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Abstract
High-dimensional partial differential equations
(PDEs) are ubiquitous in economics, science and
engineering. However, their numerical treatment
poses formidable challenges since traditional grid-
based methods tend to be frustrated by the curse of
dimensionality. In this paper, we argue that tensor
trains provide an appealing approximation frame-
work for parabolic PDEs: the combination of re-
formulations in terms of backward stochastic dif-
ferential equations and regression-type methods
in the tensor format holds the promise of leverag-
ing latent low-rank structures enabling both com-
pression and efficient computation. Following this
paradigm, we develop novel iterative schemes, in-
volving either explicit and fast or implicit and
accurate updates. We demonstrate in a number
of examples that our methods achieve a favorable
trade-off between accuracy and computational ef-
ficiency in comparison with state-of-the-art neural
network based approaches.

1. Introduction
While partial differential equations (PDEs) offer one of the
most elegant frameworks for modeling in economics, sci-
ence and engineering, their practical use is often limited by
the fact that solving those equations numerically becomes
notoriously difficult in high-dimensional settings. The so-
called “curse of dimensionality” refers to the phenomenon
that the computational effort scales exponentially in the di-
mension, rendering classical grid based methods infeasible.
In recent years there have been fruitful developments in com-
bining Monte Carlo based algorithms with neural networks
in order to tackle high-dimensional problems in a way that
seemingly does not suffer from this curse, resting primarily
on stochastic representations of the PDEs under considera-
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tion (E et al., 2017; Raissi et al., 2019; E et al., 2019; Huré
et al., 2020; Nüsken & Richter, 2020). Many of the sug-
gested algorithms perform remarkably well in practice and
some theoretical results proving beneficial approximation
properties of neural networks in the PDE setting are now
available (Jentzen et al., 2018). Still, a complete picture
remains elusive, and the optimization aspect in particular
continues to pose challenging and mostly open problems,
both in terms of efficient implementations and theoretical
understanding. Most importantly for practical applications,
neural network training using gradient descent type schemes
may often take a very long time to converge for complicated
PDE problems.

Instead of neural networks (NN), we propose relying on the
tensor train (TT) format (Oseledets, 2011) to approximate
the solutions of high-dimensional PDEs. As we argue in
the course of this article, the salient features of tensor trains
make them an ideal match for the stochastic methods al-
luded to in the previous paragraph: First, tensor trains have
been designed to tackle high-dimensional problems while
still being computationally cheap by exploiting inherent low-
rank structures (Kazeev & Khoromskij, 2012; Kazeev et al.,
2016; Dolgov et al., 2012) typically encountered in physi-
cally inspired PDE models. Second, built-in orthogonality
relations allow fast and robust optimization in regression
type problems arising naturally in stochastic backward for-
mulations of parabolic PDEs. Third, the function spaces
corresponding to tensor trains can be conveniently extended
to incorporate additional information such as initial or final
conditions imposed on the PDE to be solved. Last but not
least, tensor trains allow for extremely efficient and explicit
computation of first and higher order derivatives.

To develop TT-based solvers for parabolic PDEs, we fol-
low (Bouchard & Touzi, 2004; Huré et al., 2020) and first
identify a backward stochastic differential equation (BSDE)
representation of the PDE, naturally giving rise to iterative
backward schemes for a numerical treatment. We suggest
two versions of our algorithm, allowing to adjust the trade-
off between accuracy and speed according to the applica-
tion: The first scheme is explicit, relying on L2 projections
(Gobet et al., 2005) that can be solved efficiently using an
alternating least squares algorithm and explicit expressions
for the minimizing parameters (see Section 3.1). The second
scheme is implicit and involves a nested iterative procedure,
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holding the promise of more accurately resolving highly
nonlinear relationships at the cost of an increased compu-
tational load. For theoretical underpinning, we prove the
convergence of the nested iterative scheme in Section 3.2.

To showcase the performance of the TT-schemes, we evalu-
ate their outputs on various high-dimensional PDEs (includ-
ing toy examples and real-world problems) in comparison
with NN-based approximations. In all our examples, the
TT results prove competitive, and often considerably more
accurate when low-rank structures can be identified and cap-
tured by the underlying ansatz spaces. At the same time, the
runtimes of the TT-schemes are usually significantly smaller,
with the explicit L2-projection-based algorithm beating the
corresponding NN alternative by orders of magnitude in
terms of computational time. Even the more accurate algo-
rithm based on nested nonlinear iterations often proves to
be substantially faster than NN training.

1.1. Previous work

Using numerical discretizations of BSDEs to solve PDEs
originated in (Bouchard & Touzi, 2004; Gobet et al., 2005),
while regression based methods for PDE-related problems
in mathematical finance have already been proposed in
(Longstaff & Schwartz, 2001). An iterative method mo-
tivated by BSDEs and approached with neural networks has
been introduced in (E et al., 2017), making the approxima-
tion of high-dimensional PDE problems feasible. Solving
explicit backwards schemes with neural networks has been
suggested in (Beck et al., 2019) and an implicit method sim-
ilar to the one developed in this paper has been suggested in
(Huré et al., 2020). Another interesting method to approxi-
mate PDE solutions relies on minimizing a residual term on
uniformly sampled data points as suggested in (Sirignano
& Spiliopoulos, 2018; Raissi et al., 2019). Rooted in quan-
tum physics under the name matrix product states, tensor
trains have been introduced to the mathematical community
in (Oseledets, 2011) to tackle the curse of dimensionality.
Note that tensor trains are a special case of hierarchical
tensor networks, which have been developed in (Hackbusch
& Kühn, 2009). For good surveys and more details, see
(Hackbusch, 2014; Hackbusch & Schneider, 2014; Szalay
et al., 2015; Bachmayr et al., 2016). Tensor trains have al-
ready been applied to specific types of PDEs (Dolgov et al.,
2019; Oster et al., 2019; Khoromskij, 2012) and stochastic
exit-time control problems (Fackeldey et al., 2020).

The paper is organized as follows: In Section 2 we motivate
our algorithm by recalling the stochastic PDE representation
in terms of BSDEs as well as two appropriate discretization
schemes. In Section 3 we review the tensor train format
as a highly efficient framework for approximating high-
dimensional functions by detecting low-rank structures and
discuss how those structures can be exploited in the numer-

ical solution of BSDEs. Finally, in Section 4 we provide
multiple high-dimensional numerical examples to illustrate
our claims.

2. Solving PDEs via BSDEs
In this section we recall how backward stochastic differen-
tial equations (BSDEs) can be used to design iterative algo-
rithms for approximating the solutions of high-dimensional
PDEs. Throughout this work, we consider parabolic PDEs
of the form

(∂t+L)V (x, t)+h(x, t, V (x, t), (σ>∇V )(x, t)) = 0 (1)

for (x, t) ∈ Rd × [0, T ], a nonlinearity h : Rd×[0, T ] ×
R×Rd → R, and a differential operator

L =
1

2

d∑
i,j=1

(σσ>)ij(x, t)∂xi
∂xj

+

d∑
i=1

bi(x, t)∂xi
, (2)

with coefficient functions b : Rd×[0, T ] → Rd and σ :
Rd×[0, T ]→ Rd×d. The terminal value is given by

V (x, T ) = g(x), (3)

for a specified function g : Rd → R. Note that by using the
time inversion t 7→ T −t, the terminal value problem (1)-(3)
can readily be transformed into an initial value problem.

