 Let k be a characteristic kernel with Mercer eigenvalues λi , i ∈ N0. Then
μ : L2 → H is Lipschitz continuous with constant

c := √λ0. (17)
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Proof As μ is linear, it suffices to show that ‖μ( f )‖H ≤ c‖ f ‖2 for all f ∈ L2. We
obtain

‖μ( f )‖2
H

= 〈μ( f ), μ( f )〉H
=
〈∫

X

f (x)k(x, ·)dx,
∫

X

f (x)k(x, ·)dx
〉

H

=
∫

X

∫

X

f (x) f (y)k(x, y)dx dy,

where (12) was used in the last line. By expanding k into its Mercer features via (14),
this becomes

‖μ( f )‖2
H

=
∫

X

∫

X

f (x) f (y)

(

∑

i∈N
λiϕi (x)ϕi (y)

)

dx dy

=
∑

i∈N
λi 〈 f , ϕi 〉2L2 .

By Theorem 3.7, the ϕi form an orthonormal basis of L2, and thus

‖μ( f )‖2
H

≤ λ0‖ f ‖2L2 .

��
Thus, if the kernel is characteristic, the structure of the TM and the fuzzy TM are

qualitatively preserved under the embedding.

Corollary 3.9 Let k be a characteristic kernel and let Xt be (ε, r)-reducible. Then
μ(M) ⊂ H has an r-dimensional parameterization, and for all x ∈ X it holds that

inf
g∈μ(M)

‖g − μ(ptx )‖H ≤ √λ0‖√ρ‖∞ε.

Proof By Lemma 3.8, the map μ : L2 → H is Lipschitz continuous (and furthermore
injective), and thus any r -dimensional (local) parameterization χ : � ⊂ R

r → L2
1/ρ

of M yields an r -dimensional parameterization μ ◦ χ of μ(M). For x ∈ X, consider
now any f ∈ L2

1/ρ with ‖ f − ptx‖L2
1/ρ

≤ ε. For g := μ( f ), we then get

∥

∥g − μ(ptx )
∥

∥

H
= ∥∥μ( f − ptx

)∥

∥

H

which by Lemma 3.8 is

≤ √λ0‖√ρ‖∞‖ f − ptx‖L2
1/ρ

≤ √λ0‖√ρ‖∞ε.

��
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Remark 3.10 This result should be seen as an analogue to Proposition 2.7 for the
Whitney-based TM embedding. In short, for characteristic kernels, the injectivity and
continuity ofμ guarantee that the image ofM underμ is again an r -dimensional object
inH, and Corollary 3.9 guarantees that the embedded fuzzy transition manifoldμ(˜M)

still clusters closely around μ(M) (if
√

λ0 and ‖√ρ‖∞ in Corollary 3.9 are small).
This again guarantees a minimal degree of well-posedness of the problem.

3.2.3 Distortion Under the Kernel Mean Embedding

Unlike the Whitney embedding, the kernel embedding now allows us to derive con-
ditions under which the distortion of M is bounded. We have to show that the
L2
1/ρ-distance between points onM is not overly decreased or increased by the kernel

mean embedding. To formalize this, we consider measures for the manifold’s internal
distortion, following the notions of metric embedding theory (Abraham et al. 2011).
We call the embedding well-conditioned if both the

contraction: sup
p,q∈M
q �=p

‖p − q‖L2
1/ρ

‖μ(p) − μ(q)‖H and the expansion: sup
p,q∈M
q �=p

‖μ(p) − μ(q)‖H
‖p − q‖L2

1/ρ

(18)
are small (close to one). Here, μ denotes the embedding corresponding to a charac-
teristic kernel.

Due to the Lipschitz continuity ofμ (see Lemma 3.8) and ‖·‖L2 ≤ ‖√ρ‖∞‖·‖L2
1/ρ

,

we have

‖μ(p) − μ(q)‖H
‖p − q‖L2

1/ρ

≤ √λ0‖√ρ‖∞, (19)

thus bounding the expansion.
Contraction bound: regularity requirement Unfortunately, it is not possible even

for characteristic kernels to derive a bound for the contraction that holds uniformly
for all p, q ∈ L2

1/ρ , as the following proposition shows. Nevertheless, we will be able
to give reasonable bounds under some regularity- and dynamic assumptions, (21) and
(24), respectively.

Proposition 3.11 (Unbounded inverse embedding). Assume the kernel embedding
operatorμ has absolutely bounded orthonormal eigenfunctionsϕi with corresponding
nonnegative eigenvalues λi (arranged in nonincreasing order). Assume limi→∞ λi =
0. Then, there exist functions p, q ∈ L2

1/ρ such that

‖p − q‖L2
1/ρ

‖μ(p) − μ(q)‖H >
1

ε

for any arbitrarily small ε > 0.

