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Nonequilibrium Induced by Reservoirs:
Physico-Mathematical Models and Numerical Tests

Rupert Klein, Roya Ebrahimi Viand, Felix Höfling, and Luigi Delle Site*

In a recently proposed computational model of open molecular systems out of
equilibrium the action of different reservoirs enters as a linear sum into the
Liouville-type evolution equations for the open system’s statistics. The
linearity of the coupling is common to different mathematical models of open
systems and essentially relies on neglecting the feedback of the system onto
the reservoir due to their interaction. In this paper, the range of applicability of
the computational model is tested with a linear coupling to two different
reservoirs, which induces a nonequilibrium situation. To this end, the density
profiles of Lennard–Jones liquids in large thermal gradients are studied using
nonequilibrium molecular dynamics simulations with open boundaries. The
authors put in perspective the formulation of an extension of the
mathematical model that can account for nonlinear effects.

1. Introduction

Theory and modeling of open systems are becoming increas-
ingly prominent since they allow one to focus on the relevant
regions where a process of interest is taking place. The exterior
can be instead simplified in the form of thermodynamic reser-
voirs of particles and energy and is controlled by fewmacroscopic
variables.[1] In particular, open molecular systems are of rele-
vance because of their occurrence in a variety of current cutting
edge technologies, thus they require well-founded numerical al-
gorithms for their efficient and accurate numerical simulation.[2]

In this perspective, physico-mathematical models of open
systems represent a guideline protocol for the development of
simulation algorithms. Established models such as the one by
Bergmann and Lebowitz[3,4] (BL) express the combined actions of
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the reservoirs in the Liouville-like equation
of the statistical evolution of the open sys-
tem by adding the contributions of each
single reservoir linearly and independently
(cf. Equation (1) below). The linearity for
the coupling is a direct consequence of the
assumption of impulsive interactions be-
tween system and reservoirs, that is, each
interaction is considered a discrete event in
time so that the open system interacts sepa-
rately in time with each reservoir. The lin-
earity of action is also an assumption in
the thermodynamic-basedmodel presented
by Gay-Balmaz and Yoshimura[5] (GBY).
There, the system interacts with different
external “ports” each of which is a source of
energy andmass andmechanical work, and

the resultingmodel is built by adding up the contribution of each
port. Both models are based on a drastic a priori simplification
of the reservoirs, whose microscopic origin is neglected, thus
ruling out the possibility of nonlinear effects in the coupling.
Two of the authors[6] have recently proposed a model, inspired

by a simulation protocol for open systems, where themicroscopic
character of the reservoir is taken into account. In a large system
(Universe) the degrees of freedom of the particles of the reservoir
are analytically integrated out and an equation for the statistical
evolution of the open system is derived. The original derivation
considers an open system embedded in a single homogeneous
reservoir, but the extension tomore than one reservoir is straight-
forward and is reported in the Appendix. Also in this model the
combined actions of the reservoirs in the equation of statisti-
cal evolution of the open system enters as the sum of action of
each single reservoir. Differently from the other models reported
above, this model is not constructed on a priory choice of a lin-
ear sum of reservoir actions. Rather, the latter originates from
the hypotheses of i) two-body short range interactions between
the particles; and ii) of statistical independence of the states of
reservoir particle residing close to the open system boundary. As
a consequence the coupling between the open system and each
reservoir occurs only at the interface regions and thus the con-
tribution of each reservoir is reduced to a surface integral at the
interface region.
In a recent work, we have embedded the idea of adding the

actions of independent, concurrent reservoirs in the adaptive
resolution simulation approach (AdResS)[7–9] and treated the
case of an open system interfaced with two distinct and disjoint
reservoirs at different temperatures.[10] The encouraging results
of ref. [10] raise the question about the range of validity of the
linear approximation of the reservoir action. In this paper, we
test the quality of the numerical approach based on the AdResS
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technique, which rests solely on the additivity of the reservoir
contributions. The test consists in simulating a Lennard–Jones
(LJ) liquid in an open domain set up such that there is a feed-
back of the open system onto a sizable part of two attached
reservoirs. We compare the results of our model with the results
of a reference simulation of the Universe in which all particles
are explicitly treated with all their degrees of freedom, but are
thermalized at different temperatures in subregions equivalent
to the reservoir domains of our model. With such a comparison
we conclude about the numerical applicability of the linear
approximation. Surprisingly, for a LJ liquid at thermodynamic
and gradient conditions common to a large variety of situations
in chemical physics, it is shown that the linear hypothesis
holds and nonlinear effects are numerically negligible. This is a
promising insight in the perspective of developing accurate and
efficient simulation algorithms.
While encouraging from the numerical point of view, our con-

clusions also call for a further development of the mathematical
models. The BL and the GBY models by construction cannot im-
plement a boundary response of the reservoir, instead general-
izations to nonlinear and memory effects are within the scope
of the other model when less restrictive conditions on the range
of particle–particle interactions and on the statistics of reservoir
states close to the open system boundary are adopted. For exam-
ple, it is known rigorously[11] that, just as a consequence of mul-
tidimensional wave propagation in the reservoir, a nonreflecting
acoustic boundary condition must entail memory effects. More-
over, when the single- and two-particle statistics involving reser-
voir particles close to the system boundary are permitted to de-
pend on the state of the open system as a whole, then nonlin-
ear effects will arise in addition as discussed in Section 5. Such
nonlinear and memory effects of the reservoirs are covered only
qualitatively here, while a detailed analysis is left for future work.

