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Abstract

Stein variational gradient descent (SVGD) refers to a class of methods for Bayesian inference based on in-
teracting particle systems. In this paper, we consider the originally proposed deterministic dynamics as well as
a stochastic variant, each of which represent one of the two main paradigms in Bayesian computational statis-
tics: variational inference and Markov chain Monte Carlo. As it turns out, these are tightly linked through
a correspondence between gradient flow structures and large-deviation principles rooted in statistical physics.
To expose this relationship, we develop the cotangent space construction for the Stein geometry, prove its ba-
sic properties, and determine the large-deviation functional governing the many-particle limit for the empirical
measure. Moreover, we identify the Stein-Fisher information (or kernelised Stein discrepancy) as its leading
order contribution in the long-time and many-particle regime in the sense of Γ-convergence, shedding some light
on the finite-particle properties of SVGD. Finally, we establish a comparison principle between the Stein-Fisher
information and RKHS-norms that might be of independent interest.

Keywords: Stein variational gradient descent, gradient flows, large deviations.

1 Introduction
Approximating high-dimensional probability distributions is a key challenge in many applications such as Bayesian
inference or computational statistical physics. The target measure of interest is typically given in the form

π =
1

Z
e−V dx (1)

in a high dimensional state space Rd, where Z =
∫
Rd e

−V dx is a numerically intractable normalisation constant, and
V ∈ C1(Rd;R) is referred to as the potential. Common algorithmic approaches can broadly be classified according
to the following two paradigms:

Variational inference (VI) [7, 8, 81] relies on a (parameterised) family of distributions D = {ρφ : φ ∈ Φ}, at-
tempting to find an approximation ρ∗ ≈ π by minimising the Kullback-Leibler divergence towards the target:

ρ∗ = arg min
ρ∈D

KL(ρ|π). (2)

While the accuracy of VI is limited by the expressivity of D, the optimisation problem (2) can often be solved
efficiently and at scale using modern (stochastic) gradient descent type algorithms [33, Chapter 8].

Markov Chain Monte Carlo (MCMC) [10, 68] techniques, on the other hand, are asymptotically exact, being
based on judiciously designed ergodic Markov processes (Xt)t≥0 that admit π as their invariant measure. The
target is obtained as an appropriate limit of a long-time ergodic average:

π = lim
T→∞

1

T

∫ T

0

δXt dt. (3)

1

ar
X

iv
:2

10
2.

12
95

6v
1 

 [
st

at
.M

L
] 

 2
5 

Fe
b 

20
21

mailto:nuesken@uni-potsdam.de
mailto:renger@wias-berlin.de


Accompanying convergence guarantees typically make inferences resting on MCMC more reliable than those based
on VI. However, MCMC is challenging to parallelise and, furthermore, in high-dimensional settings it is often frus-
trated by slow convergence in (3) due to time correlations in (Xt)t≥0.

Recently, there has been a growing interest in developing hybrid approaches that hold the promise of combin-
ing the advantages of MCMC and VI, see, for instance [36, 51, 55, 70, 72]. Various attempts in this direction can
be grouped into the so-called particle optimisation techniques [1, 11, 12, 43] that posit carefully designed dynamical
schemes for an ensemble of particles X̄ = (X1, . . . , XN ) ∈ (Rd)N . From the VI-perspective, the variational family
is then given by the empirical measures associated to the particles, D = { 1

N

∑N
i=1 δXi}, with the parameter set

Φ corresponding to the positions of these particles. In terms of MCMC, the dynamics of (X̄t)t≥0 can often be at
least approximately thought of as a Markov process approaching an extended target π̄ on (Rd)N whose marginals
coincide with π.

An appealing theoretical framework for analysing and constructing these particle-based methods is provided by
the theory of gradient flows on probability distributions [2, 60, 62], connecting diffusions with KL-optimisation
problems of the form (2) on the grounds of differential geometric ideas. In this regard, the prime example (and
also historically the first one where these concepts were layed out, see [37]) is given by the overdamped Langevin
dynamics [64, Section 4.5], the associated Fokker-Planck equation of which takes the form of a gradient flow evolu-
tion driven by the KL-divergence in the geometry induced by the quadratic Wasserstein distance. Recently, similar
ideas have been pursued, replacing either the driving functional or the underlying geometry, see, for instance,
[3, 23, 29, 30, 44, 67, 77].

In statistical physics, gradient flow structures have been shown to play a major role in understanding the fluctuations
of associated (stochastic) interacting particle systems [54, 57, 58] as described by the theory of large deviations.
In this paper paper we utilise the correspondence between gradient flow structures and large-deviation functionals
to shed some light on the connection between VI and MCMC in the context of a particular particle optimisation
scheme, namely Stein variational gradient descent.

1.1 Stein Variational Gradient Descent
Following the VI-paradigm, Stein variational gradient descent (SVGD) was first derived in [46] from a minimising
movement scheme for an ensemble of particles, seeking to iteratively solve the problem (2) for the corresponding
empirical measure, while at the same time constraining the driving vector field to be chosen from within the unit
ball of a reproducing kernel Hilbert space (RKHS)1. The method can be described by the following coupled system
of ODEs, where k : Rd×Rd → R is a positive definite kernel of sufficient regularity2 and X̄t = (X1

t , . . . X
N
t ) ∈ (Rd)N

denotes the ensemble of particles:

dXi
t

dt
=

1

N

N∑
j=1

(
−k(Xi

t , X
j
t )∇V (Xj

t ) +∇Xjt k(Xi
t , X

j
t )
)
, i = 1, . . . , N. (4)

Crucial to this approach is the observation that the corresponding empirical measure

ρ(N)

t :=
1

N

N∑
i=1

δXit (5)

converges to the target π in an appropriate sense as both N →∞ and t→∞, see [49] for rigorous statements.
In [28], the authors proposed to augment (4) and obtained the interacting system of stochastic differential equations
(SDEs)

dXi
t =

1

N

N∑
j=1

[
−k(Xi

t , X
j
t )∇V (Xj

t ) +∇Xjt k(Xi
t , X

j
t )
]

dt+

N∑
j=1

√
2K(X̄t)

ij
dW j

t , i = 1, . . . , N, (6)

where the matrix-valued function K : (Rd)N → RdN×dN consists of N2 blocks of size d × d, given by Kij(x̄) =
1
N k(xi, xj)Id×d, for i, j ∈ {1, . . . , d} and x̄ = (x1, . . . , xN ). Here, (W j

t )t≥0, j = 1, . . . , N denotes a collection of
1Even though the KL-divergence between the empirical measure and π is not defined (or infinite), this statement can be made precise

using the closely related kernelised Stein discrepancy [45].
2We refer to Section 2 for precise assumptions.
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d-dimensional standard Brownian motions, and
√
K(X̄t) refers to the matrix square root. The noise contribution∑N

j=1

√
2K(X̄t)ij dW j

t has been designed so as to make the product measure π̄ on (Rd)N with Lebesgue density

π̄(x̄) = π(x1) · . . . · π(xN ), x̄ = (x1, . . . , xN ), (7)

invariant for the dynamics (6). In fact, under reasonable assumptions, [23, Proposition 3] shows that (6) is indeed
ergodic with respect to π̄, meaning that the associated empirical measure converges to π as t→∞ (for instance, in
total variation distance). These observations show that the process (X̄t)t≥0 solving (6) can indeed be considered of
MCMC-type, targeting π̄. Indeed, (6) can be cast in the framework of [50] as pointed out in [28].

1.2 A connection between MCMC and VI rooted in statistical physics
One of the main topics in this article is the connection between the ODE (4) and the SDE (6). First of all, the
empirical measures associated to the solutions of (4) and (6) become indistinguishable in the limit as N →∞, that
is, the noise term

∑N
j=1

√
2K(X̄t)ij dW j

t becomes negligible. This claim can be substantiated in the sense that the
Stein PDE [44, 49]

∂tρt(x) = ∇x ·
(
ρt(x)

∫
Rd

[k(x, y)∇V (y)−∇yk(x, y)] ρt(dy)

)
(8)

describes the evolution of the empirical measure ρ(N)
t for both (4) and (6) in the mean field regime, that is, when

N →∞. To be more precise, for any fixed N ∈ N, the empirical measure ρ(N)

t associated to the ODE (4) satisfies (8)
in a weak sense, see [49, Prop. 2.5], and, moreover, stability arguments show that this statement can be extended
to the limit N → ∞, see [49, Theorem 2.7]. Concerning the SDE (6), the additional noise term has been shown
to be of order O( 1

N ) in [23, Proposition 3] and thus the corresponding empirical measure ρ(N)
t formally satisfies

(8) in the limit as N → ∞. In this paper the latter convergence will be made more quantitative in terms of a
corresponding large-deviation functional.

The Stein PDE (8) admits a gradient flow structure, described in [44] and further analysed in [23], that is, it can
be written in the form ∂tρt = − gradk KL(ρt), where KL is the Kullback-Leibner divergence or relative entropy
towards π, and the gradient is with respect to a particular geometry determined by the kernel k; we shall make
these terms more precise in Section 3. The gradient flow structure referred to above is not uniquely determined
by (8); in fact the existence of one particular gradient flow structure implies that the PDE (8) admits infinitely
many gradient flow structures [20]. For a particular example see [13], replacing the KL- by the χ2-divergence. Our
first main result shows that the KL-gradient flow structure is naturally connected to the noise contribution in (6),
bridging between the MCMC and VI viewpoints:

Informal Result 1.1. The gradient flow structure

∂tρt = − gradk KL(ρt) (9)

for the Stein PDE (8) (see Section (3)) is compatible with the particular form of the noise in the SDE (6).

This statement will be made precise in Section 5, resting on a reformulation of the Stein PDE (8) in terms of a
variational (in-)equality (see Proposition 3.11) and the large-deviation functional for the N → ∞ limit associated
to the SDE (6), see Theorem 4.3. Intuitively, both the gradient flow scheme (9) and the large-deviation functional
related to the noise structure in (6) encode information that goes beyond what is described by the Stein PDE (8):
The formulation (9) determines a specific non-unique ‘factorisation’ of the right-hand side of (8) into the geometric
term gradk and the driving functional KL, while the SDE (6) determines a non-unique3 stochastic augmentation
of (4). The Informal Result 1.1 establishes a correspondence between those extensions of (8) rooted in statistical
physics; this general principle can be seen as a modern version of Onsager’s reciprocity relation [53, 57].

