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Abstract. We pursue a simplified stochastic representation of smaller scale convective activity conditioned on large scale

dynamics in the atmosphere. For identifying a Bayesian model describing the relation of different scales we use a probabilistic

approach (Gerber and Horenko, 2017) called Direct Bayesian Model Reduction (DBMR). The convective available potential

energy (CAPE) is applied as large scale flow variable combined with a subgrid smaller scale time series for the vertical velocity.

We found a probabilistic relation of CAPE and vertical up- and downdraft for day and night. The categorization is based on the5

conservation of total probability. This strategy is part of a development process for parametrizations in models of atmospheric

dynamics representing the effective influence of unresolved vertical motion on the large scale flows. The direct probabilistic

approach provides a basis for further research of smaller scale convective activity conditioned on other possible large scale

drivers.

1 Introduction10

Complex dynamical processes involving scaling cascades are omnipresent in natural science. Such processes feature different

characteristic scales. The smallest and largest scales are far apart and much of the scale range is involved by scale interactions.

Dynamics in the atmosphere take place across a large range of time- and length scales, from micro-seconds to months and

lengths from 10−5 to 106 m. Due to the geostrophic and hydrostatic equilibrium there is a scale separation induced by thermal

stratification, gravity and rotation for scales above several kilometers (Klein, 2010). Thunderstorms last a few tens of minutes15

for example, whereas hurricanes may last for days. Medium-range forecasts are made up to 10 days in advance. Predictions of

convection further in advance cannot be deterministic and are highly uncertain because errors of the initial space of the smaller

scales are growing.

A new perspective for improving General circulation models (GCMs) came from parameterizations. An example are param-

eterizations that represent the small scale effects of convection on the large-scale dynamics (Berner et al., 2017; Franzke et al.,20

2015). Nowadays, many data-driven approaches are dwelling on stochastic parametrization methodologies involving the con-

vective available potential energy (CAPE) as large scale driver for convection, e.g. in (Khouider et al., 2010; Dorrestijn et al.,

2013a, b). Their approaches need high computing capacities, but the costs to process large quantities of data can become a lim-

iting factor. The statistical analysis of atmospheric dynamics simulations requires dimensionality reduction techniques which
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yield applicable reduced models. One way is the Empirical orthogonal function (EOF) analysis which is a tool for data com-25

pression and dimensionality reduction used in meteorology. Since its introduction by Lorenz (1956), EOF analysis—known as

principal component analysis (PCA) or proper orthogonal decomposition (POD)—has become an important statistical tool in

atmosphere science. For example in Horenko et al. (2008) different sets of EOFs are used for a reduced representation of mete-

orological data. The applicability of many approaches is based on the identification of reduced models defined on a small set of

latent states. These methods derive aggregations of original variables based on a reduced approximation of the system in terms30

of relation matrices. Examples are covariance matrices (Schölkopf et al., 1997; Jolliffe, 2003), partial autocorrelation matrices

of autoregressive processes (Schmid, 2010), Gaussian distance kernel matrices (Donoho and Grimes, 2003; Coifman et al.,

2005), Laplacian matrices as in the case of spectral clustering methods for graphs (Von Luxburg, 2007), adjacency matrices

in community identification methods for networks (Zhao et al., 2012). A recent algorithmic framework called Direct Bayesian

Model Reduction (DBMR) (Gerber and Horenko, 2017; Gerber et al., 2018) provides a computationally scalable probability-35

preserving identification of reduced models and latent states directly from the data. The method constructs a directly low-rank

transition matrix, reducing numerical effort and estimation error due to finite data. The latter approach does not require a dis-

tributional assumption but works instead with a discretized state vector. Our aim is the development of a model combining

the deterministic large scale atmospheric flow with a conceptual stochastic description of small scale convection. Towards this

goal, we develop a conceptual categorical description for smaller scale vertical velocity, which is linked to a large scale flow40

variable. The probabilistic description is proposed using DBMR. Relation between the probability for large scale and smaller

scales can be formulated categorically via a conditional probabilities and the conservation of the total probability. Various en-

ergetic variable are applicable on large scale. Other potential large scale variables driving the smaller scale stochastics besides

CAPE are the Dynamic State Index (DSI) (Müller et al., 2020; Müller and Névir, 2019), available moisture, or vertical wind

shear. The DSI is a scalar diagnostic field that quantifies local deviations from a steady and adiabatic wind solution and thus45

indicates non-stationarity as well as diabaticity.

The paper is structured as follows: In Sect. 2 the mathematical methodology of DBMR is presented. Afterwards, in Sect.