BSDEs were first introduced in (Bismut, 1973) and their sys-
tematic study began with (Pardoux & Peng, 1990). Loosely
speaking, they can be understood as nonlinear extensions
of the celebrated Feynman-Kac formula (Pardoux, 1998),
relating the PDE (1) to the stochastic process Xs defined by

dXs = b(Xs, s) ds+ σ(Xs, s) dWs, X0 = x0, (4)

where b and σ are as in (2) and Ws is a standard d-
dimensional Brownian motion. The key idea is then to
define the processes

Ys = V (Xs, s), Zs = (σ>∇V )(Xs, s) (5)

as representations of the PDE solution and its gradient, and
apply Itô’s lemma to obtain

dYs = −h(Xs, s, Ys, Zs) ds+ Zs · dWs, (6)

with terminal condition YT = g(XT ). Noting that the pro-
cesses Ys and Zs are adapted1 to the filtration generated
by the Brownian motion Ws, they should indeed be un-
derstood as backward processes and not be confused with
time-reversed processes. A convenient interpretation of the

1Intuitively, this means that the processes Ys and Zs must not
depend on future values of the Brownian motion Ws.
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relations in (5) is that solving for the processes Ys and Zs
under the constraint (6) corresponds to determining the so-
lution of the PDE (1) (and its gradient) along a random grid
which is provided by the stochastic process Xs defined in
(4).

2.1. Numerical approximation of BSDEs

The BSDE formulation (6) opens the door for Monte Carlo
algorithms aiming to numerically approximate Ys and Zs,
and hence yielding approximations of solutions to the PDE
(1) according to (5), see (Bouchard & Touzi, 2004; Gobet
et al., 2005). In this section we discuss suitable discretiza-
tions of (6) and corresponding optimization problems that
will provide the backbone for TT-schemes to be developed
in Section 3.

To this end, let us define a discrete version of the process
(4) on a time grid 0 = t0 < t1 < · · · < tN = T by

X̂n+1 = X̂n + b(X̂n, tn)∆t+ σ(X̂n, tn)ξn+1

√
∆t, (7)

where n ∈ {0, . . . , N − 1} enumerates the steps, ∆t =
tn+1− tn is the stepsize, ξn+1 ∼ N (0, Idd×d) are normally
distributed random variables and X̂0 = x0 provides the
initial condition. Two2 discrete versions of the backward
process (6) are given by

Ŷn+1 = Ŷn − hn+1∆t+ Ẑn · ξn+1

√
∆t, (8a)

Ŷn+1 = Ŷn − hn∆t+ Ẑn · ξn+1

√
∆t, (8b)

where we have introduced the shorthands

hn = h(X̂n, tn, Ŷn, Ẑn), (9a)

hn+1 = h(X̂n+1, tn+1, Ŷn+1, Ẑn+1). (9b)

Finally, we complement (8a) and (8b) by specifying the
terminal condition ŶN = g(X̂N ). The reader is referred to
Appendix E for further details.

Both of our schemes solve the discrete processes (8a) and
(8b) backwards in time, an approach which is reminiscent
of the dynamic programming principle in optimal control
theory (Fleming & Rishel, 2012), where the problem is
divided into a sequence of subproblems. To wit, we start
with the known terminal value ŶN = g(X̂N ) and move
backwards in iterative fashion until reaching Ŷ0. Through-
out this procedure, we posit functional approximations
V̂n(X̂n) ≈ Ŷn ≈ V (X̂n, n∆t) to be learnt in the update
step n + 1 → n which can either be based on (8a) or on
(8b):

Starting with the former, it can be shown by leveraging
the relationship between conditional expectations and L2-
projections (see Appendix E) that solving (8a) is equivalent

2It can be shown that both converge to the continuous-time
process (6) as ∆t → 0, see (Kloeden & Platen, 1992).

to minimizing

E
[(
V̂n(X̂n)− hn+1∆t− V̂n+1(X̂n+1)

)2]
(10)

with respect to V̂n. Keeping in mind that V̂n+1 is known
from the previous step this results in an explicit scheme.
Methods based on (10) have been extensively analyzed in
the context of linear ansatz spaces for V̂n and we refer to
(Zhang, 2004; Gobet et al., 2005) as well as to Appendix E.

Moving on to (8b), we may as well penalize deviations in
this relation by minimizing the alternative loss

E[(V̂n(X̂n)− ĥn∆t

+ Ẑn · ξn+1

√
∆t− V̂n+1(X̂n+1))2], (11)

with respect to V̂n, see (Huré et al., 2020). In analogy to
(9a) we use the shorthand notation

ĥn = h(X̂n, tn, V̂n(X̂n), σ>(X̂n, tn)∇V̂n(X̂n)), (12)

noting that since ĥn depends on V̂n, approaches based on
(11) will necessarily lead to implicit schemes. At the same
time, we expect algorithms based on (11) to be more accu-
rate in highly nonlinear scenarios as the dependence in h is
resolved to higher order.

3. Solving BSDEs via tensor trains
In this section we discuss the functional approximations
V̂n in terms of the tensor train format, leading to efficient
optimization procedures for (10) and (11). Encoding func-
tions defined on high-dimensional spaces using traditional
methods such as finite elements, splines or multi-variate
polynomials leads to a computational complexity that scales
exponentially in the state space dimension d. However, in-
terpreting the coefficients of such ansatz functions as entries
in a high-dimensional tensor allows us to use tensor com-
pression methods to reduce the number of parameters. To
this end, we define a set of functions {φ1, . . . , φm} with
φi : R → R , e.g. one-dimensional polynomials or finite
elements. The approximation V̂ of V : Rd → R takes the
form

V̂ (x1, . . . , xd) =

m∑
i1=1

· · ·
m∑
id=1

ci1,...,idφi1(x1) · · ·φid(xd),

(13)
motivated by the fact that polynomials and other tensor
product bases are dense in many standard function spaces
(Sickel & Ullrich, 2009). Note that for the sake of simplicity
we choose the set of ansatz functions to be the same in every
dimension (see Appendix A for more general statements).
As expected, the coefficient tensor c ∈ Rm×m×···×m ≡
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Rmd

suffers from the curse of dimensionality since the
number of entries increases exponentially in the dimension
d. In what follows, we review the tensor train format to
compress the tensor c.

For the sake of readability we will henceforth write
ci1,...,id = c[i1, . . . , id] and represent the contraction of
the last index of a tensor w1 ∈ Rr1×m×r2 with the first
index of another tensor w2 ∈ Rr2×m×r3 by

w = w1 ◦ w2 ∈ Rr1×m×m×r3 , (14a)

w[i1, i2, i3, i4] =

r2∑
j=1

w1[i1, i2, j]w2[j, i3, i4]. (14b)

In the literature on tensor methods, graphical representa-
tions of general tensor networks are widely used. In these
pictorial descriptions, the contractions ◦ of the component
tensors are indicated as edges between vertices of a graph.
As an illustration, we provide the graphical representation
of an order-4 tensor and a tensor train representation (see
Definition 1 below) in Figure 1. Further examples can be
found in Appendix A.

u1 u2 u3 u4c =
r1 r2 r3

m m m mm

m
m
m

Figure 1. An order 4 tensor and a tensor train representation.

Tensor train representations of c can now be defined as
follows (Oseledets, 2011).

Definition 1 (Tensor Train). Let c ∈ Rm×···×m. A factor-
ization

c = u1 ◦ u2 ◦ · · · ◦ ud, (15)

where u1 ∈ Rm×r1 , ui ∈ Rri−1×m×ri , 2 ≤ i ≤ d − 1,
ud ∈ Rrd−1×m, is called tensor train representation of
c. We say that ui are component tensors. The tuple of
the dimensions (r1, . . . , rd−1) is called the representation
rank and is associated with the specific representation (15).
In contrast to that, the tensor train rank (TT-rank) of c is
defined as the minimal rank tuple r = (r1, . . . , rd−1), such
that there exists a TT representation of c with representation
rank equal to r. Here, minimality of the rank is defined in
terms of the partial order relation on Nd given by

s � t ⇐⇒ si ≤ ti for all 1 ≤ i ≤ d,

for r = (r1, . . . , rd), s = (s1, . . . , sd) ∈ Nd.