2. Mathematical Models of Open System

2.1. Bergmann–Lebowitz Model

The linear coupling of the open system to distinct reservoirs is
the starting point of relevant mathematical models that describe
the exchange of matter and energy of a system with its surround-
ings (see, e.g., refs. [3–5] and references therein). For example, in
the well-established BL model,[3,4] the Liouville equation for the
phase space density fn(X n, t) of the open system with n particles
assumes a priori the linear sum of the action ofm different reser-
voirs:

𝜕fn(t,X n)
𝜕t

+ {fn(t,X n), Hn(X n)} =
m∑
r=1

I(BL)n,r [X n, {fn′ (t)}] (1)

where {⋅, ⋅} denotes the Poisson bracket, Hn(X n) is the n-particle
Hamiltonian, and the action of the r-th reservoir depends on the
family {fn′ (t)}n′≥0 of phase space densities at time t and is given
by the functional

I(BL)n,r [X n, {fn′ (t)}] =
∞∑

n′=0
∫

[
Kr
nn′ (X n,X

′
n′ )fn′ (t,X

′
n′ )

−Kr
n′n(X

′
n′ ,X n)fn(t,X n)

]
dX ′

n′ (2)

Each system–reservoir coupling is assumed to consist of
an impulsive interaction formalized by a Markovian kernel,
Knn′ (X

′
n′ ,X n), that is, a transition probability per unit time from

an n-particle (open system) and phase space configuration X n to
n′ particles and phase space configuration X ′

n′ . The overall global
effect resulting from the interactions of the open system with its
surrounding is assumed to be linear as expressed by the sum
over the I(BL)n,r in Equation (1) and each term being linear in the
fn. This linearity is actually implicit in the assumption of im-
pulsive and independent interactions. Bergmann and Lebowitz[4]

also note that the model of impulsive interaction represents only
an asymptotic limit which is not always realized.

2.2. The Thermodynamic Model of Gay-Balmaz and Yoshimura

A thermodynamic perspective to justify a linear coupling is in-
stead employed by Gay-Balmaz and Yoshimura,[5] using a La-
grangian formulation of the dynamic many-particle system. In
their model, the system interacts with different “ports” each of
which is a source of energy and mass and mechanical work that
can be injected into or adsorbed from the system. The resulting
global model is built by adding up the contribution of each port.
Such a modeling approach is justified by the application of the
first principle of thermodynamics expressed by a time-dependent
energy of the system due to the action of the ports:

dE
dt

=
m∑
r=1

(
PextW,r + PextH,r + PextM,r

)
(3)

where PextW,r is the power corresponding to the work done by the
r-th reservoir on the system and PextH,r and PextM,r , respectively, are
the power corresponding to the heat and matter transfer from
the r-th reservoir to the system.

2.3. Model with Marginalization of the Degrees of Freedom of the
Reservoir

In this section we report the essential features of the model de-
veloped in ref. [6], which are required for the discussion about
the linear action of concurrent reservoirs. An extended explana-
tion of the model and its extension to the case of many concur-
rently acting reservoirs at different thermodynamic conditions
are reported in Appendices A and B. The model considers a
large closed system of N particles, the “Universe” U (Figure 1).
The Universe is statistically described by its phase space density
function FN(t,X

N), where t is the time variable and XN are the
6N-dimensional coordinates in phase space SN = ΩN ×ℝ3N . The
time evolution of FN(t,X

N) follows the corresponding Liouville
equation. A subsystem Ω ⊂ U of the Universe with n particles
is described by the probability distribution function, fn(t,X

n), ob-
tained by marginalizing FN(X

N) with respect to the N − n parti-
cles located in the reservoir Ωc = U ⧵Ω:

fn(t,X
n) =

(
N
n

)
∫

SN−n
c

FN(t,X
n,𝚵N

n ) d𝚵
N
n (4)

𝚵N
n indicates the degrees of freedom in the reservoir phase space

SN−n
c = ΩN−n

c ×ℝ3(N−n). The binomial factor is chosen such that
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Figure 1. The partitioning of the “Universe” into the open system Ω and
the reservoir Ωc ≡ U ⧵Ω. The number of particles in the Universe is fixed
to N, but it can fluctuate in the domain Ω due to exchange with the reser-
voir.

Res1 Res2

T1 , ρ1 T2 , ρ2

∂Ω1 ∂Ω2

Ω

F1 F2fn

F
Figure 2. The partitioning of the ‘Universe” in two large reservoirs, Res1
and Res2, and the subsystem of interest, Ω. The boundary of the open
system splits according to 𝜕Ω ≡ 𝜕Ω1 ∪ 𝜕Ω2 into the boundary surface 𝜕Ω1
between Res1 and Ω and the boundary surface 𝜕Ω2 between Res2 and Ω.
The two reservoirs are set up at different thermodynamic conditions, for
example, different densities, 𝜚1 and 𝜚2, and different temperatures, T1 and
T2.

the hierarchy of phase space densities {fn}0≤n≤N satisfies the nor-
malization condition

∑N
n=0 ∫Sn fn(t,X n) dX n = 1. The procedure

of marginalization is then applied to the Liouville equation of
FN(X

N), leading to a hierarchy of equations for the fn(t,X
n):

𝜕fn
𝜕t

+ {fn,Hn} = Ψn + Φn+1
n ; 0 ≤ n ≤ N (5)

where the r.h.s. represents the coupling between the system
Ω and the exterior. Specifically, Ψn = Ψn[X

n, fn] stems from the
forcing of the system particles by the reservoir and Φn+1

n =
Φn+1

n [X n+1, fn, fn+1] describes the exchange of one particle between
the system and the reservoir.
The derivation above is done under the assumption that the

reservoir is thermodynamically uniform.However, one can imag-
ine that the exterior ofΩ is formed bym disjoint regions at differ-
ent thermodynamic conditions (see Figure 2 for an example for
two regions). Let us assume that the two regions acting as reser-
voirs are large enough so that we can consider each of them to be

Figure 3. The AdResS setup consists of an atomistic region AT and an in-
terface region Δ, both where molecule i interact with molecule j through
the pair potential Uij = U(q⃗i − q⃗j). The Δ region is interfaced (to the right)
with a large large reservoir TR of noninteracting particles (tracers). In the
Δ ∪ TR region, the thermodynamic force, Fth(q⃗i), acts on all particles in-
dividually to enforce the desired thermodynamic equilibrium. The corre-
spondence with the mathematical model of open systems is illustrated by
identifying each region of AdResS with the equivalent region of Figures 1
and 2.

in a stationary state within the time scale of observation that we
are considering. In such a case, Equation (5) becomes:

𝜕fn
𝜕t

+ {fn,Hn} =
m∑
r=1

(
Ψn,r + Φn+1

n,r

)
(6)

where the sum over r expresses the additive effect of them reser-
voirs. The detailed derivation of Equation (6) along the lines of
ref. [6] is conceptually simple, but involves few specific modifica-
tions of the model at the different boundaries ofΩ; a step by step
derivation is given inAppendix B.Most importantly, the contribu-
tionsΨn, r andΦn+1

n,r are linear in the fn and Equation (6) formally
resembles Equation (1).