3 the set-up for a reduced model in the atmosphere is described. In Sect. 4 the results are discussed related to atmospheric

dynamics. Finally, in the conclusion the results and future work towards the direct Bayesian model reduction of smaller scale

convective activity conditioned on large scale dynamics are formulated.50

2 Mathematical methodology

Our aim is to study and understand a stochastic relation between two variables X and Y that can take values from two finite

sets. These categorical random variables will later on encode quantitative information of the atmosphere on different spatial

scales. We will review a novel computational framework for the estimation of a reduced (low-rank) Bayesian model from

data. This method is called Direct Bayesian Model Reduction (DBMR). Direct refers to a directly low-rank estimation which55

is useful for the identification of reduced models, yielding thereby an advantageous estimation error, especially if data is not

abundant (Gerber and Horenko, 2017).
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2.1 Stochastic model

We are interested in modeling the probabilistic relationship of two potentially random quantities, X and Y . For us, it will be

only relevant that Y is a random function of X—randomness of X itself is irrelevant. Since the observations typically arise as60

time series, we consider X and Y as processes X(t) and Y (t) with time t, however t can denote any parameter ordering the

realizations of the process. We will consider the case where X and Y can only attain a finite number of values, such that we

call the processes discrete-state or categorical. Say, Y (t) is taking one of the possible values fromm categories {y1,y2, ...,ym}
and X(t) from the n categories {x1,x2, ...,xn}. The central quantity of interest describing the relationship of X and Y is the

m×n matrix of conditional probabilities, also called transition matrix,65

Λ =




P [Y = y1 |X = x1] · · · P [Y = y1 |X = xn]
...

. . .
...

P [Y = ym |X = x1] · · · P [Y = ym |X = xn]


 . (1)

Note that Λ is a column-stochastic matrix. In practical studies, when the Λij are estimated from the available observations of

X and Y one needs to guarantee that the data is acceptably randomised (Holland, 1986). We will assume that

Law[Y (t) |X(1),X(2), . . .] = Law[Y (t) |X(t)] , (2)

i.e., given the input X(t), the distribution of the output Y (t) is independent of the other inputs.70

2.2 Bayesian approach

Typically, the transition matrix Λ is not directly available and can only be estimated from observed data. Let S be the number

of observation pairs for the categorical processes X and Y , such that the following observational data is available:

XY = {X(1),X(2), ...,X(S),Y (1),Y (2), ...,Y (S)} , (3)

whereX(t) ∈ {x1, . . . ,xn} and Y (t) ∈ {y1, . . . ,ym}, as above. Given XY , it is reasonable to search for the Λ for which the to-75

tal probability of obtaining the particular sequences of observations (3) is maximized. By the independence assumption (2), the

likelihood of a matrix Λ of conditional probabilities—i.e., the probability of observing the data if the conditional probabilities

were given by Λ—is given by

P [XY |Λ] ∝
m∏

i=1

n∏

j=1

P [Y = yi |X = xj ]︸ ︷︷ ︸
=Λij

Nij , (4)

where Nij is the total number of instances in the data when
(
X(t),Y (t)

)
= (xj ,yi). The optimum can be more easily com-80

puted if one considers the log-likelihood log(P [XY | Λ]) =
∑m
i=1

∑n
j=1Nij logΛij , with which we arrive at the maximum

likelihood problem

Λ∗ = argmax
Λ





m∑

i=1

n∑

j=1

Nij logΛij



 , such that Λij ≥ 0,

m∑

i=1

Λij = 1. (5)
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The optimal solution of that constrained optimisation problem can be determined analytically (Gerber and Horenko, 2017),

resulting in the empirical frequency estimator:85

Λ∗ij =
Nij∑n
j Nij

. (6)

Since we merely have a finite amount of observation at hand, it is essential to be aware of the uncertainty of the statistical

estimate (6). While we refer the reader interested in exact bounds to (Gerber and Horenko, 2017, Supplement, Eq. (14)), an

intuition can be gained as follows. To estimate each Λij to a sufficient (statistical) accuracy, the transitions Nij should be, on

average, numerous. As there are nm parameters in Λ to estimate, this asks for the sample size S to be reasonably large as90

compared to nm. In practice, this can be problematic if n and m are large. Thus, next we will discuss a modification of the

above method that can mitigate this problem.

2.3 Direct estimation of low-order models

In numerous situations the apparent complexity of our observations is an artefact of our measurement procedure, and there are

low-dimensional features that govern the process at hand. Thus, even if we would be able to find a full matrix Λ of conditional95

probabilities, the ultimate goal would be to reduce this through such low-dimensional features.

The following approach, proposed by Gerber and Horenko (Gerber and Horenko, 2017), achieves both estimation and

reduction in one step. We assume that the output depends on the input through a latent variable Z, which can merely take a

small number K�min{n,m} of different states {z1, . . . ,zK}. In terms of probabilistic influences, we assume the structure

X
Γ−→ Z

λ−→ Y, (7)100

where λ,Γ are matrices of conditional probabilities,

Γkj = P
[
Z = zk |X = xj

]
, λik = P

[
Y = yi |Z = zk

]
. (8)

We also assume conditional independence of Y on X given Z, that is, the input-output conditional probability matrix Λ

satisfies Λ = λΓ. Note that we can interpret Γkj as an affiliation of input category xj to the latent state zk, see Fig. 1.