It can be shown that every tensor has a TT-representation
with minimal rank, implying that the TT-rank is well de-

fined (Holtz et al., 2012b). An efficient algorithm for com-
puting a minimal TT-representation is given by the Tensor-
Train-Singular-Value-Decomposition (TT-SVD) (Oseledets
& Tyrtyshnikov, 2009). Additionally, the set of tensor trains
with fixed TT-rank forms a smooth manifold, and if we in-
clude lower ranks, an algebraic variety is formed (Kutschan,
2018).

Introducing the compact notation

φ : R→ Rm, φ(x) = [φ1(x), . . . , φm(x)],

the TT-representation of (13) is then given as

V̂ (x) =

m∑
i1

· · ·
m∑
id

r1∑
j1

· · ·
rd−1∑
jd−1

u1[i1, j1]u2[j1, i2, j2] · · ·

· · ·ud[jd−1, id]φ(x1)[i1] · · ·φ(xd)[id]. (16)

The corresponding graphical TT-representation (with d = 4
for definiteness) is then given as follows:

u1 u2 u3 u4

φ(x1) φ(x2) φ(x3) φ(x4)

V̂ (x) =
r1 r2 r3

m m m m

Figure 2. Graphical representation of V̂ : R4 → R.

3.1. Optimization on the TT manifold

The multilinear structure of the tensor product enables ef-
ficient optimization of (10) and (11) within the manifold
structure by means of reducing a high-dimensional linear
equation in the coefficient tensor to small linear subprob-
lems on the component tensors3. For this, we view (10) and
(11) abstractly as least squares problems on a linear space
U ⊂ L2(Ω), where Ω ⊂ Rd is a bounded Lipschitz domain.
Our objective is then to find

arg min
V̂ ∈U

J∑
j=1

|V̂ (xj)−R(xj)|2, (17)

where {x1, . . . , xJ} ⊂ Ω are data points obtained from
samples of X̂n, and R : Ω→ R stands for the terms in (10)
and (11) that are not varied in the optimization. Choosing
a basis {b1, . . . , bM} of U we can represent any function
w ∈ U by w(x) =

∑M
m=1 cmbm(x) and it is well known

that the solution to (17) is given in terms of the coefficient
vector

c = (A>A)−1A>r ∈ RM , (18)

3In the case of (11), an additional nested iterative procedure is
required, see Section 3.2.



Solving high-dimensional parabolic PDEs using the tensor train format

where A = [aij ] ∈ RJ×M with aij = bj(xi) and rj =
R(xj) ∈ RJ .

The alternating least-squares (ALS) algorithm (Holtz et al.,
2012a) reduces the high-dimensional system (18) in the
coefficient tensor c to small linear subproblems in the com-
ponent tensors ui as follows: Since the tensor train format
(15) is a multilinear parametrization of c, fixing every com-
ponent tensor but one (say ui) isolates a remaining low-
dimensional linear parametrization with associated local
linear subspace Uloc,i. The number Mi of remaining pa-
rameters (equivalently, the dimension of Uloc,i) is given
by the number of coefficients in the component tensor ui,
i.e. Mi = ri−1mri. If the ranks ri, ri−1 are significantly
smaller than M , this results in a low-dimensional hence
efficiently solvable least-squares problem. Iterating over the
component tensors ui then leads to an efficient scheme for
solving high-dimensional least-squares problems with low
rank structure. Basis functions in Uloc,i are obtained from
the order 3 tensor bloc depicted in Figure 3 (note the three
open edges). A simple reshape to an order one tensor then
yields the desired basis functions, stacked onto each other,
i.e. bloc,i(x) = [bloc,i1 (x), bloc,i2 (x), . . . , bloc,iMi

(x)]. Further
details as well as explicit formulas are given in Appendix
A.1.

u1 u3 u4

φ(x1) φ(x2) φ(x3) φ(x4)

bloc,i(x) =
r1 r2 r3

m m m m

Figure 3. Graphical representation of the local basis functions for
i = 2.

In many situations the terminal condition g, defined in (3), is
not part of the ansatz space just defined. This is always the
case if g is not in tensor-product form. However, as the am-
bient space Rmd

is linear, g can be straightforwardly added4

to the ansatz space, potentially increasing its dimension to
md + 1. Whenever a component tensor ui is optimized in
the way described above, we simply add g to the set of local
basis functions, obtaining as a new basis

bloc,ig = {bloc,i1 , . . . , bloc,im , g}, (19)

only marginally increasing the complexity of the least-
squares problem. In our numerical tests we have noticed
substantial improvements using the extension (19). Incor-
porating the terminal condition, the representation of the
PDE solution takes the form depicted in Figure 4, for some
cg ∈ R.

4We note that the idea of enhancing the ansatz space has been
suggested in (Zhang, 2017) in the context of linear parametriza-
tions.

u1 u2 u3 u4

φ(x1) φ(x2) φ(x3) φ(x4)

V̂ (x) = + cgg(x)
r1 r2 r3

m m m m

Figure 4. Graphical representation of V̂ : R4 → R.

Summing up, we briefly state a basic ALS algorithm with
our adapted basis bloc,i:

Algorithm 1 simple ALS algorithm
Input: initial guess u1 ◦ u2 ◦ · · · ◦ ud.
Output: result u1 ◦ u2 ◦ · · · ◦ ud.
repeat

for i = 1 to d do
identify the local basis functions (19), parametrized
by uk, k 6= j
optimize ui using the local basis by solving the local
least squares problem

end for
until noChange is true

The drawback of Algorithm 1 is that the ranks of the tensor
approximation have to be chosen in advance. However,
there are more involved rank-adaptive versions of the ALS
algorithm, providing a convenient way of finding suitable
ranks. In this paper we make use of the rank-adaptive stable
alternating least-squares algorithm (SALSA) (Grasedyck
& Krämer, 2019). However, as we will see in Section 4,
we can in fact oftentimes find good solutions by setting
the rank to be (1, . . . , 1) ∈ Nd−1, enabling highly efficient
computations.

By straightforward extensions, adding the terminal condi-
tion g to to set of local ansatz functions can similarly be
implemented into more advanced, rank adaptive ALS al-
gorithms, which is exactly what we do for our version of
SALSA.

3.2. Handling implicit regression problems

The algorithms described in the previous section require the
regression problem to be explicit such as in (10). In contrast,
the optimization in (11) is of implicit type, as ĥn contains
the unknown V̂n. In order to solve (11), we therefore choose
an initial guess V̂ 0

n and iterate the optimization of

E[(V̂ k+1
n (X̂n)− h(X̂n, tn, Ŷ

k
n , Ẑ

k
n)∆t+

Ẑkn · ξn+1

√
∆t− V̂n+1(X̂n+1))2] (20)

with respect to V̂ k+1
n until convergence (see Appendix C

for a discussion of appropriate stopping criteria). In the
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above display, Ŷ kn = V̂ kn (X̂n) and Ẑkn = (σ>∇V̂ kn )(X̂n)
are computed according to (5). For theoretical foundation,
we guarantee convergence of the proposed scheme when the
step size ∆t is small enough.

Theorem 3.1. Assume that U ⊂ L2(Ω)∩C∞b (Ω) is a finite
dimensional linear subspace, that σ(x, t) is nondegenerate
for all (x, t) ∈ [0, T ]× Rd, and that h is globally Lipschitz
continuous in the last two arguments. Then there exists δ >
0 such that the iteration (20) converges for all ∆t ∈ (0, δ).

Proof. See Appendix B.

Remark 2. In order to ensure the boundedness assumption
in Theorem 3.1 and to stabilize the computation we add
a regularization term involving the Frobenius norm of the
coefficient tensor to the objective in (20). Choosing an or-
thonormal basis we can then relate the Frobenius norm to the
associated norm in the function space by Parseval’s identity.
In our numerical tests we set our one-dimensional ansatz
functions to be approximately H2(a, b)-orthonormal5. The
corresponding tensor space (H2(a, b))⊗d = H2

mix([a, b])d

can be shown to be continuously embedded in W 1,∞(Ω),
guaranteeing boundedness of the approximations and their
derivatives (Sickel & Ullrich, 2009).