Proof See “Appendix A”. ��
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The assumptions of Proposition 3.11 are fulfilled for example for the Gaussian kernel.
A similar but non-quantitative result has been derived in Sriperumbudur et al. 2010,
Theorem 19. The idea behind its proof and the proof of Proposition 3.11 is that, if
p and q vary only in higher eigenfunctions ϕi of the embedding operator μ (see
also Theorem 3.2), the H-distance can become arbitrarily small. If, however, we can
reasonably restrict our considerations to the subclass of functions whose variation in
the higher ϕi is small compared to the variation in the lower ϕi , a favorable bound can
be derived. Let the expansion of h = p − q be given by

h =
∞
∑

i=0

h̃iϕi

with the sequence (h̃0, h̃1, . . .) ∈ �2. Now, for any imax ∈ N such that there exists an
index i ≤ imax with h̃i �= 0, define the factor

c(h, imax) := 1 +
∑∞

i=imax+1 h̃
2
i

∑imax
i=0 h̃

2
i

. (20)

This factor bounds the contribution of the higher Mercer eigenfunctions to h by the
contribution of the lower ones, hence it is a regularity bound:

∞
∑

i=0

h̃2i = c(h, imax) ·
imax
∑

i=0

h̃2i .

Thus, for an individual h, we can bound the distortion of the L2-norm underμwith
the help of c(h, imax).

Lemma 3.12 Let h ∈ L2, imax ∈ N, and c(h, imax) be defined as in (20). Then

‖μ(h)‖H ≥
√

λimax

c(h, imax)
‖h‖L2 .

Proof See “Appendix A”. ��
We from now on make the assumption that for every index imax there exists a

constant c∗
imax

> 0 such that

c(pτ
x1 − pτ

x2 , imax) ≤ c∗
imax

(21)

for all pτ
x1, p

τ
x2 ∈ M. The existence and form of this constant strongly depends on the

shape of the Mercer eigenfunctions, hence the kernel. However, we motivate the exis-
tence of such a global constant by the observation that higher Mercer eigenfunctions
typically consist of high Fourier modes, and that these modes decay quickly under the
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dynamics. Therefore, high Mercer eigenfunctions should have a negligible share of
the pτ

x and the differences pτ
x1 − pτ

x2 . For such pτ
x1, p

τ
x2 , we thus have

‖μ(pτ
x1) − μ(pτ

x2)‖H ≥
√

λimax

c∗
imax

‖pτ
x1 − pτ

x2‖L2 . (22)

Contraction bound: dynamical requirements Note that (22) is only an intermediate
step for deriving a contraction bound, as the relevant distancemeasure inDefinition 2.4
is the L2

1/ρ-norm, for reasons detailed in Sect. 2.2, and (22) measures the density

distance in the L2-norm. Unfortunately, a naive estimation yields

‖h‖L2
1/ρ

≤ ∥∥1/√ρ
∥

∥∞ ‖h‖L2 . (23)

While due to ergodicity 1/
√

ρ is indeed defined on all ofX, it becomes large in regions
of small invariant measure ρ, i.e., “dynamically irrelevant” regions. This would lead to
a very large upper bound for the contraction. For general h, a more favorable estimate
is indeed difficult to obtain. For us, however, h = pτ

x1 − pτ
x2 , and we can utilize that

these “dynamically irrelevant” regions are almost never visited by the system.
To formalize this, we require one additional assumption that can be justified by the

metastability of the system. One defining characteristic of metastable systems is the
phenomenon that essentially any trajectory moves nearly instantaneously3 into one
of the metastable sets before continuing. With Ai , . . . , Ad ⊂ X denoting these sets,
we can thus assume that the probability density pτ

x (y) to move from x to y in time
τ depends almost only on the probabilities to (instantaneously) move to the sets Ai

from x (denoted by ci (x), thus
∑d

i=1 ci (x) ≤ 1) and the probabilities to then move
from Ai to y in time τ (denoted by pτ

Ai
(y)), i.e.,

pτ
x ≈

d
∑

i=1

ci (x)p
τ
Ai

.

To be more precise, we require for all x, y ∈ X that

∥

∥pτ
x −∑d

i=1 ci (x)p
τ
Ai

∥

∥∞
‖pτ

x‖∞
≈ 0,

which is equivalent to

pτ
x (y) = 1

1 − δ(x, y)

d
∑

i=1

ci (x)p
τ
Ai

(y) (24)

3 Here, “nearly instantaneously” is to be understood in the sense that there is an “attraction time” τa � τ

such that starting from essentially any initial condition the system will enter one of the metastable sets
within time τa with overwhelming probability. Thus, choosing τ as an intermediate time that is larger than
the non-metastable time scales of local fluctuations, is essential. However, as we discuss in Remark 3.15,
it is also imperative not to choose τ too large.
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for some positive function δ : X × X → R with ‖δ‖∞ ≤ δ∗ � 1. The positivity of
δ comes from the fact that there is a miniscule, but positive probability (density) to
move from x to y without first equilibrating inside a metastable set, thus pτ

x (y) >
∑d

i=1 ci (x)p
τ
Ai

(y).
With this, we can bound the invariant density ρ from below as follows:

ρ(y) =
∫

X

ρ(x)pτ
x (y)dx

=
∫

X

ρ(x)
1

1 − δ(x, y)

d
∑

i=1

ci (x)p
τ
Ai

(y)dx

>

∫

X

ρ(x)
d
∑

i=1

ci (x)p
τ
Ai

(y)dx

=
d
∑

i=1

(

∫

X

ρ(x)ci (x)dx
)

︸ ︷︷ ︸

=:bi

pτ
Ai

(y). (25)

The bi can be seen as the equilibriumprobabilitymass almost instantaneously attracted
to Ai . For every important metastable set this will not be too small.