The task is now to determine the pair of column-stochastic matrices (λ,Γ) from the observation data XY , as given in (3).105

Again, we wish to solve the problem with a maximum-likelihood approach, which would require solving (5) with replacing

Λij by (λΓ)ij and the constraints by requiring λ and Γ being stochastic matrices. This, however, is a computationally hard

optimization problem, which Gerber and Horenko in (Gerber and Horenko, 2017) relax to

(λ∗,Γ∗) = argmax
λ,Γ

m∑

i=1

n∑

j=1

K∑

k=1

NijΓkj log
{
λik
}

(9)

subject to110

λik ≥ 0,
m∑

i=1

λik = 1, Γkj ≥ 0,
K∑

k=1

Γkj = 1. (10)
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Figure 1. Introduction of intermediate latent states in DBMR for efficient and scalable estimation of Λ

While (9) produces suboptimal estimates, its advantage comes from the fact that it is concave in both variables λ and Γ, re-

spectively, allowing for a very simple alternating maximization as optimization procedure (Gerber and Horenko, 2017, DBMR

algorithm). The resulting algorithm is DBMR. Moreover, the method yields Γ∗kj ∈ {0,1}, i.e., the original input categories are

assigned to the reduced system’s (latent) categories in a deterministic fashion (no “fuzzyness” in the affiliations). Of course, the115

number K of latent states is not known in advance, and has to be chosen judiciously by compromising between “expressive-

ness” (the likelihood of the model, i.e., the optimal value in (9)) and “effort” (the number of total parameters to be estimated

and their statistical error). This can be done comparing multiple DBMR runs with different K.

The obtained models are also less subject to overfitting issues and are more advantageous in terms of the model quality

measures (Gerber and Horenko, 2017; Gerber et al., 2018). This manifests in the variance of the estimated parameter λ∗ik, which120

shows a K/n-times smaller uncertainty than Λij , cf. (Gerber and Horenko, 2017, Theorem and eqn. [7]). Again, intuitively

this advantage of DBMR over the full model (6) can be seen by noting that from the same amount of data DBMR only needs

to estimate k(n+m) parameters, while the full model nm parameters.

Let us emphasize that additionally to all the computational advantages of DBMR that allow it to work with large data sets,

its conceptual strength is that it combines model estimation and model reduction in one step. The latent states often have a125

physical meaning—a property that we shall focus on in our application.
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3 Data pre- and postprocessing

To apply DBMR, categorical processes for the in- and output have to be defined. First, we discuss the choice of meteorological

variables and scales in view of the categorical processes. As input we use a variable related to large scale atmospheric flow:

Convective Available Potential Energy (CAPE), a measure for the energy an air parcel would gain if lifted to a specific height130

in the atmosphere.

3.1 Meteorological data

CAPE can be seen as a measure for atmospheric stability, first suggested by (Weisman and Klemp, 1982). It is defined by

CAPE = g

ZET∫

zLFC

θe− θ
θ

dz , (11)

where θe is the pseudopotential temperature of the ascending air parcel, θ is the potential temperature of the surrounding135

air, and zLFC is the so-called Level of Free Convection (LFC). The LFC is the height at which the rising air parcel becomes

significantly warmer than its environment; ZET denotes the height, where the rising air parcel has the same temperature as its

environment (ET stands for equal temperature). Thus, regarding its definition (11), CAPE becomes large if the temperature

difference between the rising air and the environmental air is large, see (Bott, 2016, p. 431 ff). As an integral, CAPE is a global

variable that we consider as representative variable on the larger scale. To capture convective activity, characterized by strong140

up- and downdrafts, on the smaller scale, we regard the vertical velocity. Parcel theory (Dutton, 1976) predicts

CAPE∼ v2
max

2
, (12)

where vmax is the maximum vertical motion in the dimension m/s expected from the release of CAPE in the dimension

J/kg. The relation in Eq. (12) is a kinetic description of a potential which does not have to be released to vertical updraft.

(Moncrieff and Miller, 1976) were the first to use the term CAPE. The USAF Air Weather Service (which changed its name145

to the Air Force Weather Agency in 1997) simply called it positive area (AWS 1961). (Fritsch and Chappell, 1980) called it

potential buoyant energy (PBE), while variations of this include +BE and net positive buoyant energy. Despite the abundance

of names, it now appears that CAPE is the de facto standard terminology. In (Kirkpatrick et al., 2009) over 200 convective storm

simulations are analyzed to examine the variability in storm vertical velocity and updraft area characteristics as a function of

basic environmental parameter CAPE.150

To analyze the relation of large and small scale parameters, the COSMO-REA6 reanalysis data set is used (Bollmeyer

et al., 2015). This reanalysis is based on the non-hydrostatic numerical weather prediction model COSMO (COnsortium for

Small scale MOdelling) by the German Meteorological Service (Deutscher Wetterdienst, DWD) using a continuous nudging

scheme. It has a horizontal resolution of 6 km and 40 vertical layers (Bollmeyer et al., 2015). Since we focus on smaller scale

convective events conditioned on large scale dynamics in the atmosphere, we consider the summer months July and August155

in the years 1995 to 2015. For our analysis we use 12h means. The sample size of the reanalysis data set used in Sect. 2
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sums up to S = 1302 (2× 31× 21). We choose a REA6 subdomain that covers Germany. This subdomain is bounded by the

45.2◦N − 54.7◦N , 5.8◦E− 15.3◦E and shown in Fig. 2. The Northwest coordinate is (5.8◦E; 54.7◦N) and the Southeast

coordinate is (15.3◦E; 45.2◦N). As vertical layer the 600 hPa surface is considered, because here the latent heat release takes

place and the vertical velocity reaches its maximum, as shown in (Müller et al., 2020).160

Figure 2. REA6 domain that covers Germany consisting of subdomains 1 to 4; Subdomain 1 is applied on the large scale for DBMR and is

of approximately 500km× 500km. Image credit of the map: US Geological Survey (USGS).