For convenience, we summarize the developed methods in
Algorithm 3.2.

Algorithm 2 PDE approximation

Input: initial parametric choice for the functions V̂n for
n ∈ {0, . . . , N − 1}
Output: approximation of V (·, tn) ≈ V̂n along the tra-
jectories for n ∈ {0, . . . , N − 1}
Simulate K samples of the discretized SDE (7).
Choose V̂N = g.
for n = N − 1 to 0 do

approximate either (10) or (11) (both depending on
V̂n+1) using Monte Carlo
minimize this quantity (explictly or by iterative
schemes)
set V̂n to be the minimizer

end for

Remark 3 (Parameter initializations). Since we expect
V (·, tn) to be close to V (·, tn+1) for any n ∈ {0, . . . , N −
1}, we initialize the parameters of V̂ 0

n as those obtained for
V̂n+1 identified in the preceding time step.

4. Numerical examples
In this section we consider some examples of high-
dimensional PDEs that have been addressed in recent ar-

5Here, H2(a, b) refers to the second-order Sobolev space, see
(Sickel & Ullrich, 2009).

ticles and treat them as benchmark problems in order to
compare against our algorithms with respect to approxima-
tion accuracy and computation time. We refer to Appendix
C for implementation details and to Appendix D for addi-
tional experiments.

4.1. Hamilton-Jacobi-Bellman equation

The Hamilton-Jacobi-Bellman equation (HJB) is a PDE for
the so-called value function that represents the minimal cost-
to-go in stochastic optimal control problems from which the
optimal control policy can be deduced. As suggested in (E
et al., 2017), we consider the HJB equation

(∂t + ∆)V (x, t)− |∇V (x, t)|2 = 0, (21)
V (x, T ) = g(x), (22)

with g(x) = log
(
1
2 + 1

2 |x|
2
)
, leading to

b = 0, σ =
√

2 Idd×d, h(x, s, y, z) = −1

2
|z|2 (23)

in terms of the notation established in Section 2. One ap-
pealing property of this equation is that (up to Monte Carlo
approximation) a reference solution is available:

V (x, t) = − logE
[
e−g(x+

√
T−tσξ)

]
, (24)

where ξ ∼ N (0, Idd×d) is a normally distributed random
variable (see Appendix D.1 for further details).

In our experiments we consider d = 100, T = 1,∆t =
0.01, x0 = (0, . . . , 0)> and K = 2000 samples. In Table 1
we compare the explicit scheme stated in (10) with the im-
plicit scheme from (11), once with TTs and once with NNs.
For the tensor trains we try different polynomial degrees,
and it turns out that choosing constant ansatz functions is
the best choice, while fixing the rank to be 1. For the NNs
we use a DenseNet like architecture with 4 hidden layers
(all the details can be found in Appendices C and D).

We display the approximated solutions at (x0, 0), the

corresponding relative errors
∣∣∣ V̂n(x0)−Vref (x0,0)

Vref (x0,0)

∣∣∣ with
Vref(x0, 0) = 4.589992 being provided in (E et al., 2017),
their computation times, as well as PDE and reference losses,
which are specified in Appendix C. We can see that the TT
approximation is both more accurate and much faster than
the NN-based approaches, improving also on the results in
(E et al., 2017; Beck et al., 2019). As it turns out that the
explicit scheme for NNs is always worse than its implicit
counterpart, but takes a very similar amount of computation
time we will omit reporting it for the other experiments. In
Figures 5 and 6 we plot the reference solutions computed by
(24) along two trajectories of the discrete forward process
(7) in dimensions d = 10 and d = 100 and compare to the
implicit TT and NN-based approximations correspondingly.
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TTimpl TTexpl NNimpl NNexpl

V̂0(x0) 4.5903 4.5909 4.5822 4.4961
relative error 5.90e−5 3.17e−4 1.71e−3 2.05e−2

reference loss 3.55e−4 5.74e−4 4.23e−3 1.91e−2

PDE loss 1.99e−3 3.61e−3 90.89 91.12
comp. time 41 25 44712 25178

Table 1. Comparison of approximation results for the HJB equation
in d = 100.
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Figure 5. Reference solutions compared with implicit TT and NN
approximations along two trajectories in d = 10.

0.00 0.25 0.50 0.75 1.00
t

4.4

4.6

4.8

TTs
V(Xt, t)
Vref(Xt, t)

0.00 0.25 0.50 0.75 1.00
t

4.4

4.6

4.8

NNs
Evaluation along trajectories

Figure 6. Reference solutions compared with implicit TT and NN
approximations along two trajectories in d = 100.

We can see that the TT approximations perform particularly
well in higher dimensions.

In Figure 7 we plot the mean relative error over time, as
defined in Appendix C, indicating that both schemes are
stable and where again the implicit TT scheme yields better
results than the NN scheme.

Having such accurate results with only choosing constant
ansatz functions in the TT approximation is surprising and
we further investigate this behavior in Table 6, where we
observe that the required polynomial degree decreases with
increasing dimension, indicating that in this particular case
the approximation problem seems to have structures that
can be particularly well exploited by TTs. We argue that the

0.0 0.2 0.4 0.6 0.8 1.0
t

10 4

10 3

10 2

Mean relative error over time

NN implicit
TT implicit

Figure 7. Mean relative error for TT and NN attempts.

black-box nature of neural networks does not reveal such
properties.

d Polynomial degree
0 1 2 3 4

1 3.62e−1 3.60e−1 2.47e−3 3.86e−4 4.27e−2

2 1.03e−1 1.02e−1 1.87e−2 1.79e−2 1.79e−2

5 1.55e−2 1.54e−2 1.03e−3 9.52e−4 1.96e−2

10 2.84e−3 2.86e−3 1.37e−3 1.34e−3 1.10e−1

50 1.17e−4 1.29e−4 2.79e−4 3.35e−4 6.96e−5

100 5.90e−5 4.99e−5 8.65e−5 1.23e−4 3.62e−5

Table 2. Relative errors of the TT approximations V̂n(x0) for dif-
ferent dimensions and polynomial degrees.

4.2. HJB with double-well dynamics

In another example we consider again an HJB equation,
however this time making the drift in the dynamics nonlin-
ear, as suggested in (Nüsken & Richter, 2020). The PDE
becomes

(∂t + L)V (x, t)− 1

2
|(σ>∇V )(x, t)|2 = 0, (25)

V (x, T ) = g(x), (26)

with L as in (2), where now the drift is given as the gradient
of the double-well potential

b = −∇Ψ, Ψ(x) =

d∑
i,j=1

Cij(x
2
i − 1)(x2j − 1) (27)

and the terminal condition is g(x) =
∑d
i=1 νi(xi − 1)2 for

νi > 0. Similarly as before a reference solution is available,

V (x, t) = − logE
[
e−g(XT )

∣∣∣Xt = x
]
, (28)

where Xt is the forward diffusion as specified in (4) (see
again Appendix D.1 for details).
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First, we consider diagonal matrices C = 0.1 Idd×d, σ =√
2 Idd×d, implying that the dimensions do not interact,

and take T = 0.5, d = 50,∆t = 0.01,K = 2000, νi =
0.05. Details on the TT and NN configurations can again
be found in Appendix D. Since in the solution of the PDE
the dimensions do not interact either, we can compute a
reference solution with finite differences. In Table 3 we see
that the TT and NN approximations are compatible with
TTs having an advantage in computational time. We assume
that the TT result could possibly be improved by choosing
a better fit of ansatz functions, as due to the local behavior
of the Double-Well potential non-global ansatz functions
might be a better choice.