As a first step, (25) allows us to bound the L2
1/ρ-norm of pτ

x by their L1-norm:

Lemma 3.13 Let the assumption (24) hold and bi , i = 1, . . . , d, be defined as in (25).
Then for any x ∈ X it holds that

‖pτ
x‖2L2

1/ρ
<

1

(1 − δ∗)mini bi
‖pτ

x‖L1 = 1

(1 − δ∗)mini bi
(26)

Proof See “Appendix A”. ��
This shows that indeed pτ

x ∈ L2
1/ρ , as required by Definition 2.2. Further, Hölder’s

inequality gives

‖ f ‖L1 =
∫

X

| f (x)| · 1 dx ≤ ‖ f ‖L2 · |X|1/2.

where |X| denotes the Lebesgue measure of the state space. This now also allows us
to bound the L2

1/ρ-norm of the pτ
x by their L2-norm:

Lemma 3.14 Let the assumption (24) hold and bi , i = 1, . . . , d, be defined as in (25).
Then for any x1, x2 ∈ X it holds that

‖pτ
x1 − pτ

x2‖2L2
1/ρ

<
|X|1/2

(1 − δ∗)mini bi
‖pτ

x1 − pτ
x2‖L2 . (27)

Proof See “Appendix A”. ��

123



Journal of Nonlinear Science (2021) 31 :3 Page 25 of 41 3

Of course, due to the squared norm on the left-hand side, this is not a Lipschitz
bound. However, recall that our main motivation for deriving a bound for the con-
traction is to show that large distances in L2

1/ρ are not overly compressed under the
embedding into H, as illustrated in Fig. 2. We therefore abstain from deriving such a
bound for very small distances in L2

1/ρ and only estimate the contraction of pairs of
densities pτ

x1, p
τ
x2 with ‖pτ

x1 − pτ
x2‖L2

1/ρ
≥ C (28)

for some constant C > 0. That C is reasonably large is discussed in Remark 3.15
below. For such differences, we can then relate the L2 to the L2

1/ρ-norm, i.e.,

‖pτ
x1 − pτ

x2‖L2
1/ρ

<
|X|1/2

C(1 − δ∗)mini bi
‖pτ

x1 − pτ
x2‖L2 .

Together with Lemma 3.12 and assumption (21), this gives

‖pτ
x1 − pτ

x2‖L2
1/ρ

<
|X|1/2

C(1 − δ∗)mini bi

√

λimax

c∗
imax

∥

∥μ
(

pτ
x1

)− μ
(

pτ
x2

)∥

∥

H
, (29)

which is our contraction bound.

Remark 3.15 For the distortion of the transition manifold under the embedding the
essential property is that the global “spanning structure” of the manifold is well pre-
served. In other words, the embedded pτ

x , p
τ
y should be well-separated for x, y ∈ X

from different metastable sets Ai . Since the embedding is continuous, the transition
paths connecting them will be preserved as well.

As pτ
Ai

→ ρ as τ → ∞ for every i , it is important that τ is not too large, such that
the transition manifold is a meaningful object. In a other words, τ should be such that
pτ
Ai
and pτ

A j
are sufficiently distinct for i �= j . Thus, we require that ‖pτ

Ai
− pτ

A j
‖L2

1/ρ
is sufficiently large for i �= j , hence C can be chosen as a constant such that 1/C is
reasonably small.

Remark 3.16 The bounds (19) and (29) guarantee the well-posedness of the overall
embedding and parameterization problem as the relevant expansion and contraction of
the transition manifold cannot become arbitrarily large.We will support this statement
with numerical evidence (see Sect. 4.2) showing that the distortion is, in practice,
indeed small. It should be noted, however, thatwe do not expect the analytically derived
bounds to perform well as quantitative error estimates, as many of the estimates that
led to them are rather rough.

4 Illustrative Examples and Applications

We now evaluate the performance of Algorithm 3.1 on several example systems.
In Sect. 4.1, the reaction coordinate of the well-known Müller–Brown potential is
computed. In Sect. 4.2, the maximum distortion of the transition manifold under the
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Fig. 3 a The Müller–Brown potential energy function with its three characteristic local minima and the
connecting MEP (white line). b The committor function qAB associated with the areas around the top
left (A) and bottom right (B) energy minimum. c Reaction coordinate ξ of the Müller–Brown potential,
computed by Algorithm 3.1

Whitney and kernel embedding with different parameters is quantified using a specif-
ically constructed toy system. Finally, in Sect. 4.3, we demonstrate the applicability
of our method to molecular dynamics problems.

The code used to generate our results is provided in the form of MATLAB scripts
in the supplementary material. In the case of the Alanine dipeptide, the MD dataset is
also provided.

4.1 Reaction Coordinate of theMüller–Brown Potential

As a first illustrating example, we compute the reaction coordinate of the two-
dimensional Müller–Brown potential (Müller 1980) via the new kernel-based Algo-
rithm 3.1. Originally a model for reaction energy profiles of chemical transformations,
this potential has become a standard benchmark system for methods computing reac-
tion coordinates and transition pathways of metastable systems as well as enhanced
sampling techniques (Vanden-Eijnden and Venturoli 2009; Elber et al. 2017; Frewen
et al. Oct. 2009).