3.1.1 Filtering CAPE and vertical velocity

The domain that covers Germany in Fig. 2 is divided into four 500km× 500km quadrants, where the spatial arithmetic mean

of each of the quadrant is considered such that we obtain one CAPE value for each quadrant. We separate and filter the data of

CAPE and the vertical velocity in further subdomains in order to define the categorical in- and output. The corresponding sizes

of the subdomains are summarized in Tab. 1. For the analysis with DBMR, the northwest quadrant 1 over Holland in Fig. 2 is165

used. There is no influence of the Alps on smaller scale convective activity.

3.2 Categorical input and output

According to the meteorological data in Sect. 3.1, we will set up applicable categories for in- and output. CAPE plays the

role of an input variable X in Sect. 2, describing the potential for convection. We use the average of the 500km× 500km

quadrants, considering CAPE as the large scale atmospheric driver. With energy units, CAPE has a non-negative range of170
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# Subdomains m Edge length

12 = 1 1000 km

22 = 4 500 km

42 = 16 250 km

62 = 36 167 km

82 = 64 125 km

102 = 100 100 km

122 = 144 83 km

162 = 256 63 km

322 = 1024 31 km

642 = 4096 15 km

Table 1. Number of subdomains m and edge length for box discretization of the atmosphere from large synoptic scale (1000 km) across

intermediate scales up to meso-gamma scale with convective activity (2− 20 km)

values. The model’s output variable Y is vertical velocity obtained on a smaller scale. Here, Y can take positive and negative

values for updrafts and downdrafts, respectively. We average over 250km× 250km to 15km× 15km according to Tab. 1.

3.2.1 Categorical input

We will consider two different ways to define the input categories. First, linearly spaced categories for the range of CAPE

are applied. With this type of classification, extreme weather events tend to be in a separate category. These are not Gaussian175

distributed. Alternatively, the categorization by evenly spaced quantiles is presented. We consider the range of values for CAPE

(X) and generate n categories by {x ∈Xi | bi−1 ≤ x < bi }. For the category boundaries bi, we consider the following equally

spaced options

– on the linear CAPE axis with bi = minCAPE + i max(Y )−min(Y )
n , i= 0, . . . ,n,

– in probability using empirical 1/n-quantiles as category boundaries.180

While the first is easily interpreted on the CAPE-axis, the second categorization has the advantage of (almost) equally pop-

ulated categories. The resulting n categories are denoted by integers 1, ...,n, we choose n= 10. In Sect. 3.1 we set up the

meteorological data with a size of the observational data S = 1302. That means we have about 130 data points in each CAPE

category.

3.2.2 Categorical output185

We map vertical velocities ωi at grid box i on a variable Yi ∈ {1,2,3} as

8

https://doi.org/10.5194/npg-2021-26
Preprint. Discussion started: 11 August 2021
c© Author(s) 2021. CC BY 4.0 License.



– updraft for Yi = 1, if ωi ≥ a2,

– no draft for Yi = 2, if a1 ≤ ωi < a2,

– downdraft for Yi = 3, if ωi < a1,

(a1,a2) ∈ R2 define a potentially asymmetric interval around zero vertical velocity which we consider as neutral, with a1 < 0190

and a2 > 0. The choice of (a1,a2) depends on the scale of the box where Y is averaged over. In Sect. 4.1 the choice of the

interval for our analysis is described. Once this discretization is made, the final output categories needed can be set up. Let

Yi(t) be the discretized vertical velocities at time t with 1≤ i≤m numbering the grid boxes on the corresponding scale, see

Tab. ??. We define the following categorical process

Ŷ (t) = (#{Yi(t) = 1} ,#{Yi(t) = 2} ,#{Yi(t) = 3}) ∈ N3, (13)195

with #{Yi = k} being the number of grid boxes with vertical velocity mapped onto k ∈ {1,2,3}. There are exactly (m+ 1)2

ways to decompose m into the (ordered) sum of 3 nonnegative numbers, thus the number of actually occurring categories

nŶ ≤ (m+ 1)2. In our probability-preserving algorithm the number of the occurring categories in the data are counted for the

categorical observational input and output. The probability of a category is estimated by its occurrence frequency with respect

to the total number of data points. We try to conclude down- and updraft behavior from the Ŷ (t), i.e. the distribution of up- and200

downdrafts. Note that we have in this experiment no information on the (spatial) structure, as the category in (13) is a triple of

numbers for counts of down-, updraft and low vertical velocity.

3.3 Maximum likelihood estimation

The model reduction is a consequence of using the affiliation matrix Γ, which assigns the n large scale categories to K < n

latent states. In the frame of DBMR we optimize a relaxed log-likelihood, cf. (9). We ran DBMR 100 times (with random205

initializations) for every fixed numberK of latent state. For the respective latent state, the run with the maximum log-likelihood

is presented. We also evaluate the exact log-likelihood, as in (5). Fig. 3 shows the exact in blue and the relaxed log-likelihood

in red, both for the reduced problem, i.e., the one with latent states. The only parameter in the algorithmic procedure introduced

above is the reduced process dimension K for the number of collective causality boxes. It can be chosen by comparing results

for differentK and selecting the best reduced model according to one of the standard model selection criteria (Cross-validation210

with a performance criterion, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) or L curve approach).