3. The AdResS Setup with the Linear Combination
of Reservoirs

In a recent work,[10] we have employed the AdResS for molecular
dynamics[8] to test the concept of a linear combination of reser-
voir actions on an open system. The AdResS setup consists of
partitioning the simulation box in three regions: the region of in-
terest AT, at full atomistic resolution, the interface region Δ, at
full atomistic resolution, but with additional coupling features to
the large reservoir, and TR, the large reservoir of noninteracting
particles (Figure 3). Particles can freely cross the boundaries be-
tween the different regions and automatically acquire the molec-
ular resolution that characterizes the region in which they are
instantaneously located.
Regarding the coupling conditions, molecules of the AT re-

gion interacts with atomistic potentials among themselves and
with molecules in Δ, and vice versa, while there is no direct in-
teraction with the tracer particles. Tracers andmolecules inΔ are
subject to an additional one-body force, named thermodynamic
force, which acts along the direction n⃗ perpendicular to theΔ/TR
interface, F⃗th(q⃗) = Fth(q⃗)n⃗ for positions q⃗. In essence, this is the
coupling condition between the Δ region and the reservoir TR,
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amended by a thermostat in these regions. As a consequence the
total potential energy reads: Utot = UAT

tot +
∑

q⃗j∈Δ∪TR
𝜑th(q⃗j) with

the potential 𝜑th(q⃗) such that F⃗th(q⃗) = −∇𝜑th(q⃗) and 𝜑th(q⃗) = 0 in
the AT region, q⃗ ∈ AT. The thermodynamic force is derived by ba-
sic principles of statistical mechanics; in essence, of relevance for
this paper, it assures that the particle density in the atomistic re-
gion is equal to a value of reference. As it is shown in refs. [9,12–14]]
the constraint on the particle density in AdResS implies the equi-
librium of the atomistic region with respect to conditions of ref-
erence of a fully atomistic simulation.
The setup of AdResS resembles the partitioning employed in

the mathematical models of open system and, in particular, it is
very well suited for a numerical test of the idea of a linear action of
reservoirs. In fact, in AdResS one can implement a setup as that
of Figure 2, where the action of the two distinct reservoirs, Res1
and Res2, is encoded in two distinct coupling conditions at the
corresponding interfaces. The coupling terms, which correspond
to the thermodynamic forces, are calculated separately; that is,
the system first interacts only in the presence of Res1, which is
at temperature T1 and density 𝜚1, and one obtains the thermo-
dynamic force needed at the interface with Res1. Next, the sys-
tem interacts only in the presence of Res2, at T = T2 and 𝜚 = 𝜚2,
and one obtains the thermodynamic force needed at the inter-
face with Res2. A nonequilibrium situation is then achieved by
running a simulation setup with distinct thermodynamic forces
applied in the corresponding interface regions (Figure 4).

4. Numerical Tests of the Linear Approximation of
the Reservoir Action

The AdResS approach to open systems out of equilibriumwas ap-
plied to simulate a LJ liquid in a temperature gradient.[10] The re-
sults of this earlier study showed that indeed themodel accurately
reproduces data from fully atomistic reference simulations in the
presence of a thermal gradient. Specifically, an isobaric setup was
employed, that is the temperature gradient is applied at constant
pressure by choosing reservoir densities along an isobar for pre-
scribed reservoir temperatures. Here we go further and consider
situations where the idea of linearity is pushed to its edge of valid-
ity. To this aim, we numerically test what happens in the atomistic
region of interest when at the interface regions one has a feed-
back from the rest of the system. We performed nonequilibrium
simulations i) along an isobar with increasing temperature gra-
dients, whose largest value exceeds the one of our earlier work[10]

by a factor of 3 and ii) in an isochoric setup, that is, the thermo-
dynamic forces are calculated at the same density �̄� = 𝜚1 = 𝜚2,
but different reservoir temperatures T1 < T2. We note that the
reservoir states are chosen in the liquid phase and are close to
the liquid–vapor binodal curve; here, the LJ fluid is almost in-
compressible and is characterized by low pressure. The technical
details of the simulations are given in Appendix C.
For the isobaric setup, case (i), the density profiles across

the simulation box obtained for different thermal gradients
(Figure 5) follow closely the results of the corresponding, fully
atomistic reference simulations (which involves the atomistic
simulation of a huge reservoir), in particular in the region AT of
interest. The highly satisfactory agreement is qualitatively similar
for all temperature gradients investigated, despite ΔT := T2 − T1

Figure 4. Schematic illustration of the simulation of a thermal gradient
in the AdResS setup and its correspondence to the mathematical mod-
els. First, the open system is equilibrated at the thermodynamic condition
of each reservoir (left). In AdResS, this corresponds to running the equi-
libration procedure twice to determine the thermodynamic force Fth,1(q⃗)
and Fth,2(q⃗) separately. Once the system is in contact with two different
reservoirs (right), then the mathematical models predict a linear action
of the reservoirs as is apparent from the r.h.s. I1 + I2 of the extended Li-
ouville equation (cf. Equations (1) and (6)). The reservoir coupling terms
Ir (r = 1, 2) translate in AdResS to the combined action of Fth,1(q⃗) and a
thermostat that maintains the temperature at T1 in the region Δ1 ∪ TR1
and analogously for the second reservoir; in this sense, Ir is a function of
Fth,r(q⃗) and the thermostat at Tr .
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σ
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TR Δ AT Δ TR