The potential energy surface (see Fig. 3a) possesses three local minima, where
the two bottom minima are separated only by a rather shallow energy barrier. Corre-
spondingly, the system’s characteristic long-term behavior is determined by the rare
transitions between the minima. These transitions happen predominantly along the
potential’sminimum energy pathway (MEP), which is shown as white dashed line and
was computed using the zero temperature string method (E et al. 2002, 2007).

For two sets A, B ⊂ X and a starting point x ∈ X, the committor function qAB(x)
is defined as the probability that the process hits set A before hitting set B, provided
it started in x at time zero. For a precise definition see Schütte et al. (2013). For
the Müller–Brown potential, the committor function associated with the top left and
bottom right energy minima, shown in Fig. 3b, can be considered an optimal reaction
coordinate (Elber et al. 2017). Therefore, we use the (qualitative) comparison with
the committor function as a benchmark for our reaction coordinate. Note that the
computation of the committor function requires global knowledge of the metastable
sets and is often not a practical option for the identification of reaction coordinates.
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The governing dynamics is given by an overdamped Langevin equation (3), which
we solve numerically using the Euler–Maruyama scheme. At inverse temperature
β = 0.05, eigenanalysis of the Perron-Frobenius operator reveals that the lag time
τ = 0.03 falls between the slow and fast time scales (see Prinz et al. (2011) for the
technique to determine the time scales) and is thus chosen as the intermediate lag
time4. The test points {x1, . . . , xN } required by Algorithm 3.1 are given by a regular
32×32 grid discretization of the domain [−1.5, 1.5]×[−0.5, 2.5]. For the embedding,
the Gaussian kernel

k(x, x ′) = exp

(

−‖x − x ′‖22
σ

)

(30)

with bandwidth σ = 0.1 is used, and subsequently the distance matrix D is computed.
Finally, for the manifold learning task in Algorithm 3.1, the diffusion maps algo-

rithm with bandwidth parameter σ ′ = 0.1 is applied to D. In order to obtain the
diffusion map coordinates, a Markov matrix based on the pairwise distances di j is
constructed by computing

Mi j = Ki j

si
,

where Ki j = exp(− Di j
σ ′ ) and si =∑ j Ki j . Depending on some parameter that deter-

mines the approximated differential operator, different normalization steps might be
involved. The diffusion map is then given by the eigenvectors of this matrix. Details
pertaining to the technique’s derivation and interpretation can be found in Nadler et al.
(2006).

The reaction coordinate ξ for the test points is shown in Fig. 3c.We observe remark-
able resemblance to the committor function.

4.1.1 On the Choice of the Kernel Parameters

The correct choice of the kernel parameters σ and σ ′ above is essential for the per-
formance of our method. In particular, σ influences the eigenvalues λi of the integral
operator (13), and hence the distortion of the TM under the embedding (see 29). For
the Müller–Brown potential, the final RC is very insensitive to variations of σ , e.g.,
choosing σ = 0.01 or σ = 1 still leads to qualitatively very similar RCs. A systematic
analysis of the influence of σ on the distortion for a different system is presented in
the next section. However, the appropriate choice of the kernel for the embedding is
a hard problem in general for kernel-based methods, and kernel optimization is an
active field of research (Gönen and Alpaydin 2011; Duvenaud et al. 2013; Owhadi
and Yoo 2019).

As such, also the choice of the diffusion maps kernel parameter σ ′ is nontrivial in
general. Luckily, however, σ ′ can be optimized after the computationally hard part
of Algorithm 3.1 (the computation of D), and there exist stand-alone optimization
methods for this purpose (Gaspar et al. 2012; Berry and Harlim 2016; Lee and Ver-
leysen 2009). In any case, the diffusion maps algorithm is not an intrinsic part of

4 In realistic applications such as molecular dynamics, computation of the Perron-Frobenius operator
spectrummaybe numerically infeasible.Here, certain heuristicsmay be available to estimate τ , see Sect. 4.3.
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Fig. 4 Horseshoe potential. a Potential energy function. b Reaction coordinate computed with the kernel
algorithm. The white dashed line represents the MEP

Algorithm 3.1 and can in principle be replaced by some manifold learning method
that does not require parameter optimization.

We would also like to point out that the kernel evaluations used for the RKHS
embedding of densities and the kernel evaluations used in the diffusionmaps algorithm
should not be mixed up as they serve entirely different purposes. The former is used
to embed the state space densities into H, while the latter is used to approximate the
Laplace–Beltrami operator on the manifold in H that is to learn (this is the principle
on which the diffusion maps algorithm is based). Even though the Gaussian kernel is a
popular choice due to its favorable characteristics, one has great freedom in choosing
a kernel for the RKHS-embedding, whereas in the classical diffusion maps algorithm,
predominantly the Gaussian kernel is used, so the repeated use of the Gaussian kernel
does not constitute a connection. Moreover, the fact that in this example identical
bandwidth parameters were used was a mere coincidence. We do not see a way to
unify these kernel evaluations, neither on a conceptual nor algorithmic level.

4.2 Distortion Under theWhitney and Kernel Embeddings

We now demonstrate the distortion of the fuzzy transition manifold under the embed-
ding via the conventional Algorithm 2.1 (Whitney embedding) and how our new
kernel-based Algorithm 3.1 is able to reduce that distortion. To this end, we consider
the two-dimensional potential depicted in Fig. 4a. This potential is particularly suited
for demonstrating the distortion, as the parts of the transition manifold that correspond
to the two parallel “branches” of the MEP easily are mapped very close to each other
when choosing a “bad” embedding of form (9) (cf. also Fig. 2).