For an attempt for model selection, the largest increase in log-likelihood can be found by increasingK = 2 toK = 3, forK = 6,

the maximum value has been reached. Note that as n= 10, choosing K = 10 presents no model reduction.

4 Reduced Bayesian model for atmospheric dynamics

4.1 Results215

In the following, the pre- and postprocessing on DBMR with respect to the categorical in- and output will be discussed.
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Figure 3. Exact log-likelihood value as in (5) (blue) and relaxed log-likelihood value as in (9) (red) of the reduced Bayesian model estimated

by DBMR with K latent states (also referred to as collective causality boxes).

4.1.1 Interval for vertical draft

All-day mean data serve as basis for determining the interval for vertical draft. The subclassification by the interval is symmetric

with a1 =−0.0048m/s and a2 = 0.0048m/s. These values are chosen from a histogram of mean vertical velocities. In Fig. 4,

the histogram of mean vertical velocities for a resolution of 125km with the interval is shown.220

Afterwards, the data for day and night are split up and will be fed to DBMR respectively.

4.1.2 Affiliation to latent states

In Fig. 5 the summary statistics with boxplots and images of the affiliation of input categories to the latent states are visualized

for 2 latent states. This is done for day and night, respectively. For every latent state a boxplot is provided. The latent states are

interpreted as reduced units of the large-scale atmospheric state with respect to their probabilistic impact on vertical motion. On225

each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles

of CAPE concerning the affiliated n categories (n= 10 divided by quantiles). In Fig. 5 one sees that the input categorization is

similar in terms of value for day and night. The first latent state includes 5 (for day) and 4 (at night) CAPE categories with high

values. This represents high CAPE values and is therefore referred to as “High”. Five (for day day) and 6 (at night) categories
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Figure 4. Histogram of mean vertical velocities for day and night for resolution of 125 km and hourly averaged values; red vertical lines

represent a tube for vertical draft; The summer months July and August in the years 1995 to 2015. For our analysis we use 12h means. The

sample size of the reanalysis data set sums up to S = 1302 (2× 31× 21).

are affiliated to the second latent state, which is denoted with “Low”. During daytime the categories reach values up to 386230

J/kg, whereas at night the values have a range of 343 J/kg due to less convective activity. The affiliations to the latent states

have no gaps for day and night. That means the latent states are separate from each other, see boxplots in Fig. 5. The difference

between the scales is small (375 km) with 500 km step size on large scale and 125 km step size on the smaller scale. The scale

jump is of factor 4 on the basis of the small scale. The results for three latent states are shown in Appendix A. The third latent

state represents mean CAPE categories. At night, five categories are even affiliated to the latent state “Mean”, see Fig. A1. In235

the following, the visualization of the output is discussed, in the appendix further results on different CAPE categories and

affiliations are shown.

4.1.3 Distributions conditioned on latent states

We discuss probability distributions conditioned on the resulting latent states introduced in Sect. 2.3 in two ways:

– Law[X | Z] gives the distribution of CAPE X within a latent state Z,240

– Law[#1,#3 | Z] gives the joint probability distribution of number of grid points with positive and negative vertical

velocity. For updraft, #1 denotes #{Yi = 1} and for downdraft, #3 denotes #{Yi = 3}.
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Figure 5. Top: Boxplot of CAPE categories by 2 latent states for daily mean (left: day and right: night); Bottom: Affiliation of CAPE

categories to the latent states; Data on large scale: 500km× 500km subdomains for northwest of Germany, hourly averaged CAPE; On

mesoscale: 125km× 125km subdomains for vertical velocity. Time series: 21 years for July and August, S = 1302 (Length of time series)
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The missing number of neutral grid points #{Yi = 2} follows from #2 =m−#1−#3 with m denoting the total number

of grid points. In order to visualize the probabilities of the small scale conditioned on the latent states, the entries of the λ̂

matrix in (9) will be displayed dependent on the number of down- and updrafts. In Fig. 6, K bivariate histograms are shown245

for day and night respectively. Here the conditional probabilities of matrix λ are displayed for every latent state dependent on

the number of up- and downdrafts (#1 and #3). Since the number of smaller-scale boxes is nY , only the lower triangle below

the diagonal corresponds to categories. Categories not populated by data are not shown (white). We noticed that in case the

interval for vertical draft in Sect. 4.1 are increased, fewer data points are in the subclassifications for the up- and downdrafts

(i.e. smaller numbers #1 and #3 change lower triangular probability matrices of Fig. 6). A comparison of different sizes of250

intervals for vertical draft is not shown here. Increasing the interval makes less up-/downdrafts, thus moving probability mass

away from the diagonal, where large fractions of up-/downdrafts are sitting. In Fig. 6 the results are shown for a 4× 4 grid,

that means we have 16 boxes with vertical velocities. In the histograms the numbers of up- and downdraft range from 0 to 16.