ΔT = 0.325
ΔT = 0.250
ΔT = 0.125

Figure 5. Density profiles of a LJ liquid in different thermal gradients, sim-
ulated with the isobaric setups of nonequilibriumAdResS (solid lines). The
temperature difference ΔT between the hot (red) and cold (blue) reser-
voirs increases from bottom to top as indicated in the legend. The tem-
perature and density of the hot reservoir are kept fixed at Thot = 0.95𝜖∕kB
and 𝜚hot = 0.622𝜎−3, respectively, while the state points of the cold reser-
voir are chosen along the corresponding isobar. Here, 𝜖 and 𝜎 refer to the
parameters of the LJ potential, see Appendix C. Reference results from full
atomistic simulations are given by disc-shaped symbols. Only the parts of
the TR regions close to the coupling boundary are shown.
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Isochoric AdResS
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Reference

Figure 6. Density profiles of a LJ liquid in a fixed thermal gradient (ΔT =
0.125𝜖∕kB) simulated with the isochoric (green line) and isobaric (black
line) setups of nonequilibrium AdResS; reference data from full atomistic
simulations are given by red symbols. The temperature of the hot reser-
voir is Thot = 0.975𝜖∕kB, and the mean particle density, averaged over the
whole setup, is �̄� ≈ 0.65𝜎−3 (grey line). Only parts of the TR regions are
shown.

increasing from 14% to 40% relative to the respective mean
temperature, T̄ = (T1 + T2)∕2. In theΔ ∪ TR there are noticeable
effects due to a feedback of the system onto the reservoir, without
repercussions on the region of interest.
For the isochoric nonequilibrium setup, case (ii), one expects

that the thermal gradient induces a pressure gradient in the AT
region. Interestingly, our simulation results (Figure 6) instead ex-
hibit a density gradient that closely follows the one of the iso-
baric AdResS setup and the full atomistic reference. A possible
explanation is that the pressure gradient induces a mass flux,
which builds up a density gradient until the pressure differences
are compensated. The interpretation is corroborated by the large
density difference between the two TR regions, reflecting trac-
ers that were moved in excess from the hot to the cold reservoir.
This mechanism introduces a feedback on the two reservoirs and
yields a sizeable shift of their intended densities. Nevertheless,
also the isochoric AdResS setup provides a meaningful (and sim-
pler) approach to nonequilibrium simulations. It shall be added
that the temperature profiles of all AdResS setups considered in
Figures 5 and 6 agree extremely well with the simulations of ref-
erence and are not shown here, see ref. [10] for an example.

5. Theoretical Perspectives

From the physical point of view, both the BL andGBYmodels rely
on neglecting any feedback of the system onto the reservoirs. The
former model also predicts a linear combination of the action of
different reservoirs as long as the condition of short range pair
interactions and the explicit assumption of statistical indepen-
dence of reservoir states from the open system states apply. How-
ever, such constraints can be relaxed and nonlinear and memory
effects can be introduced into the derivation. Both types of ef-
fects are expected in general, as the following examples demon-
strate:

1) Memory effects: We are dealing with thermodynamically
compressible systems supporting sound waves. It is known
from the theory of fluid dynamics that the modeling of acous-
tic waves that exit an open domain without reflection at its
boundary demands that one keeps track of the system’s his-
tory to properly capture the wave dynamics in the reservoir.[11]

2) Nonlinearities: When the open system is at a higher pres-
sure than the reservoir(s) initially, then the velocity statistics
of outer particles near the open system boundary is clearly bi-
ased toward the outward pointing normal. This effect could
be modeled by introducing single- and two-particle statistics
f ◦n,1 and f ◦n,2 that depend explicitly on the particle number n
of the open system and by coupling these functions to ther-
modynamic averages of the entire hierarchy of phase space
densities f𝜈 , 𝜈 ∈ {0,… , N}. This ansatz will render the terms
Ψn and Φn+1

n in Equation (6) nonlinear functions of the fn. If
nonlinear effects are to arise in the presence of long-range in-
teractions, then the model would similarly be able to account
for these.

3) Long-range correlations: Another possibility is that, in the
vicinity of a critical point, the correlation length of the fluid is
of the order of the linear size of the open system. In this case,
the presence of the open boundaries (i.e., the finite size of
the subsystem) unavoidably modifies the observed fluid prop-
erties, for example, its thermodynamics[15] and the strength
of local density fluctuations,[16,17] and one anticipates a direct
correlation between the reservoirs. Truncating such a correla-
tion spectrum is known to give rise to critical Casimir forces:
an effective, non-additive interaction between the boundaries,
which was found for (binary) fluids between solid and peri-
odic boundaries near criticality,[18–20] but also transiently after
a temperature quench.[21] Capturing such an extreme situa-
tion by a model of open systems would require that detailed
information about the reservoir states is kept, with the degree
of detail depending on the observables of interest.

Yet, the model of ref. [6] tells something more. Even within
the assumption of short-range interactions, one still needs ba-
sic information about the reservoirs at the interface, for example,
one- and two-particle distributions. These latter are assumed to
be stationary, under the approximation that the reservoir, due to
its size, fully controls the particle distribution at the surface. Such
an approximation is nomore valid if the range of interaction is ex-
tended because the system itself starts to significantly influence
the distribution of particles near the boundary and a generally
nonlinear feedback between the reservoirs is to be expected.