We again consider the diffusion process (3) in this potential, at inverse tempera-
ture β = 2. The MEP of this potential is shown as a white dashed line in Fig. 4a.
Individual trajectories equilibrate quickly perpendicular to the MEP (but not accross
the central vertical barrier), and equilibrate slowly along the MEP. Hence, a good RC
should parameterize theMEP, and stay constant perpendicular to it. For demonstration
purposes, such a reaction coordinate is depicted in Fig. 4b.
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Our aim here, however, is to estimate the distortion of the fuzzy TM ˜M under
various embeddings based on a finite number of samples of ˜M. The basic procedure is
the following: We draw N = 200 test points xi uniformly randomly from the region
X = [−2, 2]2 to cover the state space evenly. We then estimate the densities pτ

xi by M
simulations of length τ (Monte Carlo sampling). Here τ = 1 was chosen again based
on the eigenanalysis of the Perron–Frobenius operator. For M = 1000, we consider
theMonte Carlo sampling sufficiently converged. Finally, we embed the estimated pτ

xi
via Whitney and kernel methods with various parameters, compute pairwise distances
between the embeddings, and compare it to the L2

ρ-distances between the pτ
xi .

4.2.1 Whitney Embedding

For the Whitney embedding, the expected manifold dimension r = 1 is assumed
to be known in advance. To demonstrate the different effects of “good” and “bad”
embedding functions, two 2r + 1-dimensional linear observables η : R2 → R

3 were
chosen:

ηg : x �→ Ag x, ηb : x �→ Ab x, Ag, Ab ∈ R
3×2,

and the corresponding embedding functions Fg,Fb constructed via (9). The coeffi-
cients of Ag of the observable function ηg were chosen randomly via the MATLAB
command

rng(1);Ag = rand(3,2) − 0.5,

which resulted in the matrix

Ag ≈
⎛

⎝

−0.08 −0.20
0.22 −0.35

−0.49 −0.41

⎞

⎠ .

Under the embeddingFg , a “horseshoe-like” structure, corresponding to the embedded
TM, can indeed be distinguished very well, see Fig. 5a. This is due to the fact that
two distinct points of the MEP, in particular on the two opposite branches, are never
mapped to the same point under ηg .

On the other hand, the matrix Ab of the “bad” observable function ηb was inten-
tionally constructed to consist of three row vectors that are pairwise almost linearly
dependent, and that essentially ignore the x1-component of state space points:

Ab =
⎛

⎝

0 1
ε 1 + ε

−ε 1 − ε

⎞

⎠ with ε = 0.05.

This way, points on the two opposite branches of the MEP but with the same x2-
coordinate are mapped to almost the same point in R

3. The result is an embedding
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Fig. 5 Whitney embeddings of the test points for different observable functions. a Pairwise strongly linearly
independent coefficient vectors, i.e., “good” observables. b Almost pairwise linearly dependent coefficient
vectors, i.e., “bad” observables

of the TM in which the two branches can hardly be distinguished, see Fig. 5b. This
would make the numerical identification of the manifold structure extremely difficult.

Note that the judgment of quality of the embedding function has to be performed
manually after the embedding, as it is impossible to reliably choose good embedding
functions without detailed a priori knowledge of the global structure of the transition
manifold or transition pathway.While in our experience, randomly chosen coefficients
typically result in “good-enough” embedding functions, this uncertainty in the numer-
ical algorithm should be seen as one of the main reasons to use the more consistent
kernel embeddings instead.

4.2.2 Kernel Embedding

For the kernel embedding, we again utilize the Gaussian kernel (30) with band-
width σ = 10−3, the choice of which will be justified later. Unlike for the Whitney
embedding, the kernel embedding does not yield explicit representations of the embed-
ded densities μ(pτ

xi ), but instead by Algorithm 3.1 yields only the kernel distance
matrix

Di j = ∥∥μ(ptxi ) − μ(ptx j )
∥

∥

H
,

which cannot be visualized directly. We thus apply the Multidimensional scaling
(MDS) algorithm to D, in order to visualize the level of similarity between the embed-
ded densities.

Given a distance matrix D, MDS generates points zi ∈ R
k in a Euclidean space of

a chosen dimension k ∈ N such that the pairwise distance between the zi optimally
corresponds to the distances in D. For an overview of different MDS methods, see for
example (Young 2013). We here use the implementation of classical MDS given by
the cmdscale method in MATLAB.
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Fig. 6 MDS representations of different distance matrices between the transition densities. a Kernel dis-
tance matrix between embedded transition densities μ(ptx ). The point cloud is a representations of the
fuzzy transition manifold embedded into H. b L21/ρ distance matrix between transition densities ptx . c L2

distance matrix between transition densities ptx . Note that theMDS embedding is unique only up to distance
preserving transformations, hence the difference in orientation here

The MDS representation of the kernel distance matrix for k = 2 is shown in
Fig. 6a. The horseshoe structure of the MEP is immediately visible. Moreover, it is
also possible to visualize the corresponding L2

1/ρ and L2 distance matrices via MDS,
i.e., the matrices

(

DL2
1/ρ

)

i j := ∥∥ptxi − ptx j
∥

∥

L2
1/ρ

and
(

DL2
)

i j := ∥∥ptxi − ptx j
∥

∥

L2 .