Variable Z1 represents the latent state “High”, latent state Z2 the state “Low”, as in Fig. 5. The latent states are stochastically

disaggregated in probabilities which describe the chance of number of up- and downdrafts conditioned on the latent states255

“High” and “Low”. In the top left panel (Z1, day) of Fig. 6 probability adds up for numbers of up- or downdrafts higher than

10 to 81%. In the top right panel, probability accumulates at small numbers of boxes with downdraft. For Law[#1,#3 | Z2]

in the bottom left panel for the day, high conditional probabilities P[#1,#3 | Z2] concentrate in categories with many boxes

with downdraft. Here the probability of numbers of downdrafts of 6 to 16 is 68%. At night in the latent state Z2, we observe

that a low number of updraft boxes is likely, while the overall up- and downdraft activity seems to be the least probable here260

(probability concentrating around (#1,#3)≈ (0,0)). In the bottom left panel (Z2, night) the probability is accumulated to

82% for the number of updrafts between 0 and 4.
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Figure 6. Probabilities of numbers of updrafts (#1) and downdrafts (#3) conditioned on latent states P [#1,#3|Z]; Day (left) and night

(right) and Latent state “High” (top) and latent state “Low” (bottom); 500km×500km domain for CAPE and 125km×125km subdomains

for vertical velocity.
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4.1.4 Output on smaller scale

Note that the number of possible output categories Ŷ scales quadratically with the number m of grid points considered on the

smaller scale. Moving towards the convective scale, m increases, and so does the number of possible output categories, yet the265

number of data points (1302) stays the same. To avoid the resulting increase of estimation error, we further reduce the number

of output categories by dividing the respective numbers for up- and downdraft into 3 sections, which leaves 6 categories. We

use 15km× 15km subdomains on convective scale for the output of DBMR. The large scale remains unchanged compared to

the previous example. In Fig. 7 the distribution of CAPE in terms of latent states based on kernel density estimation (KDE)

is shown. KDE is a non-parametric way to estimate the probability density function of a random variable. At night, more270

categories are assigned to the latent state “Low”, the first latent state has a larer mean and median than during daytime.

In Fig. 8 the conditional probabilities are shown for 1024 boxes of vertical velocities. In the histograms the 3 sections of

numbers of up- and downdraft range from 0 to 1024. The 3 categories are divided by the following numbers: 0 to 341, 342 to

683 and 684 to 1024 up- and downdrafts. Variable Z1 represents again the latent state “High”, and Z2 the latent state “Low”;

cf. Fig. 8. The first latent state is represented in the first row. During daytime down- or updraft is likely, and during nighttime275

it is most likely to have less downdraft than updraft. The smaller scale analysis gives consistent results with the analysis where

the output is on mesoscale in Fig. 6. There are higher probabilities during daytime for medium to high numbers of up- or

downdraft. At night due to less vertical draft, low to medium numbers of up- or downdraft are higher. For the second latent

state “Low”, the distributions concentrate on higher and lower numbers of downdrafts and small numbers of updraft.

4.2 Higher number K of latent states280

The results for three latent states are considered in Appendix A. Figs. A1 and A2 show results using CAPE as input with a

resolution of 500km× 500km on large scale and a grid of 125km× 125km for the output. The scale difference is again of

factor 4 according to the first example in Sect. 4.1 where in- and output are on the synoptic scale. Affiliations without gaps

lead to a separation of the latent states. “No gaps” means that affiliations are interrelated and not interrupted in the middle

plots of Fig. A1 and Fig. A3. The affiliations have no gaps for day and night. We have again more variance of the conditional285

probabilities during daytime. At night there is less variance of the conditional probabilities with a concentration at low numbers

of downdraft or updraft boxes. A hierarchy of three different probability configurations arises for up-, down- and no draft. When

the number of latent states K is further increased, the latent states can be clustered in groups of high, low and medium CAPE

categories. In Fig. A1 top boxplots of CAPE categories by 3 latent states for daily mean (left: day and right: night) and in

the middle the affiliation of CAPE categories to the latent states are presented. For higher K, the number of latent states290

with affiliation without gaps is higher at night compared to day. In Fig. A3 and A4 we use CAPE as input with a resolution

of 500km× 500km on large scale and a grid of 15km× 15km for the output. The output is on convective scale. Here the

affiliations are without gaps as well. The refined category for the convective scale leads to a difference in the distributions

over the latent states for day and night. For day 4 and for night 5 mean categories are distributed according to the violin plot

of Fig. A3. The corresponding conditional probabilities can be seen in Fig. A4. At night the highest conditional probabilities295
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Figure 7. Top: Distribution of CAPE (500 km) in terms of latent states based on kernel density estimation; Bottom: Affiliation of CAPE

categories to the latent states; Left (Day) and right (Night); maximal CAPE value around 400 J/kg; 15 km step size for vertical velocity

(15km× 15km km subdomains for vertical velocity)
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Figure 8. Probabilities of numbers of updrafts (#1) and downdrafts (#3) conditioned on latent states P [#1,#3|Z]; Day (left) and night

(right) and latent state “High” (top) and latent state “Low” (bottom); 500km× 500km domain for CAPE and 15km× 15km subdomains

for vertical velocity.
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for high and low CAPE categories appear in the middle box of the axes of number of up- and downdrafts, i.e. high up- and

downdraft numbers, low number of boxes with no vertical draft activity. For the mean categories the conditional probability is

concentrated at the origin around zero. During daytime, the probabilities are drawn to the diagonal due to the higher variance.