6. Conclusions

We have discussedmodels of open systems that rely on the linear
combination of the actions of several reservoirs. From the general
discussion emerges the necessity of considering the scenario in
which nonlinear effects arise once the hypotheses of short range
potentials and statistical independence of the reservoirs becomes
less strict. In such a perspective, a model recently proposed by
two of the authors offers the possibility of automatically including
the feedbacks between the open system and the attached reser-
voirs by generalizing the pertinent models of the reservoir statis-
tics at each interface. Such a possibility is ruled out in the other
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models of an open system covered here. An analytic derivation of
such a generalization is, however, left to future research. Instead
we have focused on the numerical consequences of such nonlin-
ear effects and reported a numerical test where the reference sim-
ulation automatically includes nonlinear effects while the simu-
lation mimicking the mathematical model of Equation (6) does
not include such a nonlinearity. The results show that even un-
der such conditions, the approximation of a linear combination
of actions yields numerically satisfying results for a range of sys-
tems of interest. This is good news for the numerical simula-
tions, in particular, it removes the need to fine-tune the reservoir
states of the isobaric setup. At the same time, our findings also
call for an extension of the concepts and its numerical counter-
part to nonlinear effects. In fact in this paper we have validated
the model for a molecular system with Lennard–Jones-like short-
ranged potentials, however the current conclusions may not ap-
ply to systems characterized by long-ranged interactions. In such
a case, non-linear effects at the coupling boundary may become
relevant. One example is ionic liquids, where electrostatics plays
a major role. The AdResS approach was shown to describe such
liquids in equilibrium in a highly satisfactory manner,[22–24] and
it will be interesting, in perspective, to test whether the current
non-equilibrium set up of AdResS would be directly applicable to
ionic liquids in a thermal gradient, or whether modifications at
the coupling boundaries are needed.

Appendix A: Liouville-type Equations for an Open
System

In this appendix, we summarize the key steps of the modeling
procedure adopted in ref. [6] for an open system embedded in a
single uniform reservoir. This serves as basis for the extension
of the model to several independently acting reservoirs in Ap-
pendix B.

A.1. Topological Definition of an Open System

Let us consider the open system schematically illustrated in Fig-
ure 1. The total system, here called “Universe”, is characterized by
the number N of particles (fixed) and a spatial domain U. A sub-
domain Ω ⊂ U defines the open system, which may contain any
number n ∈ {0,… , N} of particles, while the region of the reser-
voir corresponds to the complement U ⧵Ω ≡ Ωc with N − n par-
ticles. The phase space of the N particles in U is SN = UN ×ℝ3N

(positions in UN , momenta in ℝ3N), the phase space of the open
system is in case of n particles is Sn = Ωn ×ℝ3n, and the phase
space of the reservoir is S(N−n)

c = Ω(N−n)
c ×ℝ3(N−n).

A.2. Relevant Quantities that Characterize U

The Universe is characterized by the Hamiltonian

HN(q
N, pN) = Ekin(p

N) + Vtot(q
N) ≡

N∑
i=1

(p⃗i)
2

2M
+ 1
2

N∑
i,j=1
j≠i

V(q⃗j − q⃗i)

(7)

where (qN, pN, ) = (q⃗1,… , q⃗N, p⃗1,… , p⃗N) and (q⃗i, p⃗i) are the posi-
tion andmomentum of the i-th particle, respectively,M is the par-
ticle mass, assumed to be the same for all particles here, and V
is the two-body interaction potential (as typical for, e.g., molecu-
lar dynamics simulations). The statistical mechanics description
of the system in phase space is achieved through its probability
density defined as

FN : ℝ+ × SN → ℝ , (t,XN) → FN(t,X
N) , (8)

with normalization ∫SN FN dXN = 1. The probability density of
the Universe is subject to the transport equation of the phase
space density (Liouville equation)

𝜕FN
𝜕t

=
N∑
i=1

[
∇q⃗i

⋅
(
v⃗iFN

)
+ ∇p⃗i

⋅
(
−∇qi

Vtot(q
N)FN

)] ≡ −{FN,HN}

(9)

where the r.h.s. is a Poisson bracket and v⃗i = p⃗i∕M the velocity of
the i-th particle.

A.3. Relevant Quantities that Characterize 𝛀

The open system Ω containing n particles is characterized by the
Hamiltonian

Hn =
n∑
i=1

(p⃗i)
2

2M
+ 1
2

n∑
i,j=1
j≠i

V(q⃗j − q⃗i) ; (q⃗i, q⃗j ∈ Ω) (10)

The statisticalmechanics description of the open system in phase
space is given by the collection of all its n-particle probability den-
sities

fn : ℝ+ × Sn → ℝ , (t,X n) → fn(t,X
n) (11)

for n ∈ {0,… , N}. Consistent with the fact that Ω is a subsystem
of U, fn is explicitly given by

[6]:

fn(t,X
n) =

(
N
n

)
∫

(Sc )N−n

FN(t,X
n,𝚵N

n ) d𝚵
N
n (12)

with 𝚵N
n ≡ [Xn+1,… ..XN ] collecting the reservoir’s degrees of

freedom, Xi = (q⃗i, p⃗i) ∈ Sc, and the normalization condition:∑N
n=0 ∫Sn fn(t,X n) dX n = 1. The binomial factor counts the num-

ber of ways to pick n particles out of N.

A.4. Derivation of a Liouville-like Equation for 𝛀

The starting point is Equation (9) and the strategy to achieve a
Liouville-like equation for fn consists in the marginalization of
Equation (9) with respectto the degrees of freedom of the N − n
particles in Ωc. The procedure can be schematized by the follow-
ing two steps
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I) Marginalization of the term
∑N

i=1 ∇p⃗i
⋅ (−∇qi

Vtot(q
N)FN).