1.3 Speed of convergence, kernel choice and Stein-Fisher information
From the practical perspective of minimising the computational cost, a central question is how to choose k in such
a way that the convergence ρ(N)

t → π as N →∞ and t→∞ occurs ‘as rapidly as possible’, that is, in such a way
that ρ(N)

t can provide a reasonable approximation of π for t and N not too large. In [23], the authors used convexity
3However, the noise contribution in (6) is canonical in Bayesian inference as it ensures ergodicity with respect to the extended target

π̄.
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arguments along the geodesics induced by the Stein geometry for studying the t → ∞ limit of the PDE (8), that
is, for the study of the long-time behaviour in the many-particle regime.

In the present paper, we complement those results, quantifying the speed of convergence for the random dynamics
(6) as N → ∞ using the theory of large deviations (see Section 4). As a consequence of the Informal Result 1.1,
the relevant functional admits an elegant formulation in terms of the Stein geometry (see Theorem 4.3). Although
the methods presented in this paper concern the SDE system (6), these results allow us to gain some intuition into
finite-particle effects for the deterministic system (4) on a heuristic level (see Section 6.2).

In order to gain further insight and in particular to derive practical guidelines for the choice of k, we next identify
the leading order term in the large-deviation functional when t is large, where limits are performed in the sense
of Gamma convergence. In this regime, both the many-particle as well as the long-time asymptotics turn out be
closely related to the Stein-Fisher information

IkStein(ρ) =

∫
Rd

∫
Rd
∇dρ

dπ
(x) · k(x, y)∇dρ

dπ
(y)π(dx)π(dy) (10a)

=

∫
Rd

∫
Rd

(
∇ log

dρ

dπ

)
(x) · k(x, y)

(
∇ log

dρ

dπ

)
(y)π(dx)π(dy), (10b)

a quantity that has natural links with the cotangent space construction to be introduced in Section 3.2. Let us also
note that IkStein(ρ) is known in other contexts as the kernelised Stein discrepancy KSD(ρ|π) and has found various
applications in scenarios where ρ needs to be compared to an unnormalised4 distribution π, see [14, 25, 34]. In fact,
the kernelised Stein discrepancy lies as the heart of the original derivation of SVGD, see [46]. We summarise our
findings in the following informal statement (to be explained and justified in Section 6).

Informal Result 1.2. The Stein-Fisher information IkStein controls the speed of convergence of the empirical
measure associated to the SDE (6) in the regime when N and t are large. As a consequence, letting k1, k2 :

Rd × Rd → R be two positive definite kernels with corresponding empirical measures ρ(N),k1

t and ρ(N),k2

t as defined
in (5) and (6), if

Ik1

Stein(ρ) ≥ Ik2

Stein(ρ), (11)

for all ρ such that (10a) is well defined, then the convergence of ρ(N),k1

t towards π as N →∞ and t→∞ is expected
to be faster than the corresponding convergence of ρ(N),k2

t .

The preceding result applies when N is large, but not infinite, hence taking a step towards understanding the
finite-particle properties of SVGD. Naturally, our two main results are strongly related. Indeed, the fact that the
Stein-Fisher information (10) controls the speed of convergence in both the t→∞ and N →∞ limits is ultimately
a consequence of the compatibility between the gradient flow and noise structures expressed in the Informal Result
1.1. Let us state straight away that the comparison (11) can be made on the basis of the reproducing kernel Hilbert
spaces (RKHS) associated to k1 and k2. More precisely, we shall prove the following result (see Section 6).

Proposition 1.3. Let k1, k2 : Rd × Rd → R be two positive definite kernels satisfying Assumptions 2, 3, and 4
below, and denote by Hk1 and Hk2 the corresponding reproducing kernel Hilbert spaces. Furthermore, assume that
V satisfies Assumption 1. Then the following are equivalent:

1. Stein-Fisher comparison: The inequality (11) holds for all ρ such that (10a) is well defined,

2. Inclusion of RKHS-balls: It holds that Hk2 ⊂ Hk1 and

‖φ‖Hk2
≤ ‖φ‖Hk1

, for all φ ∈ Hk1
. (12)

We refer the reader to Section 6.2 for a proof, and to Section 7 for an illustration of this result. Noting that the
Stein-Fisher information coincides with the kernelised Stein discrepancy KSD(ρ|π), Proposition 1.3 might be of
independent interest.

4Indeed, (10b) shows that IkStein(ρ) can be computed from π = 1
Z
e−V without knowing the potentially intractable normalisation

constant Z.
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Previous work

Stein variational gradient descent in its original deterministic form (4) was put forward in the seminal paper [46].
The stochastic variant (6) was proposed in [28] and shown to be ergodic in [23]. The fact that the Stein PDE (8)
admits a gradient flow structure was first observed in [44]; the corresponding Stein geometry was further developed
in [23], focusing on curvature and the long-time convergence properties of (8). This analysis revealed the important
role played by the Stein-Fisher information (10) and the associated Stein log-Sobolev inequality. Based on this,
the authors of [39] developed nonasymptotic bounds in discrete time as well as propagation of chaos results (the
latter of which unfortunately are not uniform in time). We would also like to mention the work [49] that rigorously
establishes well-posednedness as well as convergence of the Stein PDE (8), and the work [13] that establishes an
alternative gradient flow structure to the one considered in this paper.

Our contributions and outline of the article

In this article we make the following contributions:

• We complement the geometric constructions from [23], defining appropriate cotangent spaces and inner prod-
ucts. The Stein-Fisher information (10) (or kernelised Stein discrepancy) is shown to have a natural interpre-
tation in terms of this framework.

• We compute the large-deviation functional associated to the mean field limit of the SDE (6) and show that it
can be expressed conveniently in terms of the tangent norm in the Stein geometry.

• On the basis of the obtained large-deviation rate functional, we connect the KL-gradient flow structure in
(9) with the noise structure in (6), providing a correspondence between the VI-type scheme (4) and the
MCMC-type scheme (6).

• We identify the leading order term in the large-deviation functional in the regime where t is large to obtain
a direct relation to the Stein-Fisher information (10). We argue that at a heuristic level, this result provides
insight into finite-particle properties of SVGD.

The article is organised as follows. In Section 2 we introduce essential notation and state our basic assumptions.
Furthermore, we provide an overview of the relevant background on reproducing kernel Hilbert spaces. In Section
3.1, we review the geometric constructions from [23]. In Section 3.2, we extend this work by defining the cotangent
structure and establish its basic properties. Furthermore, we provide a reformulation of the Stein PDE (8) in terms
of a variational (in-)equality. In Section 4 we derive the large-deviation rate functional for the mean field limit,
leveraging the framework introduced in Section 3. In Section 5, we explain the connection between gradient flows
and large deviations and make the Informal Result 1.1 precise. In Section 6, we identify the Stein-Fisher information
as the leading order term in the large-deviation rate functional, provide a precise statement of the Informal Result
1.2, and prove Proposition 1.3. Furthermore, we provide a numerical example that illustrates our results. Finally,
we conclude the paper in Section 7 and briefly discuss directions for future work.

2 Preliminaries
In this section, we introduce essential notations and assumptions that are used throughout this article. In addition,
we briefly point out a few key results in the theory of reproducing kernel Hilbert spaces. For textbook accounts,
the reader is referred to [4, 71, 73, 76].

2.1 Notation and general assumptions
In order to ensure that both the target measure π in (1) as well as the dynamics (4) and (6) are well-defined, we
assume that the given potential satisfies the following:

Assumption 1 (Assumptions on V ). The potential V is continuously differentiable, V ∈ C1(Rd), and e−V is
integrable,

∫
Rd e

−V dx <∞.

The set of probability measures on Rd will be denoted by P(Rd). For any ρ ∈ P(Rd), the Hilbert space of ρ-square-
integrable functions will be denoted by L2(ρ), with scalar product 〈φ, ψ〉L2(ρ) =

∫
Rd φψ dρ and associated norm

5



‖φ‖2L2(ρ) = 〈φ, φ〉L2(ρ). Often, we will work with the following subset of probability measures,

M :=
{
ρ ∈ P(Rd) : ρ admits a smooth and strictly positive density with respect to the Lebesgue measure

}
.

(13)
We later formally turn this set into a Riemannian manifold with an extended geodesic distance (allowing the value
∞) that depends on the choice of the kernel.

2.2 Assumptions on kernels
Throughout this paper, we work with one or more kernels that are always assumed to satisfy the following:

Assumption 2. The kernel k : Rd×Rd → R is assumed to be symmetric, continuous, and continuously differentiable
off the diagonal, that is, k ∈ C1(Rd×Rd \{(x, y) ∈ R2d : x = y}). Furthermore, k is assumed to be positive definite,
that is, for all n ∈ N, α1, . . . , αn ∈ R and x1, . . . , xn ∈ Rd it holds that

∑n
i,j≥1 αiαjk(xi, xj) ≥ 0.

Assumption 3. The kernel k is bounded.

Assumption 4. [27, 75] The kernel k is integrally strictly positive definite (ISPD), that is,∫
Rd

∫
Rd
k(x, y) ρ(dx) ρ(dy) > 0, (14)

for all signed Borel measures ρ that are not the zero measure.

Let us comment on the foregoing assumptions. While Assumption 2 is fundamental (in that it is required for the
construction of associated reproducing kernel Hilbert spaces (RKHS) as well as for defining all the terms in (4) and
(6)), Assumptions 3 and 4 are made in this paper for technical convenience. Indeed, the set-up in [23] encompasses
unbounded kernels (but does require the weaker integrability condition

∫
Rd k(x, x) dρ(x) <∞ for measures ρ under

consideration). Non-ISPD kernels have been considered in [47], for instance, and could be included in our framework
with more technical effort. Note that the ISPD Assumption 4 is a strengthened version of the positive definiteness
in Assumption 2.
Examples of kernels satisfying Assumptions 2, 3 and 4 are given by the parametric family kp,σ : Rd × Rd → R,
defined via

kp,σ(x, y) = exp

(
−|x− y|

p

σp

)
, (15)

where p ∈ (0, 2] is a smoothness parameter, and σ > 0 is called the kernel width (see [23, Lemma 42]). Further
examples are provided by the family of Matérn kernels whose reproducing kernel Hilbert spaces coincide with the
classical Sobolev spaces Wm,2(Rd) whenever m and d are such that Wm,2(Rd) ⊂ C(Rd), see [71, Section 1.3].