TTimpl NNimpl

V̂0(x0) 9.3949 9.6942
relative error 3.15e−2 7.27e−4

reference loss 2.15e−2 4.25e−3

PDE loss 2.43e−2 2.66e−1

computation time 96 1987

Table 3. Approximation results for the HJB equation with non-
interacting double well potential in d = 50.

Let us now consider a non-diagonal matrix C = Idd×d +
(ξij), where ξij ∼ N (0, 0.01) are sampled once at the
beginning of the experiment and further choose σ =√

2 Idd×d, νi = 0.5, T = 0.3. We aim at the solution at
x0 = (−1, . . . ,−1)> and compute a reference solution
with (28) using 107 samples. We see in Table 4 that TTs are
much faster than NNs, while yielding a similar performance.

TTimpl NNimpl

V̂0(x0) 34.278 34.228
relative error 2.95e−4 1.20e−3

reference loss 3.26e−2 4.00e−2

PDE loss 6.60 14.86
computation time 21 1693

Table 4. Approximation results for the HJB equation with interact-
ing double well potential in d = 20.

4.3. Cox–Ingersoll–Ross model

Our last example is taken from financial mathematics. As
suggested in (Jiang & Li, 2021) we consider a bond price in
a multidimensional Cox–Ingersoll–Ross (CIR) model, see
also (Hyndman, 2007; Alfonsi et al., 2015). The underlying

PDE is specified as

∂tV (x, t) +
1

2

d∑
i,j=1

√
xixjγiγj∂xi

∂xj
V (x, t)

+

d∑
i=1

ai(bi−xi)∂xi
V (x, t)−

(
max
1≤i≤d

xi

)
V (x, t) = 0.

(29)

Here, ai, bi, γi ∈ [0, 1] are uniformly sampled at the begin-
ning of the experiment and V (T, x) = 1. We set d = 100.

We aim to estimate the bond price at the initial condition
x0 = (1, . . . , 1)>. As there is no reference solution known,
we rely on the PDE loss to compare our results. Table 5
shows that all three approaches yield similar results, while
having a rather small PDE loss. The TT approximations
seem to be slightly better and we note that the explicit TT
scheme is again much faster.

TTimpl TTexpl NNimpl

V̂0(x0) 0.312 0.306 0.31087
PDE loss 5.06e−4 5.04e−4 7.57e−3

computation time 5281 197 9573

Table 5. K = 1000, d = 100, x0 = [1, 1, . . . , 1]

In Table 6 we compare the PDE loss using different poly-
nomial degrees for the TT ansatz function and see that we
do not get any improvements with polynomials of degree
larger than 1.

Polynom. degree
0 1 2 3

V̂0(x0) 0.294 0.312 0.312 0.312
PDE loss 9.04e−2 7.80e−4 1.05e−3 5.06e−4

computation time 110 3609 4219 5281

Table 6. PDE loss and computation time for TTs with different
polynomial degrees

Noticing the similarity between the results for polynomial
degrees 1, 2, and 3, we further investigate by computing
the value function along a sample trajectory in Figure 8,
where we see that indeed the approximations with those
polynomial degrees are indistinguishable.

Acknowledgements This research has been partially
funded by Deutsche Forschungsgemeinschaft (DFG)
through the grant CRC 1114 ‘Scaling Cascades in Com-
plex Systems’ (projects A02 and A05, project number
235221301). Leon Sallandt acknowledges support from
the Research Training Group ‘Differential Equation- and
Data-driven Models in Life Sciences and Fluid Dy-
namics: An Interdisciplinary Research Training Group



Solving high-dimensional parabolic PDEs using the tensor train format

0.0 0.2 0.4 0.6 0.8 1.0
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Plot along single trajectory, different poly. deg.
0
1
2
3

Figure 8. Reference trajectory for different polynomial degrees.

(DAEDALUS)’(GRK 2433) funded by the German Re-
search Foundation (DFG). We would like to thank Rein-
hold Schneider for giving valuable input and for sharing his
broad insight in tensor methods and optimization.

References
Abdelfattah, A., Baboulin, M., Dobrev, V., Dongarra, J.,

Earl, C., Falcou, J., Haidar, A., Karlin, I., Kolev, T.,
Masliah, I., et al. High-performance tensor contractions
for GPUs. Procedia Computer Science, 80:108–118,
2016.

Alfonsi, A. et al. Affine diffusions and related processes:
simulation, theory and applications, volume 6. Springer,
2015.

Bachmayr, M., Schneider, R., and Uschmajew, A. Ten-
sor networks and hierarchical tensors for the so-
lution of high-dimensional partial differential equa-
tions. Found. Comput. Math., 16(6):1423–1472, De-
cember 2016. ISSN 1615-3375. doi: 10.1007/
s10208-016-9317-9. URL https://doi.org/10.
1007/s10208-016-9317-9.

Beck, C., Becker, S., Cheridito, P., Jentzen, A., and Neufeld,
A. Deep splitting method for parabolic PDEs. arXiv
preprint arXiv:1907.03452, 2019.

Bismut, J.-M. Conjugate convex functions in optimal
stochastic control. Journal of Mathematical Analysis
and Applications, 44(2):384–404, 1973.

Bouchard, B. and Touzi, N. Discrete-time approximation
and Monte-Carlo simulation of backward stochastic dif-
ferential equations. Stochastic Processes and their appli-
cations, 111(2):175–206, 2004.

Dolgov, S., Kalise, D., and Kunisch, K. Tensor decompo-
sitions for high-dimensional Hamilton-Jacobi-Bellman
equations. arXiv preprint arXiv:1908.01533, 2019.

Dolgov, S. V., Khoromskij, B. N., and Oseledets, I. V.
Fast solution of parabolic problems in the tensor
train/quantized tensor train format with initial applica-
tion to the Fokker–Planck equation. SIAM Journal on
Scientific Computing, 34(6):A3016–A3038, 2012.

E, W. and Yu, B. The deep Ritz method: a deep learning-
based numerical algorithm for solving variational prob-
lems. Communications in Mathematics and Statistics, 6
(1):1–12, 2018.

E, W., Han, J., and Jentzen, A. Deep learning-based nu-
merical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential
equations. Communications in Mathematics and Statis-
tics, 5(4):349–380, 2017.

E, W., Hutzenthaler, M., Jentzen, A., and Kruse, T. On
multilevel picard numerical approximations for high-
dimensional nonlinear parabolic partial differential equa-
tions and high-dimensional nonlinear backward stochas-
tic differential equations. Journal of Scientific Computing,
79(3):1534–1571, 2019.

Fackeldey, K., Oster, M., Sallandt, L., and Schneider, R. Ap-
proximative policy iteration for exit time feedback control
problems driven by stochastic differential equations using
tensor train format. arXiv preprint arXiv:2010.04465,
2020.

Fleming, W. H. and Rishel, R. W. Deterministic and stochas-
tic optimal control, volume 1. Springer Science & Busi-
ness Media, 2012.

Fleming, W. H. and Soner, H. M. Controlled Markov pro-
cesses and viscosity solutions, volume 25. Springer Sci-
ence & Business Media, 2006.

Gobet, E. Monte-Carlo methods and stochastic processes:
from linear to non-linear. CRC Press, 2016.

Gobet, E., Lemor, J.-P., Warin, X., et al. A regression-
based Monte Carlo method to solve backward stochastic
differential equations. The Annals of Applied Probability,
15(3):2172–2202, 2005.

Grasedyck, L. and Krämer, S. Stable als approximation in
the tt-format for rank-adaptive tensor completion. Nu-
merische Mathematik, 143(4):855–904, 2019.