The results are shown in Fig. 6b, c.
The MDS representation of D is structurally very similar to DL2

1/ρ
and DL2 , up

to scaling and rotation. This suggests that the L2
1/ρ and L2 distances are preserved

very well under μ, up to a constant factor. To confirm this, we now compute the
empirical maximum distortion of the L2

1/ρ metric based on the given test points, i.e.,
DN (μ) := CN (μ)EN (μ) where

CN (μ) := max
i, j=1,...,N

i �= j

‖pτ
xi − pτ

x j ‖L2
1/ρ

‖μ(pτ
xi ) − μ(pτ

x j )‖H
, EN (μ) := max

i, j=1,...,N
i �= j

‖μ(pτ
xi ) − μ(pτ

x j )‖H
‖pτ

xi − pτ
x j ‖L2

1/ρ

.

For large enough N , we expect DN (μ) to be a good estimator for the true distortion
D(μ).

The blue graph in Fig. 7 shows the dependence of the empirical distortion on the
kernel parameter σ . Here the minimum is DN (μ) ≈ 6.4 at σ ≈ 10−3. Interpreting
DN (μ) as the condition number of the kernel-based embedding problem, the problem
can be described as reasonably well-conditioned.
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Fig. 7 Maximum distortion
D(μ) of the L21/ρ and L2

distance under the kernel
embedding μ for the Gaussian
kernel depending on the kernel
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Analogously, we can define the empirical maximum distortion of the Whitney
embedding as DN (F) := CN (F)EN (F), where

CN (F) := max
i, j=1,...,N

i �= j

‖pτ
xi − pτ

x j ‖L2
1/ρ

‖F(pτ
xi ) − F(pτ

x j )‖R3
,

EN (F) := max
i, j=1,...,N

i �= j

‖F(pτ
xi ) − F(pτ

x j )‖R3

‖pτ
xi − pτ

x j ‖L2
1/ρ

.

For a given embedding F , this distortion can again be computed numerically. For the
“good” embedding Fg , we obtain DN (Fg) ≈ 5 · 102, while for the “bad” embedding
Fb, we obtain DN (Fb) ≈ 7 · 103. The kernel embedding is therefore much better
conditioned than both Whitney embeddings.

Remark 4.1 Analogously, we can also define and compute the maximum distortion
DN (μ) of the L2-metric (red graph in Fig. 7). Here, for σ ≈ 10−1 we obtain
DN (μ) ≈ 2.9, i.e., the embedding becomes nearly isometric. This is not surpris-
ing as it has been shown in Sriperumbudur et al. (2010) that for radial kernels
kσ (x, y) = σ−dg(σ−1‖x− y‖)where g is bounded, continuous, and positive definite,
it holds that

lim
σ→0

‖μkσ (p) − μkσ (q)‖H = ‖p − q‖L2 .

The Gaussian kernel belongs to this class of kernels. We thus expect that by increasing
the sample numberM of the transition densities and further decreasingσ , the distortion
can be reduced further. However, recall that for our application, only the distortion of
the L2

1/ρ distance is relevant.

4.3 Alanine Dipeptide

We now demonstrate the applicability of Algorithm 3.1 to realistic, high-dimensional
molecular systems by computing reaction coordinates of the Alanine dipeptide. The
peptide, depicted in Fig. 8a, consists of 22 atoms, the state space X thus has the
dimension n = 66.
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(a)

(b)

Fig. 8 The Alanine dipeptide. a Three-dimensional structure with the two essential dihedral angles (ϕ, ψ)

highlighted. b The Ramachandran plot of (ϕ, ψ) reveals four local energy minima, i.e., metastable sets

We have chosen this molecule for our demonstrations as the mechanisms behind its
long-term behavior, specifically its metastable sets and transition pathways, are well
known, which helps to validate the results of our method. Moreover, the molecule
is small enough for the relevant portions of state space to be sampled comprehen-
sively, which is a requirement of our method. The Alanine dipeptide is also one of the
most commonly used systems to demonstrate data-driven model reduction methods
in molecular dynamics (Mardt et al. 2018).

The essential long-term behavior of this system is governed by the metastable tran-
sitions between four local minima of the potential energy surface (PES) (Chekmarev
et al. 2004; Smith 1999). These minima are clearly visible when projecting the PES
onto two specific backbone dihedral angles (ϕ, ψ) that we call essential from now
on (see Fig. 8b). The transition between the metastable states happens along minimal
energy pathways that we aim to reveal with our reaction coordinate. Note however
that no information about the existence of the two essential dihedral angles was used
in our experiments, and we perform all of the analysis on the full 66-dimensional data.

4.3.1 Setup and Parameter Choices

The simulations were performed using the Gromacs molecular dynamics soft-
ware (Berendsen et al. 1995). We consider the molecule in explicit aqueous solution
at temperature 400K (the water molecules are discarded prior to further analysis). To
generate the test points xi , N = 1000 snapshots from a long, equilibrated trajectory
were subsampled. This guarantees that the xi cover the dynamically relevant regions of
X, i.e., the metastable sets and transition pathways. The values of the dihedral angles
ϕ andψ of the test points are shown in Fig. 10 (the x- and y-coordinates of the points).
We see that the metastable sets and transition pathways from Fig. 8b are adequately
covered. Note however that the projection onto the (ϕ, ψ)-space here serves only illus-
trative purposes; we continue to work with the test points in the full 66-dimensional
space.