2.3 Reproducing kernel Hilbert spaces
Given a positive definite kernel k, we denote by (Hk, 〈·, ·〉Hk) the corresponding reproducing kernel Hilbert space
(RKHS), see [76, Section 4], and by ‖ · ‖2Hk = 〈·, ·〉Hk the associated norm. This Hilbert space is characterised by
the conditions that k(x, ·) ∈ Hk as well as 〈f, k(x, ·)〉Hk = f(x), for all x ∈ Rd and f ∈ Hk. If ρ ∈ P(Rd) is a
probability measure with full support, then Assumption 3 ensures that Hk ⊂ L2(ρ), where moreover the natural
inclusion is continuous, see [76, Theorem 4.26], and Assumption 4 guarantees that Hk ⊂ L2(ρ) is dense, see [75,
Theorem 7] and [76, Theorem 4.26i)].
In order to characterise the norm ‖·‖Hk more explicitly, it is helpful to introduce the operators Tk,ρ : L2(ρ)→ L2(ρ)

(Tk,ρφ)(x) :=

∫
Rd
k(x, y)φ(y)ρ(dy), φ ∈ L2(ρ). (16)

We gather a number of properties of this operator that will be useful later on.

Proposition 2.1. For all ρ ∈M ,

(a) Tk,ρL2(ρ) ⊂ Hk, and Tk,ρ : L2(ρ)→ Hk is the adjoint of the inclusion Hk ↪→ L2(ρ), that is

〈Tk,ρφ, ψ〉Hk = 〈φ, ψ〉L2(ρ), φ ∈ L2(ρ), ψ ∈ Hk. (17)

6



(b) Tk,ρ is compact, self-adjoint and positive semi-definite on L2(ρ),

(c) Tk,ρ is injective.

Proof. For (a) and (b), see [76], Theorems 4.26 and 4.27, respectively. For (c), notice that Tk,ρφ = 0, φ ∈ C∞c (Rd)
implies φ = 0 by integrating against φρ and using Assumption 4.

Remark 2.2. The identity (17) is a key calculational tool throughout the proofs in Section 3 and can formally be
viewed as a consequence of the defining identity 〈k(x, ·), f〉Hk = f(x) after commuting integration and 〈·, ·〉Hk .
The scalar product in Hk can now be written in the form

〈f, g〉Hk = 〈T −1/2
k,ρ f, T −1/2

k,ρ g〉L2(ρ), f, g ∈ Hk, (18)

where T −1/2
k,ρ may be defined via the spectral theorem [65, Chapter VII]. For instance, if (ei)

∞
i=1 ⊂ L2(ρ) is an

orthonormal eigenbasis of Tk,ρ (that is, 〈ei, ej〉L2(ρ) = δij and Tk,ρei = λiei), then for f =
∑
i fiei and g =

∑
i giei

we have that

〈f, g〉Hk =

∞∑
i=1

1

λi
figi,

see [76, Section 4.5].
Derived fromHk and L2(ρ), we will frequently make use of the corresponding spaces of vector fieldsHdk and (L2(ρ))d,
defined through

Hdk = Hk ⊗ . . .⊗Hk︸ ︷︷ ︸
d times

and (L2(ρ))d = L2(ρ)⊗ . . .⊗ L2(ρ)︸ ︷︷ ︸
d times

.

In other words, Hdk and (L2(ρ))d consist of vector fields v = (v1, . . . , vd), with vi ∈ Hk or vi ∈ L2(ρ), respectively,
with scalar products given by

〈v, w〉Hdk =

d∑
i=1

〈vi, wi〉Hk , vi, wi ∈ Hk, and 〈v, w〉(L2(ρ))d =

d∑
i=1

〈vi, wi〉L2(ρ), vi, wi ∈ L2(ρ).

The operators Tk,ρ defined in (16) straightforwardly extend to the space (L2(ρ))d, interpreting (16) componentwise.
Similarly, Proposition 2.1 as well as the identity (18) remain valid with the obvious modifications. Finally, we will
need the following result in the spirit of the usual Helmholtz-decomposition [74].

Proposition 2.3 (Helmholtz decomposition for RKHS). Let ρ ∈M and define the space of divergence-free vector
fields

L2
div(ρ) =

{
v ∈ (L2(ρ))d : 〈v,∇φ〉(L2(ρ))d = 0, for all φ ∈ C∞c (Rd)

}
. (19)

Then Hdk admits the following 〈·, ·〉Hdk -orthogonal decomposition,

Hdk =
(
L2

div(ρ) ∩Hdk
)
⊕ Tk,ρ∇C∞c (Rd)

Hdk
. (20)

Proof. We refer to [23, Lemma 45].

3 The Stein PDE as a gradient flow
In this section we recall and further analyse the Stein geometry that allows us to formally write the Stein PDE (8)
as a gradient flow on probability distributions, as first observed in [44]. Subsection 3.1 will mostly be a review of
the Stein geometry as developed in [23]; in Subsection 3.2 we complement the construction from [23] by defining
appropriate cotangent spaces endowed with inner products; those turn out to be closely related to the Stein-Fisher
information (10). The duality between tangent and cotangent spaces gives rise to a variational reformulation of
the Stein PDE (8) in Proposition 3.11 that will be instrumental in linking the large-deviation statement in Section
4 to the gradient flow structure of the mean field limit. Analysing the Stein PDE (8) using the geometric picture
outlined in this section is very much inspired by the works of Otto and coworkers on the Fokker-Planck equation
and its relation to the quadratic Wasserstein distance (see [37, 59, 60, 61, 62] as well as the further developments in
[2, 32] and [15]). For a direct comparison between the Stein geometry and the Wasserstein geometry we refer the
reader to [23, Appendix A].
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Anticipating the constructions to follow in the remainder of this section, let us already in intuitive terms lay out the
connections between the original idea from [46] and the central geometric concepts of the Stein geometry. In [46],
the authors construct the ODE (4) as the continuous-time limit of a gradient descent scheme. More precisely, they
consider an ensemble of particles, represented by the empirical measure ρ(N), and design a minimising movement
scheme that aims at minimising the KL-divergence between ρ(N) and the target π. The associated velocity field
is constrained to be chosen from within the RKHS Hdk and obtained from a variational principle that involves the
corresponding RKHS-norm. As observed in [44] and further developed in [23], this construction principle is linked
to the observation that (8) can be cast in the form

∂tρ = −Kρ
δKL

δρ
=: −(gradkKL)(ρ), (21)

where KL denotes the Kullback-Leibler5 divergence (or relative entropy) between the current distribution ρt and
the target π,

KL(ρ) =

∫
Rd

log

(
dρ

dπ

)
dρ =

∫
Rd
V dρ+

∫
Rd

log ρdρ+ logZ, ρ ∈M, (22)

and Kρ is a positive definite ‘Onsager’ operator that we introduce in (29b). This operator defines the Stein-
gradient gradk := Kρ δδρ , formalises the minimising movement scheme from [46] and can be seen to be induced by
an appropriate definition of the tangent spaces TρM and corresponding (formal) Riemannian metric. The Onsager
operators Kρ translate between the tangent and cotangent spaces defined below; indeed we have gradkKL ∈ TρM
and δKL

δρ ∈ T
∗
ρM , at least formally.

From a statistical perspective, the term
∫
Rd V dρ in (22) measures the fit to the data, the entropic term

∫
Rd log ρdρ

encodes regularisation, and the normalisation constant Z represents the Bayesian evidence, useful in the context of
model selection (see, for instance [48] and [31, Section 6.7]).

3.1 Formal Riemannian structure and associated gradient
In what follows, we formally equip the setM defined in (13) with the structure of a Riemannian manifold, following
[23, Section 4], where the reader is referred to for further details. To start with, recall the operators Tk,ρ from (16),
that can be extended to self-adjoint, nonnegative definite, and compact operators on L2(ρ), see [76, Section 4.3].
By abuse of notation, we will often apply Tk,ρ to vector fields in (L2(ρ))d, in which case (16) is to be understood
componentwise. The operators Tk,ρ are used to define the tangent space construction in the Stein geometry:

Definition 3.1 (Tangent spaces and Riemannian metric). See [23, Definition 5]. For ρ ∈M , we define the tangent
space 6

TρM :=

{
ξ ∈ D′(Rd) : there exists v ∈ Tk,ρ∇C∞c (Rd)

Hdk such that ξ +∇ · (ρv) = 0 in the sense of distributions

}

and the Riemannian metric 〈·, ·〉TρM : TρM × TρM → R by

〈ξ, χ〉TρM := 〈u, v〉Hdk , (24)

where ξ +∇ · (ρu) = 0 and χ+∇ · (ρv) = 0, as well as u, v ∈ Tk,ρ∇C∞c (Rd)
Hdk .

A few remarks concerning Definition 3.1 are in order. First of all, the spaces Tk,ρ∇C∞c (Rd)
Hdk mimic the spaces

∇C∞c (Rd)
L2(ρ)

common in the Wasserstein setting, see for example [2, Sec. 8.4]. Similar to that scenario, to

each ξ ∈ TρM there exists a unique u ∈ Tk,ρ∇C∞c (Rd)
Hdk with ξ + ∇ · (ρu) = 0, so that (24) is justified. This

fact can be traced back to the Helmholtz decomposition in the RKHS setting, see Proposition 2.3. Furthermore,

Tk,ρ∇C∞c (Rd)
Hdk may also be recognised as the set of vector fields which are permissible in minimising movement

5For notational convenience later on, we adopt the notation KL(ρ) := KL(ρ|π), suppressing the dependence on π.
6D′ denotes the usual space of Schwartz distributions, as the dual of D(Rd) := C∞c (Rd) equipped with the Schwartz topology, see[22].

Moreover, we say that ξ +∇ · (ρv) = 0 holds in the sense of distributions if 〈ξ, φ〉 −
∫
Rd ∇φ · v dρ = 0 for all φ ∈ C∞c (Rd), where 〈·, ·〉

denotes the standard duality relation between D′(Rd) and C∞c (Rd).
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schemes such as those devised in the original paper [44]. Therefore, at an intuitive level, TρM is the space of
derivatives ∂tρ, where ρ is a curve obtained by continuous-time limits of these schemes. We refer the reader to [23,
Lemma 7], showing that indeed TρM is a well-defined Hilbert space, for all ρ ∈M .