Hackbusch, W. Numerical tensor calculus. Acta numerica,
23:651–742, 2014. ISSN 1474-0508. doi: 10.1017/
S0962492914000087.

https://doi.org/10.1007/s10208-016-9317-9
https://doi.org/10.1007/s10208-016-9317-9


Solving high-dimensional parabolic PDEs using the tensor train format
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A. Graphical notation for tensor trains
In this section we provide some further material on tensor
networks and their graphic notation. Let us start by noting
that a vector x ∈ Rn can be interpreted as a tensor.

x
n

In the graphic representation contractions between indices
are denoted by a line between the tensors. Below we con-
tract a tensor A ∈ Rn×m and x ∈ Rn, which results in an
element of Rm, representing the usual matrix-vector prod-
uct.

x A
n m

In Figure 9 an order 3 tensorB ∈ Rn1×n2×n3 is represented
with three lines, not connected to any other tensor. As

B
n1

n
2

n 3

Figure 9. Graphical notation of simple tensors and tensor networks

another example, we can write the compact singular value
decomposition in matrix form as A = UΣV , with U ∈
Rn,r,Σ ∈ Rr,r, V ∈ Rr,m, which we represent as a tensor
network in Figure 10.

A.1. The local basis functions

We elaborate in detail on the local basis functions bloc,i =
[bloc,i1 , . . . , bloc,im ], as indicated in Figure 11. Assuming that
we optimize u2, we notice that the tensor φ(x1) ◦ u1 is actu-
ally a function mapping from R→ Rr1 , which means that
we can identify r1 many one-dimensional functions. Note
that this corresponds to the left part of the tensor picture in
Figure 11. Further, we have that φ(x2) is a vector consisting
of m one-dimensional functions, which is the middle part
of the above tensor picture. The right part, consisting of
the contractions between φ(x2), u3, u4, and φ(x4), is a set
of two-dimensional functions with cardinality r2. Taking
the tensor product of the above functions yields an r1mr2
dimensional function space of four-dimensional functions,
which is exactly the span of the local basis functions.

More precisely, when optimizing the k-th component tensor,
the local basis functions are given by setting jk−1 ≤ rk−1,
ik ≤ m, and jk ≤ rk within the following formula:

U Σ VA =
r rn mn m

Figure 10. Graphical notation of simple tensors and tensor net-
works.

u1 u3 u4

φ(x1) φ(x2) φ(x3) φ(x4)

bloc,i(x) =
r1 r2 r3

m m m m

Figure 11. Graphical representation of the local basis functions for
i = 2.

bjk−1,ik,jk(x) =(
m,...,m∑
i1,...,ik−1

r1,...,rk−2∑
j1,...,jk−2

u1[i1, j1] . . . uk−1[jk−2, ik−1, jk−1]

φ(x1)[i1] . . . φ(xk−1)[ik−1]

)
φ(xk)[ik](

m,...,m∑
ik+1,...,id

rk,...,rd−1∑
jk,...,jd−1

uk+1[jk, ik+1, jk+1] . . . ud[jd−1, id]

φ(xk+1)[ik+1] . . . φ(xd)[id]

)
.

(30)

Note that in the above formula, every index except jk−1, ik
and jk is contracted, leaving an order three tensor. A simple
reshape into one index then yields the local basis functions
as used in this paper.

B. Proof of Theorem 3.1
Proof of Theorem 3.1. In this proof, we denote the underly-
ing probability measure by P, and the corresponding Hilbert
space of random variables with finite second moments by
L2(P). We define the linear subspace Ũ ⊂ L2(P) by

Ũ =
{
f(X̂n) : f ∈ U

}
, (31)

noting that Ũ is finite-dimensional by the assumption on U ,
hence closed. The corresponding L2(P)-orthogonal projec-
tion onto Ũ will be denoted by ΠŨ . By the nondegeneracy
of σ, the law of X̂n has full support on Ω, and so ‖ · ‖L2(P)

is indeed a norm on Ũ . Since Ũ is finite-dimensional, the
linear operators

Ũ 3 f(X̂n) 7→ ∂f

∂xi
(X̂n) ∈ L2(P) (32)
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are bounded, and consequently there exists a constant C1 >
0 such that∥∥∥∥ ∂f∂xi (X̂n)

∥∥∥∥
L2(P)

≤ C1

∥∥∥f(X̂n)
∥∥∥
L2(P)

, (33)

for all i = 1, . . . , d and f ∈ U . Furthermore, there exists a
constant C2 > 0 such that

E
[
f4(X̂n)

]1/4
:=
∥∥∥f(X̂N )

∥∥∥
L4(P)

≤ C2

∥∥∥f(X̂n)
∥∥∥
L2(P)

,

for all f ∈ U , again by the finite-dimensionality of Ũ and the
fact that on finite dimensional vector spaces, all norms are
equivalent. By standard results on orthogonal projections,
the solution to the iteration (20) is given by

V k+1
n (X̂n) = ΠŨ

[
− h(X̂n, tn, Ŷ

k
n , Ẑ

k
n)∆t+

Ẑkn · ξn+1

√
∆t− V̂n+1(X̂n+1)

]
.

We now consider the map Ψ : Ũ → Ũ defined by

f(X̂n) 7→ ΠŨ
[
− h(X̂n, tn, f(X̂n), σ>∇f(X̂n))∆t+

σ>∇f(X̂n) · ξn+1

√
∆t− V̂n+1(X̂n+1)

]
.

For F1, F2 ∈ Ũ with Fi = fi(X̂n), fi ∈ U , we see that

‖ΨF1 −ΨF2‖L2(P)

=
∥∥ΠŨ

[
− h(X̂n, tn, f1(X̂n), σ>∇f1(X̂n))∆t

+ h(X̂n, tn, f2(X̂n), σ>∇f2(X̂n))∆t

+
√

∆t
(
σ>∇f1(X̂n)− σ>∇f2(X̂n)

)
· ξn+1

]∥∥
L2(P)

≤ C3

∥∥ΠŨ
∥∥
L2(P)→L2(P)

(
∆t‖F1 − F2‖L2(P)

+
√

∆t
∥∥∥(σ>∇f1(X̂n)− σ>∇f2(X̂n)

)
· ξn+1

∥∥∥
L2(P)

)

for some constant C3 that does not depend on ∆t, where we
have used the triangle inequality, the Lipschitz assumption
on h, the boundedness of σ, and the estimate (33). Using
the Cauchy-Schwarz inequality, boundedness of σ as well
as (33) and (34), the last term can be estimated as follows,∥∥∥(σ>∇f1(X̂n)− σ>∇f2(X̂n)

)
· ξn+1

∥∥∥
L2(P)

≤
∥∥∥∥(σ>∇f1(X̂n)− σ>∇f2(X̂n)

)2∥∥∥∥1/2
L2(P)

∥∥ξ2n+1

∥∥1/2
L2(P)

≤ C4 ‖F1 − F2‖L2(P) ,

where C4 is a constant independent of ∆t. Collecting the
previous estimates, we see that δ > 0 can be chosen such
that for all t ∈ (0, δ), the mapping Ψ is a contraction on Ũ
when equipped with the norm ‖ · ‖L2(P), that is,

‖ΨF1 −ΨF2‖ ≤ λ‖F1 − F2‖, (37)

for some λ < 1 and all F1, F2 ∈ Ũ . Finally, the statement
follows from the Banach fixed point theorem.

C. Implementation details
For the evaluation of our approximations we rely on ref-
erence values of V (x0, 0) and further define the following
two loss metrics, which are zero if and only if the PDE is
fulfilled along the samples generated by the discrete forward
SDE (7). In the spirit of (Raissi et al., 2019), we define the
PDE loss as

LPDE =
1

KN

N∑
n=1

K∑
k=1

(
(∂t + L)V (X̂(k)

n , tn) (38)

+ h(X̂(k)
n , tn, V (X̂(k)

n , tn), (σ>∇V )(X̂(k)
n , tn))

)2
,

(39)

where X̂(k)
n are realizations of (7), the time derivative is ap-

proximated with finite differences and the space derivatives
are computed analytically (or with automatic differentia-
tion tools). We leave out the first time step n = 0 since
the regression problem within the explicit and the implicit
schemes for the tensor trains are not well-defined due to the
fact that X̂k

0 = x0 has the same value for all k. We still
obtain a good approximation since the added regularization
term brings a minimum norm solution with the correct point
value V (x0, 0). Still, this does not aim at the PDE being
entirely fulfilled at this point in time.