The intermediate lag time τ = 20 ps falls between the slowand fast time scales of the
system,which have been explicitly computed in Bittracher et al. (2018). In caseswhere
a full time scale analysis is not available, the type and size of the molecule can often
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Fig. 9 Analysis of the kernel distance matrix D. a Eigenvalues of the diffusion map matrix. The existence
of three eigenvalues close to 1 (not counting the eigenvalue 1 itself) indicates a three-dimensional reaction
coordinate. b Test points in the space of the three sub-dominant diffusion map eigenvectors, i.e., the final
three-dimensional reaction coordinate

hint at a suitable τ , as estimates for the time scales of certain common physiochemical
reactions, such as dihedral angle reconfigurations or formation of secondary motifs,
are well-known (Bittracher et al. 2018). For each test point xi , M = 96 Gromacs MD
simulations of length τ were performed, which took 40 h on a 96 core compute cluster.
The resulting point clouds {y(l)

i , l = 1, . . . , M} are samplings of the densities pτ
xi .

To compute the kernel distance matrix D from the simulation data, the Gaussian
kernel (30) with bandwidth σ = 0.1 was chosen. This particular value was chosen
empirically to yield RCs that fit our expectations with regard to the transition path-
ways. However, the algorithm again appears to be very stable under variations of σ

of even an order of magnitude. For the plug-in manifold learning algorithm that is
applied to D, the diffusion maps algorithm with bandwidth σ ′ = 0.01 was used, again
chosen empirically such that a clear low-dimensional manifold is visible in diffusion
coordinante space (see Fig. 9b). For the choice of σ and σ ′, the same comments as in
Sect. 4.1 apply.

The analysis of the simulation data was again performed in MATLAB and took 4
minutes on a standard 4 core laptop.

4.3.2 Results

Figure 9a shows the leading spectrum of the diffusion map matrix that was computed
based on D. The first diffusion map eigenvalue is always equal to 1, and the asso-
ciated eigenvector carries no structural information. Therefore, a spectral gap after
the third sub-dominant eigenvalue indicates that the fuzzy transition manifold can be
essentially parameterized by the three corresponding diffusion map coordinates in the
sense of (1) and thus essentially be regarded as a three-dimensional object (provided
that the eigenvectors are not higher-order modes, which is not the case here). The
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Fig. 10 The dihedral angles in the test points, colored by the three components of the reaction coordinate
ξ . The coordinate ξ1 primarily describes transitions in the angle ϕ, whereas ξ2 and ξ3 describe transitions
in the angle ψ for low and high values of ψ , respectively

associated three subdominant eigenvectors now are the final reaction coordinate. For
each of the 1000 test points, the values of the three eigenvectors are shown in Fig. 9b.
This can be seen as the embedding of the test points into the reaction coordinate space.
Here we observe four clusters of points, and three connecting paths. In Fig. 10, the
values of the dihedral angles ϕ andψ at the test points are compared to the values of the
three components of the computed reaction coordinates, shown in color. We see that
areas of almost constant color correspond to the four metastable sets from Fig. 8, and
color gradients correspond to the transition pathways. Hence, the three-dimensional
structure of the transition manifold corresponds to the network of transition pathways.
Our reaction coordinate therefore accurately resolves transitions between metastable
states.

5 Conclusion and FutureWork

In this work, we have analyzed the embedding of manifolds that lie in certain function
spaces into reproducing kernel Hilbert spaces. Moreover, we have proposed efficient
numerical algorithms for learning parameterizations of these embedded manifolds
from data. The question is motivated by the recent insight that parameterizations
of the so-called transition manifold, a manifold consisting of the transition density
functions of a stochastic system, are strongly linked to reduced coordinates for that
system. The method can thus be used for coarse graining a given system.

Compared to previous approaches based on random embeddings into a Euclidean
space, the new kernel-based approach eliminates the need to know the transition man-
ifold dimension a priori. Furthermore, if a universal kernel is used, the topological
structure of the transition manifold is guaranteed to be preserved under the embed-
ding. We have derived bounds for the geometric distortion of the transition manifold
under the RKHS embedding, which can be interpreted as the condition of the overall
coarse graining procedure. Correspondingly, the numerical algorithm was demon-
strated to be very robust, especially when compared to random embeddings, and, in
realistic applications, we obtained very favorable results regarding algorithmic distor-
tion bounds.
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There are several new avenues to use the broader theory of kernel embeddings to
characterize the kernel embedding of transition manifolds. First, we plan to improve
the theoretic distortion bounds derived in Sect. 3.2 by considering different established
interpretations of the metric defined by d(p, q) = ‖μ(p)−μ(q)‖H. For an overview,
see Sriperumbudur et al. (2010).

Recently, the spectral theory of transfer operators was extended to reproducing
kernel Hilbert spaces in Klus et al. (2020). The usefulness of this new theory for the
data-driven conformation analysis of molecular systems was demonstrated in Klus
et al. (2018). As the transition manifold can be defined via the transfer operator5,
it seems natural to attempt to relate the embedded transition manifold to the kernel
transfer operators and corresponding embedded transfer operators defined in Klus
et al. (2020).