The following lemma shows that TρM can indeed be considered the tangent space. Before we come to this re-
sult, we recall that the functional derivative of a suitable functional F : M → R is defined via∫

Rd

δF
δρ

(ρ)(x)φ(x) dx :=
d

dε

∣∣∣
ε=0
F(ρ+ εφ), (25)

for φ ∈ C∞c (Rd) with
∫
Rd φ dx = 0. The functional derivative of the Kullback-Leibner divergence (22) can be

computed for ρ ∈M :
δKL

δρ
(ρ)(x) = log ρ(x) + V (x), (26)

see, for instance, [80, Chapter 15].

Finally, we are able to connect the geometric construction from Definition 3.1 with the Stein PDE (8):

Lemma 3.2 (Stein gradient). See [23, Lemma 9 and Corollary 11]. Let ρ ∈ M and F : M → R be such that
the functional derivative δF

δρ (ρ) is well-defined and continuously differentiable. Moreover assume that Tk,ρ∇ δF
δρ (ρ) ∈

Tk,ρ∇C∞c (Rd)
Hdk . Then the Riemannian gradient associated to (TρM, 〈·, ·〉TρM ) is given by

(gradkF)(ρ) = −∇ ·
(
ρ Tk,ρ∇

δF
δρ

(ρ)
)
. (27)

Using (26), it follows that the gradient flow formulation (21) and the Stein PDE (8) coincide.

3.2 Cotangent spaces, Onsager operators, duality
and the energy-dissipation (in-)equality

In this section we expand the ideas of [23] and define the cotangent spaces T ∗ρM , their duality relationship with the
tangent spaces through the Onsager operators Kρ, and establish their basic properties. In order to construct the
cotangent spaces, we begin by defining the corresponding inner products for sufficiently regular test functions.

Definition 3.3 (Dual inner product). For ρ ∈M , we define the dual inner product

〈φ, ψ〉T∗ρM =

∫
Rd

∫
Rd
∇φ(x) · k(x, y)∇ψ(y)ρ(dx)ρ(dy), φ, ψ ∈ C∞c (Rd), (28)

as well as the Onsager operator

Kρ : C∞c (Rd)→ TρM (29a)
φ 7→ −∇ · (ρTk,ρ∇φ). (29b)

Remark 3.4. Combining the definition (29) with (27), we see that gradk = Kρ δδρ . In differential geometric terms,
the functional derivative δ

δρ takes the role of the exterior derivative [41], while the Onsager operator corresponds
to the musical isomorphisms (‘raising’ the index in the language of theoretical physics). The latter concept will
be made more explicit in Proposition 3.8 below. Note also that (29b) is similar to the Wasserstein setting where
Kρφ = −∇ · (ρ∇φ).

The next lemma is a prelude to Definition 3.6, in particular showing that the inner product 〈·, ·〉T∗ρM is nondegen-
erate.

Lemma 3.5. Let k satisfy Assumptions 2, 3 and 4. Then (C∞c (Rd, 〈·, ·〉T∗ρM ) is a pre-Hilbert7 space over R.

Proof. The bilinearity of 〈·, ·〉T∗ρM ) is immediate from the definition. For φ ∈ C∞c (Rd), Assumption 4 implies that
〈φ, φ〉T∗ρM = 0 if and only if φ = 0.

7A pre-Hilbert (or inner-product) space satisfies the usual axioms of a Hilbert space, except for completeness. That is, it does not
necessarily contain the limit points of all Cauchy sequences, see [40, Section 3.1].
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The cotangent spaces can now be defined as follows:

Definition 3.6 (Cotangent spaces). For ρ ∈ M , we define the cotangent spaces T ∗ρM to be the completions8 of
(C∞c (Rd), 〈·, ·〉T∗ρM ).

Remark 3.7. On a practical level, the completion construction extends the definition (28) to functions φ such that
〈φ, φ〉T∗ρM can be defined9 and 〈φ, φ〉T∗ρM <∞. In particular, if ρ ∈ M and IkStein(ρ) <∞ with IkStein defined as in
(10), then ρ

π ∈ T
∗
πM , and

IkStein(ρ) =
∥∥∥ ρ
π

∥∥∥2

T∗πM
=
∥∥∥ δKL

δρ

∥∥∥2

T∗ρM
. (30)

We will revisit this identity in Section 6.

The next result shows that the Onsager operators Kρ naturally translate between the tangent and cotangent spaces,
substantiating Remark 3.4:

Proposition 3.8 (Duality). For any ρ ∈M , the Onsager operator Kρ extends to an isometric isomorphism between
the Hilbert spaces T ∗ρM and TρM . That is, the extension (denoted by the same symbol) satisfies

〈Kρφ,Kρψ〉TρM = 〈φ, ψ〉T∗ρM , (31)

for all φ, ψ ∈ T ∗ρM .

Proof. For φ, ψ ∈ C∞c (Rd), we have that

〈Kρφ,Kρψ〉TρM = 〈Tk,ρ∇φ, Tk,ρ∇ψ〉Hdk = 〈Tk,ρ∇φ,∇ψ〉(L2(ρ))d = 〈φ, ψ〉T∗ρM . (32)

Here, the first identity follows from the definition (24) and Proposition 2.1(a), while the second identity is implied
by the adjoint relation (17). The third identity is a direct consequence of the definition (28). From (32), we see
that Kρ is a linear isometry from C∞c (Rd) to TρM , and hence can be uniquely extended to an isometry K̂ρ on the
completion T ∗ρM (see [65, Theorem I.7]). Being an isometry, it is clear that K̂ρ is injective. It remains to show that
K̂ρ is surjective. To this end, it is sufficient to prove that Kρ(C∞c (Rd)) is dense in TρM . For this, let us assume to
the contrary that Kρ(C∞c (Rd)) is not dense. Then there exists χ ∈ TρM with χ 6= 0 such that 〈χ,Kρφ〉TρM = 0,
for all φ ∈ C∞c (Rd). By Definition 3.1, there exists v ∈ Hdk such that χ+∇ · (ρv) = 0 in the sense of distributions,
as well as a sequence (ψn) ⊂ C∞c (Rd) such that Tk,ρ∇ψn → v in Hdk. We then see that

0 = 〈χ,Kρψn〉TρM = −〈v, Tk,ρ∇ψn〉Hdk → −‖v‖
2
Hdk
, (33)

implying that v = 0. From the second statement in [23, Lemma 7], implied by Proposition 2.3, it then follows that
χ = 0, contradicting the assumption χ 6= 0 from before, and hence concluding the proof.

We can leverage the correspondence between TρM and T ∗ρM through Kρ provided by Proposition 3.8 to set up
an associated duality relation. This duality is natural in that it coincides with the duality between D′(Rd) and
C∞c (Rd) whenever both are defined:

Corollary 3.9. For any ρ ∈M , we can define the duality relation

〈φ, ξ〉T∗ρM TρM := 〈Kρφ, ξ〉TρM , φ ∈ T ∗ρM, ξ ∈ TρM. (34)

In particular, T ∗ρM is a representation of the dual of TρM . If φ ∈ C∞c (Rd) ⊂ T ∗ρM , then we have

〈φ, ξ〉T∗ρM TρM = 〈ξ, φ〉D′(Rd) C∞c (Rd) =

∫
Rd
v · ∇φdρ, (35)

where ξ +∇ · (ρv) = 0 and v ∈ Tk,ρ∇C∞c (Rd)
Hdk .

8Any pre-Hilbert space can be upgraded to a Hilbert space, intuitively by considering all limit points. For a rigorous survey of the
completion construction see [40, Section 1.6, Theorem 3.2-3].

9Note that this does not require φ to be differentiable; indeed (28) can be extended to nondifferentiable φ and ψ using integration
by parts.
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Proof. By Proposition 3.8 and the Riesz representation theorem, (34) establishes a one-to-one correspondence
between the topological dual of TρM and T ∗ρM . The second identity in (35) is satisfied by definition, see Remark
3.4. To obtain the first identity, consider a sequence (ξn) ⊂ T ∗ρM with ξn → ξ, such that there exists a sequence
(ψn) ⊂ C∞c (Rd) satisfying ξn +∇ · (ρTk,ρ∇ψn) = 0 in the sense of distributions. Then we have

〈ξn, φ〉D′(Rd) C∞c (Rd) =

∫
Rd

(Tk,ρ∇ψn) · ∇φdρ = 〈ψn, φ〉T∗ρM = 〈Kρψn,Kρφ〉TρM (36a)

= 〈φ,Kρψn〉T∗ρM TρM = 〈φ, ξn〉T∗ρM TρM , (36b)

where the first inequality is a consequence of the definition of 〈·, ·〉D′(Rd) C∞c (Rd), the second equality follows from
(28), the third equality follows from (31), and the fourth equality follows from (34). Finally, we obtain (35) by
passing to the limit, noting that all operations are continuous.

As an consequence of this duality and the Banach-Alaoglu Theorem, we obtain compactness of the (sub-)level sets
of the Stein-Fisher information, relevant later in the proof of Theorem 6.1.

Corollary 3.10. For any C > 0, the sets {ρ ∈M : IkStein(ρ) ≤ C} are pre-compact in the topology characterised by
the convergence:

ρε
∗π
⇀
ε→0

ρ :⇔
〈ρε
π
, ξ
〉

T∗πM TπM
→

〈 ρ
π
, ξ
〉

T∗πM TπM
for all ξ ∈ TπM. (37)

We next provide a reformulation of the Stein PDE (8) in terms of an energy-dissipation (in-)equality (see [2, Chapter
11]), using the framework developed in this section:

Proposition 3.11 (Energy-dissipation equality). For T > 0, let ρ : [0, T ]→M be a curve such that t 7→ KL(ρt) is
differentiable and for all t ∈ [0, T ],

∂tρt ∈ TρtM,
δKL

δρ
(ρt) ∈ T ∗ρtM, and

d

dt
KL(ρt) =

〈
δKL

δρ
(ρt), ∂tρt

〉
T∗ρtM TρtM

. (38)

Then the following statements are equivalent:

the Stein PDE (8) holds for all t ∈ [0, T ],

⇐⇒

∂tρt = −Kρt
δKL

δρ
(ρt) for all t ∈ [0, T ],

⇐⇒

KL(ρT )−KL(ρ0) +

∫ T

0

(
1

2
‖∂tρt‖2TρtM +

1

2

∥∥∥ δKL

δρ
(ρt)

∥∥∥2

T∗ρtM

)
dt = 0. (39)

Moreover, for any curve satisfying (38), the left-hand side of (39) is nonnegative.