Further, we define the relative reference loss as

Lref =
1

K(N + 1)

N∑
n=0

K∑
k=1

∣∣∣∣∣V (X̂
(k)
n , tn)− Vref(X̂

(k)
n , tn)

Vref(X̂
(k)
n , tn)

∣∣∣∣∣ ,
(40)

whenever a reference solution for all x and t is available.

All computation times in the reported tables are measured
in seconds.

Our experiments have been performed on a desktop com-
puter containing an AMD Ryzen Threadripper 2990 WX
32x 3.00 GHz mainboard and an NVIDIA Titan RTX GPU,
where we note that only the NN optimizations were run on
this GPU, since our TT framework does not include GPU
support. It is expected that running the TT approximations
on a GPU will improve time performances in the future
(Abdelfattah et al., 2016).
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All our code is available under https://github.com/
lorenzrichter/PDE-backward-solver.

C.1. Details on neural network approximation

For the neural network architecture we rely on the DenseNet,
which consists of fully-connected layers with additional skip
connections as for instance suggested in (E & Yu, 2018) and
being rooted in (Huang et al., 2017). To be precise, we
define a version of the DenseNet that includes the terminal
condition of the PDE (1) as an additive extension by

Φ%(x) = ALxL + bL + θg(x), (41)

where xL is specified recursively as

yl+1 = %(Alxl + bl), xl+1 = (xl, yl+1)> (42)

for 1 ≤ l ≤ L − 1 with Al ∈ Rrl×
∑l−1

i=0 ri , bl ∈ Rl, θ ∈ R
and x1 = x. The collection of matrices Al, vectors bl and
the coefficient θ comprises the learnable parameters, and
we introduce the vector r := (din, r1, . . . , rL−1, dout) to
represent a certain choice of a DenseNet architecture, where
in our setting din = d and dout = 1. If not otherwise stated
we fix the parameter θ to be 1. For the activation function
% : R→ R, that is to be applied componentwise, we choose
tanh.

For the gradient descent optimization we choose the Adam
optimizer with the default parameters β1 = 0.9, β2 =
0.999, ε = 10−8 (Kingma & Ba, 2014). In most of our
experiments we chose a fixed learning rate ηN−1 for the
approximation of the first backward iteration step to approx-
imate V̂N−1 and another fixed learning rate ηn for all the
other iteration steps to approximate V̂n for 0 ≤ n ≤ N − 2
(cf. Remark 3). Similarly, we denote with GN−1 and Gn
the amount of gradient descent steps in the corresponding
optimizations.

In Tables 7 and 8 we list our hyperparameter choices for the
neural network experiments that we have conducted.

C.2. Details on tensor train approximation

For the implementation of the tensor networks we rely on
the C++ library xerus (Huber & Wolf, 2014–2017) and the
Python library numpy (Harris et al., 2020).

Within the optimization we have to specify the regularization
parameter as noted in Remark 2, which we denot here by
η > 0. We adapt this parameter in dependence of the current
residual in the regression problem (20), i.e. η = cw, where
c > 0 and w is the residual from the previous sweep of
SALSA. In every all our experiments we set cη = 1. Further,
we have to specify the condition “noChange is true” within
Algorithm 1. To this end we introduce a test set with equal
size as our training set. We measure the residual within a

HJB, d = 10, NNimpl
Figure 5

K = 2000,∆t = 0.01
r = (100, 110, 110, 50, 50, 1)
Gn = 8000, GN−1 = 40000
ηn = 0.0001, ηN−1 = 0.0001

HJB, d = 100, NNimpl
Table 1, Figures 6, 7
K = 2000,∆t = 0.01

r = (100, 130, 130, 70, 70, 1)
Gn = 5000, GN−1 = 40000
ηn = 0.0001, ηN−1 = 0.0003

HJB, d = 100, NNexpl
Table 1, Figures 6, 7
K = 2000,∆t = 0.01

r = (100, 110, 110, 50, 50, 1)
Gn = 500, GN−1 = 7000

ηn = 0.00005, ηN−1 = 0.0003

HJB double well
d = 50, NNimpl, Table 3
K = 2000,∆t = 0.01
r = (50, 30, 30, 1)

Gn = 2000, GN−1 = 25000
ηn = 0.0002, ηN−1 = 0.0005

HJB interacting double well
d = 20, NNimpl, Table 4
K = 2000,∆t = 0.01

r = (50, 20, 20, 20, 20, 1)
Gn = 3000, GN−1 = 30000
ηn = 0.0007, ηN−1 = 0.001

CIR, d = 100, NNimpl
Table 5

K = 1000,∆t = 0.01
r = (100, 110, 110, 50, 50, 1)
Gn = 2000 for 0 ≤ n ≤ 15

Gn = 300 for 16 ≤ n ≤ N − 2
GN−1 = 10000

ηn = 0.00005, ηN−1 = 0.0001

Table 7. Neural network hyperparameters for the experiments in
paper.

single run of SALSA on the test set and the training set.
If the change of the residual on either of this sets is below
δ = 0.0001 we set noChange = true. For the fixed-point
iteration we have a two-fold stopping condition. We stop

https://github.com/lorenzrichter/PDE-backward-solver
https://github.com/lorenzrichter/PDE-backward-solver
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PDE with unbounded solution
d = 10, NNimpl, Table 9
K = 1000,∆t = 0.001
r = (10, 30, 30, 1)

Gn = 100, GN−1 = 10000
ηn = 0.0001, ηN−1 = 0.0001

Allen-Cahn
d = 100, NNimpl, Table 10
K = 8000,∆t = 0.01
r = (10, 30, 30, 1)

Gn = 10000 for 0 ≤ n ≤ 5
Gn = 6000 for 6 ≤ n ≤ N − 2

GN−1 = 15000
ηn = 0.0002, ηN−1 = 0.001

Table 8. Neural network hyperparameters for the additional experi-
ments.

the iteration if either the Frobenius norm of the coefficients
has a smaller relative difference than γ1 < 0.0001 or if the
values V̂ k+1

n and V̂ kn and their gradients, evaluated at the
points of the test set, have a relative difference smaller than
γ2 < 0.00001. Note that the second condition is essentially
a discrete H1 norm, which is necessary since by adding the
final condition into the ansatz space the orthonormal basis
property is violated.

D. Further numerical examples
In this section we elaborate on some of the numerical exam-
ples from the paper and provide two additional problems.

D.1. Hamilton-Jacobi-Bellman equation

Let us consider the HJB equation from Sections 4.1 and 4.2,
which we can write as

(∂t + L)V (x, t)− 1

2
|(σ>∇V )(x, t)|2 = 0, (43a)

V (x, T ) = g(x), (43b)

in a generic form with the differential operator L being
defined in (2). We can introduce the exponential transfor-
mation ψ := e−V and with the chain rule find that the
transformed function fulfills the linear PDE

(∂t + L)ψ(x, t) = 0, (44a)

ψ(x, T ) = e−g(x). (44b)

This is known as Hopf-Cole transformation, see also (Flem-
ing & Soner, 2006; Hartmann et al., 2017). It is known that
via the Feynman-Kac theorem (Karatzas & Shreve, 1998)
the solution to this PDE has the stochastic representation

ψ(x, t) = E
[
e−g(XT )

∣∣∣Xt = x
]
, (45)

such that we readily get

V (x, t) = − logE
[
e−g(XT )

∣∣∣Xt = x
]
, (46)

which we can use as a reference solution by approximating
the expectation value via Monte Carlo simulation, however
keeping in mind that in high dimensions corresponding
estimators might have high variances (Hartmann & Richter,
2021).