Since Vtot(q
N) is a sum over all index pairs 1 ≤ i, j ≤ N, one

needs to analyze three specific situations:

(a) i, j ∈ Ωc; (b) i, j ∈ Ω; (c) i ∈ Ω, j ∈ Ωc (13)

II) Marginalization of the term
N∑
i=1

∇q⃗i
⋅ (v⃗iFN), where two specific

situations need to be distinguished:

(a) i ∈ Ω and (b) i ∈ Ωc (14)

A.4.1. Results of Step I

a) For all particle indices i in the reservoir, n + 1 ≤ i ≤ N,
Gauss’ theorem implies:

∫
Br (0)

∇p⃗i
⋅
(
∇qi

Vtot(q
N)FN(t, q

N, pN)
)
d3pi

= ∫
𝜕Br (0)

n⃗ ⋅
(
∇qi

Vtot(q
N)
)
FN(t, q

N, pN) d𝜎pi → 0 (15)

as r → ∞, whereBr(0) is the sphere of radius r inmomentum
space centered at the origin and n⃗ the surface normal on 𝜕Ω
pointing outward. It is assumed that FN decays sufficiently
rapidly for large |p⃗i| for the boundary integral to vanish in the
limit. This is certainly true, for example, for the Boltzmann
distribution of themomenta, FN ∝ exp

(
−(p⃗i)2∕2MkT

)
. Actu-

ally, it is sufficient that FN decays to zero at all for large mo-
menta and this is a consequence of FN being a probability
density and thus integrable.

(b) If both particles i, j are in the open system Ω, 1 ≤ i, j ≤ n,
marginalization over the reservoir yields:(

N
n

)
∫

(Sc )N−n

∇p⃗i
⋅
(
∇qi

V(q⃗i − q⃗j)FN(t,X
n,𝚵N

n )
)
dΞN

n

= ∇p⃗i
⋅
(
∇qi

V(q⃗i − q⃗j)fn(t,X
n)
)
. (16)

(c) If particle i is in the open system, 1 ≤ i ≤ n, but particle j is
in the reservoir, n + 1 ≤ j ≤ N, then choosing i = n and j =
n + 1 for the ease of notation, one finds:(

N
n

)
∫
Sc

∫
(Sc )N−n−1

∇p⃗i
⋅
(
−∇qi

V(q⃗i − q⃗j)

×FN(t,X
n−1,, Xi, (q⃗j, p⃗j),𝚵N

n+1)
)
d𝚵N

n+1dpjdqj

= ∇p⃗i
⋅
(
F⃗av(q⃗i)fn(t,X

n−1, Xi)
)

(17)

with

F⃗av(q⃗i) = −∫
Sc

∇q⃗i
V(q⃗i − q⃗j)f

◦
2 (Xj|Xi)dXj (18)

denoting the mean-field force exerted by the outer particles onto
the i-th inner particle under the assumptions that

1) pair interactions V(qi − qj) are short-ranged so that pair inter-
actions are relevant only close to the open system’s boundary,

2) the probability density of finding n particles in states
(X n−1, Xi) ∈ Sn and one other outer particle in Xj, given by
marginalization over 𝚵N

n+1, can be factorized as(
N
n

)
∫

(Sc )N−n−1

FN(t,X
n−1,, Xi, Xj,𝚵N

n+1)d𝚵
N
n+1

≈ f ◦2 (Xj|Xi)fn
(
t,X n−1, Xi

)
. (19)

3) f ◦2 (Xout|Xin) is a known or modeled conditional distribution
for joint appearances of an outer particle given the state of an
inner one.

Here we consider assumption (1) as a physical necessity for as-
sumptions (2) and (3) to be justifiable in the first place, while the
latter two encode the more general assumption that the statistics
of the reservoir is independent of the instantaneous state of the
open system for the present purposes.

A.4.2. Results of Step II

(a) For all particles i in Ω, i ∈ {1,… , n}, it holds(
N
n

)
∫

(Sc )N−n

∇q⃗i
⋅
(
v⃗iFN(t,X

n,𝚵N
n )
)
d𝚵N

n = ∇q⃗i
⋅
(
v⃗ifn

)
. (20)

(b) In the reservoir, n + 1 ≤ i ≤ N, one of the integrals will be
over Ξi ∈ Sc which, after summing over the respective terms
and utilizing the indistinguishability of the particles, leads to
an integral over the boundary 𝜕Ω of the open system:

(
N
n

)
(N − n)∫

Sc

∫
(Sc )N−n−1

∇q⃗i
⋅
(
v⃗i FN(t,X

n, (q⃗i, p⃗i),𝚵N
n+1

)
d𝚵N

n+1 dΞi

= −(n + 1)∫
𝜕Ω

∫
ℝ3

(
v⃗i ⋅ n⃗

)
f̂n+1(t,X

n, (q⃗i, p⃗i)) d
3pid𝜎i (21)

where we employed the identity
(N
n

)
(N − n) =

( N
n+1

)
(n + 1)

and the notation assumes i = n + 1.

Here, guided by the theory of characteristics, we distinguish
the relevant forms of f̂n+1 for outgoing and incoming particles as
follows: Under the assumption of statistical independence of the
reservoir particle states from those of the inner particles, we have

f̂n+1 =

{
fn+1

(
v⃗i ⋅ n⃗ > 0

)
fnf

◦
1

(
v⃗i ⋅ n⃗ < 0

) (22)

where f ◦1 is the single particle (equilibrium) density of the reser-
voir. Alternatively, assuming a grand canonical (GC) distribution
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for state space trajectories that enter the open system from out-
side one could write down as a plausible model:

f̂n+1 =

{
fn+1

(
v⃗i ⋅ n⃗ > 0

)
f GCn+1

(
v⃗i ⋅ n⃗ < 0

) (23)

Note that we do not intend to promote the closure assumptions
regarding the reservoir statistics introduced above (through the
functions f ◦1 and f ◦2 ) as being optimal or preferable over alterna-
tive formulations. Instead, these closures are meant to be place-
holders that highlight the principal necessity of explicitly formu-
lating assumptions on the reservoir behavior in the context of the
present derivations.