Remark 3.12. The assumptions (38) are made for convenience, and we refer to [2] for generalisations. Note that the
chain rule, i.e. the last condition of (38), is expected to hold at a formal level, combining (25) and (35). Since (39)
is always non-negative, the proposition continues to hold if ‘=’ is replaced by ‘≤’; analogues of (39) are therefore
often called energy-dissipation inequalities in the literature.

Proof. Take any curve satisfying (38). The statement follows immediately by applying (38) and completing the
square:

KL(ρT )−KL(ρ0) +
1

2

∫ T

0

(
‖∂tρt‖2TρtM +

∥∥∥ δKL

δρ
(ρt)

∥∥∥2

T∗ρtM

)
dt

=

∫ T

0

( 〈
δKL

δρ
(ρt), ∂tρt

〉
T∗ρtM TρtM

+
1

2
‖∂tρt‖2TρtM +

1

2

∥∥∥ δKL

δρ
(ρt)

∥∥∥2

T∗ρtM

)
dt

(31),(34)
=

1

2

∫ T

0

∥∥∥ ∂ρt + Kρt
δKL

δρ
(ρt)

∥∥∥2

TρtM
dt.
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We conclude this section with a remark on the relationship between the functional-analytic frameworks associated
to the Stein and Wasserstein geometries. For this, we recall that in the Wasserstein geometry, the tangent and
cotangent spaces are given by the Sobolev spaces H−1(ρ) and H1(ρ), respectively, see [54].

Lemma 3.13 (Comparison with the Wasserstein setting). We have

H1(ρ) ↪→ T ∗ρM and TρM ↪→ H−1(ρ), (40)

where ↪→ denotes containment with continuous inclusion.

Remark 3.14. The fact that the tangent spaces TρM in the Stein geometry are contained in the tangent spaces for
the Wasserstein geometry is ultimately due to the fact that the movement of the particles is restricted to vector
fields belonging to reproducing kernel Hilbert spaces in SVGD.

Proof. For the first statement, it it sufficient to show that there exists a constant C > 0 such that ‖φ‖T∗ρM ≤
C‖φ‖H1(ρ), for all φ ∈ C∞c (Rd). This follows immediately from

〈φ, φ〉T∗ρM = 〈Tk,ρ∇φ,∇φ〉(L2(ρ))d ≤ ‖Tk,ρ‖(L2(ρ))d→(L2(ρ))d‖∇φ‖(L2(ρ))d , φ ∈ C∞c (Rd), (41)

noting that Tk,ρ is bounded on (L2(ρ))d by Proposition 2.1 and therefore ‖Tk,ρ‖(L2(ρ))d <∞. The second statement
follows immediately by the duality established in Corollary 3.9, see [69, Theorem 4.10].

4 Large deviations corresponding to the mean field limit
In this section we introduce and derive the large-deviation principle for the empirical measure ρ(N)

t associated to
the SDE (6) as N →∞. The derivation will partly be formal via a standard tilting technique; rigorous results for
similar stochastic systems can be found in the classic works [17] and [24, Ch. 13.3].
As mentioned in Subsection 1.1, the (random) path ρ(N) := (ρ(N)

t )t∈[0,T ] converges weakly as N →∞ to the solution
ρ(∞) of the Stein PDE (8). This means that for any continuity set A of paths [6, Th. 2.1],

P(ρ(N) ∈ A)
N→∞−−−−→ δρ(∞)(A),

that is, the probability vanishes for any atypical path ρ 6= ρ(∞). The large-deviation principle quantifies the
exponential rate of this convergence:

P(ρ(N) ∈ A)
N→∞∼ exp

(
−N infρ∈A I[0,T ](ρ)

)
, (42)

where the rate functional I[0,T ] satisfies I[0,T ](ρ
(∞)) = 0 and I[0,T ](ρ) > 0 for any path ρ 6= ρ(∞). In other words,

the magnitude of I[0,T ](ρ) quantifies the ‘unlikeliness’ of the particular path ρ as a deviation from ρ(∞), in the
exponential scaling indicated above. The infimum on the right-hand side appears because the process will follow
the least unlikely path with overwhelming probability; for the precise definition of the large-deviation principle we
refer to [19].
Remark 4.1. Throughout this paper we shall formally derive large-deviation principles (42) for small balls Bε(ρ)
around an unlikely event ρ, i.e.

P(ρ(N) ∈ Bε(ρ))
N→∞∼ exp

(
−NI[0,T ](ρ)

)
.

This is a common proof technique for both the large-deviation lower and upper bounds in the rigorous definition,
see [19, Sec. 1.2].
Remark 4.2. For brevity we shall largely ignore the role of the initial condition ρ0. Implicitly we will always assume
that the initial positions Xi

0 of all particles are chosen deterministically, in such a way that ρ(N)

0 converges weakly
to some given ρ0. Theorem 6.1 below shows that the leading order contribution as T →∞ is independent of ρ0.
Our main result provides an expression for the rate functional I[0,T ] in terms of the TρM -norm introduced in
Definition 3.1. We postpone a discussion of its interpretation until Sections 6 and 7.

Theorem 4.3 (Large-deviation principle, formal). The path (ρ(N)

t )t∈[0,T ] of the empirical measure (5) associated
to the SDE (6) satisfies a large-deviation principle (42) with rate functional I[0,T ], given by

I[0,T ](ρ) =
1

4

∫ T

0

∥∥∥∥∂tρt −∇x · (ρt ∫
Rd

[k(·, y)∇V (y)−∇yk(·, y)] ρt(dy)

)∥∥∥∥2

TρtM

dt, (43)

for paths ρ satisfying (38).
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We note that the expression (43) can be extended to arbitrary paths ρ : [0, T ]→ P(Rd), possibly taking the value
infinity; for brevity we will focus on sufficiently regular paths in the sense of (38).
In the remainder of this section, we outline the proof of Theorem 4.3. The key idea is to tilt the underlying prob-
ability measure using Girsanov transformations so that the atypical path ρ becomes the typical one for the new,
tilted measure. The very same technique is common in importance sampling for diffusions, see [35, 78] and [56, Sec-
tion 2.2], and sequential Monte Carlo methods [18, 21, 66], used to simulate the occurrence of rare (=atypical) events.

The calculation of the large-deviation rate functional requires the construction of the ‘exponential martingale’10,
for which it will be helpful to know the generator11 of the process ρ(N)

t explicitly.

Lemma 4.4. For each N ∈ N, the generator of the Markov process ρ(N)
t defined by (6) and (5) is:

(Q(N)F )(ρ) =

∫∫
Rd×Rd

[
− k(x, y)∇V (y) +∇yk(x, y)

]
· ∇x

(
δF

δρ
(ρ)

)
(x) ρ(dx) ρ(dy)

+
1

N

∫∫
Rd×Rd

k(x, y)∇x · ∇y
(
δ2F

δρ2
(ρ)

)
(x, y) ρ(dx) ρ(dy)

+
1

N

∫
Rd
k(x, x)∆

(
δF

δρ
(ρ)

)
(x) ρ(dx), (44)

where F : P(Rd)→ R is a test function of sufficient regularity.

The proof follows a standard calculation involving Itô’s formula that we postpone to the appendix.
The following result shows that the process can be perturbed or tilted by adding an additional, time-dependent
drift such that the Radon-Nikodym derivative is explicit.

Lemma 4.5 (Girsanov transformation). Let P(N)

[0,T ] be the law of the empirical measure process (ρ(N)

t )t∈[0,T ] associated
to the SDE (6), fix a test function G : [0, T ]×P(Rd) of sufficient regularity 12 , and define the tilted measure P(N,G)

[0,T ]

through the Radon-Nikodym derivative,

dP(N,G)

[0,T ]

dP(N)

[0,T ]

(ρ) = exp
(
NGT (ρT )−NG0(ρ0)−N

∫ T

0

(∂tGt)(ρt) dt−N
∫ T

0

(H(N) Gt)(ρt) dt
)
, (45)

where the operator H(N) is defined as

(H(N) G)(ρ) :=
1

N
e−NG(ρ)

(
Q(N)eNG(ρ)

)
(ρ). (46)

Then P(N,G)

[0,T ] is the law of the (time-inhomogeneous) Markov process with generator

(Q(N,G)

t F )(ρ) := (Q(N)F )(ρ)+

∫∫
Rd×Rd

k(x, y)∇x ·∇y
(δF
δρ

(ρ)(x)
δGt
δρ

(ρ)(y)+
δGt
δρ

(ρ)(x)
δF

δρ
(ρ)(y)

)
ρ(dx) ρ(dy). (47)

Remark 4.6. The limit of the operator H(N) coincides with the generator of the nonlinear Nisio semigroup in the
framework of [24].

Proof. The statement follows from the general Girsanov transformation formula [63, Th. 4.2], adapted to allow for
time-dependent test functions G, see also [38, Th. A1.7.3] and [24, Sec. 8.6.1.1]:

(Q(N,G)

t F )(ρ) = e−NGt(ρ)(Q(N)FeNGt(ρ))(ρ)− e−NGt(ρ)F (ρ)(Q(N)eNGt(ρ))(ρ).

In the following we explicitly calculate (46) and pass to the limit as N →∞.

10The exponential martingale is the right-hand side of (45) applied to the random process ρ(N)

t .
11Since the process ρ(N)

t takes (random) values in P(Rd), its generator acts on functionals F : P(Rd)→ R of sufficient regularity. For
background on measure-valued stochastic processes we refer the reader to [16].

12A convenient class of test functions is given by G ∈ C2
b

(
0, T ;C2

b (P(Rd))
)
, where the derivative in P(Rd) is understood in the sense

of (25). See [79, Theorem 2.2.1] for the general Novikov condition (in finite dimensions) and [63] for an even more general condition.
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Lemma 4.7. For any test function G : [0, T ]× P(Rd) of sufficient regularity (as above), we have

(H(N) G)(ρ)
N→∞−−−−→ H

(
ρ,
δG

δρ
(ρ)
)

:= −
〈
δG

δρ
(ρ),

δKL

δρ
(ρ)
〉
T∗ρM

+
∥∥∥ δG
δρ

(ρ)
∥∥∥2

T∗ρM
,

where 〈·, ·〉T∗ρM is defined in (28).

We postpone this calculation to the appendix.