Let us stress again that our algorithms only aim to provide
a solution of the PDE along the trajectories of the forward
process (4). Still, there is hope that our approximations
generalize to regions “close” to where samples are available.
To illustrate this, consider for instance the d-dimensional
forward process

Xs = x0 + σWs, (47)

as for instance in Section 4.1, where now σ > 0 is one-
dimensional for notational convenience. We know that
Xt ∼ N (x0, σ

2t Idd×d) and therefore note that for the
expected distance to the origin it holds

E [|Xt − x0|] <
√
E [|Xt − x0|2] = σ

√
dt. (48)

This motivates evaluating the approximations along the
curve

Xt = x0 + σ
√
t1, (49)

where 1 = (1, . . . , 1)>. Figure 12 shows that in this case
we indeed have good agreement of the approximation with
the reference solution when using TTs and that for NNs
the deep neural network that we have specified in Table 7
generalizes worse than a shallower network with only two
hidden layers consisting of 30 neurons each.

0.00 0.25 0.50 0.75 1.00
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50

V evaluated at curve

deep NN
shallow NN
TT
reference

0.00 0.25 0.50 0.75 1.00

10 5

10 4

10 3

10 2

10 1
relative error evaluated at curve

Figure 12. Approximations of the HJB equation in d = 100 evalu-
ated along a representative curve.

D.2. PDE with unbounded solution

As an additional problem, we choose an example from (Huré
et al., 2020) which offers an analytical reference solution.
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For the PDE as defined in (1) we consider the coefficients

b(x, t) = 0, σ(x, t) =
Idd×d√

d
, g(x) = cos

(
d∑
i=1

ixi

)
,

(50)

h(x, t, y, z) = k(x) +
y

2
√
d

d∑
i=1

zi +
y2

2
, (51)

where, with an appropriately chosen k, a solution can shown
to be

V (x, t) =
T − t
d

d∑
i=1

(sin(xi)1xi<0 + xi1xi≥0)

+ cos

(
d∑
i=1

ixi

)
.

(52)

In Table 9 we compare the results for d = 10,K =
1000, T = 1,∆t = 0.001, x0 = (0.5, . . . , 0.5)>. For the
TT case it was sufficient to set the ranks to 1 and we see
that the results are improved significantly if we increase the
sample size K from 1000 to 20000. Note that even when
increasing the sample size by a factor 20, the computational
time is still lower than the NN implementation. It should be
highlighted that adding the function g to the neural network
(as explained in Appendix C) is essential for its convergence
in higher dimensions and thereby mitigates the observed
difficulties in (Huré et al., 2020)).

TTimpl TT∗impl NNimpl

V̂0(x0) −0.1887 −0.2136 −0.2137
relative error 1.22e−1 6.11e−3 5.50e−3

ref loss 2.47e−1 7.57e−2 3.05e−1

abs. ref loss 2.52e−2 9.29e−3 1.69e−2

PDE loss 2.42 0.60 1.38
computation time 360 1778 4520

Table 9. Approximation results for the PDE with an unbounded
analytic solution. For TT∗

impl we choose K = 20000, for the others
we choose K = 1000.

D.3. Allen-Cahn like equation

Finally, let us consider the following Allen-Cahn like PDE
with a cubic nonlinearity in d = 100:

(∂t + ∆)V (x, t) + V (x, t)− V 3(x, t) = 0, (53a)
V (x, T ) = g(x), (53b)

where we choose g(x) =
(
2 + 2

5 |x|
2
)−1

, T = 3
10 and

are interested in an evaluation at x0 = (0, . . . , 0)>. This
problem has been considered in (E et al., 2017), where
a reference solution of V (x0, 0) = 0.052802 calculated

by means of the branching diffusion method is provided.
We consider a sample size of K = 1000 and a stepsize
∆t = 0.01 and provide our approximation results in Table
10.

TTimpl TTexpl NNimpl NN∗impl

V̂0(x0) 0.052800 0.05256 0.04678 0.05176
relative error 4.75e−5 4.65e−3 1.14e−1 1.97e−2

PDE loss 2.40e−4 2.57e−4 9.08e−1 6.92e−1

comp. time 24 10 23010 95278

Table 10. Approximations for Allen-Cahn PDE, where NN∗
impl uses

K = 8000 and the others K = 1000 samples.

E. Some background on BSDEs and their
numerical discretizations

BSDEs have been studied extensively in the last three
decades and we refer to (Pardoux, 1998; Pham, 2009; Go-
bet, 2016; Zhang, 2017) for good introductions to the topic.
Let us note that given some assumptions on the coefficients
b, σ, h and g one can prove existence and uniqueness of a
solution to the BSDE system as defined in (4) and (6), see
for instance Theorem 4.3.1 in (Zhang, 2017).

We note that the standard BSDE system can be generalized
to

dXs = (b(Xs, s) + v(Xs, s)) ds+ σ(Xs, s)dWs, (54a)
X0 = x, (54b)

dYs = (−h(Xs, s, Ys, Zs) + v(Xs, s) · Zs)ds+ Zs · dWs,
(54c)

YT = g(XT ), (54d)

where v : Rd×[0, T ] → Rd is any suitable control vector
field that can be understood as pushing the forward trajecto-
ries into desired regions of the state space, noting that the
relations

Ys = V (Xs, s), Zs = (σ>∇V )(Xs, s), (55)

with V : Rd×[0, T ]→ R being the solution to the parabolic
PDE (1), hold true independent of the choice of v (Hartmann
et al., 2019). Our algorithms readily transfer to this change
in sampling the forward process by adapting the backward
process and the corresponding loss functionals (10) and (11)
accordingly.

In order to understand the different numerical discretization
schemes in Section 2.1, let us note that we can write the
backward process (5) in its integrated form for the times
tn < tn+1 as

Ytn+1 = Ytn−
∫ tn+1

tn

h(Xs, s, Ys, Zs)ds+

∫ tn+1

tn

Zs·dWs.

(56)
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In a discrete version we have to replace the integrals with
suitable discretizations, where for the deterministic integral
we can decide which endpoint to consider, leading to either
of the following two discretization schemes

Ŷn+1 = Ŷn − hn∆t+ Ẑn · ξn+1

√
∆t, (57a)

Ŷn+1 = Ŷn − hn+1∆t+ Ẑn · ξn+1

√
∆t, (57b)

as defined in (8), where we recall the shorthands

hn = h(X̂n, tn, Ŷn, Ẑn), (58a)

hn+1 = h(X̂n+1, tn+1, Ŷn+1, Ẑn+1). (58b)

The L2-projection scheme (10) can be motivated as follows.
Consider the explicit discrete backward scheme as in (57b)

Ŷn+1 = Ŷn−h(X̂n+1, tn+1, Ŷn+1, Ẑn+1)∆t+Ẑn·ξn+1

√
∆t.

(59)
Taking conditional expectations w.r.t. to the σ-algebra gener-
ated by the discrete Brownian motion at time step n, denoted
by Fn, yields

Ŷn = E
[
Ŷn+1 + h(X̂n+1, tn+1, Ŷn+1, Ẑn+1)∆t

∣∣∣Fn] .
(60)

We can now recall that a conditional expectation can be
characterized as a best approximation in L2, namely

E[B|Fn] = arg min
Y ∈L2

Fn−measurable

E
[
|Y −B|2

]
, (61)

for any random variable B ∈ L2, which brings

Ŷn = arg min
Y ∈L2

Fn−measurable

E
[(
Y − hn+1∆t− Ŷn+1

)2]
. (62)

This then yields the explicit scheme depicted in (10). We
refer once more to (Gobet et al., 2005) for extensive numer-
ical analysis, essentially showing that the proposed scheme
is of order 1

2 in the time step ∆t.