4.3 Discussion related to atmospheric dynamics

In Sect. 4.1 we discussed the results of the Bayesian model reduction from a mathematical perspective and in Sect. 4.2 we300

interpreted the outcomes for a higher number of latent states. The method groups input categories into fewer latent states.

These are interpreted as reduced states for the large-scale atmospheric dynamics with respect to their probabilistic impact

on vertical motion. We applied an energetic variable as the driver on large scale. CAPE is the convective available potential

energy. It does not have to be fully available, meaning that high CAPE values does not necessarily lead to convective activity

on smaller scales but increases the probability of smaller scale convective activity. The release of kinetic energy of a certain305

CAPE level to vertical movement needs triggers such as flows over mountains or forests which lead to instabilities of the

hydrostatic equilibrium. The dependence on surface conditions on the earth requires a probabilistic way of thinking. Therefore

the mathematical tool DBMR provides a simple probabilistic description. Using the method, we intend to draw conclusions

about categorical processes in the atmosphere. Since the system can not be in two different categories simultaneously, categories

are disjoint and the relation between the probability for large scale and smaller scales can be formulated via the conditional310

probabilities and the conservation of the total probability. The methodology breaks up probability calculations into distinct

parts and relates marginal probabilities to conditional probabilities. The aim of this work is to test the stochastic method

in an meteorological application towards a reduced categorical model of smaller scale convective activity in the atmosphere

depending on large scale drivers.

To analyze the relation of large scale dynamics in the atmosphere to smaller scale categorical processes, the COSMO-REA6315

reanalysis data set was applied (Bollmeyer et al., 2015). We averaged CAPE for 500 km × 500 km and the vertical up- and

downdrafts in 125 km × 125 km domains, as described in Sect. 3.2. Regarding the summer months July and August in the

years 1995 to 2015, CAPE reaches averaged values between 0 and 400 J/kg and the vertical velocities have ranges from -0.15 to

0.2 m/s on mesoscale and -1.7 to 1 m/s on convective scale. In the meteorological setting we showed how the Bayesian model

reduction performs. We combined large-scale CAPE with a subgrid-mesoscale time series for vertical velocity and count the320

numbers of up- and downdrafts. Therefore we mapped vertical velocities as updraft, no draft and downdraft dependent on an

interval around zero vertical velocity. In the preprocessing of Sect. 4.1 we adjusted the interval for vertical draft with range

0.0096 m/s according to the meteorological data. The interval was chosen symmetrically on the basis of the histogram of mean

vertical velocities in Fig. 4. We chose a number of 10 input categories and reduced these to two latent states. This was done for

day and night, respectively.325

In Fig. 5 the summary statistics with the affiliation of input categories to the latent states are presented. The affiliations

in Figs. 5 and 7 have no gaps, meaning that the affiliations are interrelated and are not interrupted. The affiliations lead to a

separation of the latent states in the boxplots for day and night. Thus a certain range of CAPE values can be assigned to every

latent states. During daytime the range of values for the latent state “High” is at around 400 J/kg and greater compared to
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the corresponding latent state during nighttime. For smaller scales we reduced the number of output categories. In Fig. 7 at330

the bottom, 6 high and 4 low CAPE categories for daily mean and 4 high and 6 low CAPE categories at night are affiliated.

As a result of the averaging, the categories are almost evenly distributed over the latent states. The convective activity of the

atmosphere is stronger during the day than during nighttime. Therefore, the vertical draft is less at night than during the day.

Mean and median are around 100 J/kg for the latent state “High” and 25 J/kg for the latent state “Low”. The mean and median

are similar for day and night. There is a difference for the variance. At night the distribution of latent state “High” is sharper335

due to less variance, only 4 categories are affiliated compared to the daily mean.

Joint probability distribution of number of grid points with positive and negative vertical velocity conditioned on the resulting

latent states are shown in figs. 6 and 8. The sum of the probabilities of all categories for every box is 1. Increasing the interval

for vertical draft makes less up-/downdrafts, thus moving probability mass away from the diagonal, where large fractions of

up-/downdrafts are sitting. There are higher probabilities during daytime for medium to high numbers of up- or downdraft.340

Lots of updrafts during daytime lead to the existence of a lot of downdrafts due to mass conservation. At night due to less

vertical draft, low to medium numbers of up- or downdraft are higher. For the latent state “Low”, the distributions in Figs. 6

and 8 concentrate on higher and lower numbers of downdrafts and small numbers of updraft. The representation of probabilities

of numbers of updrafts and downdrafts conditioned on the latent states for the convective scale in Fig. 8 correspond in their

distributions to the results on mesoscale in Fig. 6.345

The generation of kinetic energy of a certain CAPE level to vertical draft on smaller scales can occur up to a few hours later.

A temporal shift for the in- and output could have an effect on the stochastic relation shown in Fig. 6. We consider the 12 hours

means. For data with a higher temporal resolution, one could realize a shift of 2-4 hours for the input. This is deferred to future

studies.

5 Conclusions350

It is of importance to identify stochastic models by using categorical approaches compared to fluid mechanics described by

continuous partial differential equations. In this study, a recent algorithmic framework called Direct Bayesian Model Reduction

(DBMR) (Gerber and Horenko, 2017) is applied which provides a scalable probability-preserving identification of reduced

models directly from data. We assume that the output of a Bayesian model depends on the input through a latent variable,

which can merely take a small number of different latent states. The stochastic method is tested in a meteorological application355

towards a model reduction to latent states of smaller scale convective activity conditioned on large scale atmopsheric flow.