Finally, as illustrated in Bouvrie and Hamzi (2010), Bouvrie and Hamzi (2017a)
and Bouvrie and Hamzi (2017b), RKHSs can act as linearizing spaces in the sense that
performing linear analysis in theRKHScan capture strong nonlinearities in the original
system. A typical example is the problem of linear separability in data classification:
A data set which is not linearly separable might be easily separated when mapped
into a nonlinear feature space. In our current context, this means that efficient linear
manifold learning methods might be suitable to parameterize the embedded manifold,
if the kernel is chosen appropriately. We will investigate whether a corresponding
theory can be developed.
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A Proof of the Distortion Bounds

Proof of Proposition 3.11 First, note that L2
1/ρ ⊂ L2, as for p ∈ L2

1/ρ

‖p‖L2 = ‖√ρ p‖L2
1/ρ

≤ ‖√ρ‖∞‖p‖L2
1/ρ

. (31)

5 The fuzzy transition manifold is the image of all Dirac densities under the transfer operator, i.e., ˜M =
{T t δx | x ∈ X}.
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Let (λi , ϕi ) be the eigenpairs of the integral operator Tk , ordered in decreasing
order of λi . For arbitrary p ∈ L2

1/ρ consider the decomposition into the basis
{

ϕi
}

i∈N
of L2:

p =
∞
∑

i=0

p̃i ϕi .

Select imax ∈ N such that there exists an index i ≤ imax with h̃i �= 0, and such that
λi <

(

ε/‖√ρ‖∞
)2 for all i ≥ imax, and define

q =
imax−1
∑

i=0

p̃iϕi .

Then,

‖p − q‖2L2 =
∥

∥

∥

∞
∑

i=imax

p̃iϕi
∥

∥

∥

2

L2
=

∞
∑

i=imax

p̃2i .

Further, using that
{√

λi ϕi
}

i∈N forms an orthonormal basis ofH, and thatμ is a linear
operator, we get

‖μ(p) − μ(q)‖2
H

=
∥

∥

∥

∞
∑

i=imax

p̃iλiϕi
∥

∥

∥

2

H

=
∞
∑

i=imax

λi p̃
2
i ≤ λimax

∞
∑

i=imax

p̃2i .

Thus we get

‖p − q‖L2

‖μ(p) − μ(q)‖H ≥ 1/
√

λimax > ‖√ρ‖∞/ε,

and with (31) finally
‖p − q‖L2

1/ρ

‖μ(p) − μ(q)‖H >
1

ε
.

��

Proof of Lemma 3.12 As
{√

λi ϕi
}

i∈N0
forms an orthonormal basis of H, we obtain

‖μ(h)‖2
H

=
∥

∥

∥

∞
∑

i=0

h̃iλiϕi
∥

∥

∥

2

H

=
∞
∑

i=0

λi h̃
2
i ≥

imax
∑

i=0

λi h̃
2
i .
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Further,
{

ϕi
}

i∈N0
forms an orthonormal basis of L2, and so

‖h‖22 =
∥

∥

∥

∞
∑

i=0

h̃iϕi
∥

∥

∥

2

2
=

∞
∑

i=0

h̃2i = c(h, imax) ·
imax
∑

i=0

h̃2i .

Thus,

‖μ(h)‖H
‖h‖2 ≥

(

∑imax
i=0 λi h̃2i

c(h, imax) ·∑imax
i=0 h̃

2
i

)1/2

≥
√

λimax

c(h, imax)
.

��
Proof of Lemma 3.13 With assumption (24) and (25), we can write the left-hand side
of (26) as

‖pτ
x‖2L2

1/ρ
=
∫

X

pτ
x (y)

2 1

ρ(y)
dy

<

∫

X

1
1−δ(x,y)

∑d
i=1 ci (x)p

τ
Ai

(y)
∑d

i=1 bi p
τ
Ai

(y)
|pτ

x (y)|dy =: (�).

As for all x ∈ X it holds ci (x) ≥ 0 and
∑d

i=1 ci (x) ≤ 1, we obtain

∥

∥

∥

∥

∥

1
1−δ(x,·)

∑d
i=1 ci (x)p

τ
Ai

∑d
i=1 bi p

τ
Ai

∥

∥

∥

∥

∥

∞
≤ 1

1 − δ∗

∥

∥

∥

∥

∥

∑d
i=1 ci (x)p

τ
Ai

∑d
i=1 bi p

τ
Ai

∥

∥

∥

∥

∥

∞

≤ 1

1 − δ∗

∥

∥

∥

∥

∥

∑d
i=1 p

τ
Ai

∑d
i=1 bi p

τ
Ai

∥

∥

∥

∥

∥

∞

≤ 1

(1 − δ∗)mini bi
. (32)

With this, we can estimate the integral (�) as

(�) ≤
∫

X

1

(1 − δ∗)mini bi
|pτ

x (y)|dy = 1

(1 − δ∗)mini bi

∥

∥pτ
x

∥

∥

L1
︸ ︷︷ ︸

=1

.

��
Proof of Lemma 3.14 The proof is completely analogous to the proof of Lemma 3.13,
while in the estimate corresponding to (32) we use that

max
i

|ci (x1) − ci (x2)| ≤ 1.

��
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