Lemma 4.8 (Mean-field limit, formal). Fix a test function G : [0, T ] × P(Rd) of sufficient regularity (as above)
and let ρ(N,G)

t be the process with generator (47). Then ρ(N,G) → ρ(∞,G), which weakly solves the “tilted Stein PDE”:

∂tρt(x) = ∇x ·
(
ρt(x)

∫
Rd

[
k(x, y)∇V (y)−∇yk(x, y)− 2k(x, y)∇y

δGt

δρ
(ρt)(y)

]
ρt(dy)

)
. (48)

Proof sketch. Clearly the generator (47) converges pointwise in ρ to

(Q(∞,G)

t F )(ρ) :=

∫∫
Rd×Rd

[
− k(x, y)∇V (y) +∇yk(x, y)

]
· ∇x

(
δF

δρ
(ρ)
)

(x) ρ(dx) ρ(dy)

+

∫∫
Rd×Rd

k(x, y)∇x · ∇y
(
δF

δρ
(ρ)(x)

δGt

δρ
(ρ)(y) +

δGt

δρ
(ρ)(x)

δF

δρ
(ρ)(y)

)
ρ(dx) ρ(dy).

Hence formally by [42, Th. 2.12], the process ρ(N,G)

t converges to some (a priori stochastic) process ρ(∞,G)

t . It remains
to show that this process satisfies (48) and is thus deterministic.
Let P (∞,G)

t be the time marginal of the path measure P(∞,G)

[0,T ] and let us make the ansatz that it is indeed deterministic:
P (∞,G)

t = δρt for some (by assumption) sufficiently regular path ρt(dx) = ρt(x) dx. Then using the Chapman-
Kolmogorov forward equation,∫

Rd

δF

δρt
(ρt)(x) ∂tρ(dx) =

d

dt
F (ρt) =

d

dt

∫
F (ρ)Pt(dρ) =

∫
(Q(∞,G)

t F )(ρ)Pt(dρ)

= (Q(∞,G)

t F )(ρt) =

∫
Rd

δF

δρ
(ρt)(x)B(Gt)(ρt(x)) dx,

where B(Gt)(ρt(x)) is the right-hand side of (47). Since this equation holds for arbitrary (sufficiently regular) test
functions F , it follows that ∂tρt = B(Gt)(ρt) weakly, and so the ansatz is justified for ρt = ρ(∞,G)

t .

Remark 4.9. In the notation introduced in Section 3, the tilted Stein PDE (48) becomes

∂tρt = −Kρt
δKL

δρ
(ρt) + 2Kρt

δGt
δρ

(ρt).

We finally have all the ingredients to prove the main result of this section.

Proof sketch of Theorem 4.3. To simplify, we only derive the rate functional for an arbitrary path ρ = (ρt)t∈[0,T ]

satisfying (38). Corresponding to this path, let ξt ∈ T ∗ρtM be maximal in

〈ξt, ∂tρt〉T∗ρtM TρtM
−H(ρt, ξt) =

〈
ξt, ∂tρt + Kρt

δKL

δρ
(ρt)

〉
T∗ρtM TρtM

+ 〈ξt,Kρtξt〉T∗ρtM TρtM
,

pointwise in t ∈ [0, T ], where the brackets are defined in Corollary 3.9, and H is the limit obtained in Lemma 4.7.
Again for simplicity we shall assume that this maximiser exists, and in fact ξt ∈ C∞c (Rd) ⊂ T ∗ρtM .
Upon differentiation with respect to ξt we recover the tilted Stein PDE (48) with Gt(ρ) := 〈ρt, ξt〉D′(Rd) C∞c (Rd)

so
that (δGt/δρ)(ρt) = ξt.
Thus for this particular choice, Lemma 4.8 shows that the tilted process converges to the path we picked in the
beginning of the proof, i.e.

P(N,G)

[0,T ] → δρ. (49)

Now pick an arbitrary small ball Bε(ρ) (in Skorokhod space) around the path ρ. By Lemma 4.5 we may change the
measure and write, for small ε > 0:

1

N
logP(N)

[0,T ](Bε(ρ)) =
1

N
log

∫
Bε(ρ)

dP(N)

[0,T ]

dP(N,G)

[0,T ]

(ρ̂) dP(N,G)

[0,T ] (dρ̂) ≈ 1

N
log

dP(N)

[0,T ]

dP(N,G)

[0,T ]

(ρ) +
1

N
logP(N,G)

[0,T ] (Bε(ρ)). (50)
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By (49) the last term vanishes, and so by Lemmas 4.5 and 4.7 we find as N →∞ and small ε > 0,

1

N
logP(N)

[0,T ](Bε(ρ))→ − 〈ρT , ξT 〉D′(Rd) C∞c (Rd) + 〈ρ0, ξ0〉D′(Rd) C∞c (Rd) −
∫ T

0

〈ρt, ∂tξt〉D′(Rd) C∞c (Rd) dt−
∫ T

0

H(ρt, ξt) dt

= − sup
ξ̂:(0,T )→T∗ρM

∫ T

0

[
〈ξ̂t, ∂tρt〉T∗ρtM TρtM

−H(ρt, ξ̂t)
]

dt

= − sup
ξ̂:(0,T )→T∗ρM

∫ T

0

[ 〈
ξ̂t, ∂tρt + Kρt

δKL

δρ
(ρt)

〉
T∗ρtM TρtM

− ‖ξt‖2T∗ρM

]
dt

= −I[0,T ](ρ),

where the supremum over tiltings ξ̂ appears due to the definition of ξ.
In general, the perturbation functions ξ and G do not have sufficient regularity to apply Lemma 4.5, if they exist at
all, so one typically needs technically demanding approximation arguments to make this into a rigorous argument,
see for example [24, Ch. 13] and [17].

From the large-deviation result in Theorem 4.3 and the contraction principle [19, Th. 4.2.1] we immediately obtain
the large-deviation principle for the ergodic limit (3). The ensuing rate functional will be further analysed in Section
6.

Corollary 4.10. Fix T > 0 and ρ0 ∈ M . Let (ρ(N)

t )t∈[0,T ] be the path of the empirical measure associated to the
SDE (6), and let

ρ̄(N)

T :=
1

T

∫ T

0

ρ(N)

t dt

be the ergodic average thereof. Then ρ̄(N)

T satisfies a large-deviation principle as N →∞, i.e.

P(ρ̄(N)

T ∈ A)
N→∞∼ exp

(
−N inf ρ̄∈A ĪT (ρ̄)

)
,

with rate functional:
ĪT (ρ̄) := inf

ρ̂:[0,T ]→M :
ρ̂0=ρ0,

T−1
∫ T
0
ρ̂t dt=ρ̄

I[0,T ](ρ̂). (51)

5 Connecting gradient flows to large deviations
As stated in the Introduction, any evolution equation of gradient flow type in fact admits many other non-equivalent
gradient flow structures [20]. In the case of the Stein PDE (8) this phenomenon is exemplified by the structures
proposed in [44, 23] and [13]. However, each gradient flow structure is related to a particular form of the noise in
the corresponding interacting particle system. In this section we leverage our results from Sections 3 and 4 to make
our Informal Result 1.1 precise: the gradient flow structure from Section 3 corresponds to the noise described by
the SDE (6). Our rigorous statement draws a connection between the reformulation of the gradient flow dynamics
in terms of the energy-dissipation (in-)equality (39) and the large-deviation functional (43):

Theorem 5.1 (Connection between energy-dissipation and large deviations). For any curve ρ : [0, T ] → M such
that t 7→ KL(ρt) is differentiable and (38) holds for all t ∈ [0, T ], the left-hand side of (39) coincides with I[0,T ](ρ)

up to a factor of 1
2 , that is

I[0,T ](ρ) =
1

2
KL(ρT )− 1

2
KL(ρ0) +

1

4

∫ T

0

‖∂tρt‖2TρtM dt+

∫ T

0

∥∥∥∥ δ 1
2

KL

δρ
(ρt)

∥∥∥∥2

T∗ρtM

dt. (52)

This implies that the large deviations from Theorem 4.3 uniquely induce the gradient flow system with driving energy
1
2 KL(ρ) and cotangent norm ‖·‖T∗ρM in the sense of [52].
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Connections between energy-dissipation and large deviations have a long history in physics, starting from the idea
that for non-evolving random systems, the Boltzmann-Gibbs-Helmholtz free energy F(ρ) of a macroscopic state ρ
is related to the probability of corresponding microstates through P(N)

(
Bε(ρ)

)
∼ exp

(
− NF(ρ)/(κBT )

)
. For the

sake of brevity we ignore the Boltzmann constant κB and the constant temperature T . A dynamical version of
this principle was proposed by Onsager and Machlup [57, 58], showing that for a number of physical examples with
reversible randomness on the microscopic level, the path measures behave like

P(N)
(
Bε(ρ)

)
∼ exp

(
−N

[
F(ρT )−F(ρ0) + 1

2

∫ T

0

|∂tρt|2ρt dt+ 1
2

∫ T

0

| δFδρ (ρt)|2ρ∗t dt
])
, (53)

at least close to equilibrium. In the above display, F stands for an appropriate free energy functional, |·|ρt and
|·|ρ∗t for suitable dual norms, and ε > 0 is assumed to be small. Moreover, Onsager and Machlup demonstrated
that these constituents define a corresponding gradient flow structure 13. Note that the exponent in (53) has the
dimensions of a free energy (ignoring the Boltzmann constant and the constant temperature), which is consistent
with the Boltzmann-Gibbs-Helmholtz free energy as described above.
More recently, this principle was extended to include more general dynamics that are also allowed to evolve far away
from their equilibrium state [54]. It turns out that for any microscopic reversible Markov process, the corresponding
large-deviations rate can be decomposed in such a way that it uniquely defines the free energy functional F and
the dissipation mechanism (in (53) encoded in the two norms |·|ρt and |·|ρ∗t ) of a gradient flow. For quadratic rate
functionals, as in our case (43), this decomposition corresponds to an expansion of squares, which basically amounts
to connecting the energy-dissipation (in-)equality (3.11) to the large-deviation functional (43). This connection is
the rigorous statement of the Onsager-Machlup principle described above, as well as of our Informal Result 1.1.