A.4.3. Final Equation

Combining the results of steps I and II, one obtains a hierarchy
of Liouville-type equations for fn:

𝜕fn
𝜕t

+ {fn, Hn} = Ψn + Φn+1
n (24)

with boundary terms on the r.h.s. describing the action of the
reservoir, namely the interaction term due to amean-field forcing
by the reservoir particles

Ψn[X
n, fn] = −

n∑
i=1

∇p⃗i
⋅
(
F⃗av(q⃗i)fn(t,X

i−1, Xi,X
n−i
i )

)
(25)

and an exchange term due to particles entering and leaving the
domain Ω:

Φn+1
n [X n, fn, fn+1]

= (n + 1)∫
𝜕Ω

∫
(p⃗i⋅n⃗)>0

(v⃗i ⋅ n⃗)
(
fn+1

(
t,X n, (q⃗i, p⃗i)

)
−fn(t,X n)f ◦1

(
q⃗i,−p⃗i

))
d3pid𝜎i (26)

Appendix B: The Case of Two Distinct Reservoirs at
Different Thermodynamic Conditions

Let us consider a prototype situation as that illustrated in Figure 2
where Ω is a region that separates the Universe in two distinct
(large) reservoirs, (Res1 and Res2), and, as anticipated before, we
assume that the two reservoirs are in stationary thermodynamic
conditions in the time scale considered. Straightforward phys-
ical considerations lead to the conclusion that Ω has a spatially
asymmetric exchange with the Universe and may thus possess
a nonequilibrium stationary state. Formally one can proceed
as for the case of a single reservoir and derive an equation for
fn in this situation. The total probability distribution function
FN describes the entire Universe including the thermodynamic
states of Res1 and Res2. From FN , by marginalizing with respect
to N − n degrees of freedom of particles in Ωc, one obtains
the distribution function fn of the open system. Furthermore,

the Liouville equation for FN applies as before, and thus by
marginalizing the Liouville equation for FN with respect to the
degrees of freedom of the particles in Ωc one would obtain the
corresponding Liouville-type equation for fn (n ∈ {0,… , N}) as
for the case of one reservoir of ref. [6]. This means an analytic
derivation of the conditions of nonequilibrium induced by the
concurrent action of the two reservoirs. In the sections below
we will follow the marginalization procedure adopted in the
previous section and adapted to the setup illustrated in Figure 2.

B.1. Step I Revised with Res1 and Res2

a) Again, the boundary integral in Equation (15) will vanish in
the limit of the radius of the ball tending to infinity because FN
will decay rapidly for large momenta, that is, one can expect
a decay as exp(−(p⃗i)2∕2MkT1) in Res1 and exp(−(p⃗i)2∕2MkT2)
for Res2 (assuming they are bothmuch larger thanΩ). As said
before, it is sufficient that FN is a probability density and thus
integrable.

b) If both particles i, j of the pair are inside of Ω, nothing
changes. In particular, themarginalization with respect to the
particles outside (Equation (16)) implies that the whole infor-
mation about the particles of the reservoirs is integrated out.

c) Here emerges the first substantial difference. In the case that
particle i is inside of Ω and particle j in one of the reservoirs,
Equation (17) remains formally the same, but the calcula-
tion of the mean force changes (Equation (18)). One needs
to carefully consider the dependency of the pair’s potential
energy on the position of the particle in each of the two dis-
tinct reservoirs. The modified expression of F⃗av(q⃗i) carries
the fact that the boundary with Res1 has different thermody-
namic and statistical mechanics properties than the boundary
with Res2, depending on the specific subdomain of Sc over
which the integration in the variable Xj is carried out. This
implies that the assumed probability density of finding n par-
ticles in states (X n−1, Xi) ∈ Sn and one other outer particle in
Xj is now given by fn(X

n−1, Xi)f
◦,R1
2 (Xj|Xi) if Xj ∈ Res1 and by

fn(X
n−1, Xi)f

◦,R2
2 (Xj|Xi) if Xj ∈ Res2. The integration of Xj over

thewhole Sc = Res1 ∪ Res2 splits into the sumof two integrals
over the domains Res1 and Res2, respectively:

F⃗av(q⃗i) = − ∫
Res1

∇q⃗i
V(q⃗i − q⃗j)f

◦,R1
2 (Xj|Xi) dXj

− ∫
Res2

∇q⃗i
V(q⃗i − q⃗j)f

◦,R2
2 (Xj|Xi) dXj (27)

Specifically, the assumption that the statistics of both reser-
voirs are independent of each other yields the additive form
F⃗av(q⃗i) = F⃗R1

av (q⃗i) + F⃗R2
av (q⃗i).

B.2. Step II Revised with Res1 and Res2

(1) Similarly as in step I, for the particles i ∈ {1,… , n} inside of
the domain Ω the terms in Equation (20) remain the same
because the marginalization with respect to the particles
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outside implies that any information about the reservoirs is
integrated out.

(2) Otherwise, for n + 1 ≤ i ≤ N, the effects of the two distinct
reservoirs entering Equation (21) clearly emerges in the def-
inition of f̂ (Equation (22)), because one needs to define
f̂ differently on the two reservoirs. For Ξi ∈ Res1, one has
f̂ R1n+1 = fnf

◦,R1
1 with f ◦,R11 being the single particle (equilibrium)

density in reservoir 1 and equivalently f̂ R2n+1 = fnf
◦,R2
1 for the

other reservoir. Or, equivalently, f̂ R1n+1 = f GCR1
(same for R2,) if

one makes the modeling choice of the grand canonical dis-
tribution for each reservoir.
Moreover, the decomposition of the boundary 𝜕Ω = 𝜕Ω1 ∪
𝜕Ω2 implies the splitting of the surface integral:

−(n + 1)∫
𝜕Ω

∫
ℝ3

(
v⃗i ⋅ n⃗

)
f̂n+1(t,X

n, (q⃗i, p⃗i) d
3pi d𝜎i =

2∑
r=1

I𝜕Ωr

(28)

where

I𝜕Ωr = −(n + 1)∫
𝜕Ωr

∫
ℝ3

(
v⃗i ⋅ n⃗

)
f̂n+1(t,X

n, (q⃗i, p⃗i) d
3pi d𝜎i (29)

In the case v⃗i ⋅ n⃗ < 0, one has to replace f̂ n+1 with fnf
◦,R1
1 in the

integral over 𝜕Ω1 and with fnf
◦,R2
1 in the integral over 𝜕Ω2.