We combined the convective available potential energy (CAPE) as large scale flow variable with smaller scale subgrids time

series for vertical velocity. Therefore we mapped vertical velocities as updraft, no draft and downdraft dependent on an interval

around zero vertical velocity and count the numbers of up- and downdrafts. Data sets of daily means of 12 hours for day and

night were computed using COSMO-REA6 reanalysis over a domain that covers Germany for a period of the summer months360

July and August in the years 1995 to 2015. In the analysis the scales from 500km to 125km (mesoscale) and up to 15km were
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considered. The categorical data analysis was done for day and night and discussed for different numbers of latent states. We

chose a number of 10 input categories and reduced these to two and three latent states.

The step from the fluid continuum described by partial differential equations to a categorical stochastic description with

DBMR provides a reduced model defined on a set of a few latent variables. These are interpreted as reduced states for the365

large scale atmospheric dynamics with respect to their probabilistic impact on vertical motion. For 2 latent states the input is

separated into categories with high and low CAPE values whereas for 3 latent states we have an affiliation to categories with

high, medium and low CAPE values. The output categories for the vertical velocity describe the number of up- and downdrafts.

In the result, we gain conditional distributions for the numbers of up- and downdrafts conditioned on the latent states for day

and night. In the application we found a probabilistic relation of CAPE and vertical up- and downdraft.370

For a resolution of 125km we applied a 4× 4 grid and had 16 boxes with vertical velocities. During daytime the chance for

updraft is higher conditioned on the latent state with high CAPE values. Probability adds up for numbers of up- or downdrafts

higher than 10 to 81%. The distribution for the latent state with low CAPE values has higher probabilities at high numbers of

downdrafts. Here the probability of numbers of downdrafts of 6 to 16 is 68%. At night probability adds up at small numbers

of downdrafts for the latent state with high CAPE values. For low CAPE values, we observe that a low number of updrafts is375

likely. The probability is accumulated to 82% for the number of updrafts between 0 and 4.

On smaller scale with a resolution of 15km we applied a 32×32 grid and had 1024 boxes with vertical velocities. We divided

the output into 3 categories of low (0 to 341), medium (342 to 683) and high (84 to 1024) numbers of up- and downdrafts.

During daytime the probability for a medium number of up- and downdrafts is 34% for the latent state with high CAPE values.

Here low and high numbers of up- and downdraft have small probability. For low CAPE values the maximum in the distribution380

occurs for a medium number of downdrafts and low number of updrafts at 50%. At night the probability adds up at low to

medium numbers of downdrafts for the latent state with high CAPE values and for low CAPE values, we observe that the

chance of low and medium number of updrafts is 82%. The distribution for the smaller scale resolution (15km) is a stochastic

aggregation of the distribution with resolution of 125km. Therefore the distributions are qualitatively similar. When the number

of latent states is further increased, the latent states can be clustered in groups of high, low and medium CAPE categories.385

The model reduction of smaller scale convective activity is part of a development process for a model with a stochastic

component for a conceptual description of convection embedded in a deterministic atmospheric flow model. Various energetic

variable are applicable on large scale. A potential driver to control small scale models is the Dynamic State Index (DSI)

(Müller et al., 2020; Müller and Névir, 2019), an “adiabaticity indicator”. Other large scale variables driving the smaller scale

stochastics are the available moisture or vertical wind shear. The presented approach provides a basis for further research of390

smaller scale convective activity conditioned on other possible large scale drivers.

Author contributions. Annette Müller prepared the meteorological data. All authors have then contributed to develop the work and prepared
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Appendix A
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Figure A1. Top: Boxplot of CAPE categories for 3 latent states "High", "Mean" and "Low" for day (left) and night (right); Middle: Affiliation

of CAPE categories; Distribution of CAPE (500 km) in terms of latent states "High", "Mean" and "Low" based on kernel density estimation;

500km× 500km domain for CAPE and 125km× 125km subdomains for vertical velocity.
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Figure A2. Probabilities of numbers of updrafts (#1) and downdrafts (#3) conditioned on latent states P [#1,#3|Z]; Day (left) and night

(right) and latent state "High" (top), latent state "Low" (bottom), latent state "Mean" (middle); 500km× 500km domain for CAPE and

125km× 125km subdomains for vertical velocity.
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Figure A3. Top: Boxplot of CAPE categories for 3 latent states "High", "Mean" and "Low" for day (left) and night (right); Middle: Affiliation

of CAPE categories; Distribution of CAPE (500 km) in terms of latent states "High", "Mean" and "Low" based on kernel density estimation;

500km× 500km domain for CAPE and 15km× 15km subdomains for vertical velocity.
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Figure A4. Probabilities of numbers of updrafts (#1) and downdrafts (#3) conditioned on latent states P [#1,#3|Z]; Day (left) and night

(right) and latent state "High" (top), latent state "Low" (bottom), latent state "Mean" (middle); 500km× 500km domain for CAPE and

15km× 15km subdomains for vertical velocity.
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