Proof of Theorem 5.1. The decomposition follows the same argument as the proof of Proposition 3.11. Note that
by (31) and (34), the two squared norms are convex duals to each other, i.e. for all ρ ∈M , ξ ∈ TρM and φ ∈ T ∗ρM

1

4
‖ξ‖2TρM = sup

φ∈T∗ρM
〈φ, ξ〉T∗ρM TρM − ‖φ‖

2
T∗ρM

, and ‖φ‖2T∗ρM = sup
ξ∈TρM

〈φ, ξ〉T∗ρM TρM −
1

4
‖ξ‖2TρM .

This indeed implies that (52) is a decomposition in the sense of [52, eq. (1.10)]. The uniquenes of the driving energy
1
2 KL and cotangent norm ‖·‖T∗ρM follows from [52, Th. 2.1(ii)].

Remark 5.2. Strictly speaking, this result yields a different gradient flow structure:

∂tρt = −(2Kρt)
(

1
2 KL(ρt)

)
.

The constant 1/2 in front of the Kullback-Leibner divergence is a known issue; it arises because the Kullback-Leibner
divergence is related to the difference of large-deviation costs of moving forward and backward in time (note the
time-reversal symmetry (57)), hence when only moving forward in time, the constant 1/2 appears. Similarly, the
constant 2 in front of the Onsager operator Kρ appears as the derivative of the norm ‖·‖2T∗ρM . We again refer to
[52] for the details. Of course, one can also absorb the constant 1/2 in the Onsager operator as we do.

From Theorem 5.1 we immediately obtain the following relation between the Stein-Fisher information and free
energy dissipation:

Corollary 5.3 ([23, 49]). For the solutions ρ of the Stein PDE (8):

d

dt
KL(ρt) = −IkStein(ρt).

Hence the Fisher information controls the convergence for the Stein PDE as t→∞ (see also the discussion of the
Stein log-Sobolev inequality in [23, Remark 35] and [39]). In the next section we show that the Fisher information
also controls the convergence for the stochastic SVGD scheme as both N →∞ and T →∞.

13The reversibility of a Markov process is often called detailed balance in the physics literature to distinguish it from thermodynamical
reversibility and was referred to as reciprocity relations by Onsager and Machlup [57]. Moreover, they called the energy-dissipation
inequality (39) the principle of least dissipation.
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6 Long-time behaviour and the Stein-Fisher information
Generally speaking, large values of rate functionals promise fast convergence, as the corresponding fluctuations are
suppressed. To obtain interpretable information from (43), we study the rate functional ĪT governing the ergodic
average (see Corollary 4.10) in the regime where the final time T is large. As mentioned in the introduction, the
leading order term will be given by the Stein-Fisher information (10) (or the kernelised Stein discrepancy). We first
show this relation between the Stein-Fisher information and the large-deviation functional, and then investigate the
Stein-Fisher information for different kernels.

6.1 From large deviations to the Stein-Fisher information
Recall the large-deviation principle for the ergodic average from Corollary 4.10, for a fixed final time T . By the
energy-dissipation decomposition (52) we may write, using a change of variables,

ĪT (ρ̄) = inf
ρ̂:[0,1]→M :
ρ̂0=ρ0,∫ 1

0
ρ̂t dt=ρ̄

{
1

2
KL(ρ̂1)− 1

2
KL(ρ0) +

1

4T

∫ 1

0

‖∂tρ̂t‖2Tρ̂tM dt+
T

4

∫ 1

0

∥∥∥ δKL

δρ
(ρ̂t)

∥∥∥2

T∗ρ̂t
M

dt

}
.

Therefore, at least formally, we see that the last term, representing the Stein-Fisher information (see Remark 3.7),
becomes dominant and of order O(T ). To make this into a rigorous statement, one might naively take the pointwise
limit of T−1ĪT (ρ̄); however generally this limit does not exist, nor is it the right limit concept to use. To be
consistent with the notion of large deviations we will need to use the concept of Γ-convergence [9]. Together, the
large-deviation principle and the Γ-convergence will then imply a joint large-deviation principle in N and T , see,
for example [5, Sec. 4]. This will be the content of Corollary 6.2.
Let us stress here that the notion of Γ-convergence requires a topology on the underlying space, and that the most
natural topology is the one for which the limit 4−1IStein

k has compact (sub-)level sets, see for example [19, Sec. 1.2]
and [9, Lem. 6.2]. In our case, this means that we will choose the topology defined by (37).

Theorem 6.1. Fix the initial condition ρ0 such that KL(ρ0) <∞. Then in the topology of (37),

Γ−lim
T→∞

1

T
ĪT =

1

4
IkStein,

meaning that

1. for all converging sequences of probability measures ρ̄T
∗π
⇀

T→∞
ρ̄,

lim inf
T→∞

1

T
ĪT (ρ̄T ) ≥ 1

4
IkStein(ρ̄), and (54)

2. for all ρ̄ ∈M , there exists a converging sequence of probability measures ρ̄T
∗π
⇀

T→∞
ρ̄ such that

lim sup
T→∞

1

T
ĪT (ρ̄T ) ≤ 1

4
IkStein(ρ̄). (55)

Proof. For the upper bound we take an arbitrary ρ̄, for now assuming that KL(ρ̄) <∞. The statement (55) would
be trivial if we could replace the infimum in (51) by the constant path ρ̄t ≡ ρ̄. However this is likely to violate the
initial condition, and so we first need to construct a finite-time and finite-cost connecting path between ρ0 and ρ̄.
For this construction we shall need two ingredients. The first ingredient is the fact that KL is the ‘quasipotential’,
i.e. for all ρ̂ ∈M ,

lim
T→∞

inf
ρ:[0,T ]→M :
ρ0=π,ρT=ρ̂

I[0,T ](ρ) = KL(ρ̂). (56)

This statement is standard and can be proven by solving the corresponding Hamilton-Jacobi-Bellman equation, see
for example [26]. The second ingredient is the so-called ‘time-reversal symmetry’, meaning that for arbitrary T > 0,
path ρ : [0, T ]→M and reversed path ←−ρ t := ρT−t,

I[0,T ](ρ)− I[0,T ](
←−ρ ) = KL(ρT )−KL(ρ0). (57)
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This symmetry is implied by the reversibility of the process ρ(N)

t [52, Th. 3.3], but it can also be seen directly
from the decomposition (52).
We now use these two ingredients to construct a connecting path between ρ0 and ρ̄. By (56), there exists a T1 <∞
and a path ρ1 : [0, T1]→M connecting π to ρ0 so that I[0,T1](ρ

1) ≤ KL(ρ0)+1. By the time-reversal symmetry (57),

the reversal
←−
ρ1 of this path connects ρ0 to π, and satisfies I[0,T1](

←−
ρ1) ≤ 1. Similarly, there exists a T2 < ∞ and a

path ρ2 : [0, T2]→M connecting π to ρ̄ such that I[0,T2](ρ
2) ≤ KL(ρ̄) + 1.

From these two paths we construct a new, continuous path ρ : [0, T ]→M for arbitrary large T > 0:

ρt :=


←−
ρ1
t , t ∈ [0, T1),

ρ2
t−T1

, t ∈ [T1, T1 + T2),

ρ̄, t ∈ [T1 + T2, T ].

This path has the average value

ρ̄T :=
1

T

∫ T

0

ρt dt =
T1

T

(
1
T

∫ T
0
ρ1
t dt
)

+
T2

T

(
1
T

∫ T
0
ρ2
t dt
)

+
T − T1 − T2

T
ρ̄,

which clearly converges as claimed, ρ̄T
∗π
⇀ ρ̄.

Plugging this path and average value into definitions (43), (51) and using (31) yields

1

T
ĪT (ρ̄T ) ≤ 1

T
I[0,T ](ρ) =

1

T
I[0,T1](

←−
ρ1) +

1

T
I[T1,T1+T2](ρ

2) +
1

T
I[T1+T2,T ](ρ̄)

≤ 1

T
+

KL(ρ̄) + 1

T
+
T − T1 − T2

T

∥∥∥δ 1
2 KL

δρ
(ρ̄)
∥∥∥2

T∗ρ̄M
,

and the upper bound (55) follows by letting T →∞ together with the assumption KL(ρ̄) <∞.
We now handle the case when KL(ρ̄) = ∞ using an additional approximation and a diagonal argument. Without
loss of generality we may assume that IkStein(ρ̄) < ∞, else the statement (55) would be trivial. It follows from
Definition 3.6 and Remark 3.7 that there exists a sequence φε ∈ C∞c (Rd) so that

IkStein(ρ̄) =
∥∥ ρ̄
π

∥∥2

T∗πM
←
∥∥φε∥∥2

T∗πM
= IkStein(πφε).

Without loss of generality we may assume that πφε is a probability measure. Of course this sequence has uniformly
bounded Fisher information, so that it has a convergent subsequence by Lemma 3.10. Let us relabel this sequence
so that πφε ∗π⇀ ρ̄. Clearly KL(πφε) <∞ and so by the construction above there exists an approximating sequence
ρ̄εT ⇀ πφε for which lim supT→∞

1
T ĪT (ρ̄εT ) ≤ 1

4I
k
Stein(πφε). We can then define ρ̄T := ρ̄εTT where we pick εT → 0

sufficiently slowly so that ρ̄T
∗π
⇀ ρ̄ and

lim sup
T→∞

1

T
ĪT (ρ̄T ) = lim sup

ε→0
lim sup
T→∞

1

T
ĪT (ρ̄εT ) ≤ lim sup

ε→0

1

4
IkStein(πφε) =

1

4
IkStein(ρ̄).

For the lower bound (54), pick an arbitrary convergent sequence ρ̄T ⇀ ρ̄, and for each T > 0 an arbitrary path
ρ : [0, T ]→M starting from ρ0 and with average value T−1

∫ T
0
ρt dt = ρ̄T . We again use the decomposition (52) as

well as (30), and neglecting some non-negative terms to derive

1

T
I[0,T ](ρ) ≥ − 1

2T
KL(ρ0) +

1

4T

∫ T

0

IkStein(ρt) dt ≥ − 1

2T
KL(ρ0) +

1

4
IkStein(ρ̄T ),

using Jensen’s inequality and the fact that the Stein-Fisher information IkStein is convex. By taking the infimum
over all such paths we find 1

T ĪT (ρ̄T ) ≥ − 1
2T KL(ρ0)+ 1

4I
k
Stein(ρ̄T ). Then the lower bound (54) follows from the lower

semicontinuity of KL as a consequence of Corollary 3.10.

The following result is the mathematically precise statement of our Informal Result 1.2.