After collecting the results of the previous steps, we straight-
forwardly obtain:

𝜕fn
𝜕t

+ {fn,Hn} =
∑

r∈{R1,R2}

(
Ψn,r + Φn+1

n,r

)
(30)

where the terms on the r.h.s. closely resemble those for a single
reservoir and read, for example, for r = R1:

Ψn,R1[X
n, fn] = −

n∑
i=1

∇p⃗i
⋅
(
F⃗R1
av (q⃗i)fn(t,X

i−1, Xi,X
n−i
i )

)
(31)

and

Φn+1
n,R1[X

n, fn, fn+1]

= (n + 1)∫
𝜕Ω1

∫
(p⃗i⋅n⃗)>0

(
v⃗i ⋅ n⃗

) (
fn+1

(
t,X n, (q⃗i, p⃗i)

)

−fn(t,X n)f ◦,R11

(
q⃗i,−p⃗i

))
d3pi d𝜎i (32)

The setup of Figure 2 and the marginalization procedure can be
straightforwardly extended to an arbitrary number of m disjoint
reservoirs, interfaced with Ω:

𝜕fn
𝜕t

+ {fn,Hn} =
m∑
r=1

(
Ψn,r + Φn+1

n,r

)
(33)

which describes a linear and additive action of independent reser-
voirs.

Appendix C: Technical Details of the Simulations

The setup of both the AdResS and the full atomistic reference
simulations was the same as described in detail in ref. [10] and
its Supporting Information. The investigated LJ fluids consist
of point particles of mass m that interact via the shifted and
smoothly truncated pair potential U(r) = [ULJ(r) −ULJ(rc)]f ((r −
rc)∕h) for r ≤ rc, andU(r) = 0 otherwise, withULJ = 4𝜖

[
(r∕𝜎)−12 −

r∕𝜎)−6
]
, the cutoff radius rc = 2.5𝜎, the smoothing function

f (x) = x4∕(1 + x4), and h = 0.005𝜎. The parameters 𝜖 and 𝜎 are
taken to define the units for energy and length, 𝜏 =

√
m𝜎2∕𝜖 is

the unit of time. Dimensionless quantities are defined as 𝜚∗ =
𝜚𝜎3 and T∗ = kBT∕𝜖 for density and temperature, respectively.
For particle pairs involving at least one tracer particle of AdResS,
the interaction is switched off, 𝜖 = 0.
For the simulations reported in Figure 5, we used reservoir

states in the liquid phase along the same isobar, that is, they
have the same pressure P(T, 𝜚) = const. The hot reservoir serves
as reference state point and is chosen at temperature T∗

hot = 0.95
and density 𝜚∗hot = 0.622, which results in a (reduced) pressure
of P∗ := P𝜎3∕𝜖 ≈ 0.045. The state points of the cold reservoir
were determined such that they are at the same pressure as the
hot reservoir. We used the following points in the temperature–
density plane: (T∗

2 , 𝜚
∗
2) = (0.825, 0.72), (T∗

3 , 𝜚
∗
3) = (0.7, 0.791),

and (T∗
4 , 𝜚

∗
4) = (0.625, 0.828), leading to temperature differences

between the reservoirs of ΔT∗ = 0.125, 0.250, and 0.325, respec-
tively.
For the isobaric results shown in Figure 6, state

points along a slightly different isobar were used, namely
(T∗

hot’, 𝜚
∗
hot’) = (0.975, 0.5987) and (T∗

cold, 𝜚
∗
cold) = (0.85, 0.7047),

both at a pressure of P∗ = 0.051. The data for the isochoric setup
were obtained with reservoir states that represent the same,
average density, �̄�∗ = (𝜚∗hot’ + 𝜚∗cold)∕2 = 0.6517, but different tem-
peratures T∗

hot’ and T∗
cold as before; the corresponding pressures

differ widely: p∗hot’ = 0.194 and p∗cold = −0.140. The negative pres-
sure implies that in equilibrium such a reservoir would phase
separate. This is not necessarily the case in the non-equilibrium
situation. In our case it is found that the pressure gradient is
balanced by a density gradient so that effectively the reservoir
is no longer in the unstable state (but at a higher density, i.e.,
liquid again). So in essence, the example makes sense in the
non-equilibrium case and it represents a challenging condition
for testing our model. Both AdResS and reference simulations
were performed with the GPU-accelerated simulation software
“HAL’s MD package”.[25,26] For all nonequilibrium simulations,
a cuboid domain of size 120𝜎 × 20𝜎 × 20𝜎 was used for the “Uni-
verse”, with the long edge corresponding to the direction along
which molecules change their resolution in AdResS. Periodic
boundary conditions were applied at all faces of the cuboid, and
a mirrored setup with in total two AT boxes, four Δ regions, and
two TR regions was employed as in ref. [10]. The Hamiltonian
dynamics of the systems was integrated with the velocity Verlet
scheme for a timestep of 0.002𝜏. No further measures were ap-
plied to the AT regions; the Δ and TR regions in AdResS and the
reservoir regions in the full atomistic reference simulation were
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thermalized with the Andersen thermostat[27] with the update
rate set to 𝜈coupl = 50𝜏−1 for Figure 5 and 20𝜏−1 for Figure 6.
The AdResS setups contained typically 16 000 LJ particles on
average, whereas about 31 000 LJ particles were used for the
reference simulations. At each state point, nonequilibrium
trajectories over a duration of 15 000 𝜏 each were generated, the
first quarter of which (3 750 𝜏) was discarded for the calculation
of stationary time averages. For the data analysis, the simulation
box was divided at the mirror plane of the setup and the results
were averaged over both halves. The averages are done over
one long trajectory for the isobaric case and over three different
trajectories for the isocoric case.
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