Corollary 6.2. The ergodic average empirical measure ρ̄(N)

T associated to the SDE (6) satisfies the large-deviation
principle as first N →∞ and then T →∞ with rate functional 1

4I
k
Stein, i.e.

P(N)
(
ρ̄(N)

T ∈ Bε(ρ̄)
)
∼ exp

(
− 1

4
NTIkStein(ρ̄)

)
.

18



6.2 Comparing the Stein-Fisher information for different kernels
Corollary 6.2 motivates using the Stein-Fisher information IkStein for a principled choice of the kernel k (greater
values of IkStein promise faster convergence). As stated in Proposition 1.3, the comparison between Ik1

Stein and Ik2

Stein

can be made on the basis of the RKHSs Hk1 and Hk2 . Here we provide the proof based on the duality relations
established in Section 3.2.

Proof of Proposition 1.3. In this proof, we use the notation TρM1 and TρM2 to distinguish the tangent spaces
induced by k1 and k2, respectively, and employ a similar convention for the cotangent spaces. We first show that
2.) implies 1.): By Remark 3.7, it is sufficient to show that T ∗ρM2 ⊂ T ∗ρM1, with

‖φ‖2T∗ρM1
≤ ‖φ‖2T∗ρM2

,

for all φ ∈ T ∗ρM2. Now, for φ ∈ C∞c (Rd), ρ ∈M , and i ∈ {1, 2}, we see that

‖φ‖T∗ρMi = sup
06=ψ∈TρMi

〈φ, ψ〉T∗ρMi TρMi

‖ψ‖TρMi

= sup

v∈Tki,ρ∇C∞c (Rd)
Hd
ki

∫
Rd v · ∇φ dρ

‖v‖Hdki
= sup
v∈Hdki

∫
Rd v · ∇φ dρ

‖v‖Hdki
, (58)

where the first equality follows from the duality between TρMi and T ∗ρMi, the second equality follows directly from
Definition 3.1, and the third equality is a consequence of the Helmholtz decomposition in Proposition 2.3. The
claim now follows from the fact that by construction, C∞c (Rd) is dense in T ∗ρM1 and T ∗ρM2.
To show that 1.) implies 2.), assume that v = Tk,ρ∇φ and ξ +∇ · (ρv) = 0. We then have

‖v‖Hdk = ‖ξ‖TρM = sup
ψ∈T∗ρM

〈ξ, ψ〉T∗ρMi TρMi

‖ψ‖T∗ρMi

= sup
ψ∈T∗ρM

∫
Rd v · ∇ψ dρ

‖ψ‖T∗ρM
, (59)

and the statement follows by similar arguments as above.

To conclude this section, we cite Lemma 42 from [23], illustrating some consequences of Corollary 6.2 and Proposition
1.3:

Example 6.3. Consider the positive definite kernels kp,σ : Rd × Rd → R, defined via

kp,σ(x, y) = exp

(
−|x− y|

p

σp

)
, (60)

where p ∈ (0, 2] is a smoothness parameter, and σ > 0 controls the kernel width. Then, following [23, Lemma
42], kp,σ is integrally strictly positive definite (see Assumption 4). Furthermore, the associated RKHSs are nested
according to the regularity of the corresponding kernels: If p > q, then Hkp,σp ⊂ Hkq,σq (with strict inclusion), for
all σp, σq > 0. The inclusion of unit balls, that is,

‖φ‖Hkq,σq ≤ ‖φ‖Hkp,σp , φ ∈ Hkp,σp , (61)

relevant for Proposition 1.3 can moreover be obtained by a suitable choice of the kernel widths σq and σp. Con-
sequently, combining Proposition 1.3 and Corollary 6.2, kernels with lower regularity are expected to incur faster
convergence of the ergodic limit (3) for the SDE system (6), asymptotically in the regime when N and T are large.
The performance of numerical algorithms based on different choices of k is not straightforward, as the stiffness of the
SDE (and corresponding time discretisations) have to be taken into account. To illustrate our findings, we instead
consider fixed points of the ODE system (4) obtained for t → ∞, see Figure 1. The approximation of the target
π obtained using the low-regularity Laplace kernel (p = 1) appears to be more regular and more evenly spaced in
comparison with the approximation obtained using the high-regularity squared exponential kernel (p = 2).
On a heuristic level, we can connect these observations to our results as follows: The large-deviation functionals
I[0,T ] and ĪT quantify the speed of convergence as solutions of the SDE system (6) approach solutions of the Stein
PDE (8) as N → ∞. Recall from Section 1.2 that the SDE (6) preserves the extended target π̄ for any N ∈ N,
and that solutions of the ODE system (4) solve the Stein PDE (8) in a weak sense. Therefore, our results suggests
that the ODE (4) provides approximations of the SDE (6) (and hence, the target π) that are expected to be more
satisfactory if I[0,T ] and ĪT are large. We stress that this line of argument is heuristic and should be treated as a
conjecture, since our rigorous results concern the SDE (6) and not the ODE (4). Understanding the finite-particle
regime of the ODE (4), and possible connections to large-deviation principle remains an interesting subject for
future research.
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(a) squared exponential kernel, p = 2, σ = 1. (b) Laplace kernel, p = 1, σ = 1.

Figure 1: Approximations of a two-dimensional standard normal distribution using deterministic SVGD based on
the ODE (4) and two different positive definite kernels kp,σ.

7 Conclusion and outlook
In this paper, we have drawn connections between the variational inference-type ODE (4) and the Markov Chain
Monte Carlo-type SDE (6) based on gradient flow structures and large-deviation functionals. Extending previous
works, our results take a step towards a quantitative understanding of the mean-field limit of SVGD. In particular, in
the regime when N and t are large, the convergence towards the target π is governed by the Stein-Fisher information
(or kernelised Stein discrepancy). The relationship between variational inference, Markov Chain Monte Carlo and
ideas from statistical physics promises to be a fruitful direction for future research beyond SVGD. As our results
are asymptotic, quantifying the accuracy of SVGD for the practically relevant scenario of small N and t remains a
challenging and open problem.
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A Proofs for Section 4
Proof of Lemma 4.4. We shall only prove the claim for a large class of test functions of the form:

F (ρ) = φ
(
〈p1, ρ〉, . . . , 〈pL, ρ〉

)
, (62)

for arbitrary L ∈ N, p1, . . . , pL ∈ C2
b (Rd) and φ ∈ C2

b (RL), where 〈pi, ρ〉 =
∫
Rd pi dρ. Applied to the empirical

measure (5), these test functions become:

F (ρNt ) = φ

(
1

N

N∑
i=1

p1(Xi
t), . . . ,

1

N

N∑
i=1

pL(Xi
t)

)
=: G(X1

t , . . . , X
N
t ) =: G(X̄t).
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A straightforward application of Itô’s Lemma to the process (6) gives, abbreviating the martingale dMt :=

∇G(X̄t)
T
√

2K(X̄t) dWt,

dG(X̄t) =

N∑
i=1

∇XitG(X̄t) ·Ai(X̄t) dt+
1

N

N∑
i,j=1

k(Xi
t , X

j
t )∇2

ijG(X̄t) dt+ dMt

=
1

N

N∑
i=1

L∑
l=1

∂lφ∇pl(Xi
t) ·Ai(X̄t) dt+

1

N3

N∑
i,j=1

L∑
l,m=1

∂2
lmφ∇pl(Xi

t) · ∇pm(Xj
t )k(Xi

t , X
j
t ) dt

+
1

N2

L∑
l=1

N∑
i=1

∂lφ∆pl(X
i
t)k(Xi

t , X
i
t) dt+ dMt,

denoting

Ai(x̄) =
1

N

N∑
j=1

(
−k(xi, xj)∇V (xj) +∇xjk(xi, xj)

)
, x̄ = (x1, . . . , xN ).

Notice that
δF

δρ
(ρ)(x) =

L∑
l=1

∂lφ pl(x),
δ2F

δρ2
(ρ)(x, y) =

L∑
l,m=1

∂2
lmφ pl(x)pm(y).

By taking the expectation, the martingale term drops out, so that

d

dt
EF (ρNt ) = E

[∫∫ [
− k(x, y)∇V (y) +∇yk(x, y)

]
· ∇x

(
δF

δρ
(ρNt )

)
(x) ρNt (dx) ρNt (dy)

]
+

1

N
E
[ ∫∫

k(x, y)∇x · ∇y
(
δ2F

δρ2
(ρNt )

)
(x, y)ρNt (dx)ρNt (dy)

+

∫
k(x, x)∆

(
δF

δρ
(ρNt )

)
(x) ρNt (dx)

]
,

which proves the claim (for test functions of the form (62)).

Proof of Lemma 4.7. First notice that

δ

δρ

(
eNG

)
(ρ)(x) = NeNG(ρ) δG

δρ
(ρ)(x), and

δ2

δρ2

(
eNG

)
(ρ)(x, y) = N2eNG(ρ) δG

δρ
(ρ)(x)

δG

δρ
(ρ)(y) +NeNG(ρ) δ

2G

δρ2
(ρ)(x, y).

Therefore

(H(N) G)(ρ)
(46)
=

∫∫
Rd×Rd

[
− k(x, y)∇V (y) +∇yk(x, y)

]
·
(
∇x

δG

δρ
(ρ)(x)

)
ρ(dx) ρ(dy)

+

∫∫
Rd×Rd

k(x, y)

(
∇x

δG

δρ
(ρ)(x)

)
·
(
∇y

δG

δρ
(ρ)(y)

)
ρ(dx) ρ(dy) +O(N−1).

Assuming that ρ is regular enough, we can write∫
Rd

[
− k(x, y)∇V (y) +∇yk(x, y)

]
ρ(dy) = −

∫
Rd
k(x, y)

[
∇V (y) +∇ log ρ(y)] ρ(dy) = −

∫
Rd
k(x, y)

δKL

δρ
(ρ)(y) ρ(dy).

Then we see that

H
(
ρ,
δG

δρ

)
:= lim

N→∞
(H(N) G)(ρ)

= −
∫∫

Rd×Rd
k(x, y)

[(
∇δKL

δρ
(ρ)(x)

)
·
(
∇δG
δρ

(ρ)(y)
)

+
(
∇δG
δρ

(ρ)(x)
)
·
(
∇δG
δρ

(ρ)(y)
) ]
ρ(dx) ρ(dy)

= −
〈
δKL

δρ
,
δG

δρ

〉
T∗ρM

+

∥∥∥∥δFδρ
∥∥∥∥2

T∗ρM

.
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